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Abstract: Gradient porous materials, particularly carbon-based materials, hold immense potential in
the fields of batteries, energy storage, electrocatalysis, and sensing, among others, by synergistically
combining the attributes associated with each pore size within a unified structural framework. In
this study, we developed a gradient porous aramid (GP-Aramid) by incorporating cellulose acetate
as a porosity promoter in the polymer casting solution in different proportions. These GP-Aramids
were subsequently transformed into their pyrolyzed counterparts (GP-Pyramids), retaining their
original structures while displaying diverse cellular or dense microstructures inherited from the
parent aramid, as confirmed via scanning electron microscopy. X-ray diffraction spectra provided
evidence of the conversion of aramids into carbonaceous materials. The materials showed structural
defects observed through the intensity ratio of the G and D bands (ID/IG = 1.05) in the Raman spectra,
while X-ray photoelectron spectra (XPS) revealed that the carbonization process yielded pyrolyzed
carbon materials unusually rich in nitrogen (6%), oxygen (20%), and carbon (72%), which is especially
relevant for catalysis applications. The pyrolyzed materials showed bulk resistivities from 5.3 ± 0.3
to 34.2 ± 0.6 depending on the meta- or para-orientation of the aramid and the porous structure. This
work contributes to understanding these gradient porous aromatic polyamides’ broader significance
and potential applications in various fields.

Keywords: pyrolysis; aromatic polyamides; aramids; microporous-materials; Nomex; Kevlar; meta-aramid;
para-aramid

1. Introduction

Functionally graded materials (FGMs) are materials that exhibit a gradual and contin-
uous variation of their properties throughout their structure, enabling them to adapt and
optimize for specific functions in different regions [1,2]. In this study, our primary objective
was to synthesize carbon-like materials with a gradient porosity (a continuous material,
not distinct layers) containing a high proportion of nitrogen and oxygen, employing a
straightforward preparation method using aramids as the main materials and cellulose
acetate (CA) as a porosity promoter, and employing a straightforward preparation method.

Unlike conventional materials, which have uniform properties throughout their vol-
ume, functionally graded materials are designed in such a way that properties intentionally
vary, whether it be in terms of chemical composition, microstructure, density, mechanical
strength, thermal conductivity, or other relevant properties. These gradual variations
allow functionally graded materials to combine desirable characteristics from different
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materials into a single structure. They find applications in wear-resistant coatings, struc-
tural components in the aerospace industry, thermal insulation systems, electronics, and
biomaterials [3–6].

The production methods for this type of materials are diverse, primarily depending
on the chemical nature of the material. They can be prepared through deposition-based
methods (vapor deposition, electrodeposition, thermal spray), solid-state methods (powder
metallurgy methods, additive manufacturing methods, hybrid methods with additive
manufacturing), and liquid-state methods (centrifugal force methods, slip casting methods,
tape casting methods, infiltration methods, the Langmuir–Blodgett method) [6].

When the gradual and continuous variation refers to porosity, we refer to gradient
porous materials [5,7], a field within materials science that has developed over the past
30 years [6], with titanium- and steel-based materials playing a prominent role [8,9].

However, moving away from metal-based gradient porous materials, some studies
have focused on different polymers [10,11] and carbon-based materials due to their low cost
and high availability [12,13]. In fact, certain authors have even prepared multilevel gradient
structural carbon using naturally preprocessed biomass [14], or Lyocell [15], as precursors.
These materials hold great promise in the field of batteries and energy storage, and studies
have already been published where they are incorporated into methanol fuel cells [16].
Due to their physicochemical properties, such as high specific surface area, high thermal
conductivity at room temperature, and a high Young’s modulus, carbon materials are also
relevant in other fields such as electronic devices, sensors, and energy storage [17–22].

Graphene-like carbon materials can be synthesized through the pyrolysis of biomass [20],
metal–organic frameworks (MOFs) [23–25], and polymers derived from natural sources [15,26,27].
Additionally, synthetic polymers containing heteroatoms, such as polypyrrole [28], poly-
benzoxazines [29], aromatic polyamides [30,31], or pyrimidine polymers [32], can also be
utilized. The presence of heteroatoms doping the carbon material is common and, in some
applications such as seawater desalination devices, flame retardant materials, electrochemi-
cal devices, environmental treatments, and pollutant removal, it is even essential [33,34].

