
Probing the Interactions of Thiazole Abietane Inhibitors with the
Human Serine Hydrolases ABHD16A and ABHD12
Tiina J. Ahonen,◇ Choa P. Ng,◇ Beatriz Farinha, Bárbara Almeida, Bruno L. Victor,
Christopher Reynolds, Eija Kalso, Jari Yli-Kauhaluoma, Jennifer Greaves,* and Van̂ia M. Moreira*

Cite This: ACS Med. Chem. Lett. 2023, 14, 1404−1410 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: 12-Thiazole abietanes are highly selective reversible
inhibitors of hABHD16A that could potentially alleviate neuro-
inflammation. In this study, we used synthetic chemistry,
competitive activity-based protein profiling, and computational
methodologies to try to establish relevant structural determinants
of activity and selectivity of this class of compounds for inhibiting
ABHD16A over ABHD12. Five compounds significantly inhibited
hABHD16A but also very efficiently discriminated between
inhibition of hABHD16A and hABHD12, with compound 35
being the most effective, at 100 μM (55.1 ± 8.7%; p < 0.0001).
However, an outstanding switch in the selectivity toward ABHD12
was observed in the presence of a ring A ester, if the C2′ position of the thiazole ring possessed a 1-hydroxyethyl group, as in
compound 28. Although our data were inconclusive as to whether the observed enzyme inhibition is allosteric or not, we anticipate
that the structure−activity relationships presented herein will inspire future drug discovery efforts in this field.
KEYWORDS: ABHD16A, ABHD12, serine hydrolase, dehydroabietic acid, competitive ABPP

The metabolic serine hydrolases ABHD12 and ABHD16A
belong to the α,β-hydrolase domain (ABHD) family of

enzymes, with important roles in lipid signaling and
metabolism.1 ABHD12 is mainly expressed in macrophages
and microglia and throughout the brain.1,2 ABHD16A is highly
expressed in the brain, testis, muscle, and heart.1,3 It has also
been identified in human platelet and mouse megakaryocyte
membranes and extracellular vesicles derived from colorectal
cancer cells.4,5 Both enzymes exist in the endoplasmic
reticulum membrane and regulate the levels of signaling lipids
in a concerted way.6−9 ABHD16A converts PS to lyso-PS,
whereas ABHD12 hydrolyzes lyso-PS to glycerophosphoser-
ine.10 Lyso-PS has several functions related to the immune
response.11−15 Genetic deletion of ABHD12 leads to
accumulation of lyso-PS in mice brain, leading to the
neurodegenerative syndrome resembling the human neuro-
logical disorder PHARC (polyneuropathy, hearing loss, ataxia,
retinitis pigmentosa, and cataract).8,16 ABHD16A polymor-
phism is associated with Kawasaki disease,17 and total loss of
function of ABHD16A has been detected in patients with
complicated hereditary spastic paraplegia.18 Increased ex-
pression of ABHD16A has also been linked to the promotion
of gastric cancer metastasis.19

ABHD12 and ABHD16A possess a catalytic triad of Ser-His-
Asp which functions through a well-established canonical
esterase mechanism.20,21 However, the lack of available crystal
structures of the two enzymes has hampered drug discovery,

and selectivity toward the inhibition of ABHD16A among
other serine hydrolases, including ABHD12, remains a
challenge. Whereas inhibiting ABHD16A could be beneficial
to alleviate the conditions associated with elevated lyso-PS
levels, concomitant inhibition of ABHD12 would lead to
undesirable effects.
Although there has been progress in understanding the in

vivo role of ABHD12, in recent years, with the discovery of
selective inhibitors,22−24 knowledge of the human ABHD16A
(hABHD16A) is still unexplored. The general lipase inhibitors
(−)-tetrahydrolipstatin (THL, 1) and methyl arachidonyl
fluorophosphonate (MAFP, 3) also inhibit ABHD12 and
ABHD16A (Figure 1).21,25,28 Reported ABHD12 inhibitors
include triterpenoids 4−6 (Figure 1) with low micromolar
IC50 values and unprecedented selectivity for ABHD12.

24

Other ABHD12 inhibitors include N-3-pyridyl-N′-4-piperidi-
nylthiourea derivatives (e.g., DO264, compound 7, Figure
1)23,27 and urea analogs (e.g., 8, Figure 1).24 Potent ABHD16A
inhibitors, with a certain degree of selectivity, include 1,3,4-
oxadiazol-2(3H)-ones (e.g., 12, Figure 1)25 and α-alkylidene-
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Figure 1. ABHD16A and ABHD12 inhibitors.

