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Abstract: Artificial perception for robots operating in outdoor natural environments, including
forest scenarios, has been the object of a substantial amount of research for decades. Regardless,
this has proven to be one of the most difficult research areas in robotics and has yet to be robustly
solved. This happens namely due to difficulties in dealing with environmental conditions (trees
and relief, weather conditions, dust, smoke, etc.), the visual homogeneity of natural landscapes as
opposed to the diversity of natural obstacles to be avoided, and the effect of vibrations or external
forces such as wind, among other technical challenges. Consequently, we propose a new survey,
describing the current state of the art in artificial perception and sensing for robots in precision
forestry. Our goal is to provide a detailed literature review of the past few decades of active research
in this field. With this review, we attempted to provide valuable insights into the current scientific
outlook and identify necessary advancements in the area. We have found that the introduction of
robotics in precision forestry imposes very significant scientific and technological problems in artificial
sensing and perception, making this a particularly challenging field with an impact on economics,
society, technology, and standards. Based on this analysis, we put forward a roadmap to address
the outstanding challenges in its respective scientific and technological landscape, namely the lack
of training data for perception models, open software frameworks, robust solutions for multi-robot
teams, end-user involvement, use case scenarios, computational resource planning, management
solutions to satisfy real-time operation constraints, and systematic field testing. We argue that
following this roadmap will allow for robotics in precision forestry to fulfil its considerable potential.

Keywords: sensors; artificial perception; forestry robotics; precision forestry; agricultural robotics

1. Introduction

Forestry—the practice of creating, managing, using, conserving, and repairing forests,
woodlands, and associated resources—has substantial importance in the economy of many
industrial countries [1], and is often overlooked. It provides direct economic gains, but also
societal and environmental benefits. Its core industry, i.e., silviculture, which involves
the growing and cultivation of trees in order to provide timber and fuel wood as primary
products as well as many secondary commodities (e.g., wildlife habitats, natural water
quality management, recreation and tourism, landscape and community protection), is
an important source of wealth and well-being. Moreover, forests also host many other
subsidiaries, high-added-value industries, such as apiculture and forest farming (i.e., the
cultivation of non-timber forest products, or NTFPs, such as speciality mushrooms, ginseng,
decorative ferns, pine straw or strawberry trees; see [2,3]).
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However, for all its potential, forestry is a risky investment with very slow returns.
Wood, as a natural resource, renews itself over a long period of time, generally several
dozens or even hundreds of years depending on the species, which is too long in terms
of investment cycles in the modern economy [4]. Consequently, most companies and
private owners convert forest lands into grazing lands or industrial plantations involving
single tree species, such as oil palms, acacia mangium, or eucalyptus, which yield a higher
rate of return on invested capital, rather than managing secondary forests (or second-
growth forest, as opposed to an old-growth, primary or primaeval forest: a woodland
area that has regrown after a timber harvest and has undergone a sufficient period of
reforestation, such that the effects of the previous harvest are no longer evident) with
felling cycles spanning from 20 to 40 years [4]. In fact, this is the only realistic option
for private owners in countries with a lower Gross Domestic Product (GDP) per capita.
Therefore, achieving widespread long-term conservation and management of forestry
resources has been challenging. In many of these countries, forestry is seen more as a
strategic commitment for the future rather than an investment in the present.

1.1. Motivations

The ongoing decline in the available workforce, primarily caused by low wages and
the harshness of forestry operations, along with the gradual abandonment of rural areas and
traditional practices like pastoralism, has led to the growing mechanization of the forestry
sector, following a trend observed in other industries, including agriculture [5,6]. Modern
forestry, therefore, relies on technologically advanced machinery to increase productivity,
although its high cost remains a significant barrier for many small private forest landowners.
However, as technological advancements continue and equipment prices decrease, the use
of these machines is expected to become more widespread in the future [5].

The introduction of (semi-)autonomous vehicles and robots in forestry could poten-
tially solve this problem and contribute to the achievement of several of the United Nations’
sustainable development goals (SDGs) [7,8]. For example, it could help to promote sus-
tainable economic growth by increasing productivity and reducing running costs, thereby
making forestry a more viable industry for small private forest landowners (SDG 8: decent
work and economic growth). It could also contribute to the goal of reducing inequalities by
providing skilled job opportunities for people in rural areas (SDG 10: reduced inequalities),
potentially reducing the harsh working conditions and health hazards associated with
forestry work (SDG 3: good health and well-being). Additionally, the use of advanced
machinery and robotics in forestry could help to promote responsible consumption and
production by reducing waste, optimising the use of natural resources and protecting the
environment (SDG 12: responsible consumption and production; SDG 15: life on land).

In fact, as mentioned above, obtaining direct increases in productivity and safety is
not the only reason for the introduction of precision forestry (the use of advanced technolo-
gies to improve forest-management results [9]), and robots in particular, to this industry.
According to data provided by the European Commission, Europe experiences approxi-
mately 65,000 fires annually [10]. More than 85% of the total burnt area is concentrated in
Mediterranean countries. Portugal leads these unfortunate statistics, averaging 18,000 fires
per year over the past quarter-century. Following Portugal, are Spain, Italy, and Greece,
with yearly averages of 15,000, 9000, and 1500 fires per year, respectively. In 2017, Portugal
was one of the most severely affected countries worldwide, with 500,000 hectares (almost
1.5 million acres) of burnt areas and more than 100 fatalities [11,12].

Unsurprisingly, wildfires exert a substantial economic impact that extends far beyond
the mere depletion of wood as a primary resource. They disrupt the forest’s ability to
regenerate, thereby causing immeasurable harm to the environment. This sets off a detri-
mental vicious cycle, wherein rural abandonment hinders effective wildfire monitoring and
prevention efforts. Consequently, more people migrate away from rural regions, leading
to significant declines in the tourism sector and heightened unemployment rates. This in
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turn perpetuates a gradual disinterest in forest management [13]. As one would expect,
wildfires also profoundly impact all subsidiary industries.

While significant progress has been made in key areas, the development of fully
autonomous robotic solutions for precision forestry is still in a very early stage. This
arises from the substantial challenges imposed by the traversability of rough terrain [14],
for example, due to steep slopes, autonomous outdoor navigation and locomotion sys-
tems [15], limited perception capabilities [16], the real-time processing of sensory data [17],
and reasoning and planning under a high level of uncertainty [18]. Artificial perception for
robots operating in outdoor natural environments has been the subject of study for several
decades. In the case of robots operating within forest environments, research dating back to
the late 1980s and early 1990s can be found; see, for instance, Gougeon et al. [19]. Neverthe-
less, despite many years of research, as documented in various research works conducted
during the past two decades [20–24], substantial problems have yet to be robustly solved.
Given the significant challenges listed above, we believe it is highly relevant and timely to
produce a new survey on sensing and artificial perception in forestry robotics, as it would
provide valuable insights into the current state of research, update the current scientific
landscape and help identify necessary advancements in this field.

1.2. Contributions, Methodology, and Document Structure

In this paper, we extensively describe the current state of the art in artificial perception
and sensing for robots in precision forestry. It, therefore, differentiates from research
works, such as research by [20,21,24], by being more specific in its scope, and includes
and represents an update on the topics reviewed in [22,23]. As explained in the previous
section, two important facts have contributed strongly to the fragmentation of research
in this field throughout the years: the relatively slow uptake of this kind of technology in
precision forestry due to the demanding social and economic structuring of this industry
and the challenges of artificial perception for forestry robotics; therefore, we needed to
extend our literature review to the past two decades of active research in this field. To
overcome the problem posed by such a considerable time frame, we used a wide range of
methodologies to survey the scientific and technological landscape under scrutiny. These
included information gathered from two workshops that we organised on the subject
area, and insights obtained through condensing the collection of individual literature
reviews, which were written for our own research papers in the field, following a snowball
sampling strategy; we conducted systematic keyword searches corresponding to the topics
of each subsequent section and respective subsection in major robotics and computer
vision conference repositories and scholarly search engines, such as Google Scholar, Web
of Science, Science Direct, IEEE Xplore, Wiley, SpringerLink, and Scopus, with a focus on
a narrower and more recent time span of the last 5 years. This methodology enabled the
survey of a total of 154 publications on original research concerning approaches, algorithms,
and systems for sensing and artificial perception; a tally of this body of surveyed work is
presented in Figure 1.

39%

21%
2%

38%

Publications in forestry robotics only

Publications in agricultural robotics only

Publications in both forestry and
agriculture

Other publications (generic solutions,
algorithms, etc.)

Figure 1. Distribution of surveyed works from 2018–2023 according to application area.
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Our research work is, therefore, structured as follows:

• We start by enumerating the research groups involved in introducing robots and other
autonomous systems in precision forestry and related fields (Section 2).

• Next, we present a review of the sensing technologies used in these applications and
discuss their relevance (Section 3).

• We follow this by providing a survey of the algorithms and solutions underpinning
artificial perception systems in this context (Section 4).

• We finish by discussing the current scientific and technological landscape, including
an analysis of open research questions, and finish by drawing our final conclusions
and proposing a tentative roadmap for the future (Section 5).

2. Research Groups Involved in the Research and Development of Robots in Precision
Forestry and Agriculture

Agricultural robotics in general, and forestry robotics in particular, have attracted the
interest of many research groups in all regions of the world. Several high-profile research
projects have been awarded to these groups, boosting their scientific productivity and
visibility. As a result, we are now able to pinpoint the key scientific players in the field.

2.1. Research and Development in Portugal and Spain

The Forestry Robotics group at the University of Coimbra (FRUC—https://www.
youtube.com/@forestryroboticsuc, accessed on 1 July 2023), Portugal, in conjunction with
the Robotics and Artificial Intelligence Initiative for a Sustainable Environment (RAISE)
at Nottingham Trent University (NTU), UK, under the coordination of Ingeniarius, Ltd.
(Alfena, Portugal—http://www.ingeniarius.pt, accessed on 1 July 2023), Portugal, have
collaborated to produce significant research on forestry robotics in the Safety, Exploration,
and Maintenance of Forests with Ecological Robotics (SEMFIRE) project [25], supported
by the sister project Centre of Operations for Rethinking Engineering (CORE) [26], which
proposes to combine a wide range of technologies into a multi-robot system to reduce
combustible material for fire prevention, thus assisting in landscaping maintenance tasks.
The key elements of the SEMFIRE solution involve two different types of mobile robotic
platforms: the Ranger and the Scouts. The Ranger (Figure 2) is a heavy-duty, multi-purpose
tracked robotic mulcher, based on the Bobcat platform. It is equipped with a forestry
mulcher attachment to cut down thin trees and shred ground vegetation to grind them
into mulch. It can operate in fully autonomous and semi-autonomous modes (with human
control). Scouts are small assistive flying robots with swarm self-organising capabilities;
they are used to explore and supervise wide forestry areas. Figure 3 illustrates the deploy-
ment of the SEMFIRE solution in the field, which was explained with greater detail in [27].
The research efforts from this project are being followed up under the currently running
Semi-Autonomous Robotic System for Forest Cleaning and Fire Prevention (SAFEFOREST)
project [28], incorporating the Field Robotics Center of the Robotics Institute at Carnegie
Mellon University (https://www.ri.cmu.edu/, accessed on 1 July 2023) [29–31], other
R&D companies, and private institutions to the consortium, with the aim of developing
advanced monitoring and robotic systems to semi-automatically manage forest fuels in
wildland and wildland–urban interface (WWUI) areas with complex terrains, in terms of
slope and roughness. The proposed project aims to enhance and refine the technology
and platforms devised in the SEMFIRE project for the execution of intricate landscaping
missions, focusing on the removal of redundant vegetation and clearing fuel breaks and
WWUI areas, based on preliminary mapping of the operational theatre carried out with the
support of advanced drone terrain and vegetation monitoring techniques.

https://www.youtube.com/@forestryroboticsuc
https://www.youtube.com/@forestryroboticsuc
http://www.ingeniarius.pt
https://www.ri.cmu.edu/
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Figure 2. The Ranger landscape maintenance robot developed in the SEMFIRE project. For more
details, please refer to [32].