Aromatic polyamide, specifically aramid, fibers such as poly(m-phenylene isophthala-
mide) and poly(p-phenylene terephthalamide), known by their commercial names Nomex®

and Kevlar®, respectively, have been utilized for the synthesis of N- and O-doped carbon
materials through pyrolysis [30,35–38]. However, to the best of our knowledge, pyrolysis of
these materials has only been conducted using fibers and textiles, resulting in the formation
of nanometer-sized porous carbon materials after fiber pretreatment with H3PO4 or KOH,
or through post-treatments involving activation with CO2, water vapor, or O2 [35,39,40].

This study elucidates a method for creating two innovative materials characterized
by continuous gradient porosity. The initial material is grounded in aromatic polyamides
(aramids), and the second material is produced through the pyrolysis of the former, yielding
a chemically structured sp2 carbon material extensively doped with notable amounts of
nitrogen (N) and oxygen (O), something that is rather unusual when compared to the
pyrolysis of other polymer types.

We have pioneered the production of controlled porosity aromatic polyamides as
conventional materials (not gradient porous materials), ranging from nanoporous to micro-
porous structures, and using standard solution casting procedures. Furthermore, we have
developed a scalable and cost-effective preparation procedure utilizing porosity promoter
polymers [41–43]. Currently, we are introducing the production of gradient porous aramids
(GP-Aramids) and gradient porous pyrolyzed aramids (GP-Pyramids), opening the door to
their future applications. These materials have been prepared using both m-aramids and
p-aramids in various formats and shapes, including continuous and discontinuous fabrics,
as well as dense or porous films, as illustrated schematically in Figure 1.
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GP-Aramids and GP-Pyramids can be prepared on a large scale with controlled
porosities [44] without the loss of the structural integrity, and they can be key materials
for energy, batteries, catalysis, etc., since these large porosities can provide large specific
surface areas and porous pass-through channels to facilitate mass transfer. The materials
have been characterized via Fourier transform infrared spectroscopy (FT-IR), RAMAN,
scanning electron microscopy (SEM), X-ray photoelectron spectra (XPS), powder X-ray
diffraction (PXRD), and electrical resistance.

2. Experimental
2.1. Materials

All materials and solvents were commercially available and used as received unless
otherwise indicated. The following materials and solvents were used: acetone (99%, VWR),
N,N-dimethylacetamide (DMAc) (99%, Sigma-Aldrich, Saint Louis, MO, USA), LiCl (≥99%,
Sigma-Aldrich), cellulose acetate (CA) (40% wt. acetylated, 30 KDa, Sigma-Aldrich), poly(p-
phenylene terephthalamide) (p-aramid; continuous fiber, average fiber diameter = 11.2 µm;
textile, average yarn diameter = 13.2 µm; both calculated using SEM), poly(m-phenylene
isophthalamide) (m-aramid; staple fiber; average fiber length and diameter of 6.4 mm and
13.2 µm, respectively, calculated using SEM).

Handling solvents like acetone and dimethylacetamide necessitates stringent safety
measures. Ensure proper ventilation, use chemical-resistant gloves and safety goggles, and
keep these solvents away from ignition sources. When using furnaces at temperatures
as high as 800 ◦C, adhere to high-temperature equipment handling protocols, wear heat-
resistant gloves and eye protection, and have suitable fire extinguishers on hand in case of
a fire.

2.2. Instrumentation and Methods

The process of pyrolysis was conducted using a thermobalance instrument (Q50 TGA
analyzer, TA Instruments, New Castle, DE, USA).

The infrared spectra (FTIR) of the aramids were captured using an infrared spectrome-
ter (FT/IR-4200, Jasco, Tokyo, Japan) equipped with an ATR-PRO410-S single reflection
accessory. To obtain the FTIR transmittance spectra of the aramids, the samples were first
pulverized and then incorporated into KBr pellets.

Scanning electron microscopy (SEM) investigations were conducted using an elec-
tron microscope (FEI Quanta 600, FELMI-ZFE, Graz, Austria). The aromatic polyamides
underwent a drying process in ambient air, followed by fracturing and gold sputtering
in a vacuum to ensure electrical conductivity. However, it is worth noting that no gold
sputtering was applied to the pyramids, as they are inherently conductive materials.
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Raman spectra were obtained using a confocal AFM-Raman system, specifically the
Alpha300R—Alpha300A AFM by WITec, located in Ulm, Germany. The measurements
were conducted with laser radiation at 532 nm and a power output of 1 mW, with a
magnification set at 100×.