Figure 2. Inhibition of hABHD16A by cABPP. HA-tagged hABHD16A enriched from HEK293T total membrane proteomes was incubated with
the compounds followed by labeling with FP-azide and conjugation by click chemistry to an alkyne-infrared 800 dye (AK-IR800). Anti-HA primary
antibody and an anti-rat IR680 secondary antibody were used to detect hABHD16A (IR680). hABHD16A inhibition was calculated by measuring
the difference in FP-azide incorporation relative to DMSO control (−), normalized to protein levels. 100 μM palmostatin B (PB) was used as a
positive control. (A) Representative immunoblot images show click chemistry signal (top, AK-IR800), HA (middle, IR680), and merge (bottom).
The position of molecular weight standards is shown on the left. (B) Bar chart showing mean percentage hABHD16A inhibition. Individual data
points represent independent experiments. Error bars represent ±SEM. Statistical significance was determined by one-way ANOVA with Dunnett’s
post hoc test. Only statistically significant analysis is shown: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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β-lactone-based inhibitors (e.g., 11, Figure 1), yet were not
suitable for in vivo studies.10 Finally, 12-thiazole abietanes were
reported as reversible inhibitors of human ABHD16A (Figure
1, compounds 13 and 14), some with outstanding selectivity
among a panel of other serine hydrolyses from rat cerebellar
membrane proteome.26

In this work, we set out to establish general chemical
determinants of compound selectivity for ABHD16A over
ABHD12, using 12-thiazole abietanes as a study model.
Through synthetic chemistry, we designed novel compound
sets to build robust structure−activity. Enzyme inhibition
studies were made through competitive activity-based protein
profiling (cABPP), a chemical proteomic method that

measures the binding of reactive probes to the active site of
an enzyme, such as fluorophosphonate (FP) probes which
specifically and irreversibly target the reactive serine of serine
hydrolases.29,30 Compounds that bind and inhibit their target
enzyme interfere with reactive probe binding, enabling small
molecules to be efficiently screened for potency and selectivity.
We used an azido-FP probe that we conjugated to an infrared
dye by azide−alkyne cycloaddition as an activity-based
fluorescent reporter to quantitatively measure changes in the
activity of recombinantly expressed ABHD12 and ABHD16A
with the synthesized compounds which we detected by
fluorescent Western blotting. Finally, computational models

Scheme 1. Synthesis of 12-Thiazole Abietanesa

aReagents and conditions: (a) LiAlH4, THF, 0 °C → rt, 3 h; (b) p-toluenesulfonyl chloride, pyridine, 0 °C → rt, 24 h; (c) NaI, Zn (powder),
DMF, 100 °C, 7 d; (d) MeCOCl, AlCl3, CH2Cl2, 0 °C → rt, 3.5 h; (e) CuBr2, MeOH, 65 °C, 16 h; (f) thioformamide, dry 1,4-dioxane, 100 °C
with microwaves, 10 min, yield over 2 steps; (g) thioacetamide, dry EtOH, 120 °C with microwaves, 30 min, yield over 2 steps; (h) thiourea, dry
EtOH, 120 °C with microwaves, 2 h, yield over 2 steps; (i) (2S)-2-(acetyloxy)propanethioamide (S38), dry EtOH, 120 °C with microwaves, 30
min, yields over two steps; (j) NaOH (aq), MeOH, rt, 2 h to 5 d; (k) Dess−Martin periodinane, CH2Cl2, rt, 3−26 h; (l) 2-
(acetyloxy)ethanethioamide (S41) dry EtOH, 120 °C with microwaves, 30 min; (m) tert-butyl hydroperoxide, NaClO2, acetonitrile, H2O, ethyl
acetate, 60 °C, 7 d. The yields are reported after chromatographic purification.
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available from AlphaFold were used to explore the interaction
of our sets of compounds with the active sites of each enzyme.
To learn how restrictive the presence of a substituent on ring