1

2

Figure 3. SEMFIRE Scout UAV platform on the left. Illustrative deployment of the SEMFIRE solution
on the right: (1) the heavy-duty, multi-purpose Ranger can autonomously mulch down the thickest
brushes as well as cutting down small trees to reduce the risk of wildfires; (2) the area is explored
(finding new regions of interest for landscaping) and patrolled (checking the state of these regions
of interest) by Scouts, with the additional task of estimating the pose of each other and the Ranger,
and supervising the area for external elements (e.g., living beings).

The Centre for Robotics in Industry and Intelligent Systems (CRIIS) at the Engineering
Institute of Systems, Computers, Technology and Science (INESC-TEC) in Portugal has
been working on the development of robotics solutions for field robotics. The team focuses
on the localization and mapping in GNSS-denied areas, path planning (e.g., for steep slope
vineyards), visual perception, manipulation, and safety research, especially for agriculture
and forestry contexts. Relevant projects include BIOTECFOR [33], an Iberian partnership to
increase efficiency levels in the use of forest resources. Through the use of intelligent robotic
systems for the collection and processing of biomass, it promotes the bio-economy and
circular economy in the northern region of Portugal and Galicia. Moreover, the team has
been coordinating the SCORPION H2020 EU initiative [34], which focuses on developing
a safe and autonomous precision spraying tool for agriculture, integrated into a modular
unmanned ground vehicle (UGV), to increase spraying efficiency in permanent crops while
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reducing human and animal exposure to pesticides, water usage, and labour costs. Steep
slope vineyards have been mainly chosen for demonstration of the project (see [35]).

Spanish institutions have also been very involved in the latest developments in the
field, participating in many high-profile research projects. The State Agency High Council
for Scientific Research (CSIC), through its Centre for Automation and Robotics and Insti-
tutes of Agricultural Sciences and Sustainable Agriculture, has contributed to projects such
as RHEA [36] (see also Figure 4), and contributed to the sub-fields of robotic fleets and
swarms for agricultural applications [37,38]. The Televitis at Universidad de La Rioja and
the Agricultural Robotics Laboratory (ARL) at the Universidad Politecnica de Valencia,
which is involved in projects such as VINEROBOT [39], has contributed to a large-scale
study on soil erosion in organic farms [40]. Moreover, the VineScout project [41] was the
follow-up project of VineRobot; their goal is to produce a solution with a score of 9 on the
Technological Readiness Level (TRL) scale of technological maturity [42]. The Polytech-
nic University of Madrid and the Universidad Complutense de Madrid, both involved
in the RHEA project [36], have produced work mainly in perception, namely for olive
classification [43], air–ground sensor networks for crop monitoring [44], and crop/weed
discrimination [45]. The Centro de Automática y Robótica (CAR at CSIC-UPM), also
involved in the CROPS project [46], has produced work on perception, namely on the
combination of signals for the discrimination of grapevine elements [47]. Spanish com-
panies, such as Robotnik (https://www.robotnik.eu/, accessed on 1 July 2023), involved
in projects such as VINBOT [48] and BACCHUS [49], have contributed to various novel
robotic platforms, leading to innovation in navigation techniques [50] for viticulture robots.

Figure 4. The RHEA robot fleet on a wheat spraying mission. RHEA focused on the development
of novel techniques for weed management in agriculture and forestry, mainly through the usage of
heterogeneous robotic teams, involving autonomous tractors and Unmanned Aerial Vehicles (UAVs).
Reproduced with permission.

2.2. Research and Development throughout the Rest of Europe

The Group of Intelligent Robotics at Umeå University, in Sweden, has conducted sub-
stantial and pioneering research in this field, having recently participated in the CROPS [46]
and SWEEPER projects. This group has worked in several sub-fields of agricultural and
forestry robotics, starting with surveying and designing autonomous vehicles for forest
operations [51,52] (Figure 5). The work includes perception, e.g., vision-based detection
of trees [53] and infrared-based human detection in forestry environments [54]. This
group also worked on the decision-making and actuation aspects of the field, specifically
by developing a software framework for these agents [55], path-tracking algorithms [52],
and navigation and manipulation control for autonomous forwarders [56]. The Department

https://www.robotnik.eu/
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of Forest Resource Management of the Swedish University of Agricultural Sciences (SLU)
has also contributed to the specific field of forestry, namely with a simulation of harvester
productivity in the thinning of young forests [57]. The SLU, through the Departments
of Forest Resource Management and Forest Biomaterials and Technology, has also been
involved in the CROPS project and contributed regularly to the field. These contributions
include works on the design of forestry robots [51] (in cooperation with Umeå University)
and perception [58].

Figure 5. An illustration of an autonomous robot performing landscaping on a young forest. The cir-
cled trees are the mainstems, and should be kept, while the others are to be cut. Reproduced from [51]
with permission.

Wageningen University, in the Netherlands, has also contributed to the field through its
Greenhouse Horticulture & Flower Bulbs and Farm Technology groups. These groups have
been involved in several high-profile research projects, such as CROPS [46], SWEEPER [59],
and SAGA [60], and have worked mainly on the perception abilities of agricultural robots.
Contributions include techniques for vision-based localization of sweet-pepper stems [61],
obstacle classification for an autonomous sweet-pepper harvester [62], plant classifica-
tion [63,64], and weed mapping using UAVs [65].

The University of Bonn is part of the Digiforest Horizon Europe project [66]; it pro-
duced important work in agriculture and forestry-related perception, namely in crop/weed
classification. Noteworthy recent research includes UAVs for field characterization [67],
and semi-supervised learning [68] and Convolutional Neural Networks (CNNs) [69,70] for
perceptual tasks, such as crop/weed classification.

Research groups in Italy have also contributed to the field. The University of Florence,
through the Department for the Management of Agricultural, Food, and Forest Systems
(GESAAF), in collaboration with the University of Pisa’s Department of Agriculture, Food,
and Environment, have participated in the RHEA project [71]. The University of Milan,
through the CROPS project, has produced work on vision-based detection of powdery
mildew on grapevine leaves [72].

Several groups in France, Belgium, and Switzerland have also led to several related
research efforts. The National Institute of Research in Science and Technology for Environ-
ment and Agriculture (IRSTEA), a French research institute, has participated in the RHEA
project [38], and has produced work on a new method for nitrogen content assessment
in wheat [73]. The University of Liège, through its Laboratory of Forest Resources Man-
agement, has produced works on the discrimination of deciduous tree species [74] and
on the classification of riparian forest species [75], both from data obtained from UAVs,
and additional work on estimating the nitrogen content in wheat [76]. ETH Zurich has
produced seminal work on precision harvesting by explicitly addressing several key aspects
for the operation of fully autonomous forestry excavators, such as localization, mapping,
planning, and control [77,78]. The Robotic Systems Lab has an important track record in
all-terrain legged robotic platforms and has participated in relevant research projects, such
as the EU Horizon Digiforest [66] and EU H2020 THING [79]. Moreover, the Autonomous
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Systems Lab at ETH Zurich also performs investigations on related outdoor perception
aspects, such as semantic segmentation for tree-like vegetation [80] and weed classification
from multispectral images [81].

In the United Kingdom, the Lincoln Centre for Autonomous Systems at the University
of Lincoln has been contributing to the development of RASberry, a fleet of robots for
horticultural industry [82], and a 3D vision-based crop–weed discrimination for automated
weeding operations [83]. The Agriculture Engineering Innovation Centre at the Harper
Adams University, also from the United Kingdom, and host to the National Centre for
Precision Farming, has been developing a vision-guided weed identification and a robotic
gimbal, which can be mounted with a sprayer or laser to eradicate weeds [84].

A few Eastern European groups, namely through the CROPS project, have added their
own contributions. The Aleksandras Stulginskis University, in Lithuania, has tackled the
problem of UAV-based perception, producing a system for estimating the properties of
spring wheat [85]. The Universitatea Transilvania Brasov, in Romania, has contributed
to the issue of automating data collection in studies regarding the automation of farming
tasks [86]. The Agricultural Institute of Slovenia has contributed to a real-time positioning
algorithm for air-assisted sprayers [87].

2.3. Research and Development throughout the Rest of the World

Several groups operating outside of Europe have also shown interest in this field.
The Northern Robotics Laboratory (NOR) at Laval University in Canada is a research group
that specializes in mobile and autonomous systems in harsh outdoor conditions (see project
SNOW [88]). Relevant research work includes SLAM in forest environments [89,90] and
autonomous navigation in subarctic forests [91]. The Massachusetts Institute of Technology,
namely through the Robotic Mobility Group, has produced work on robotic perception
for forested environments. This work includes techniques to detect and classify terrain
surfaces [92] and to identify tree stems using Light Detection and Ranging (LiDAR) [93].
The Autonomous and Industrial Robotics Research Group (GRAI) from the Technical
University of Federico Santa María in Chile has also been very active in both agricultural
robotics with work on fleets of N-trailer vehicles for harvesting operations [94] and forestry
robotics, with work on UAV multispectral imagery in forested areas [95] and multispectral
vegetation features for digital terrain modelling [96].

Similarly, the Ben-Gurion University in Israel was also involved in the CROPS [46]
and SWEEPER projects. This group has contributed to an important review that focused on
harvesting robots [61] and has recently worked on sweet pepper maturity classification [97]
and grapevine detection using thermal imaging [98], paving the way for future efforts
in automated harvesting. Another important group is the forestry research group from
the Australian Centre for Field Robotics at the University of Sydney; this group has been
working on tree detection [99,100] and the use of LiDAR and UAV photogrammetry in
forestry resources [101].

Lastly, several research groups are producing emergent developments in this field,
despite not having a significant scientific output at this point. An example is the Robot
Agriculture group, a community based on the robot operating system (ROS) software
framework (http://www.ros.org, accessed on 1 July 2023); the group is looking to apply it
to agricultural and forestry operations [102]. Similarly, several recent research projects and
respective consortia are also noteworthy, such as SAGA [60], GREENPATROL [103], and
SWEEPER [59] (Figure 6).

Table 1 presents an overview of the most relevant research groups involved in this
field. We can observe that a substantial amount of work is devoted to applications in
agricultural robots, and not forestry per se. Indeed, agricultural robots have received
significant attention from the research community; see, for example, [104–106]. However,
the fundamental research on locomotion, perception, and decision-making should still
be largely applicable, as both applications share many of the same challenges: irregular
terrains, perception issues introduced by natural conditions, etc. Nonetheless, in general,

http://www.ros.org
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the unstructured nature of forests makes robotics for forestry a particularly demanding
application area.