Sample electrical resistance (R) was quantified using a Jandel 4-point probe (HL
Jandel, UK) linked to a 2401 SourceMeter® unit (SMU) instrument from Keithley, OH, USA.
The surface bulk resistivity (ρb) of the samples was subsequently determined using the
following formula:

ρb = 2πsR (1)

In this equation, ‘s’ represents the electrode spacing, which is fixed at 0.125 cm [45]. As
references, the electrical resistance of both graphite and steel samples was also measured
and taken into account.

Powder X-ray diffraction (PXRD) patterns were acquired utilizing a diffractometer
(D8 Discover Davinci design, Bruker Corporation, Billerica, MA, USA). The instrument
operated at 40 kV and employed Cu(Kα) as the radiation source. The scan step size was set
at 0.02◦, and each scan step took 2 s to complete.

X-ray photoelectron spectra (XPS) were captured using a Fisons MT500 spectrometer
equipped with a hemispherical electron analyzer known as CLAM2. A non-monochromatic
Mg Kα X-ray source operating at 300 W was employed for excitation. The samples were se-
curely affixed to small flat discs supported on an XYZ manipulator, strategically positioned
within the analysis chamber. The ion-pumped analysis chamber was rigorously maintained
at a residual pressure below 10−9 torr throughout the data acquisition process. Spectra
were recorded with a pass energy of 20 eV, a setting typically used for high-resolution
conditions. Subsequently, CasaXPS 2.3.25 software was employed for spectrum analysis. To
estimate intensities, the area beneath each peak was calculated after removing the S-shaped
background, and the experimental curve was fitted using a combination of Lorentzian and
Gaussian lines with adjustable proportions. It is worth noting that despite the presence of
specimen charging, accurate binding energies (BEs) were determined with reference to the
adventitious C1s peak at 285.0 eV. The allowable variation in binding energy was limited to
±0.2 eV relative to the specified peak center value. Atomic ratios were computed from the
intensity ratios of the peaks using established atomic sensitivity factors, as reported [46].

2.3. Preparation of GP-Aramids

GP-Aramids were prepared using a standard solution casting procedure. The region
with zero porosity (dense zone) of the material was prepared by carrying out a casting
process with a solution containing 0.49 g of commercial m-aramid, 0.14 g of LiCl (as a
solubility promoter), and 7 mL of DMAc (the solution is prepared at 80 ◦C). A total of 5 mL
of this solution was poured onto a circular silicone mold, and the system was placed in
an air-circulating oven at 80 ◦C for 4 h. Then, the addition and evaporation process was
repeated two more times.

After the initial region, the porosity gradient was controlled by incorporating cellulose
acetate as a porosity promoter. In previous studies, we have examined various porosity
promoters, such as ionic liquids [41,43,44], boron nitride [47], and different polymers [42],
including polyvinyl alcohol (PVA), poly(2-ethyl-2-oxazoline) (PEOx), and cellulose polyac-
etate (CA). For this work, we have chosen CA, as it allows for excellent control of porosity
and is also cost-effective. Using the same experimental conditions, the low-porosity region
was prepared using a solution composed of 0.245 g of cellulose acetate, 0.49 g of commercial
m-aramid, 0.14 g of LiCl, and 7 mL of DMAc. The high-porosity region was prepared using
a solution consisting of 0.49 g of cellulose acetate, 0.49 g of commercial m-aramid, 0.14 g of
LiCl, and 7 mL of DMAc. A total of 3 mL instead 5 mL of this solution was poured onto the
circular silicone mold. Finally, a layer of woven p-aramid fabric was added to include a
region with extremely high porosity. The fabric was soaked with DMAc to ensure cohesion
with the layer underneath.
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After that, the materials were washed with water and, via Soxhlet extraction, with acetone
for 48 h to remove the porosity promoter polymer (CA) and generate the GP-Aramids.

In order to accurately characterize the different porosity regions (continuous material,
different regions), each of them was also prepared as an individual material (separate
layers) following the same experimental procedure.

