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Introduction

Waste management is a serious challenge wherever there are large 
populations. Furthermore, the global trend is for people to move 
into urban areas (Pereira and Navarro, 2015; Weeks, 2007). This 
trend, coupled with rising global development levels, increases 
the amount of waste generated in cities and towns (Hannan et al., 
2015). Therefore, there is a growing need for municipalities to 
increase the efficiency of their waste management systems.

In recent years, several integrated solutions have been devel-
oped for waste management systems, including bin sensors, 
servers for gathering and analysing sensor information and appli-
cations to collect information about bin states and even to plan 
collection routes (Gutierrez et al., 2015; Karadimas et al., 2016; 
Mamun et al., 2016; Medvedev et al., 2015; Murciego et al., 2015; 
Ramson and Moni, 2017; Rovetta et al., 2009; Shah et al., 2018; 
Yerraboina et al., 2018). Having access to real-time information 
about bin fill levels is a valuable feature that can be performed 
accurately and automatically without the need for human inter-
vention. It allows waste collection companies to save operational 
costs by reducing the number of trips that need to be made, as 
well as by reducing the total length of those trips (Morais et al., 
2023). Automatic monitoring systems can also issue a warning 
when a bin is close to overflowing or when it has overflowed, 
therefore increasing the quality of service for all citizens.

Currently, most municipalities are not utilizing smart waste 
management systems. Instead, they usually rely on pre-planned 
routes travelled on regular intervals, which are often designed 
manually, regardless of the quantities of waste to collect (Ferrer 
and Alba, 2019). This leads to routes which are far from optimal 
and do not adjust to changes in waste quantities or travel condi-
tions (e.g. traffic congestion). Moreover, route optimization for 
waste collection is a challenging problem, as waste quantities are 
stochastic (Prins et al., 2014) and, without a monitoring solution 
(such as sensorization), they are only known a posteriori. Studies 
have shown that waste generation and recycling rates are depend-
ent on socio-economic, demographic and geographic factors 
(Abbasi and El Hanandeh, 2016; Hannan et al., 2015; Kannangara 
et al., 2018; Prins et al., 2014). In fact, as regions become more 
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developed and consumer expenditure increases, so too does the 
amount of generated waste (Kannangara et al., 2018). Therefore, 
urban growth and national development must be accompanied by 
upgrades in municipal waste management systems, especially 
with regards to waste collection.

To address inefficiency issues, two approaches can be emplo-
yed. One is the installation of smart sensors in bins, coupled with 
route optimization techniques (Gutierrez et al., 2015; Medvedev 
et al., 2015; Murciego et al., 2015; Ramos et al., 2018; Shah 
et al., 2018). However, sensors are not cheap (the market price 
of commercially available sensors can be one to two orders of 
magnitude (Beigl et al., 2005; Vishnu et al., 2022) and can require 
a considerable investment from municipalities, which are often 
responsible for hundreds if not thousands of bins. The other 
approach relies on robust and adaptive models for predicting fill 
levels (Ferrer and Alba, 2019). This approach depends on historic 
data for individual bin fill levels, which can be difficult to gather. 
Some waste management companies have their drivers recording 
this data every time a bin is visited. However, as the fill levels are 
registered by humans, and in a discrete scale, it may have lower 
precision and may be prone to individual subjectivity and human 
error. Moreover, if fill levels are only recorded when drivers visit 
the bins, then the time interval between observations can be con-
siderable, especially for recyclable waste. The pros and cons of 
these two approaches (installation of smart sensors in bins – static 
sensors (SS); predicting fill levels based on visual observations 
(VO) from the truck drivers – VO) are systematized in Table 1.

In this work, we perform an exploratory study where we 
analyse monitoring approaches by installing smart sensors in 
recyclable bins in a living laboratory environment, while simul-
taneously asking collection truck drivers to record the fill levels 
of the respective bins. Our goal is to compare their performance, 
that is, to compare visual fill level observations made by humans 
with those made by sensors and propose a hybrid monitoring 
approach that balances the advantages and disadvantages of the 
other two approaches. Then, the impact of each monitoring 
approach is assessed (considering that the data is provided by 
sensors or by humans) when planning the waste collection opera-
tions, namely in terms of the number of collections and the num-
ber of overflows. These two figures are inevitably tied together, 
as a reduction in one usually leads to an increase in the other. 
Furthermore, the number of collections made is strongly related 
to the efficiency of waste management operations, whereas the 
number of overflows directly impacts the company’s service 
level (more overflows imply a reduced service level).

The contributions of our study are as follows:

1. Analysis of two monitoring approaches of bin fill levels: 
Visual monitoring by waste collection truck drivers and SS 
monitoring. This includes a comparative analysis of sensor 
and VO, based on which the quality of the VO is assessed 
(quantitatively);

2. Proposal and analysis of a novel monitoring approach where 
truck drivers use a mobile sensor (MS) to measure bin fill 
levels;

3. Comparison of the three monitoring approaches via an analy-
sis of the trade-off between the number of collections made 
and the number of overflows that occur, using real data from 
a living laboratory and

4. Managerial insights for waste collection companies regard-
ing the pros and cons of each monitoring approach, and 
their expected impact in terms of reduction in the number 
of collections (efficiency) and reduction in the number of 
overflows (service level).

It should be noticed that our study is exploratory, and its results are 
preliminary. However, a second testing phase at a wider scale (both 
temporal and spatial, including more representative data – more 
waste bins located at different regions, all seasons, more truck driv-
ers involved) is foreseen in order to retrieve more general results.