Table 1. Overview of the most relevant research groups involved in the development of robotic
solutions for agriculture and forestry.

Group * Country Main References Research Projects Main Focus and Applications

FRUC, University of
Coimbra

Portugal [27,32,107,108] SEMFIRE, CORE, SAFEFOREST Perception and decision-making for forestry robots.

RAISE, Nottingham
Trent University

UK [27,32,107,108] SEMFIRE, CORE, SAFEFOREST Perception and decision-making for forestry robots.

Carnegie Mellon Uni-
versity

USA [29–31] SAFEFOREST Perception for forestry robots: navigation, mapping, classifica-
tion and vegetation detection

CRIIS, INESTEC Portugal [33,35,109,110] SCORPION, BIOTECFOR Robotics in industry and intelligent systems for agriculture and
forestry environments

Centre for Automation
and Robotics (CAR at
CSIC-UPM)

Spain [37,44] RHEA, CROPS Robot fleets and swarms for agriculture, crop monitoring.

Televitis at Universi-
dad de La Rioja

Spain [40] VINEROBOT, VineScout Perception and actuation for agricultural robots for vine-
yard monitoring.

Umeå University Sweden [51,52,56] CROPS, SWEEPER Perception, manipulation, and decision-making for forestry and
agricultural robots, including simulation and literature research.

Wageningen Univer-
sity

Netherlands [61,65] CROPS, SWEEPER, SAGA Perception for agricultural robots: crop/weed classification,
plant classification, weed mapping.

University of Bonn Germany [68,69] Digiforest Perception for agricultural robots: crop/weed classification us-
ing multiple techniques.

University of Milan Italy [72] CROPS Perception for agricultural robots: detection of powdery mildew
on grapevine leaves.

IRSTEA France [73] RHEA Perception for crop monitoring: nitrogen content assessment
in wheat.

University of Liège Belgium [74,76] n/a Perception for forestry and agricultural robots: discrimination of
deciduous tree species and nitrogen content estimation.

ETH Zurich Switzerland [77,78,80,81] Digiforest, THING Fully autonomous forest excavators and vegetation detection
and classification.

University of Lincoln UK [82] RASberry, BACCHUS Fleets of robots for horticulture and crop/weed discrimination
for automated weeding.

Harper Adams Univer-
sity

UK n/a L-CAS Perception and actuation for agricultural robots: vision-guided
weed identification and robotic gimbal for spray- or laser-
based weeding.

Aleksandras Stulgin-
skis University

Lithuania [85] n/a Perception for agricultural robots: UAV-based spring
wheat monitoring.

Universitatea Transil-
vania Brasov

Romania [86] n/a Automation of data collection in farm automation operations.

Agricultural Institute
of Slovenia

Slovenia [87] CROPS Perception for agricultural robots: real-time position of air-
assisted sprayers.

Laval University Canada [88–91] SNOW Automated forestry, SLAM and navigation in forest environ-
ments.

Massachusetts Insti-
tute of Technology

USA [92,93] n/a Perception for forestry robots: terrain classification and tree
stem identification.

Technical University of
Federico Santa María

Chile [94–96] n/a Multispectral imagery perception in forests and N-trailers for
robotic harvesting.

Ben-Gurion University Israel [61,97,98] CROPS, SWEEPER Agricultural harvesting robots, including literature survey.

University of Sydney Australia [99–101] n/a Tree detection, LiDAR and UAV photogrammetry.

* The groups are ordered according to their appearance in the text.
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(a) (b)
Figure 6. The Sweeper robot (a), a sweet-pepper harvesting robot operating in a greenhouse. (b): the
output of Sweeper’s pepper detection technique. The Sweeper project aims to develop an autonomous
harvesting robot, based on the developments of the CROPS project, which can operate in real-world
conditions. Reproduced with permission. Source: www.sweeper-robot.eu, accessed on 30 June 2023.

3. Sensing Technologies

Perception in forestry robotics faces many challenges imposed at the sensor level
by extrinsic environmental conditions (trees and relief, weather conditions, dust, smoke,
etc.), among other intrinsic technical challenges brought by robot operations; see Figure 7
for examples. Many different types of sensors have been used in an attempt to improve
robustness at the source, including low-cost solutions, such as 2D and 3D, red–green–blue
channel (RGB) and near- to far-infrared camera setups, laser technologies, sonars, and
higher-end solutions, such as LiDAR and/or Laser Detection and Rangings (LaDARs).
Table 2 shows a systematic comparison of the most important sensing technologies used in
forestry robotics.

Table 2. Comparison of the most important sensor technologies used in forestry robotics.

Sensor Technology Sensing Type Advantages Disadvantages

RGB camera imaging sensor allows for relatively inexpensive
high-resolution imaging does not include depth information

RGB-D camera imaging and ranging
sensor relates images to depth values generally low-resolution to reduce costs

thermal camera temperature imaging
sensor

temperature readings in image
format can improve segmentation

and help detect animals

generally low-resolution and more
expensive than normal cameras

hyperspectral
sensor

imaging sensor w/
many specialised

channels

allows for better segmentation (e.g.,
using vegetation indices)

expensive and heavy-duty when compared
to other imaging techniques

multispectral
camera

imaging sensor w/
some specialised

channels

allows for better segmentation (e.g.,
using vegetation indices);

inexpensive

less powerful than its
hyperspectral counterpart

sonar sound-based range
sensor

allows for inexpensive obstacle
avoidance limited detection range and resolution

LiDAR/LaDAR laser-based range
sensors allow for precise 3D sensing relatively expensive and difficult to extract

information beyond spatial occupancy

electronic compass orientation sensor allows for partial pose estimation may suffer from magnetic interference

inertial sensors motion/vertical
orientation sensors allow for partial pose estimation suffer from measurement drift

GPS/GNSS absolute positioning
sensors

allow for localization and pose
estimation

difficult to keep track of satellite signals in
remote woodland environments

www.sweeper-robot.eu
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To overcome individual drawbacks and take advantage of possible synergies, mul-
tisensory setups have been proposed as well. Positioning, orientation, and navigation
systems, such as electronic compasses, inertial sensors, and GPS or GNSS, have been used
to complement these sensory setups. However, these systems exhibit their own robustness
issues, resulting, for example, from drift, the lack of resolution, or occlusions [111].

In [112], technologies, techniques, and strategies are surveyed in the areas of sensor
fusion, sensor networks, smart sensing, Geographic Information Systems (GIS), photogram-
metry, and other intelligent systems. In these systems, finding optimal solutions to the
placement and deployment of multi-modal sensors covering wide areas is important. Tech-
nologies, such as radar range sensors, thermal (infrared), visual (optical), and laser range
sensors, are reviewed, and sensor integration for cooperative smart sensor networks, sensor
hand-off, data fusion, object characterization, and recognition for wide-area sensing are dis-
cussed in-depth. In the following subsections, we list and summarily describe technologies
that are the most relevant, specifically for forestry robotics.

(a) Image homogeneity. (b) Lens flare and overexposure due to direct sunlight.

(c) Decreased visibility due to fog or rain. (d) Unexpected motion effects due to wind.

(e) Effects of perspective changes. (f) Blurring due to robot motion.

Figure 7. Sensing challenges for forestry robotics.

3.1. Cameras and Other Imaging Sensors

Plants are part of a complex biological ecosystem, which makes spatiotemporal in-
formation crucial for their analysis [113]. A wide range of sensors can be used to monitor
the health status of a plant. Khanal et al. [114] describe potential applications of thermal
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remote sensing in precision agriculture. The use of Short-Wave Infrared (SWIR) enables
scientists to infer the crops’ health, crop water stress, soil moisture, plant diseases, crop
maturity, etc.; see Figure 8. Such information is required for planning irrigation strategies,
soil moisture compensation, water stress monitoring, evapotranspiration, drought stress
monitoring, residue cover detection, and crop yield estimation [114].

Hyperspectral imaging has also been used for monitoring the health of growth of
plants [115]. A hyperspectral image could have hundreds or thousands of bands. In gen-
eral, it is produced by an imaging spectrometer. Unlike standard RGB imaging, which
captures the wavelengths of approximately 475 nm (blue channel), 520 nm (green chan-
nel), and 650 nm (red channel), hyperspectral imaging extends the spectrum, typically
from ultraviolet (UV; starting at ∼250 nm) up to SWIR (∼2500 nm) [115]. The visible and
near-infrared ranges are particularly important for plant monitoring and analysis of their
features; leaf pigmentation can be inferred from 400 to 700 nm and mesophyll cell structure
from 700 to 1300 nm; however, a 1300–2500 nm range is required to measure the water
content of a plant [115].

More specifically, the use of hyperspectral imaging is desirable for computing, among oth-
ers, the following indices [115]:

• Normalised Difference Vegetation Index (NDVI) [680, 800] nm: to improve chlorophyll
detection and measure the general health status of crops, the optimal wavelength
varies with the type of plant;

• Red edge NDVI [705, 750] nm: to detect changes, in particular, abrupt reflectance
increases at the red/near-infrared border (chlorophyll strongly absorbs wavelengths
up to around 700 nm);

• Simple Ratio Index (SRI) [680, 800] nm;
• Photochemical Reflectance Index (PRI) [531, 570] nm;
• Plant Senescence Reflectance Index (PSRI) [520, 680, 800] nm;
• Normalised Phaeophytization Index (NPQI) [415,435] nm;
• Structural Independent Pigment Index (SIPI) [445, 680, 800] nm;
• Leaf Rust Disease Severity Index (LRDSI) [455, 605] nm: to allow detection of leaf rust.

Figure 8. RGB (left) and thermal (right) images of bushes and shrubbery captured using a thermal
camera. A variation of about 7 ◦C exists in the heating distribution in the thermal image. Such
a temperature variation will have an impact on the overall plant water stress and, therefore, on
its health.

The NDVI, in particular, is one of the most used in farming/forestry applications.
For example, the red channel of the image is used alongside the Visible-to-Short-Wave-
Infrared (VSWIR) (from 750 nm up to about 2500 nm) for calculating a coefficient [−1, 1]
and, therefore, infers the water stress of a given plant [113,116]. Also, the NDVI can be
used to measure the soil water evapotranspiration. Examples of robotic systems that use
hyperspectral imaging include [117–119].

A related type of sensor that is particularly promising for artificial perception in natu-
ral environments, which has been increasingly used in precision agriculture and geographic
research using unmanned aerial vehicles is the multispectral camera, e.g., [74,120]. For ex-
ample, this type of sensor significantly improves the discrimination between vegetation and



Robotics 2023, 12, 139 13 of 60

non-vegetation due to its sensitivity to chlorophyll [121]. More importantly, multispectral
cameras have been successfully used to discriminate between different species throughout
the so-called vegetation index [122], for instance, to separate weeds from plants [123–125],
and to detect diseased crops [126]. Multispectral imaging is often used instead of hyper-
spectral imaging due to its considerably lower cost. It uses radiometers and generally
involves only 3 to 10 bands [127].