2.4. Pyrolysis of Aramids

For the preparation of GP-Pyramids, GP-aramids were pyrolyzed using a thermobal-
ance, and applying a nitrogen current of 40 mL/min. The samples were heated at 2 ◦C/min
up to 800 ◦C, and finally, an isothermal reaction was carried out for 5 h. The samples
were cooled using the same nitrogen gas flow until the temperature reached below 150 ◦C
(around 2 h).

3. Results and Discussion

In our previous research [41–44], we successfully fabricated porous m-aramids with
various cellular morphologies by incorporating a porosity promoter polymer in the casting
process. The objective of our current study was to produce porous aramids using high
percentages of cellulose acetate (CA) (50% and 100% relative to the aramid) and investigate
whether their pyrolysis yields conductive materials while preserving the cellular structure.
Additionally, we also pyrolyzed dense m-aramid films and p-aramid fibers and textiles in
the same conditions for characterization purposes. Our findings demonstrate that we can
indeed generate conductive materials while maintaining their original shape and cellular
structure, as observed in MOFs [48]. Figure 2 presents scanning electron microscopy
(SEM) micrographs of the various individual materials, including m-aramids and p-aramids
(dense, porous, microporous, woven fabric, and fibers), before and after the pyrolysis
procedure, illustrating the structural integrity post-process. The complete investigation
involved the use of two varieties of aromatic polyamide featuring amide bonds oriented in
both the meta- and para-positions.

Raman spectroscopy, as depicted in Figure 3a, confirmed the existence of defects in
the carbonaceous structure. The G band, with an intensity at 1590 cm−1, represents the
characteristic stretching vibrational mode of sp2-hybridized carbon in a graphitic 2D hexag-
onal lattice. It serves as the primary mode in graphene and graphite. The D band, observed
at 1350 cm−1, is referred to as the defect/disordered band. It is attributed to a breathing
vibrational mode originating from aromatic sp2 carbon located adjacent to layer edges or
defects. Consequently, the D band is not discernible in defect-free pristine graphene. The
evaluation of the intensity ratio between these vibrational modes is commonly employed to
quantify the defect content in graphene-like materials. In our case, the ID/IG ratio is 1.05,
indicating the presence of defects in the material. According to the literature, this value
aligns with the “mainly sp2 amorphous carbon” regime typically associated with graphene
oxide [49,50].

The high density of defects observed in the pyrolyzed materials can be attributed
to the carbonization process, which follows a reaction mechanism similar to that of poly-
acrylonitrile. Around 500–600 ◦C, aryl nitriles are formed, followed by aromatization and
condensation reactions at higher temperatures, with a notable retention of heteroatoms
(oxygen and nitrogen) [51,52]. Hence, one of the primary objectives of this work was
to demonstrate our ability to maintain these high levels of oxygen and nitrogen in our
materials. XPS analysis (Figure 3d–f) revealed that the atomic content of nitrogen, oxygen,
and carbon in the pyrolyzed m-oriented aramid was approximately 6%, 20%, and 72%,
respectively. The remaining 2% is attributed to elements such as Si and Cl, which we
associate with a process that occurred in the molds used for material preparation. These
molds are treated with a 15% solution of dichlorodimethylsilane in toluene to enhance their
anti-adhesive properties, thus facilitating the demolding process of the prepared materials.
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The high amount of nitrogen and oxygen present is one of the key points of our study,
as it encompasses not only the attainment of a carbon structure with a porosity gradient but
also a high percentage of nitrogen and carbon. This, in turn, broadens the range of potential
applications for these materials. Oxygen is likely associated with the aromatic network
in pyridones, quinones, or similar forms, as well as hydroxyl and carboxylic functional
groups. Nitrogen exists in chemically stable aromatic forms, with one third as imine-type
nitrogen, one third as amine-type nitrogen, and the remaining one third as nitrates. Most
of the carbon content is in the form of sp2 carbon, but sp3 hybridization is also present.
These functional groups in the pyrolyzed materials are consistent with the observations in
the FTIR analysis (Figure 3c), which show stretching bands at 3435 cm−1 for -OH groups,
2923 cm−1 for -CH2, and the absence of the C=O stretching band from the amide group. The
PXRD spectra of m-aramid and m-pyramid also indicate the transformation of the aramid
into a carbonaceous material (Figure 3b), with two broad diffraction peaks corresponding
to the (002) and (100) diffraction peaks at 2θ = 22◦ and 45◦, respectively [37,53].