The remainder of the paper is organized as follows: section 
‘Study methodology’ describes the methodology we have used in 
our study; in section ‘Study results’, the results of the analyses 
we have performed are presented and discussed in detail; finally, 
section ‘conclusion’ states our main conclusions.

Study methodology

The methodology used to assess the monitoring approaches 
comprises four major steps: data collection, data processing, 
proposal, and modelling (see Figure 1).

Data collection

Regarding data collection, bin fill level data was collected over 
the course of 7 months in a living laboratory scenario from two 
sources: observations made by fill level sensors installed in the 
bins (sensor observations) and observations made by the waste 
collection truck drivers (VO). The monitored bins are owned by 
ERSUC – Resíduos Sólidos do Centro, S.A., a Portuguese waste 

Table 1. Comparison of monitoring approaches.

Monitoring approach Pros Cons

Static sensors A priori fill level knowledge (real-time information)
Accurate and precise fill level measurements

Large initial investment
Considerable maintenance and licensing costs

Visual observations Negligible cost A posteriori information
Requires a short-term predictive model
Susceptible to human error
Low measurement precision
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management company operating in 36 municipalities of the 
Coimbra and Aveiro regions (ERSUC, 2018). The installed sen-
sors were provided by Evox, a Portuguese company providing 
technological IoT solutions for several industries (Evox 
Technologies, 2019). The sensors used in this experiment were 
ultrasonic sensors installed inside the bins at the top, pointing 
downward. The sensors have a resolution of ±1 cm and a ranging 
distance between 18 and 400 cm. The cone formed by the ultra-
sonic beam has an aperture of 80°. Each sensor operates on a 
lithium battery and communicates with a central server via Long 
Term Evolution network.

In our exploratory study, four different recyclable waste bins 
were monitored from 15 February 2019 to 30 September 2019: 
two paper/cardboard bins (hereafter referred to as paper 1 and 
paper 2), one plastic/metal bin (plastic) and one glass bin (glass). 
The bins are all located in the same street, where the glass, plastic 
and paper 1 bins are grouped at the same location, while paper 2 

bin is at another location on the same street. The four bins have 
the same geometry, a total capacity of 2.5 m3 and the dimensions 
illustrated in Figure A-1 (Supplemental Appendix). These bins 
were selected due to their central position in the city of Coimbra 
(150,000 inhabitants), meaning that they could be regularly mon-
itored by the truck drivers. As reported by ERSUC, they are char-
acterized by a high and stable fill rate over the year. Although the 
whole area of ERSUC (36 municipalities) is somehow affected 
by seasonality (in particular glass, see Figure A-2, Supplemental 
Appendix), this is not the case of the selected bins given their 
location and urban environment.

Two different methods were used to collect data on bin fill lev-
els. Firstly, fill level sensors were installed in each of the four bins. 
These sensors autonomously monitor changes in the fill level and 
transmit collected data to a remote server. The most important data 
for the purposes of our study were the bin identifier, the fill level 
and the time and date. Figure A-3 (Supplemental Appendix) 
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illustrates the installation process of one of the sensors. The 
recorded sensor data was subsequently downloaded from the 
remote server for visualization and analysis. It should be noted that 
the sensors are continuously reading the fill levels, but only trans-
mit a level when it is significantly different from the level meas-
ured in previous transmission for battery saving purposes. A 
significant change was parametrized in this experiment to be ±10 
percentage points, that is, if the previous transmission at 3 p.m. 
was 35%, and at 4 p.m. the level is 40%, at 4 p.m. there will be no 
transmission. If, instead, at 4.30 p.m. the level is 45%, then the fill 
level will be transmitted. If no significant changes occur, the sen-
sors report fill levels at least once a day.

In parallel with the sensor monitoring system, a driver moni-
toring system was also implemented as another source of data. 
Waste collection truck drivers were asked to fill in a manual form 
every time they passed by the monitored bins. Note that when the 
driver is performing the collection route of a certain recyclable 
material (collection routes are mono-material as the trucks have 
only one compartment), he/she also records the fill level of bins 
of other recyclable materials when bins are grouped together in 
the same location as is very often the case. The manual form had 
fields for the driver’s name, date, time, bin ID, fill level and 
occurrence of collection, as shown in Figure A-4 (Supplemental 
Appendix). Each row of the manual form corresponds to a unique 
observation. Additionally, to aid the drivers in their monitoring 
task, the inside of each bin was marked at the levels correspond-
ing to integer multiples of 25%. The 25% levels were chosen 
because the drivers were already accustomed to them (as part of 
their jobs, they were already asked to record bin fill levels along 
collection routes, but this information was not being used by the 
company). This allowed for easier, faster and more consistent 
visualization of the fill level.

Data processing: Statistical analysis

A statistical analysis was performed to compare the quality of the 
data obtained from the sensor observations and the VO. We aim 
to quantify the correlation between the time series data collected 
by the drivers and the sensors (VO vs sensor observations, 
respectively). In particular, the time series analysed in this study 
are irregular because they are sampled asynchronously and at 
irregular intervals. An irregularly spaced time series is a sequence 
of observation time and value pairs t xi i,( )  of length N , where 
xi  is the value at time ti with t t tN1 2< < <... , and the difference 
between consecutive observation times is not constant (Rehfeld 
et al., 2011). As mentioned before, the sensors report at least one 
observation per day. Conversely, the truck drivers would record 
observations when they performed a route which included the 
monitored bins. This generally occurred with intervals of 
3–5 days. Additionally, the VO were made between midnight and 
03.00. Given these conditions, VO rarely coincided with sensor 
observations. Therefore, sophisticated techniques were required 
to estimate the correlation coefficient for the time series.