3.2. Range-Based Sensors

With recent advances in hardware and sensor technology, 3D LiDARs are increasingly
being used in field robotics, primarily because they can produce highly accurate and
detailed 3D maps of natural and man-made environments and can be used in many
contexts due to their robustness to dynamic changes in the environment. In addition,
the cost of LiDAR sensors has decreased in recent years, which is an important factor for
many application scenarios. Currently, the most popular 3D LiDARs sensors are produced
by Velodyne (https://www.velodynelidar.com/, accessed on 1 July 2023), with a very
strong presence on the ever-growing market of self-driving cars; see reviews on some
of these sensors in [128,129]. This type of sensor has been used in a variety of outdoor
applications, such as mapping rough terrain in Disaster City, the world’s largest search-
and-rescue training facility, as reported by Pellenz et al. [130]. The authors captured a
15 min dataset, integrating Inertial Measurement Unit (IMU) data, GPS data, and camera
data. To map the scenario, two 3D techniques were tested: (i) the standard Iterative
Closest Point (ICP) approach [131]; and (ii) 6D Simultaneous Localization and Mapping
(SLAM) (simultaneous localization and mapping (SLAM) is the computational problem
of constructing or updating a map of an unknown environment while simultaneously
keeping track of an agent’s location within it [132]) software from Nüchter et al. [133],
while classifying the terrain online using a principal component analysis (PCA) (a principal
component analysis (PCA) is a statistical method that reduces data dimensionality by
creating new uncorrelated variables, called principal components, to capture the most
significant variance in the data [134])-based approach [135], yielding surprisingly precise
results. These advances in 3D LiDARs technology not only represent a significant step
for artificial perception for field and service robots, but also in other key areas, such as
wearable reality capture systems, as seen in [136], where the Pegasus Backpack from Leica
Geosystems is presented as a wearable sensing backpack that combines cameras and
LiDARs profilers for real-time mobile mapping.

Despite being used over the last couple of decades for a variety of robotic-perception-
related tasks, Laser Range Finders (LRFs) have not been properly explored for vegetation
identification, until the seminal work of [137], where a novel approach for detecting low,
grass-like vegetation using 2D LiDAR (a SICK LMS291-S05) remission values was presented.
The approach relies on a self-supervised learning method for robust terrain classification
by means of a support vector machine using a vibration-based terrain classifier to gather
training data. With this, the authors were able to obtain a terrain classification accuracy
of over 99% in the results presented, and improve the robot navigation in structured
outdoor environments.

4. Artificial Perception: Approaches, Algorithms, and Systems

Although the right choice of sensors and sensor fusion certainly helps, we believe
that the major challenges for artificial perception in outdoor environments will only be
addressed by the development of an encompassing perceptual system. In fact, this sys-
tem should be able to support high-level decision layers by bridging all the appropriate
perceptual to action tasks, e.g., active perception, foreground-background segmentation,
entity classification in forest scenarios, odometry (in particular visual), trail following
and obstacle avoidance for navigation. Additionally, the system should efficiently utilize
sensing and computational resources in order to achieve the best possible trade-off between

https://www.velodynelidar.com/
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minimising the energy footprint, to prolong robot operational autonomy and allow for
real-time performance of mission-critical sub-systems.

An artificial perception system for robots in our particular application of interest
simultaneously faces the following major challenges:

• It should allow the robot to navigate through the site while effectively and safely
avoiding obstacles under all expected environmental conditions.

• It should equip the robot with the capacity to ensure the safety of both humans and
local fauna.

• It must allow the robot to find, select, and act appropriately, with respect to the diverse
vegetation encountered in the target site, according to the designated task and the tree
species comprising forest production for that site, namely in distinguishing between
what should be protected and what should be removed, as defined by the end user.

• Finally, its outcomes should go beyond reproducing a layman’s perspective, and effec-
tively be modulated by the specifics of tasks informed by expert knowledge in forestry
operations.

In the following subsections, we will present an overview of the state of the art
of artificial perception algorithms, solutions, full-fledged systems, and architectures for
forestry applications and related fields.

4.1. Forest Scene Analysis and Parsing

To perform tasks in forestry applications, robots must be able to take a scene retrieved
by their sensors and parse it in such a way that they are able to distinguish and recognize
entities crucial to the task at hand, namely:

• The object of the task, for example, a specific plant and any part of that plant, plants in
general of the same species of interest, etc.;

• Any distractors, such as other plants (of other species, or of the same species but not
the particular plant to be acted upon, etc.);

• Secondary or ancillary entities to the task, such as humans (co-workers or by-standers),
animal wildlife, navigation paths, obstacles to navigation and actuation, geological
features (ridges, slopes, and any non-living object), etc.

They also need to be able to tie this semantic parsing of the forest scene to a spatial
representation of its surroundings to appropriately perform its operations. There are
forestry applications in which specific objects, such as stumps, logs, and standing trees,
need to be targeted or avoided. In these cases, simple object detection methods and
spatial representations may suffice to perform a gripping task or an evading manoeuvre in
closed-loop and real-time fashion. However, in our experience, more complex applications
involving intricate operations and long-term mapping and planning in the theatre of
operations need a richer, preferably a three-dimensional, integrated perception of the scene.
The process of building this perception is called metric-semantic mapping, which includes
three stages in its pipeline:

• Semantic segmentation;
• Volumetric mapping;
• Semantic label projection.

Spatial overlap and the challenges of sensing mentioned in Section 3 require a poten-
tially probabilistic approach for the projection process to deal with the uncertainty inherent
to perception. Research on approaches solving these three stages and their integration will
be described next.

4.1.1. Image Segmentation: Object Detection and Semantic Segmentation

Image segmentation is defined as the partitioning of the image into segments or re-
gions to simplify the parsing of the perceived scene. This generally involves locating and
classifying objects by assigning labels to pixels based on shared characteristics. In the artifi-
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cial perception of agricultural and forestry robotics, simple and efficient object detection and
classification methods have often been used to perform parsing, including deep learning
algorithms using bounding box partitioning; for recent examples, see [138–140]. These have
the significant advantage of being suited for real-time implementations (Section 4.5 will
discuss these issues in more depth). Semantic segmentation, on the other hand, involves
assigning class labels to individual atomic parts in a sensory representation (e.g., pixels in
an image). In image processing, for example, its goal is to accurately classify and localize
objects within the image by grouping pixels into semantically meaningful, task-relevant
categories. This allows for more complex, spatially-involved applications, as opposed to
bounding box solutions.

Semantic segmentation for vegetation detection in general and plant species dis-
crimination in particular has attracted a lot of interest in the past few years. A con-
siderable amount of work has recently been spurred by the botanical scientific commu-
nity (e.g., see [141]), leading to the development of several platforms and applications
for plant identification for taxonomy, such as PlantSnap (see [142], the PlantSnap site
(https://www.plantsnap.com/, accessed on 1 July 2023)) and Pl@ntnet (see [143,144], and
the Pl@ntnet site (https://plantnet.org/en/, accessed on 1 July 2023)). Sun et al. [145]
recently proposed a plant identification system using deep learning, which is claimed
to satisfy both the botanical and computer vision communities. Furthermore, for many
years, there has been extensive research on agricultural robotics, particularly in crop–weed
discrimination (e.g., see [45,64,69,122,124,125,146–148]). There is also work on vegetation
segmentation for robot navigation, as well as studies on path-following and traversabil-
ity for outdoor robotics in areas outside of urban environments [93,121,149,150]. Finally,
additional research efforts have focused on vegetation classification for very specific appli-
cations. For instance, Geerling et al. [63] presented a methodology for the classification of
floodplain vegetation. Their approach involved the fusion of structural and spectral data
obtained from LiDARs and CASI systems.

Over the past decade, semantic segmentation for tree species discrimination, in partic-
ular in forestry contexts, has also received considerable attention; however, a substantial
portion of this research is focused on the processing of satellite or aerial images (see, for in-
stance, [74,151,152]). These works, while interesting, have only marginal relevance in
forestry field robotics, as most robots in this context operate at the ground level. In contrast,
a smaller subset of this research has been specifically dedicated to robots in forestry applica-
tions or toward processing ground-level images, often referred to as “natural images” (see,
for example, [53,153–157]); Figure 9 shows an example of semantic segmentation applied
to a specific application in forestry robotics.

Instance segmentation has received much less attention in these contexts. The first re-
cent exception to this rule would be the work by Fortin et al. [158], who focused on instance
segmentation for autonomous log grasping in forestry operations. The authors compared
three neural network architectures for log detection and segmentation: two region-based
methods and one attention-based method. They concluded that the results indicated the
potential of attention-based methods for this specific task, as they operated directly at the
pixel level, and suggested that such a perception system could be used to assist operators or
fully automate log-picking operations in the future. Li et al. [159] tackled a similar problem
and proposed a metric learning-based instance segmentation algorithm for log-end face
segmentation. The metric learning framework is used to reclassify pixels in the overlapping
area, improving the accuracy of instance segmentation by 7% compared to state-of-the-art
methods. Additionally, the proposed model demonstrates a faster processing speed and
better segmentation of log-end faces of smaller scales. It effectively handles occlusion
situations during the shooting process, making it a flexible and intelligent solution for log-
end face segmentation in practical production. Another recent work addressing instance
segmentation was presented by Grondin et al. [160], who compared two different model
architectures, Mask R-CNN and Cascade Mask R-CNN, for tree detection, to segment and
estimate the felling cut, diameter, and inclination. For each input image, one of three tested

https://www.plantsnap.com/
https://plantnet.org/en/
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backbones, the CNN-based ResNext, the transformer-based Swin, or CBNetV2, which
uses dual backbones (which can be CNN-based or transformer-based), extracts distinctive
features. Then, the first network head predicts the class and bounding box, the second
head predicts the segmentation mask, and the third head predicts keypoints. This unified
architecture enables end-to-end training without any post-processing. Two densely anno-
tated trunk detection image datasets—the first including 43 K synthetic images and the
second 100 real images—were acquired for the bounding box, segmentation mask, and
key-point detections to assess the potential of the methods under comparison, together with
the dataset by da Silva et al. [139] (see Section 4.1.5) to perform data augmentation (data
augmentation and other methods for improving learning are presented in Section 4.1.6)
and help measure the extent to which the models generalised to a different woodland envi-
ronment. The models tested in this work achieved a precision of 90.4% for tree detection,
87.2% for tree segmentation, and centimetre-accurate keypoint estimations.

Figure 9. Example output of a semantic segmentation model applied to the robotic perception
pipeline, designed to perform landscaping in woodlands to reduce the amount of living flammable
material (aka “Fuel”) for wildfire prevention presented in [157]. The ground-truth image is shown
on the left and the corresponding prediction is on the right. The model takes multispectral images
as inputs and the classes used for segmentation and respective colour-coding are as follows: “Back-
ground” (black), “Fuel” (red), “Canopies” (green), “Trunks” (brown; not present in this example),
“Humans” (yellow) and “Animals” (purple). The model consists of an AdapNet++ backbone, an eA-
SPP progressive decoder, and fine-tuning trained on Bonnetal, using ImageNet pre-weights for the
whole model.