The surface electrical conductivity of the samples was evaluated. It has been confirmed
that aramids are essentially non-conductive. However, the p-pyramids exhibited a bulk
resistivity of 5.3 ± 0.3 Ω·cm, which is comparable to the measured resistivity of graphite



Polymers 2023, 15, 4315 8 of 12

(3.6 ± 0.2 Ω·cm) or steel (0.71 ± 0.01 Ω·cm). Interestingly, an increase in bulk resistivity
was observed in the case of m-pyramids as the porosity increased (7.5 ± 0.4, 9 ± 2, and
34.2 ± 0.6 Ω·cm for dense, microporous, and porous m-pyramids, respectively). This
increase in resistivity could be attributed to the loss of interchain electron mobility caused
by the increased porosity [54]. These findings suggest that the electrical conductivity
of the materials is influenced by their chemical composition and the presence of pores.
Although the observed differences are not substantial, these results provide valuable
insights into the fundamental properties of the materials and their potential suitability
for various applications, including coatings (to be employed in photocatalysis, magnetic
drug delivery systems, rechargeable Li-ion batteries, etc.) [55], solar cells (carbon-based
cells could potentially offer a more cost-effective alternative to silicon-based solar cells,
with significantly lower costs and superior chemical and environmental stability when
compared to silicon) [56], and adsorbents (our carbonaceous materials have high specific
surface areas and strong π–π interactions) [57].

Finally, we achieved the aim of our study by successfully fabricating gradient porosity
materials, namely GP-Aramids and GP-Pyramids. The materials were composed of an
initial dense layer, followed by a microporous layer, a porous layer, and, to include an
extremely highly porous layer, a fabric layer. Figure 4 showcases the acquired structures
through scanning electron microscopy (SEM) images and photographs. The gradient poros-
ity could be tailored according to specific requirements by adjusting the quantity of the
porosity promoter, cellulose acetate (CA). This figure effectively underscores the adapt-
ability and precision of the employed fabrication technique in creating these remarkable
structures. We have encountered substantial difficulties in the process of measuring the
mechanical properties of our pyrolyzed materials. The universal testing machines tend to
damage the material when it is gripped by their jaws. Consequently, we intend to conduct
further research on this matter in forthcoming studies.
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4. Conclusions

In conclusion, our study represents a significant step forward in the realm of mate-
rials science. By exploring the potential of gradient porosity aramids and their seamless
transformation into carbonaceous materials with retained porosity during pyrolysis, we
have not only expanded the toolbox for material design but also unlocked a spectrum of
promising applications. Our key achievements and implications can be summarized as
follows. (1) Structural stability and customizability: We have demonstrated the remarkable
structural stability of gradient porosity aramids throughout the pyrolysis process, which
offer a unique advantage in creating materials with customizable porosity levels. This
versatility empowers researchers and designers to tailor materials to specific applications.
(2) Electrocatalytic potential: The substantial nitrogen content, notably in the form of
pyridine-N, highlights the electrocatalytic potential of these materials. They hold promise
for applications such as the oxygen reduction reaction in fuel cells and metal–air batteries,
marking a substantial advancement in sustainable energy technologies. (3) Sensitivity
to gases: These materials exhibit an enhanced affinity for gases like CO, NO, and NO2,
making them valuable candidates for sensor applications. Their substantial alterations in
electronic properties in response to these gases open up avenues for improved gas sensing
technologies. (4) Catalytic exploration: By introducing metals such as iridium or palladium
through in situ reduction during pyrolysis, we could unveil their potential in catalytic
reactions, particularly hydrogenation. This paves the way for innovations in catalysis and
green chemistry. (5) Circular economy contribution: Repurposing waste materials from po-
lice and firefighter clothing (mainly composed of meta-aramid) as a source of recycled raw
material offers an eco-friendly solution to mitigate the high costs associated with aramids.
This aligns with the principles of the circular economy, contributing to sustainability and
resource efficiency. In light of these accomplishments, our study not only advances the
field of materials science but also holds great promise for addressing pressing challenges
in sustainable technology, catalysis, and circular economy initiatives. It underscores the
importance of considering the potential of unconventional materials and processes in our
quest for innovative solutions.
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