A comparison of different correlation analysis methods for 
irregularly sampled time series is presented by Rehfeld et al. 

(2011). The first method consists of resampling both time series 
onto a common regular time grid with constant time interval. The 
authors use the time grid

 ∆ ∆ ∆t t tx y= ( )max , ,  (1)

where t x  is the mean sampling interval for time series x  and 
t y  is the mean sampling interval for time series y. Once the 
regular time grid is determined, a linear interpolation is calcu-
lated for the observed values in each time series, after which 
standard correlation analysis methods can be applied. Another 
method studied by the authors is correlation slotting. This method 
consists of sorting the observations into slots of width  ∆˜ . First, 
the observations for each time series must be standardized so that 
they have zero mean and unit variance. Then, only slots which 
contain observations from both time series are considered by the 
correlation estimator. The authors used equation (1) for the slot 
width, to increase the probability that at least one observation 
from each time series exists in the slot. Finally, the cross-correla-
tion of the slotted standardized observations is calculated. In 
addition, the authors considered non-rectangular kernels, namely 
the sinc kernel and the Gaussian kernel. Each of these kernels 
weigh the observations by their distance to the centre of the slot, 
instead of strictly considering observations contained in each slot 
and assigning them equal weights. The tests performed by the 
authors indicate that the Gaussian kernel has the best perfor-
mance. In this study, we opted by using the resampling approach 
due to its simple implementation and good performance reported 
by Rehfeld et al. (2011). For the resampling method, the linear 
interpolation technique was used for the reasons discussed by 
Rehfeld et al. (2011), that is, the effects of other standard routines 
are not much different in their variance reduction towards the 
high-frequency end of the spectrum (Schulz and Stattegger, 
1997). Finally, the correlation between the two resampled time 
series was estimated using Pearson’s correlation coefficient (2) 
(Rodgers and Nicewander, 1988)
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Where n  is sample size, x yi i,  are the individual sample points 
and x , y  the sample mean for both time series x  and y .

Proposal: Mobile Sensors (MS)

Given the pros and cons of SS and VO (see Table 1), we propose 
a third one: a hybrid approach involving the use of MS to accu-
rately measure fill levels (removing human error factors) coupled 
with an adaptive predictive model (to better estimate future fill 
levels, as observations are only made when the bin is visited). 
The concept of this approach is to have a mobile fill level sensor 
in each waste collection truck with which the truck drivers would 
measure the bin fill levels. Each bin would have a dedicated 
opening or attachment point for the MS, to make consistent fill 
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level observations. Altogether, this hybrid approach can offer 
considerable gains for waste collection companies, reducing the 
number of sensors required as well as reducing their maintenance 
cost—a MS can have a rechargeable battery and is not exposed  
to the elements such as a bin-SS. Furthermore, it balances the 
advantages and disadvantages of the other two approaches,  
giving the accuracy and precision of sensor observations at a 
fraction of the cost, but with a reduced observation frequency, 
thus requiring an adaptive predictive model.

Modelling: Prediction model and  
trade-off analysis

The VO and the MS need a short-term predictive model to 
assess how the monitoring approaches will operate in terms of 
number of collections and overflows, as they do not rely on 
real-time information (unlike the SS). For this, we chose a 
Gaussian process (GP) as the predictive model to use, as in the 
work of Ferrer and Alba (2019) three models were used to pre-
dict daily bin fill levels (linear regression, GP and support vec-
tor machine for regression) and the authors found that the GP 
model was the best predictor. We highlight that the predictive 
model is not a contribution of this work, but it is a necessary 
tool to perform the trade-off analysis. Therefore, we follow the 
work of Ferrer and Alba (2019) in this matter.

A GP is specified by a mean function and a covariance func-
tion. In the work of Ferrer and Alba (2019), the authors do not 
specify which covariance function (also known as kernel) was 
used for the GP. Therefore, a suitable kernel was designed for this 
study based on the in-depth analysis presented by Rasmussen and 
Williams (2006).

In order to understand the choice of kernel, we must first 
describe the pre-processing step applied to both the VO and the 
sensor observations. This step consists in removing the occur-
rence of waste collections from the time series. It is necessary to 

perform this operation because the intervals between collection 
occurrences are irregular (in our study, intervals between collec-
tions ranged from 2 days to ten days), and the predictive model 
must work independently of them. Additionally, the GP kernel 
can be simplified for the data with collections removed, as it no 
longer requires a periodic component. Figure 2 illustrates this 
step with simulated data. Figure 2(a) shows a time series (in 
green) which could correspond to real bin fill level observations 
for the month of March 2019 (dates are given on the bottom 
axis). The dashed vertical red lines represent simulated collection 
events, leading to a large reduction in the bin fill level (although 
not necessarily to 0%, as this is often observed in the real data). 
In Figure 2(b), we see the bin fill level behaviour (in blue) if  
no collections had occurred, that is, the bin fills continuously. 
Figure 2(b) shows the cumulative fill level in percentage, mean-
ing that, if in the period observed it reaches a value of 900%, the 
bin filled over nine times (900/100% = 9).

The collections are ‘removed’ by traversing the time series 
from the end to the start and, upon reaching a time t  where a 
collection occurred, adding the fill level observed immediately 
before t  to all the observations made after t. This operation is 
done in reverse order (latest date to earliest date) so that previous 
fill levels are not added multiple times.