Research on plant part segmentation, on the other hand, has seen a recent rise in inter-
est, going beyond solutions based on more traditional image processing methods of the
past, such as the work by Teng et al. [161], who used this type of approach for tree part de-
tection for tree instance segmentation. Examples of such recent research would include the
work by Sodhi et al. [162], who proposed a method using 3D imaging for in-field segmenta-
tion and the identification of plant structures, work by Barth et al. [163], who proposed a
solution using CNNs to improve plant part segmentation by reducing the dependency on
large amounts of manually annotated empirical images, and work by [47,62], who used
multispectral images to segment plants into leaves, stems, branches, and fruit. Nonetheless,
many recent solutions still attempt to solve this problem using traditional approaches;
an example would be the work by Anantrasirichai et al. [164], who proposed and com-
pared two methods, watershed and graph–cut-based, respectively, for leaf segmentation in
outdoor images.

The presence of humans in the vicinity of forestry machines is also an important
aspect that must be perceived autonomously, which is often mission-critical. To this end,
ref. [54] presented a technique for segmenting humans in thermal images taken in forestry
environments at night. Several techniques, such as kNN, Support Vector Machines (SVMs),
and naïve Bayes were tested, yielding 80% precision and 76% recall.

Most of the work reviewed above suffers from a significant reliance on human dis-
cretion in choosing the appropriate framing of the visual scene, making it not adaptive
enough for use “in the wild”. For example, the apps for botanical taxonomy require taking
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well-framed, reasonably centred images of very specific parts of the plant, such as its
flowers. Some of these works also assume very particular segmentation tasks, such as
discriminating plants of a specific species from everything else. Moreover, in general, there
seems to be no solution that allows for holistic parsing of forest scenes in order to take into
account all or even most of the three major requirements for autonomous robots operating
in forestry applications specified at the beginning of this section. This would suggest the
lack of all-encompassing perception systems, a subject that will be covered in Section 4.3.

None of these methods explicitly take into account measures of uncertainty, which
would be extremely useful in task-relevant decision-making processes or for probabilistic
updating in the projection stage of metric-semantic mapping (Section 4.1.3). For example,
we are aware of only a few publications on semantic segmentation currently using Bayesian
neural network (BNN) for semantic segmentation. Recent work by Dechesne et al. [165]
adapted a unimodal U-net architecture with supervised training in Earth observation
images, which achieves state-of-the-art accuracy in multiple datasets, while Mukhoti
et al. [166] adapted unimodal DeepLabv3+ with supervised learning in the Cityscape
dataset, which contains RGB imagery and labelled data in an urban scenario, to achieve
comparable results to the original DeepLabv3+ architecture. Finally, Kendall et al. [167]
adapted SegNet [168] to achieve a significant improvement over the original model in
urban and indoor environments. In all of the above work, implementations of the fully
convolutional neural network (FCN) were adapted to incorporate Bayesian inference by
adding a Monte Carlo Dropout (MCD) layer at the end of a convolution block that outputs a
distribution instead of a fixed value. Overall, BNNs achieved comparable results to current
FCNs in modelling uncertainty, which is a valuable feature for a semantic map. Despite the
improvements achieved with current BNN implementations, there are still many research
opportunities that can be considered, e.g., multimodal BNNs for semantic segmentation.

In recent years, sensors, such as three-dimensional (3D) LiDAR, have begun to be
used as alternatives or complementary sensory modalities for object classification and
semantic segmentation. This is because these types of sensors are more robust to changes
in environmental conditions and are better suited for applications that require depth and
position information, such as outdoor robot navigation. The problem with these sensors,
however, is that they output large amounts of 3D data in the order of a few million points per
second when high-resolution LiDAR is used, making it difficult to process large amounts
of 3D data in real time. Moreover, these data are generally unstructured and unordered.

In the past, point cloud processing for artificial perception was based on hand-crafted
features [169–172] and was mostly limited to object detection. Hand-crafted features do
not require large training data and were rarely used due to insufficient point cloud data;
furthermore, this traditional approach was quickly abandoned with the advent of Deep
Learning. An overview of techniques based on hand-crafted features can be found in [173].

Due to the increasing performance of deep learning algorithms in computer vision on
two-dimensional (2D) image data, researchers have turned to deep learning for processing
3D point data. However, there are many challenges in applying Deep Learning to 3D point
cloud data. These challenges include occlusions caused by cluttered scenes or blindsides,
noise/outliers that are unintended points, misaligned points, etc. Moreover, CNNs are
mainly designed to process ordered, regular, and structured data, so point clouds pose a
major challenge. Early approaches overcome these challenges by converting point clouds
into a structured intermediate representation.

Several strategies have been proposed for representing 3D LiDAR data before in-
putting them into a convolutional neural network model. Some of these strategies include
rasterising data as 2D images [174] or voxels [175], rasterising data as a series of 2D images
acquired from multiple views [176], converting 3D data to grids [177], converting 3D points
to the Hough space [178], and converting 3D points to range images [179].

Recently, however, researchers have developed approaches that harness the power
of deep learning directly on the raw point cloud without the need for conversion to a
structured representation. Recent research shows that it is possible to use 3D data points as
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input to a deep neural network. The problem of data irregularity was studied and solved by
modelling a symmetric function and designing a transformer network. PointNet [180] and
PointNet++ [181] have better accuracy than the best performing state-of-the-art methods,
including the rasterization of 3D data into image methods. However, both methods suffer
from the problem that they cannot be executed in real-time when there are more than
one million points to process. RandLA-Net [182] proposes a solution to this problem that
has been shown to perform better than previous methods. The authors use a random
selection of points and drop the unselected points before inputting them into a deep
neural network. Several other sampling methods can be found in the literature. Some use a
heuristic sampling approach, such as farthest point sampling (FPS) [183] and inverse density
importance sampling (IDIS) [184], and others are learning-based sampling methods, such
as generator-based sampling (GS) [185], Gumbel subset sampling (GSS) [186], and policy
gradient-based sampling (PGS) [187]. Despite the good coverage of the entire point cloud
and the good representation of the data, the computational costs of these methods are
usually high because computationally intensive algorithms or memory-inefficient sampling
techniques are used to select the points, limiting their usefulness for real-time applications.
Others, such as GS, are simply too difficult to learn. Recently, Mukhandi et al. [188]
proposed a method that performs a systematic search and selects points based on a graph-
colouring algorithm instead of a random selection of points, and it outperforms RandLA-
Net. Figure 10 shows a qualitative evaluation of the semantic segmentation results obtained
with this method. For a more detailed review of the literature on deep learning using 3D
point clouds, see [189].

road building artifacts hardscape cars trees grass bush

Figure 10. Example of the results of semantic segmentation when applied directly to a raw point
cloud. The top image shows the original point cloud and the bottom image shows the result of
semantic segmentation [188], considering eight different classes (most of which are represented in the
example).

In summary, semantic segmentation is crucial for the development of a complete
artificial perception system, as it allows the robot to have a better understanding of the
scene and its respective context. This semantic context can then be used by the decision-
making module for the robot to be able to perform task-relevant operations.
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4.1.2. Spatial Representations in 3D and Depth Completion Methods

Digital cameras sense the surrounding environment by reading lights that are reflected
from the surfaces of objects in the perceptual scenes. A depth image or depth map is an
image in which each pixel-wise element stores the distance from its corresponding sensor
to the surface from which light is reflected with respect to the camera’s referential origin,
thereby describing the surrounding geometry from the camera viewpoint and within its
field of view (FOV). Depth maps, therefore, provide a 2.5D representation of the camera
view. A point cloud, on the other hand, is a collection of points in three-dimensional space
commonly representing samples of surfaces in the perceptual scene and often associated
with properties, such as surface colour. Point clouds, contrary to depth images, are device-
agnostic; they may be derived from depth maps by projecting the 2.5D representations into
3D spaces, but they are also the native representations of sensor readings, from sensors
such as LiDARs, which typically generate dense point maps as a result of their scans.

Workaround solutions have been, at times, used to circumvent the lack of depth in-
formation in camera images. For instance, recently, Niu et al. [190] proposed a low-cost
navigation system tailored for small-sized forest rovers, including a lightweight CNN, to
estimate depth images from RGB input images from a low-viewpoint monocular camera.
The depth prediction model proposed in this research is designed to infer depth infor-
mation from low-resolution RGB images using an autoencoder architecture. The goal of
the depth prediction model is to provide real-time depth inference on an embedded com-
puter, with sufficient accuracy to facilitate navigation in forest environments. By inferring
the depth from RGB images, the model allows for the use of geometric information for
navigation while avoiding the high cost of depth sensors. The model’s performance was
extensively tested and validated in both high-fidelity simulated forests and real-world
forest environments under various weather conditions and times of the day. The results
demonstrate the model’s ability to successfully predict depth from a 16 × 16 depth image
generated from a 32 × 32 monocular RGB image, enabling effective navigation through
forest terrains, including several obstacles, such as shrubs, bushes, grass, branches, tree
trunks, ditches, mounds, and standing trees.

Dense depth maps provided by sensors, such as RGB-D or stereo cameras, generally
range from 10 to 20 m in distance, with low-to-mid accuracy. Point clouds generated by
LiDAR sensors, on the other hand, involve distance ranges that easily surpass camera-
generated depth maps, and with higher precision; this generally comes at the expense of
point density [191]. As an example, whereas a standard 720 p depth image stores 620 K
points, a point cloud generated by a typical LiDAR contains only about 15 K points. This
accounts for about 3% of the camera’s total density. Additionally, LiDAR sensor data are
usually mostly geometric-only in nature and as such not as rich as sensor camera data,
which also natively includes colour information.

To take advantage of the strengths of both types of sensors, it has become common
practice to register and fuse their sensed data into a single 3D representation when the
relation between coordinate systems of all sensors is known (e.g., via calibration). However,
as mentioned previously, camera systems do not always produce dense depth maps; this
has resulted in the recent practice in which point clouds containing high-precision readings
taken by LiDAR sensors are used to generate sparse-depth maps by projecting the points
onto pixels of property-rich camera images, which are in turn transformed into dense depth
maps by estimating the depth of the remaining pixels.

As depicted in Figure 11, depth completion solutions use sparse-depth information
together with native camera sensor data (e.g., RGB) to estimate dense depth maps, thus
“filling out the gaps”. These solutions can be divided into those that use conventional,
non-learning techniques and more recent learning- and neural network-based techniques.
An example of the former, IPBasic [192], uses computer vision techniques to estimate
points with the purpose of being used in systems with limited computational resources.
In a similar manner, Zhao et al. [193] achieved precise density by utilising local surface
geometry. Both of these methods require sparse-depth information alone as input to
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produce their respective estimates for the corresponding dense depth map. Despite their
lower complexity and ease of implementation, single-input methods are less accurate due to
not taking advantage of the full range of available information. They are also more prone to
lower accuracy ratings when processing more complex environments and geometries [194].

Figure 11. Depth completion FCN, called ENet [195], applied to a synthetic forestry dataset [196].
The sparse-depth image shown on the top right is generated by projecting points from a point
cloud produced by a (simulated) LiDAR sensor onto the image space of the camera producing the
RGB image shown on the top left; since the LiDAR sensor is tilted slightly downwards to prioritise
ground-level plants, only the bottom half of the image includes depth information from the point
cloud. The depth completion method, which uses both information from the RGB image and the
sparse-depth image as inputs to estimate the corresponding dense depth image, produces the output
shown on the bottom left, with the ground-truth dense depth image shown on the bottom right
for comparison.