A is, it was abrogated by conversion into a free methyl group
(Scheme 1, part I). This was achieved from compound 19,
synthesized from dehydroabietic acid (15) via reduction of the
ring A carboxyl group, followed by tosylation to give 16, which
was then reduced to 17.31 Friedel−Crafts acylation of 17 gave
18, and subsequent bromination gave 19, as described
before,26 with 19 isolated as a mixture of mono- and
dibrominated compounds. The thiazole, 2-methylthiazole,
and 2-aminothiazole derivatives 20−22 were prepared from
19. In addition, compounds were designed with ketone, ester,
and hydroxyl groups on the thiazole ring to probe how
hydrogen bonding might affect the activity of the abietane
inhibitors (Scheme 1, part II). In this set, compounds 23, 24,
and 19 were reacted with (2S)-2-(acetyloxy)propanethioamide
(S38, Supporting Information, Scheme S1)32,33 to give the
respective thiazoles 25−27 (Scheme 1, part II). Deacetylation
of 25−27 in aqueous sodium hydroxide solution gave
compounds 28−30, which were oxidized with Dess−Martin
periodinane to give the final compounds 31−33 (Scheme 1,
part II).
The synthesis of 34 from 19 and 2-(acetyloxy)-

ethanethioamide, prepared from glycolamide, was also
accomplished (S41, Supporting Information, Scheme 1).
Finally, the keto derivative 35 was made from 23, via the 2′-
methylthiazole 13,26 followed by benzylic oxidation (Scheme
1, part III).34

Through cABPP on both murine (mABHD16A) and
hABHD16A enzymes, we found that only five significantly
inhibited (≥50% inhibition; p ≤ 0.05) mABHD16A activity, at
200 μM, whereas the activity of the enzyme was almost
completely abrogated by palmostatin B, at 100 μM (94.7 ±
1.5%; p < 0.0001) (Supporting Information, Figure S1). These
included 28 (66.4 ± 4.7%; p = 0.003); 29 (59.8 ± 8.3%; p =
0.01); 32 (83.5 ± 5.6%; p < 0.0001); 34 (62.9 ± 2.0%; p =
0.007); 35 (73.2 ± 5.5%; p = 0.0007). Additionally, 32 at a
lower concentration of 20 μM significantly inhibited
mABHD16A activity (55.5 ± 15.9%; p = 0.03). The same
five compounds also inhibited the human enzyme significantly,
at a lower concentration of 100 μM (Figure 2). Compound 28
inhibited hABHD16A activity by 48.0 ± 5.7% (p = 0.0007), 29
by 37.6 ± 11.7% (p = 0.02), and 32 by 45.5 ± 4.7% (p =
0.001). Compound 34 inhibited hABHD16A activity by 48.4
± 3.1% (p = 0.0006). Compound 35 was the most effective
inhibitor of hABHD16A (55.1 ± 8.7%; p < 0.0001). Notably,
compounds 28, 32, and 35 also significantly inhibited
hABHD16A activity at 20 μM (28 inhibited by 35.7 ±
11.0% (p = 0.02), 32 inhibited by 33.5 ± 7.6% (p = 0.03), and
35 inhibited by 32.2 ± 6.0% (p = 0.04)).
In contrast to hABHD16A, out of the five compounds

tested, only 28 significantly inhibited hABHD12, as
determined by cABPP (Figure 3). Compound 28 was effective
at inhibiting hABHD12 at both 100 μM (60.9 ± 4.4%; p =
0.02) and 20 μM (54.0 ± 14.9%; p < 0.05). For comparison,
100 μM palmostatin B inhibited hABHD12 activity by 73.0 ±
10.5%; p = 0.003). For this reason, we decided to also test

Figure 3. Inhibition of hABHD12 by cABPP. HA-tagged hABHD12 enriched from HEK293T total membrane proteomes was incubated with the
compounds followed by labeling with FP-azide and conjugation by click chemistry to an alkyne-infrared 800 dye (AK-IR800). Anti-HA primary
antibody and an anti-rat IR680 secondary antibody were used to detect hABHD12 (IR680). hABHD12 inhibition was calculated by measuring the
difference in FP-azide incorporation relative to DMSO control (−), normalized to protein levels. 100 μM palmostatin B (PB) was used as a positive
control. (A) Representative immunoblot images are shown: click chemistry signal (top, AK-IR800), HA (middle, IR680), and merge (bottom).
The position of molecular weight standards is shown on the left. (B) Bar chart showing mean percentage hABHD12 inhibition. Individual data
points represent independent experiments. Error bars represent ± SEM. Statistical significance was determined by one-way ANOVA with Dunnett’s
post hoc test. Only statistically significant analysis is shown.: *p < 0.05; **p < 0.01.