Based on the arguments presented in the previous paragraphs, 
the predictive model used in this work is a GP with a kernel given 
by equation (3). The first term, c x x0 0

2( ),σ ′+ ⋅  is a dot product 
kernel, parameterized by a hyperparameter σ0 and scaled by a 

factor c0. The second term, c
x x
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, is a rational quad-

ratic kernel, parameterized by a length-scale parameter l  and a 
scale mixture parameter α  and scaled by a factor c1. The dot 
product term is used to model the long-term rising trend observed 
in the data (see Figure 2 (b)), whereas the rational quadratic term 
models the short-term changes (e.g. a waste deposition or com-
paction event). Additionally, the uncertainty in the observations 

Figure 2. Pre-processing step applied to the visual and sensor observations before the GP regression is calculated: (a) bin fill 
level observations and (b) bin fill level without collection events.GP: Gaussian process.
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is specified and accounted for in the GP regression by adding it to 
the diagonal of the kernel matrix (Rasmussen and Williams, 
2006).
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The predictive model was implemented with scikit-learn 
(Pedregosa et al., 2011), which uses the gradient ascent method 
to optimize the kernel hyperparameters. Recognizing this, the 
initial value of all the hyperparameters is set equal to 1.0 with 
lower and upper bounds of 1.0 × 10−10 and 1.0 × 105, respec-
tively, except for α that was set with an initial value of 0.125.

For each time series, the GP was trained on the initial 75% of 
observations (training set), and then it was used to make predic-
tions in the time period corresponding to the remaining 25% of 
observations (test set). This predictive model was used in both 
the VO and the MS monitoring approaches. It was not used in the 
SS monitoring approach because, in that approach, it is assumed 
that the fill level reported by the sensors is used to determine 
whether the bin should be collected or not (thus, no prediction is 
required). In the case of the MS monitoring approach, the SS 
observations were subsampled to achieve an observation fre-
quency similar to that of the VO, and they were linearly interpo-
lated due to the fact that the SS observation times rarely coincided 
with the VO times.

The comparison of the performance of each monitoring 
approach can be made with a trade-off analysis based on the col-
lected data. We can demonstrate that for different values of a 
parameter which encodes how conservative we want to be with 
respect to the risk of bin overflowing, a trade-off can be made in 
terms of the number of overflows versus the number of collec-
tions. Naturally, a reduction in one of these numbers generally 
leads to an increase in the other. Moreover, a reduction in the 
number of collections implies a reduction in the length or number 
of collection routes, which results in a reduction in the cost of 
operations. However, it also increases the risk of bins overflow-
ing, which impacts the company’s service level, and can expose 
it to serious fines (Mes et al., 2014).

To estimate this trade-off based on real data, several steps were 
taken. First, for the VO and the MS monitoring approaches, it was 
necessary to train the predictive model. Given the different num-
ber of observations (see Table 2) and the irregular observation 

times for each time series, the training/test periods for each bin 
and monitoring approach were slightly different. Nonetheless, the 
test period generally started at the beginning of August 2019. In 
order to have comparable results, the test period for the SS moni-
toring approach was set to begin on 1 August 2019.

Furthermore, to be able to compare the monitoring approaches 
with the current situation (current situation is designated by what 
actually happened in the observed period in terms of the number 
of collections made by the company and the number of overflows 
reported), collections are simulated within the test period based 
on a mathematical rule defined for each monitoring approach. 
From a survey of the real collection times, it was found that col-
lections have generally occurred between 01.00 a.m. and 02.00 
a.m. As such, simulated collections were set to always occur at 
02.00 a.m. for consistency and to approximate the real collection 
behaviour.

For the SS approach, the rule to determine when a collection 
should occur was to check the fill level each day at 5.30 p.m.; if 
it is greater than the threshold value fth  perform a collection on 
the next day at 02.00 a.m., otherwise do nothing. As we did not 
have sensor observations every day at 5.30 p.m., simulated sen-
sor observations were generated by linear interpolation between 
the two closest real sensor observations (e.g. if we have a sensor 
observation at 4.00 p.m. reporting a fill level of 40%, and the next 
observation at 7.00 p.m. reporting a fill level of 50%, the linear 
interpolation will provide an estimate of the fill level at 5.30 p.m. 
(fill level 45%). Note that we do not intend to extrapolate the  
fill level between these two observations using a very detailed 
model, but simply estimate a plausible value between two obser-
vations to model how the SS approach could be applied in prac-
tice. The same linear interpolation procedure was used when 
collections occurred, to determine whether there was an overflow 
and to calculate the subsequent fill levels, as simulated collec-
tions rarely coincided with real collections.

For the VO approach, the predictive model was used to deter-
mine when the next collection should occur. The rule we defined 
to determine when a collection should occur was to calculate the 
GP prediction each day at 02.00 a.m. and the probability that an 
overflow has occurred (i.e. the probability that the fill level is 
greater than 100%); then, perform a collection on the first day 
where the probability is greater than the specified threshold 
probability pth. As the VO did not match the model observation 
times exactly, simulated observations were estimated by linear 

Table 2. Results of the data collection phase.

Glass Plastic Paper 1 Paper 2

Sensor observations Total  91 690 695 372
Visual observations Total 124 169 179 156

Outliers  13  19  16  25
Utilized 111 150 163 131

Collections Real 11  66  67  39
Min./0 overflows (sensor) N/A  44  42  15
Min./0 overflows (visual)   3  39  42  11

Overflows Real   0  20  20   2

N/A: Not Applicable.
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interpolation between the two closest real observations and 
rounding off up to the nearest multiple of 25% (to simulate the 
real VO).