Unimodal or multimodal neural networks using all available information (i.e., depth
but also colour from cameras) to improve prediction quality have been developed re-
cently (e.g., [197–200]), achieving top-ten results when benchmarked using the well-known
Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago (KITTI)
standard for depth completion [201]. The benchmark ranking indicates that supervised
learning approaches achieve the best performances among published methods with verified
reference, and suggests that multimodal neural networks are proven to be more robust
than single-input approaches. Examples of these include the dynamic spatial propagation
network (DySPN) [197] and the repetitive image-guided network (RigNet) [198].

However, the benchmark’s inference rate is ambiguous due to the absence of prede-
termined computation calculation guidelines. Also, when evaluating depth completion
methods, the computational cost should also be taken into consideration. For instance,
according to the KITTI benchmark DySPN [197] is five times slower than the new normal
network (NNNet) [202] with a difference in RMSE of only 20.5 mm, which can be taken
as insignificant.

It is unknown how these methods will perform in woodland scenarios, as they were
all trained in urban settings. In fact, we are unaware of any such work for natural envi-
ronments, which are inherently unstructured. Recent adaptations of depth completion
methods using well-established urban models to forestry applications have demonstrated
that these neural architectures do not generalize well [203]. An example of how depth
completion can be particularly useful in these types of applications can be seen in [107],
in which LiDAR point clouds are used to produce dense depth images registered with
images produced by a high-resolution multispectral camera that allows for improved se-
mantic segmentation, which in turn allows the generation of complete, camera-referenced,
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2.5D representations with semantic information. Representations such as these can then be
used to produce feature-rich metric-semantic maps, the significance of which is explained
in the following subsection.

4.1.3. Metric-Semantic Mapping

Metric-semantic mapping is defined as a map of spatial information about the envi-
ronment, with assigned confidence values for entities of known classes [23,204], which
provides high-level scene understanding. In other words, it constitutes the projection of
labels from semantic information (e.g., semantic segmentation images; see Section 4.1.1)
onto a spatial map, which can be produced from registered spatial representations such as
those presented in Section 4.1.2.

Metric-semantic mapping is a relatively recent research topic, as the integration of
semantic information into spatial maps has only become an active area of research in
the past few years, driven by advances in deep learning techniques and the increasing
demand for robots to navigate and interact with complex environments. As mentioned
in Section 4.1.1, as an extension of semantic segmentation, metric-semantic maps provide
high-level scene-understanding capabilities to the robot. These, in turn, enable the proper
undertaking of current tasks, safe navigation in a given area and allow the avoidance of
dynamic entities such as humans and animals, by taking into account not only geomet-
rical but also operation-relevant semantic information. If the metric-semantic maps are
probabilistic, they provide the additional capability of tackling uncertainty explicitly. This
is potentially important for forestry applications with their many unknown factors, high
uncertainty and perceptual challenges [27].

A relevant example of this type of method would be TUPPer-Map (temporal and uni-
fied panoptic perception for 3D metric-semantic mapping), proposed by Yang and Liu [205].
The authors propose a new framework that combines both temporal and unified panoptic
perception (panoptic perception in this context is a comprehensive and unified under-
standing of the environment obtained by using the metric-semantic framework). Temporal
perception is achieved by using a recurrent neural network (RNN) to incorporate past
observations and improve the accuracy of the semantic segmentation. Unified panoptic
perception is achieved by jointly processing depth, RGB, and semantic segmentation in-
formation. Chang et al. [206] proposed another solution for metric-semantic mapping
named Kimera-Multi. This system is based on the Kimera framework and allows multiple
robots to collaboratively build a 3D map of an environment while also generating semantic
annotations. It was evaluated on both simulated and real-world experiments, demon-
strating its ability to generate accurate and consistent 3D maps across multiple robots. Li
et al. [207] in turn proposed a semantic-based loop-closure method for LiDAR SLAM called
semantic scan context (SSC). The proposed method uses semantic information from the
environment to improve the accuracy and robustness of loop-closure detection. Specifically,
SSC uses semantic segmentation to extract semantic features from LiDAR scans, which
are then used to construct a semantic scan context graph. The graph is used to detect
loop closures based on the similarity of semantic features between scans, which reduces
the reliance on geometric features and increases the likelihood of correctly detecting loop
closures. Another interesting approach was presented by Gan et al. [208], who devised
a flexible multitask, multilayer Bayesian mapping framework with readily extendable
attribute layers. The proposed framework enables the efficient inference of multi-layered
maps with both geometric and semantic information by jointly optimising multiple tasks,
including map reconstruction, semantic segmentation, and sensor fusion. The paper de-
scribes a detailed implementation of the proposed framework, including its architecture,
loss functions, and optimization strategy.

There are only two methods that we found that address forestry applications, the first
of which was proposed by Liu et al. [202] and Liu and Jung [209], and the second by Russell
et al. [31]. The first group of authors present a comprehensive framework for large-scale
autonomous flight with real-time semantic SLAM under dense forest canopies. The frame-
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work includes a novel semantic-based approach that integrates semantic segmentation into
visual place recognition and allows multiple aerial robots to collaboratively build a 3D map
of the environment. The proposed framework is evaluated on large-scale mixed urban-
woodland datasets, and the results demonstrate its effectiveness in enabling autonomous
flight and accurate mapping under challenging conditions. The second group of authors
presents an adaptation of an existing efficient 3D mapping solution, the OctoMap [210],
adding metric-semantic information to the original framework and testing it in scenarios
including dense forest canopies. The adaptation consists of embedding a probability dis-
tribution of the predicted classes in each voxel, multiplying each new observation by the
current distribution, and then re-normalising. The voxel is then labelled with the most
likely class. This method was evaluated in a dense forestry environment with results
demonstrating accurate semantic information and mapping.

We listed the work on metric-semantic mapping we surveyed in Table 3. We analysed
the implementation aspect of each method in terms of the environments used, and the
geometry and data structure for its spatial representation, as there are few works that have
been tested or compared under similar conditions. These particular features are important
since they provide an indication of how each technique would perform (particularly in
terms of the usage of computational resources) in unstructured, large, outdoor environ-
ments, such as woodlands (note that only the active metric-semantic mapping technique by
Liu et al. [202], Liu and Jung [209] and the Semantic OctoMap solution by Russell et al. [31]
are specifically reported to have been used in this type of environment).

Table 3. Comparison of metric-semantic mapping techniques in the context of artificial perception
for forestry robotics. Of all these techniques, only TUPPer-Map [205] is reported to not work online.

Method Input Environment Geometry Data Structure/Framework

TUPPer-Map [205] RGB-D Urban Mesh Truncated Signed Distance Field (TSDF)
Kimera-Multi [206] RGB-D/PCL Urban Mesh TSDF
SSC [207] PCL Urban 3D Points Point Cloud
MultiLayerMapping [208] RGB-D Urban Voxels Multi-Layered BGKOctoMap [211]
Semantic OctoMap [31] RGB-D/PCL Forest/Urban Voxels OctoMap [210]
Active MS Mapping [202,209] Stereo/PCL Forest/Urban 3D Models Factor-Graph

4.1.4. Traversability Analysis for Navigation

An important subtopic of the scene understanding of woodland scenarios (which
shares links with metric-semantic mapping, described in the previous section) involves
traversability analysis for safe navigation. This involves methods that interpret the environ-
ment representation with appropriate fidelity in order to distinguish between traversable
and non-traversable areas, considering the platform’s configuration footprint and locomo-
tion. Typically, these works are coupled with path-planning techniques, which then allow
the robot to navigate through the devised traversable space in order to reach its destination.

A recent and very complete survey on the terrain traversability analysis for au-
tonomous ground vehicles is presented in [212]. The authors define a taxonomy for
the different methods by grouping them into vision-based (e.g., [213,214]), LiDAR-based
(e.g., [215,216]), alternative sensor-based (e.g., [217–219]), and sensor fusion methods
(e.g., [220,221]).

As expected, a clear prevalence of deep learning-based methods with different sensor
modalities to tackle terrain classification and image segmentation problems has recently
been observed. For instance, in [222], a deep neural network takes an image as input
and categorizes every pixel of the image into an assigned class. After a coordinate frame
transformation, this can assist the robot’s navigation system in traversing the environment.
The approach presented in [223] also uses a deep neural network, which outputs navigation
commands that need to be post-processed, instead of semantic classes. Additionally,
semantic segmentation has also been used for navigation to distinguish between forest
trails from less traversable ground [224].
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Alongside semantic segmentation methods for traversability analysis, there has been
significant progress in the development of target detection techniques for forest navigation
recently. Moreover, Sihvo et al. [225] introduced a method for detecting tree locations using
on-site terrestrial LiDAR data collected during forest machine operations, employing a
planarised ground model and individual tree stem lines to achieve accurate alignment
without the need for positioning or orientation systems. More recently, da Silva et al. [140]
evaluated several deep learning models for tree trunk detection, achieving high detection
accuracy and fast inference times, paving the way for advanced vision systems in forestry
robotics. Furthermore, a point-based DNN for accurately classifying tree species using
3D structural features extracted from LiDAR data was proposed in [226], achieving a
classification accuracy of 92.5% and outperforming existing algorithms in tree species
classification tasks.

Other methods include the discretization of the world into an OctoMap [210] (see
Section 4.1.3), which is divided into horizontal layers. Every layer is analysed, considering
inter-layer dependency, in order to identify traversable portions of terrain (e.g., levelled
areas or slopes) and non-traversable portions of terrain (e.g., cliffs or hills that the robot
cannot safely climb) [227]. Another relevant method proposed in [228] uses an efficient 2.5D
normal distribution transform (2.5D-NDT) map that stores information about points that
are believed to be traversable by ground robots. An analysis was conducted by considering
a spherical spatial footprint for the robot, checking whether there were patches inside the
sphere to understand if the terrain was suitable for navigation.

Fankhauser et al. [229] proposed a method that incorporates the drift and uncertainties
of the robot’s state estimation, as well as a noise model of the distance-measuring sensor in
order to create a probabilistic terrain estimate as a grid-based elevation map with upper and
lower confidence bounds. Adjacent cells are then analysed with respect to some metrics,
e.g., the height difference between them, and a traversability map is generated. Moreover,
Ruetz et al. [230] conservatively represent the visible spatial surroundings of the robot as a
watertight 3D mesh that aims at providing reliable 3D information for path planning while
fulfilling real-time constraints. It provides a trade-off between representation accuracy and
computational efficiency. A method is then applied to infer the continuity of the surface and
its respective roughness value, choosing an appropriate, and path taking these properties
into consideration.

A particularly relevant work was described in [231], which presents a motion planner
that computes trajectories in the full 6D space of robot poses based on a terrain assess-
ment module that plans directly on 3D point cloud maps. It identifies the geometry and
traversability of surfaces represented as point clouds without explicit surface reconstruction
or artificial discretization of maps or trajectories. Terrain geometry and traversability are
assessed during motion planning, by fitting robot-sized planar patches to the map and
analysing the local distribution of map points. The performance of the approach is demon-
strated on autonomous navigation tests in three different complex environments: with 3D
terrain (rough outdoor terrain, a two-level parking garage, and a dynamic environment).