ACS Medicinal Chemistry Letters pubs.acs.org/acsmedchemlett Letter

https://doi.org/10.1021/acsmedchemlett.3c00313
ACS Med. Chem. Lett. 2023, 14, 1404−1410

1407

https://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.3c00313/suppl_file/ml3c00313_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.3c00313/suppl_file/ml3c00313_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmedchemlett.3c00313/suppl_file/ml3c00313_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.3c00313?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.3c00313?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.3c00313?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmedchemlett.3c00313?fig=fig3&ref=pdf
pubs.acs.org/acsmedchemlett?ref=pdf
https://doi.org/10.1021/acsmedchemlett.3c00313?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


compound 30 for inhibition of both enzymes, as it shares a
common 2′-(1-hydroxyethyl)thiazole substituent on ring C of
the abietane with 28 and 29, yet they all possess different
functional groups attached onto ring A. The activity of
compound 30 was similar to 29, as it inhibited hABHD16A by
34.1 ± 6.9% (p = 0.03) but not ABHD12. There was a small
increase in hABHD12 FP-azide labeling with compounds 30
and 32, which may reflect altered rates of azido-FP reactivity
with the active site of ABHD12; however, when analyzed by
one-way ANOVA, this was not found to be statistically
significant.
A look at how promiscuous 28 binds on the AlphaFold

models showed the thiazole ring positioned toward the
catalytic Ser residue instead of the ester group on ring A, in
both enzymes (Figure 4A,B). We should note that the ester

group on ring A of the abietanes is exceptionally stable and
only affected by harsh reactions conditions, such as strong
base.26,35−37 Whereas in ABHD12, the hydroxyl group of the
thiazole ring of 28 is hydrogen bonded with the catalytic Ser
residue (Figure 4A), in ABHD16A, the same group is
hydrogen bonded to a carbonyl group belonging to Ile 417
(Figure 4B). Such differences do not translate in significant
changes in the docking poses or in the calculated binding free
energy, which is consistent with the fact that 28 inhibits both

enzymes. Molecular docking with 35 also showed similar poses
on both proteins (Figure 4E,F). However, the ester of 35 is
hydrogen bonded to Gln 97 in ABHD12 and to Thr 387 in
ABHD16A (Figure 4E,F). Nonetheless, the determined
binding free energy difference obtained for this compound
on both protein models is within the error of the method and
consequently insufficient to explain the selectivity for
ABHD16A. Finally, molecular docking of 13 (Figure 4C,D),
also a selective inhibitor of ABHD16A and yet devoid of the
carbonyl group on ring B, was reassuring of a consistent
binding mode in our model for structurally similar compounds.
With this work we show that (1) a thiazole on ring C

accompanied by a convenient substituent on ring A is a key
feature for the inhibitory activity of these compounds; (2) ring
A functional groups are somewhat permissible and include at
least ester, amide, and hydroxyl, depending on the pattern of
substitution at the C2′ position of the thiazole, attached to ring
C; (3) substituents capable of hydrogen bonding at the C2′
position of the thiazole ring are best when compared to bulky
apolar substituents for inhibition of ABHD16A; and (4) minor
modifications such as the introduction of a carbonyl group on
ring B do not significantly affect the activity of the inhibitors.
Overall, compounds with these general features are selective

toward ABHD16A. There is, however, an outstanding switch in
the selectivity behavior toward ABHD12, which occurs only in
the presence of a ring A ester, if the C2′ position of the
thiazole ring possesses a 1-hydroxyethyl group, as in 28.
Despite our efforts, the AlphaFold models do not explain
inhibitor selectivity for our compound series. Interactions at
the binding site were addressed, yet we cannot rule out the
possibility of allosteric inhibition, an issue that will require
probing alternative binding sites on the surface of the proteins.
Finally, it will also be interesting to test the neuroprotective
effects of these inhibitors, for instance in lipopolysaccharide-
induced neurodegeneration models in neuron-glia cell cultures
or human induced pluripotent stem cells. Such aspects will be
the basis of future studies in this field.
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Blanchet, M.-R.; Bissonnette, É.; Boulet, L.-P.; Laviolette, M.; Di
Marzo, V.; Flamand, N. Human Leukocytes Differentially Express
Endocannabinoid-Glycerol Lipases and Hydrolyze 2-Arachidonoyl-
Glycerol and Its Metabolites from the 15-Lipoxygenase and
Cyclooxygenase Pathways. J. Leukocyte Biol. 2019, 106, 1337−1347.
(4) Senis, Y. A.; Tomlinson, M. G.; García, Á.; Dumon, S.; Heath, V.
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