For the MS approach, the predictive model was also used to 
determine when the next collection should occur, and the rule 
to determine when a collection should occur was the same as 
that described for the VO approach. To simulate reasonable 
sensor observations in this approach, the SS observations were 
subsampled to have a similar sampling frequency to the VO. 
As the SS observations did not match the VO time exactly, 
simulated observations were estimated by linear interpolation 
between the two closest SS readings and rounded to the nearest 
percentage point.

Study results

Data collection

Two drivers collected the data considered in this study. Driver A 
performed the collection routes for Paper, and Driver B per-
formed the collection routes for Plastic. Although each driver 
collects a specific material, both drivers recorded the fill levels 
for all three materials. Driver C, who performed the collection 
route for glass, was not involved in this experiment as very few 
observations would be recorded by him (glass is only collected 
once a month on average). An initial ‘learning period’ was con-
sidered for the VO, where several irregular observations were 
noticed, so the first 2 weeks of observations were discarded from 
all analyses. As such, the analysed interval was 1 March 2019 to 
30 September 2019. The number of sensor and VO, as well as the 
number of collections and overflows for each bin, is shown in 
Table 2. Notice that the number of sensor observations is almost 
three times greater than the number of VO. The collections and 
overflows were reported by the drivers in the manual forms.

It should be noted that the glass bin has fewer sensor observa-
tions for two reasons: first, its fill rate is comparatively small and 
close to linear, meaning that it would fill up slowly and consist-
ently over time; secondly, there was a sensor malfunction on 16 
June 2019 after which the sensor was no longer operational.

Additionally, based on the time series data and the method 
illustrated in Figure 2, it was possible to estimate the minimum 

number of collections required in order to have zero overflows. 
This can be considered an ideal situation, where a collection 
occurs as soon as the bin is 100% full. These values are also 
shown in Table 2. The N/A mention given for the glass bin is due 
to the sensor malfunction.

It can be observed in Table 2 that, over the period analysed, 
20 overflows have occurred for both the plastic and paper 1 bins, 
representing approximately 30% of the number of collections for 
each bin. Moreover, the minimum possible number of collections 
required for zero overflows to occur is approximately equal to two 
thirds of the number of collections (67% for the plastic bin and 
63% for the paper 1 bin). This means that more collections were 
performed than what could be considered ideal, yet overflows still 
occurred. This is due to the static routes used by the waste collec-
tion company, which do not take place at the right time, that is, at 
times when bins are not close to being full or when they have 
already overflowed. Another point to note in Table 2 is the small 
number of sensor observations for the paper 2 bin. This bin had a 
slower fill rate than the paper 1 bin, probably due to their different 
locations, thus resulting in fewer sensor observations (as the 
sensors do not report small changes in fill level) as well as fewer 
overflows – only two for the period analysed.

Comparative statistical analysis

In order to demonstrate the value of different types of observa-
tions (sensor and visual), a comparative statistical analysis was 
performed. The correlation coefficients and its statistical signifi-
cance (p-values) are shown in Table 3. In addition to the correla-
tion between the total VO dataset and the sensor dataset (shown 
in the first row), the correlation between the VO of each driver 
and the sensor observations was calculated.

The Pearson correlation coefficients between the sensor 
observations and the VO, given in Table 3, raise two points. First, 
a moderate degree of correlation can be found between both 
types of observations (values around 0.5 are observed, and all 
p-values are less than 0.05; meaning that for a significance level 
of 0.05, there is sufficient evidence to conclude that the correla-
tion coefficients are significantly different from zero), consider-
ing that the VO were made in intervals of 25%, which represents 
a low precision. This indicates that, assuming that the sensor 

Table 3. Correlation between the visual observations and the sensor observations using the method developed by Rehfeld 
et al. (2011).

Glass Plastic Paper 1 Paper 2

All visual observations
 Correlation 0.26 0.57 0.49 0.53
 p-Value 1.67E-06 6.02E-55 1.14E-38 4.77E-47
Driver A’s observations
 Correlation 0.36 0.09 0.48 0.50
 p-Value 6.44E-11 0.02 1.91E-37 1.63E-39
Driver B’s observations
 Correlation 0.24 0.61 0.13 0.23
 p-Value 8.60E-06 7.70E-63 0.00 7.64E-09
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observations have a high accuracy, VO still convey a considera-
ble amount of information. Second, if we look at the bottom two 
rows of Table 3, we see that driver A, who was responsible for 
collecting the paper 1 and 2 bins, made observations which are 
more highly correlated with the sensor observations for those 
bins (0.54 and 0.51 vs 0.14 and 0.24, respectively); likewise, 
driver B, who was responsible for collecting the plastic bin, made 
observations which are more highly correlated with the sensor 
observations made for that bin (0.56 vs 0.08). This suggests that 
the driver who is responsible for collecting a certain bin makes 
more accurate observations for that bin; however, as the sample 
size is small, we cannot draw a conclusion.

Predictive model

The charts in Figure 3 show the final state of the predictive model 
for each bin (paper 1 and 2 and plastic), in both the VO and the 
MS monitoring approaches (green curves). Please note that, as 
explained in section ‘Proposal: MS’ and illustrated in Figure 2, 
the collection events are not considered; we are modelling the 
bin fill level behaviour if no collections occur. The glass bin  
was excluded from this analysis because of its slow fill rate (see 
Table 2: only three collections were required for the whole period 
between 1 March and 30 September 2019), as well as because of 
the discontinuation of sensor observations due to the sensor 
malfunction. The vertical blue lines in each chart represent the 
limit between the training set (containing the initial 75% of the 
time series) and the test set (containing the remaining 25%).  
As the observations for each time series were made at different 
times and in different quantities, those lines do not coincide. 
Furthermore, although it may seem that the MS charts contain 
more observations, this is simply due to the fact that the VO are 
usually made in pairs, and so they overlap each other. As noted in 
section ‘Study methodology’, the sensor observations were sub-
sampled to have a mean observation frequency similar to that of 
the VO. It can be seen in Figure 3 for plastic and paper 1 that the 
predictive model trained with the VO datasets follows the curve 
of the data points and has more non-linear contributions (maybe 
because VO are reported in a discrete scale of multiples of 25%, 
see Figure A-4 in Supplemental Appendix); conversely, the pre-
dictive model trained with the MS datasets is essentially linear. 
However, for paper 2, we can see that the data points themselves 
are more irregular and, consequently, both predictive model 
curves show considerable non-linearity.