A recent method proposed by Carvalho et al. [108] focuses on the concept of mechan-
ical effort to solve the problem of terrain traversability and path planning in 3D forest
environments. The technique processes 3D point cloud maps to generate terrain gradient
information. It then categorizes terrain according to the effort required to traverse it, while
identifying key evident obstacles. This allows the generation of efficient paths that avoid ob-
stacles and major hills when more conservative paths are available, potentially minimising
fuel consumption and reducing the wear of the equipment and the associated risks.

Finally, it is worth mentioning key works that specifically address methods for fus-
ing information from multiple sources to assist traversability and navigation in outdoor
environments. Milella et al. [220] presented a multi-sensor approach using heterogeneous
sensors (stereo cameras, VIS–NIR sensor, a thermal camera, and an IMU) to generate a
multi-layer map of the ground environment, enabling accurate soil mapping for highly
automated agricultural vehicles and potential integration with farm management systems,
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while Vulpi et al. [221] explored the use of proprioceptive sensors (wheel encoders and
IMU) and DNNs to accurately estimate terrain types for autonomous rough-terrain vehicles,
achieving comparable or better performance than standard machine learning methods
and eliminating the need for visual or depth information. In a very relevant and recent
work, Hera et al. [56] employed exteroceptive sensors, including a dual-antenna GNSS
connected to the Swepos Network-RTK for precise positioning in Cartesian coordinates,
and a stereo camera (Stereolabs Zed2) that captures 2D RGB images, 2D depth maps,
and additional sensor data, such as IMU, barometer, and magnetometer data, to map the
ground and facilitate traversability analysis for an autonomous machine operation in a
forest environment.

4.1.5. Datasets and Learning

For proper benchmarking of the artificial perception methods mentioned previously,
learning and testing datasets should allow repeatability and replicability. Datasets concern-
ing outdoor environments are divided into 2D, 2.5D, and 3D data, annotated according
to task-relevant classes, the most representative of which are presented in Table 4. In au-
tonomous driving, for example, there are usually classes of people, cars, and cyclists [232].
These datasets are particularly important in the case of supervised learning, where the
model is given an expected output that is compared to the predicted output. A loss function
is used to calculate the difference between the expected output and the actual output. This
is then used to update the weights and parameters of each layer in the model until a loss
threshold is met or a final number of iterations is reached.

Two-dimensional datasets include only sensors that contain a 2D representation, such
as RGB and thermal images. For example, Tokyo multi-spectral [233] includes RGB and
thermal images of an urban street scene; RANUS [234] contains RGB and Near Infrared
(NIR) images; it shows a high contrast between natural and artificial objects by using the
non-visible light spectrum to its urban street dataset. However, all of these data are for
urban environments. The only 2D datasets for forestry research we are aware of are the
FinnDataset [235], which uses 4 RGB cameras to map a forest in Finland in summer and
winter, and the ForTrunkDet [139,236], which is comprised of just under 3000 images with
single-class tree trunk labelling taken from three different Portuguese woodland sites for
training and testing detection and segmentation models. There are also a few datasets that
are tailored to very specific tasks and conditions in forestry and include a small number of
training samples, such as TimberSeg 1.0 [158], which is composed of 220 images showing
wood logs in various environments and conditions in Canada.

Table 4. Comparison of outdoor environment training/testing datasets in the context of artificial
perception for forestry robotics.

Name Type Sensors Environment No Frames/Scans Labelled

FinnDataset [235] 2D RGB Real/Forest 360 k —
ForTrunkDet [237] 2D RGB/Thermal Real/Forest 3 k 3 k

RANUS [234] 2D RGB/NIR Real/Urban 40 k 4 k
Cityscapes [238] 2.5D RGB-D Real/Urban 25 k 25 k

LVFDD [239] 2.5D RGB-D/GPS/IMU Real/Forest 135 k –
Freiburg [156] 2.5D RGB-D/NIR Real/Forest 15 k 1 k

SynthTree43K [240] 2.5D RGB-D Synthetic/Forest 43 k 43 k
SynPhoRest [196] 2.5D RGB-D Synthetic/Forest 3 k 3 k

KITTI [241] 3D RGB/LiDAR/IMU Real/Urban 216 k/- 400
nuScenes [242] 3D RGB-D/LiDAR/IMU Real/Urban 1.4 M/390 k 93 k
SEMFIRE [243] 3D NGR/LiDAR/IMU Real/Forest 1.7 k/1.7 k 1.7 k
TartanAir [244] 3D RGB-D/LiDAR/IMU Synthetic/Mixed 1 M/- 1 M

QuintaReiFMD [236] 3D RGB-D/LiDAR Real/Forest 1.5 k/3 k —

To enhance 2D datasets, 2.5D datasets also include corresponding depth images.
For outdoor environments, datasets such as SYNTHIA [245] and Cityscapes [238] are
popular benchmarks for developing autonomous vehicle perception, as both include high-
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quality RGB and depth images in their data. However, there is a lack of datasets focusing
on natural environments; therefore, suitable 2.5D forest data are hard to find. Currently, we
are aware of only a few 2.5D datasets that are either simulated or recorded in a forest envi-
ronment. These are the Freiburg forest dataset [156], which contains RGB, NIR, and depth
images of a German forest in different seasons. LVFDD [239] provides an off-road forest
depth map dataset recorded in Southampton, UK. This dataset features low viewpoints
and close-up views of obstacles such as fallen tree branches and shrubs. Another dataset is
SynthTree43K [160,240], which is a simulated dataset containing 43,000 synthetic RGB and
depth images and over 190,000 annotated trees (i.e., single class annotation), including train,
test, and validation splits. Finally, Synthetic PhotoRealistic (SynPhoRest) [196,246] provides
simulated data of typical Portuguese woodland, including both RGB and depth images.

Finally, 3D datasets add full 3D representations, such as LiDAR sensor data in the form
of 3D point clouds (see Section 4.1.2). For autonomous vehicles in outdoor scenarios, there
is the aforementioned KITTI dataset [241], which is one of the most popular benchmarks
to test the efficiency of semantic segmentation systems. However, due to the lack of
data diversity in different lighting conditions, there are better options in the community
today. Lyft [247] provides a robust dataset with 1.3 M 3D annotations of the scene and
includes both LiDAR point clouds and RGB images. Similarly, nuScenes [242] provides
a comprehensive dataset that includes LiDAR point clouds, 5 RADARs, 6 RGB cameras,
annotated LiDAR points for 3D semantic segmentation, and 93 k annotated RGB images.
Although both datasets represent advances over the previous KITTI benchmark, they
are designed for autonomous driving in urban scenarios and are, therefore, not ideal for
forestry robotics applications.

For forestry environments, there are very few publicly available 3D datasets. These
include QuintaReiFMD [236], the SEMFIRE dataset [243], and TartanAir [244]. These three
datasets are a step forward in forestry robotics, although each still has some limitations.
The SEMFIRE dataset, while having the advantage of being annotated, is relatively small.
QuintaReiFMD does not provide different lighting conditions, and TartanAir is a synthetic
dataset that has yet to be shown to allow generalization to real-world scenarios.

Adding to the problem of the lack of annotated data, none of the datasets listed above
fully addresses an important issue in computer vision for forestry robotics: class imbalance.
This becomes particularly crucial for cases in which examples of instances of mission-critical
classes (e.g., humans or animals) are not represented in sufficient proportion in the dataset,
as they are relatively rare occurrences in the wild. In summary, although these datasets rep-
resent important contributions to machine learning-based perception for forestry robotics,
more extensive, diversified and comprehensive datasets are needed.

4.1.6. Improving Learning: Data Augmentation and Transfer Learning

The performance of machine learning (ML) models, deep learning models, in par-
ticular, depends on the quality, quantity, and relevance of training data. The process of
collecting and annotating data is often time-consuming and expensive due to the need
for expert knowledge. In fact, as identified in Section 4.1.5, insufficient data is one of
the most common challenges in using datasets for training ML models. Another issue
also mentioned previously is the difficulty in resolving class imbalance, i.e., skewed class
representation within the dataset.

Data augmentation is a set of techniques that artificially increases available training
content by generating new data from existing samples. Data augmentation methods,
as illustrated in Figure 12, are applied to enlarge datasets by adding modified copies of
existing data or realistic synthetic data.
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Figure 12. Overview diagram of a data augmentation process; from [248]. Data from a specific domain
is forwarded into a data augmentation unit, potentially curated by a human expert, which in turn
produces an augmented dataset containing the original data and new artificially generated samples.

In case a dataset is small or insufficiently diverse, traditional augmentation methods
that create modified copies of images in the dataset, via image manipulation operations
such as rotation, mirroring, cropping, darkening, etc., may not be sufficient to satisfactorily
increase accuracy. Learning-based image classification performance has been shown to
improve when, in addition to real-world data, realistic synthetically rendered images
are used for training [249,250]. Synthetic images for this purpose can be obtained in
several ways, namely by using renderings taken from realistic simulated 3D environments,
by resorting to generative models or by means of a mixed approach.

For forestry applications in particular, synthetic data have already been used in purely
synthetic datasets as presented in Section 4.1.5 with promising results, as shown by Nunes
et al. [196,246]. Generative Adversarial Networks (GANs) were used by Bittner et al. [251]
to generate synthetic NIR multispectral images from fully annotated RGB images for data
augmentation purposes. Fully annotated multispectral datasets are difficult to obtain
with sufficient training samples when compared to RGB-based datasets; this is because
annotation is often time-consuming and expensive due to the need for expert knowledge.
This issue is compounded even further by the specific nature of multispectral images [251].
The authors provided proof-of-concept showing that the synthetic images generated by this
type of solution yield a level of performance in the semantic segmentation model proposed
in [157] comparable to what is obtained using real images for training. This solution
can be used with real and/or synthetic (i.e., rendered from simulation) RGB images; see
Figures 13 and 14.

A further alternative for improving performance is transfer learning, a technique in
which a model is trained and developed for one task and then reused on a second related
task. It refers to the situation in which what was learnt in one setting is used to improve
optimization in another [252,253]. One of the main benefits of transfer learning is its ability
to address imbalanced data. Transfer learning can help to improve classification accuracy
and reduce the impact of imbalanced data by transferring knowledge from pre-trained
models to new models. In other words, by leveraging pre-trained models, transfer learning
can significantly reduce the amount of labelled data required for training, and thus can be
an effective way to overcome imbalanced data challenges.

An increasing amount of research has been conducted in applying transfer learning to
generic computer vision problems to address the imbalanced class problem [254]. An ex-
ample includes the work by Liu et al. [255], who proposed a solution that they named
the transfer learning classifier (TLC). This solution is composed of an active sampling
module, a real-time data augmentation module, and a transfer learning module based on a
standard DenseNet network, pre-trained on the ImageNet dataset, and transferred to TLC
for relearning, with memory usage adjustment to make it more efficient.
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Figure 13. GAN image translation training from [251] to generate corresponding NIR channels of
multispectral images with an original multispectral image (left image); a model ground truth image,
which the model attempts to predict (centre, top image); a green channel image, which is part of the
model input image (centre, second image from the top); a semantic segmentation image, where its
label values are part of the model input image (centre, third image from the top) and a red channel
image, which is part of the model input image (centre, last image).
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Figure 14. GAN image translation generation from [251] of synthetic NIR channel and corresponding
final “fake” multispectral image from a fully annotated RGB input image (on the left); a green channel
image, which is part of the model input image and is fed forward to be merged after generation
with the synthetic NIR channel (centre, top image and right, top image); a semantic segmentation
image, where its label values are part of the model input image (centre, second image from the top);
a red channel image, which is part of the model input image and is fed forward to be merged after
generation with the synthetic NIR channel (centre, last image and right, last image); a synthetic NIR
channel image, which the model predicted and is merged afterwards with the real red and green
channels as a synthetic multispectral image (right, second image from the top).