Table 4 shows two measures of prediction accuracy: mean 
absolute error (MAE) and mean absolute percentage error 
(MAPE). Low values for either MAE or MAPE can be observed, 
which validates the predictive model.

Trade-off analysis

The charts in Figure 4 illustrate the results obtained for the three 
monitoring approaches for the paper 1 bin, for different values of 
fth  and threshold probabilities. For the remaining bins, please see 
Figures A-5 and A-6 (Supplemental Appendix). For each chart, 

the horizontal axis shows the number of simulated collections, 
and the vertical axis shows the number of overflows that would 
have occurred, based on the real data. Additionally, every chart 
has a red triangle labelled ‘Current Situation’ representing the 
number of real collections and overflows that occurred in the test 
period (1 August to 30 September), and a green triangle labelled 
‘Minimum Required’, representing the minimum number of col-
lections necessary to avoid overflows. The minimum required 
number is computed based on the method illustrated in Figure 2, 
where the collections are ‘removed’ from the time series data, 
and the bin fills continuously. If, for example, a bin reaches a 
value of 900% in the test period, it means that the minimum 
required collections in order to have zero overflows would be 
nine collections. This can be considered an ideal situation, where 
a collection occurs as soon as the bin is 100% full (as explained 
in section ‘Data collection’3.1).

SS monitoring approach. Recall that the SS monitoring 
approach assumes that there is a sensor installed in every bin and, 
therefore, we have a priori knowledge of the bin fill levels. As an 
example of how the collection rule works in the SS approach, 
assume that fth = 0 60.  and that on day t , at 5.30 p.m., a bin has 
a fill level of 56%. As this is below the threshold level 
(0 56 0 60. . )< , no collection occurs. If the fill level were 83%,  
a collection would be simulated on day t +1  at 02.00 a.m. 
Overflow occurrence is determined by the interpolated fill level 
at the time of collection (continuing the previous example, if 
at 02.00 a.m. on day t +1  the interpolated fill level was 105%, 
then the bin would be considered in overflow).

In the SS monitoring approach, there is a considerable invest-
ment to make as the cost of each individual sensor is high (around 
100€–200€, according to Beigl et al., 2005; Vishnu et al., 2022), 
and locating them in the large number of bins that often charac-
terizes waste collection systems implies a high investment (e.g. 
ERSUC owns around 15000 bins, representing an investment of 
more than 1.5 M€). However, this investment is counterbalanced 
by the availability of a priori information, which enables waste 
collection companies to deal with unexpected situations that the 
predictive model is unable to identify (e.g. a sudden increase in 
fill rates due to a local event). As such, this approach leads to a 
good performance in general. For example, in Figure 4(a), it can 
be observed that, for the threshold fth = 0 65.  (brown symbol), 
the SS approach is as close as possible to the minimum required 
number of collections to have zero overflows (green triangle). 
This can be considered a balanced solution, which reduces the 
number of collections by 32% and reduces the number of over-
flows by 83%, compared to the current situation (red triangle). 
However, if we are willing to maintain the number of overflows 
equal to the current situation, and wish to minimize the number 
of collections as much as possible, we can use the threshold 
fth = 0 85.  (light blue symbol), which leads to a reduction of 47% 
in the number of collections made.

VO monitoring approach. As mentioned above, the VO moni-
toring approach assumes that, each time a bin is collected, the 
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Figure 3. Final state of the VO and MS predictive models for the plastic, paper 1 and paper 2 bins, assuming that bins fill 
continuously – without collection events. The orange dots are the observations, and the green curves are the predictions. The 
vertical blue lines represent the separation between the training set and the test set.
VO: visual observations; MS: mobile sensors.
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Table 4. Prediction accuracy measures.

Plastic Paper 1 Paper 2

Prediction w/visual observations
 MAE 0.152 0.115 0.105
 MAPE 0.4% 0.3% 1.1%
Prediction w/sensors observations
 MAE 0.122 0.136 0.141
 MAPE 0.3% 0.4% 1.1%

MAE: mean absolute error; MAPE: mean absolute percentage error.

Figure 4. Trade-off between collections and overflows in the three monitoring approaches for the paper 1 bin: (a) static 
sensors, (b) visual observations and (c) mobile sensors.
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driver observes and registers the fill level (before emptying the 
bin) and, therefore, we have a posteriori knowledge of the bin fill 
levels. As such, a predictive model is used to determine when the 
next collection should occur. As an example of how the collec-
tion rule works in the VO approach, assume that the threshold 
probability of overflow is 25% and that on day t  the probability 
that a certain bin has overflowed is 15%. As this is below the 
threshold, no collection occurs. Next, assume that at 02.00 a.m. 
on day t +1  the GP predicts that the probability of overflow is 
30%. As this surpasses the threshold probability of overflow, a 
collection is simulated on day t +1  at 02.00 a.m. Whenever a 
collection is simulated, a visual observation is also simulated. If 
the simulated fill level is greater than 100%, the bin is considered 
in overflow.

In the VO monitoring approach, the required investment is 
null as this is done by the truck drivers during the collection 
operation. However, the precision of the observations is small 
(multiples of 25%, compared to multiples of 1% for sensor 
observations) and the information is only known a posteriori. 
Nonetheless, this approach still provides a considerable improve-
ment over the current situation and can be considered more con-
servative than the SS approach, as it prioritizes making more 
collections to avoid overflows. For example, in Figure 4(b) we 
can consider that, if we are willing to accept a certain number of 
overflows, the threshold pth = 0 40.  (pink symbol) leads to the 
best solution in terms of number of collections, representing a 
reduction in collections of 47% and a reduction in overflows of 
33%, compared to the current situation. If, however, we wish to 
reduce the risk of overflow, then the threshold value pth = 0 10.  
has the best result in the number of overflows, but with a reduc-
tion of only 11% (instead of 47%) in the number of collections.

MS monitoring approach. The MS monitoring approach 
assumes that each time a bin is collected, the driver uses a sensor 
to measure the fill level and, therefore, we have a posteriori 
knowledge of the bin fill levels. The measured value is more 
accurate than in the VO approach. Again, a predictive model is 
used determine when the next collection should occur.

In the MS monitoring approach, the investment is moderate, 
although it is considerably smaller than in the SS approach as 
the number of sensors to use in the trucks is much smaller (e.g. 
ERSUC owns a vehicle fleet of around 50 trucks, meaning that 
only 50 sensors would be needed, so the investment would be 
reduced to 5 k€). The precision of observations is the same as 
in the SS approach, but the information is known a posteriori 
and with the same observation frequency as the VO. The results 
for this approach show that it performs worse than the other 
two approaches, presenting larger numbers of overflows and 
collections. This is most likely due to a high confidence in the 
predictive model, which leads to a riskier behaviour, that is, 
fewer collections, resulting in a greater number of overflows. 
Nevertheless, Figure 4(c) still shows that the MS approach is 
an improvement over the current situation. In general, the 
number of overflows is comparable to the current situation, but 
the number of collections is greatly reduced.

Final remarks on the trade-off analysis. The analysis of the 
charts of Figure 4 and Figures A-5 and A-6 (Supplemental 
Appendix) results in a clear conclusion: either one of the moni-
toring approaches under study leads to significant improvements 
over the current situation, reducing both the number of collec-
tions and the number of overflows. The trade-off between the 
number of collections and the number of overflows is dependent 
on the respective threshold parameter, which can be tuned, allow-
ing companies to choose how conservative or risky they want to 
be, depending on the cost of overflows and collections.

The charts in Figure 5 compare the gains achieved by the three 
monitoring approaches. Figure 5(a) illustrates the situation where 
the collections are minimized, that is, as different threshold  
values were used, different results were obtained. In Figure 5(a), 
we present the results provided by the threshold value that 
resulted in the minimum number of collections. It can be seen 
that the VO approach leads to the greatest simultaneous reduction 
in collections and overflows for paper 1 (orange triangle). For 
paper 2, both VO and SS gave the same results (brown square, as 
orange overlap blue square). For plastic, the VO approach pro-
vided the greatest reduction in the number of overflows (−79%) 
and also a large reduction in the number of collections (−42%) 
(orange circle). Figure 5(b) illustrates the situation where the 
overflows are minimized. Again, we present the results provided 
by the threshold value that resulted in the minimum number of 
overflows. Comparing the three approaches, the VO provided 
better results for plastic, SS provided better results for paper 1, 
and both (VO and SS) provided the same best result for paper 2. 
Therefore, to minimize the number of overflows, SS and VO 
approaches are on par with each other. The MS approach presents 
the worst results in this situation, mainly due to the small reduc-
tions in the number of overflows, accompanied by moderate 
reductions in the number of collections.

Discussion

Prior studies on waste bin monitoring solutions focused mainly 
on sensor’s systems, namely on the characteristics of the techno-
logical devices included in such systems and how accurate they 
are. There is a rich body of research on bin sensor systems, 
acknowledged by two recent surveys (Sosunova and Porras, 
2022; Vishnu et al., 2022). To the best of the authors’ knowledge, 
there is no prior study addressing a comparison between auto-
matic monitoring through technology and human monitoring. 
Thus, the findings regarding the comparative analysis of these 
two approaches, that are the focus of our study, cannot be com-
pared with other studies.

The sensors used in our experiment are ultrasonic sensors 
that measure waste volume. Using this type of sensor is aligned 
with the study of Rovetta et al. (2009) which concluded that 
measuring waste volume is what impacts the most the collection 
operation’s decisions. The authors presented a complete sensor 
and server system based on a set of electronic components 
installed in each bin, including a camera, an ultrasonic sensor,  
a temperature sensor, weight sensors, a processing unit and a 
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telecommunications antenna. The studied system was shown to 
provide plenty of information about the bin state (fill level, tem-
perature, humidity, waste density). However, the authors con-
cluded that, although waste density is relevant for determining 
the number of bins to collect (as trucks have a maximum load 
capacity), it is the waste volume that determines whether a bin 
overflows or not, that is, the fill level ultimately determines 
which bins must be collected. Karadimas et al. (2016), Ramson 
and Moni (2017) and Yerraboina et al. (2018), also used ultra-
sonic sensors and wireless networks to sense and transmit fill-
level data.

In our study, the accuracy of the sensors per se was not 
evaluated. Nonetheless, there are some studies that explore that 
subject. Mamun et al. (2016) tested the accuracy of ultrasonic 
sensors by placing mock waste bags in a bin and verified that it 
presented an error in the range of 5–10%.

Several approaches have recently been proposed in the  
literature to predict waste generation. There are approaches 
that work on long time scales (months) and apply to large areas 
(municipalities), notably the works of Abbasi and El Hanandeh 
(2016) and Kannangara et al. (2018), but only one that applies 
to individual bins on a daily basis (Ferrer and Alba, 2019) as in 
our study.

Ferrer and Alba (2019) propose a system to predict individual 
bin fill levels based on historic data, and to plan routes based on 
the predicted fill levels using an evolutionary algorithm. The data 
used in the tests comprised fill levels for 217 containers over an 
eleven-month period. These data were reported by the waste col-
lection truck drivers for each collected bin. However, nothing is 
said about how truck drivers measured and registered the bin fill 
levels. The system was validated in a living laboratory scenario 
with the collaboration of a waste collection company. The authors 
concluded that the proposed system could reduce the length of 
collection routes by one-third compared to the static routes 
designed by the company, while avoiding visits to bins that were 
predicted to be below 50% of their capacity.

In our study, only four bins were monitored, so the impact in 
terms of collection routes (and route length) was not possible to 
access as in Ferrer and Alba (2019). Nonetheless, we report the 
reduction in terms of number of collections (up to 50%) what 
will impact the collection routes. Ferrer and Alba (2019) reported 
a MAPE of 3.83% for their predictions, and in our study, we 
reported 0.3–1.1% what represents even more accurate results. 
The reduction in the number of overflows is not reported in 
Ferrer and Alba, while our study reports an expected reduction 
of up to 100%.

Figure 5. Comparison of the three monitoring approaches in terms of the (a) minimum number of collections achieved, and (b) 
minimum number of overflows achieved.
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Conclusions

We presented a comparative study of three waste bin monitoring 
approaches based on data collected in a living laboratory sce-
nario. The data comprised two sets of observations: sensor obser-
vations (provided by volumetric sensors installed in the waste 
bins); VO (provided by waste collection truck drivers). The study 
is exploratory because it is based on a limited number of bins as 
well as of drivers. Hence, its conclusions are preliminary.

As a first step to verify the utility of both types of observa-
tions, a comparative statistical analysis was made using a linear 
correlation estimation method for irregular time series. This anal-
ysis revealed a moderate degree of correlation, considering the 
low precision of the VO (each observation corresponded to a 
25% interval). This analysis also identified that the observations 
made by the driver who was responsible for collecting a specific 
bin had a much larger correlation with the sensor observations 
than the observations made by the other driver. Thus, the visual 
observation process can be simplified by asking each driver only 
to register the fill levels of the bins they are responsible for col-
lecting (as opposed to registering the fill levels for all bins found 
along their route). It is likely that incentives for good VO would 
increase their accuracy.

Upon simulating three monitoring approaches (SS, VO and 
MS), a trade-off analysis was made in terms of number of collec-
tions versus the number of overflows. A preliminary conclusion 
to draw from this analysis is that the implementation of any one 
of the approaches would lead to improvements over the current 
situation – that is, decreases in the order of 50% in both the 
number of collections and the number of overflows for the bins 
analysed. Furthermore, by varying a parameter which encoded 
risk aversion towards overflows, a trade-off could be seen where 
an increase in the number of collections was accompanied by a 
decrease in the number of overflows, and vice-versa. This trade-
off allows waste collection companies to adapt their collection 
operations depending on the relevant costs: if the cost of  
overflow is low, then they can perform fewer collections with a 
higher risk of overflows; alternatively, if the cost of overflow is 
high, they should perform more collections to decrease the risk  
of overflows. From this preliminary comparison of the three 
approaches for the bins analysed, it is found that the best results 
are obtained for the VO monitoring approach. This is a rather 
unexpected result that could be due to a bias in the VO made by 
the drivers. Additionally, it could be due to the different rules 
used to determine when simulated collections should occur. 
Using the predictive model in the SS monitoring approach could 
improve its results; this analysis is left for future work.

Although this work has important preliminary conclusions, it 
has some limitations. The main one was already mentioned: all 
the data was collected by two drivers from four bins, representing 
a small sample. Moreover, the data utilized in the trade-off analy-
sis came from only three of the four bins, and the bins were in 
the same street, which may have introduced a bias. Finally, due 
to the small number of bins monitored, vehicle routes were not 
considered. Routing considerations may change the trade-offs. 

Nonetheless, this study can be seen as a first exploratory test that 
should be further extended at a wider scale where a full region 
(e.g. an entire municipality, as typically the collection routes are 
defined by the planners considering municipal boundaries) could 
be monitored both by sensors and by drivers to retrieve more 
general results.

Therefore, future work is needed to assess the monitoring 
approaches considered, and a larger number of bins should be 
monitored (and, consequently, with more drivers involved). With 
a larger number of bins over a large geographic area, routing 
problems can be considered, enriching the trade-off analysis. 
With more drivers involved, the ‘responsible driver bias’ founded 
in this exploratory study could be further investigated. Also, the 
optimization of the placement of a limited number of waste bin 
sensors could be explored. This is a necessary step towards smart 
cities considering that a completely sensorized network is still 
far in the future. There is very little work being done towards 
identifying the optimal placement of sensors. If a company has a 
network of 10,000 bins, and decides to install 500 sensors, it is 
important to know which bins should be sensorized to minimize 
uncertainty or provide the most relevant information. Such a 
problem can be combined with the work here developed, namely, 
by installing sensors in some bins and monitoring other bins 
using the VO or the MS monitoring approaches.
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