Examples of research in applying transfer learning to the more specific context of
precision forestry applications, to our knowledge, are relatively few. Niu et al. [190]
employed transfer learning to train their model (see Section 4.1.2) on both indoor and
outdoor datasets, including the real-world low-viewpoint forest dataset collected by the
authors, described in Section 4.1.5. Andrada et al. [157] showed that transfer learning
techniques, such as weight initialization with class imbalance (with the “Humans” and
“Animals” as the underrepresented classes; see the previous section, Figure 9) and pre-
trained weights, improved the overall quality of semantic segmentation.
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4.2. Localization and Mapping

Visual odometry, along with visual SLAM, have been the objects of extensive research
for several decades, as exemplified in the survey work by Younes et al. [256] and the
fundamental tutorial article of Scaramuzza and Fraundorfer [257]. Recently, there has been
increased interest in applying these techniques to the more challenging natural outdoor
scenarios [258]. An account of research conducted during the last ten years on natural out-
door environments would include work by Konolige et al. [259], who explicitly addressed
visual odometry for rough terrains, Otsu et al. [260], detected interesting points in untex-
tured terrains by adaptively selecting algorithms for feature tracking, Daftry et al. [261],
and introduced a semi-dense depth map estimation in a scale-aware monocular system in
cluttered environments, such as natural forests, as well as a very interesting biologically
inspired Bayesian approach using convolution neural networks via inference of the sun’s
direction to reduce drift (by Peretroukhin et al. [262]).

Moreover, for such applications, it would be worthwhile to consider fusing 2D camera
fusion with 3D-based devices; recent examples of such research would include work by
Giancola et al. [263], Paudel et al. [264], and notable work on SLAM in a forest environment
by Pierzchala et al. [89] and Tremblay et al. [90] (see mapping output in Figure 15). Recent
developments in visual odometry and navigation for UAVs are also relevant. Research
by Giusti et al. [224] is particularly pertinent due to its specificity to forest applications.
Contributions also include the work by Smolyanskiy et al. [265], who focused on stable
flight and trail-following coupled with obstacle detection in outdoor environments using a
DNN, and Mascaro et al. [266], who discussed the fusion of visual–inertial odometry with
globally referenced positions for UAV navigation. Moreover, Kocer et al. [267] looked into
visual sensing of forest topology. Robust solutions in outdoor applications were explored
by Griffith and Pradalier [268], who addressed the accurate alignment of images captured
over extensive seasonal variations in natural environments for survey registration, and
Naseer et al. [269], who implemented data association exploiting network flows and DNNs
to enhance visual localization across seasons. Additionally, Engel et al. [270] proposed
the direct sparse odometry (DSO) method, which amalgamates accurate sparse and direct
structure and motion estimation with real-time parameter optimization.

One of the pivotal contributions that departed from 2D SLAM in flat indoor envi-
ronments in 2D to provide a full 3D SLAM system in less structured outdoor settings
was introduced by Cole and Newman [271]. The authors employed a 2D scanner that
continuously oscillated around a horizontal axis, thus consecutively building 3D scans.
This was achieved through a straightforward segmentation algorithm and by executing a
“stop-acquire-move” cycle. A scan-matching classification technique was applied for inter-
scan registrations, which incorporated an integrity check step. Consequently, they achieved
successful 3D probabilistic SLAM in outdoor, uneven terrain; in a related study [272],
the system was enhanced with a forward-facing camera. This addition aimed to improve
loop closure detection through the use of an appearance-based retrieval approach. Further
explorations of loop closure detection using vision in outdoor environments were followed
up with in subsequent works, such as [273–275].

Around that period, Thrun and Montemerlo [276] introduced GraphSLAM, a widely
recognised offline algorithm. This algorithm extracts a series of soft constraints from the
dataset, which are represented using a sparse graph. The map and robot path are subse-
quently obtained by linearising these constraints and solving the least squares problem
through standard optimization techniques. The approach was tested outdoors in large-
scale urban structures, employing a bi-directional scanning laser and optionally integrating
GPS measurements, achieving satisfactory 3D map representations. Another influential
contribution to 3D SLAM is found in [133]. This approach involves a robot equipped with
a tiltable SICK LRF in a natural outdoor environment. It relies on 6D ICP scan match-
ing, coupled with a heuristic for closed-loop detection and a global relaxation method,
resulting in precise mapping of the environment, aligning closely with an aerial ground
truth photograph.
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(a) Robot perspective.

(b) Bird’s eye view.

Figure 15. The 3D point cloud representation of a forest (source: Montmorency dataset [90]). The three
axes XYZ at the origin of the robot’s coordinate system are represented in red, green, and blue,
respectively.

Based on the early work of Singh and Kelly [277] concerning elevation maps for navi-
gating an all-terrain vehicle, Pfaff et al. [278] presented an efficient approach to tackle the
3D SLAM problem. In this approach, individual cells of an elevation map are categorised
into four classes, representing different parts of the terrain, as viewed from above, verti-
cal objects, overhanging objects (e.g., branches of trees or bridges), and traversable areas.
The ICP registration algorithm then takes this information into consideration, leading
to the development of a consistent constraint-based technique for robot pose estimation.
For their experimental work, the authors employed a Pioneer II AT robot equipped with
a SICK LMS range scanner mounted on a pan/tilt device. The results demonstrated that
these techniques yield substantially increased correspondences and alignments in the
generated map.

Numerous LiDAR-based SLAM techniques have emerged in the field, with one of
the foundational methods being LiDAR Odometry And Mapping, commonly referred to
as LOAM [279]. LOAM has been recognised for its capability to generate highly accurate
maps; however, it tends to exhibit sub-optimal performance in environments characterised
by sparse landmarks, such as lengthy corridors. To address these limitations, LeGO-LOAM
was introduced, incorporating two supplementary modules into the LOAM framework:
point cloud segmentation and loop closure [280]. These additional components serve to
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enhance computational efficiency and mitigate drift over extended distances, although they
do not substantially enhance performance in feature-scarce settings.

In the realm of loop closure techniques, while LeGO-LOAM relies on the naive ICP (It-
erative Closest Point) algorithm, a more robust approach based on point cloud descriptors
is employed in SC-LeGO-LOAM [280,281]. To enhance performance in environments with
limited distinguishing features, recent efforts have focused on integrating Inertial Mea-
surement Units (IMUs) into similar systems through tightly coupled approaches [282–284].
This integration has given rise to the term LiDAR Inertial Odometry (LIO).

An exemplar of this tightly coupled approach is the LIO-SAM [285] method, which
presents a comprehensive LiDAR framework built upon a factor graph. LIO-SAM incorpo-
rates four distinct factors into its framework: IMU preintegration, LiDAR odometry, GPS,
and a loop closure factor. This configuration renders it particularly well-suited for multi-
sensor fusion and global optimization. Notably, the recent research landscape has witnessed
the emergence of numerous methodologies grounded in similar principles [286–293].

An insightful literature review concerning SLAM in outdoor environments up until
2009 can be found in [294]. In this review, the authors separately discuss mapping and
localization. They start by comparing different approaches to occupancy grid mapping
and then move on to analysing various methods for localization within the map. These
approaches are shown to fall into three distinct groups: visual SLAM (using monocular
cameras and stereo vision), LiDAR SLAM (comprising scan matching and maximum
likelihood estimation techniques using LiDARs), and sensor fusion SLAM (involving
techniques integrating various sensors, such as cameras, LRFs, radar, and/or others). A
more recent survey addressing localization and mapping specifically for agriculture and
forestry has been presented in [23]. Nine works in the context of forestry were analysed.
The authors highlight the need for precise localization in autonomous robotic tasks, such
as pruning, harvesting, and mowing, and also emphasize the importance of mapping the
surroundings of the robot under these scenarios. The prematurity of this research line is
made clear, and particularly, 3D full localization is rare in these environments, with notable
exceptions, including the work described in [295], involving localization and mapping
in woodland scenarios. Also, advanced mapping techniques (common in areas such as
topological and semantic mapping) are not yet solidified for agriculture and forestry.

Tian et al. [296] address cooperative mapping with multiple UAVs. This work is
particularly relevant due to its application in a forest environment for the GPS-denied
search and rescue under the tree canopy. The UAVs perform onboard sensing, estimation,
and planning, and transmit compressed submaps to a central station for collaborative
SLAM (see Figure 16). The work explicitly addresses the data-association problem, which
is even more challenging in forest scenarios due to moving branches and leaves. However,
cooperative mapping is limited to 2D due to onboard processing and communication
bandwidth limitations. The system is validated in a real-world collaborative exploration
mission.

Stereo vision has seen extensive use in outdoor perception studies over the past few
decades [297,298]. In [299], an approach employing hierarchical (topological/metric) tech-
niques is introduced for vehicles navigating large-scale outdoor urban environments. This
method utilizes an affordable, wide-angle stereo camera and incorporates GPS measure-
ments into low-level visual landmarks metric mapping to enhance vehicle positioning. At a
higher level, the approach employs a topological graph-like map that includes vertices
representing topological places, each represented by local metric submaps. These vertices
are connected by edges containing transformation matrices and uncertainties that describe
their relationships. This approach effectively mitigates global errors while adhering to
real-time constraints. The authors conducted successful tests of this approach using an
autonomous car, traversing a path spanning 3.17 km. Even in cases where GPS signals were
unavailable, the method demonstrated only minimal degradation in performance. This
was confirmed by comparing the estimated path results with ground truth data obtained
from a professional RTK-GPS receiver module mounted on the vehicle.
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(a) Onboard Autonomy (b) Centralized Offboard Mapping

Figure 16. System architecture from [296], where multiple UAVs autonomously performed onboard
sensing, vehicle state estimation, local mapping, and exploration planning, and a centralised offboard
mapping station performs cooperative SLAM, by detecting loop closures and recovering associations
observed in multiple submaps, in a forest environment. Reproduced with permission.

In a couple of related studies [300,301], submap matching techniques are applied in
the context of stereo-vision outdoor SLAM. Unlike the approach presented in [299], these
methods do not presume the existence of flat terrain when matching the 3D local metric
maps, and take into account environments where GPS signals are unreliable. The authors
introduce an innovative approach to submap matching, relying on robust keypoints derived
from local obstacle classification. By characterising distinctive geometric 3D features, this
method achieves invariance to changes in the viewpoint and varying lighting conditions,
solely relying on an IMU and a pair of cameras mounted on an outdoor robot.

In parallel with the evolution of sensor technologies for 3D perception [302,303] and
the ongoing advancements in computational capabilities coupled with increased stor-
age and memory availability [304,305], recent noteworthy contributions have arisen to
improve existing solutions. These innovations encompass the refinement of ICP-based
scan matching techniques and data registration methodologies [306], the development of
more streamlined and efficient approaches to representing 3D data [210,307], the introduc-
tion of hierarchical and multiresolution mapping strategies [308], enhanced calibration
techniques [309], the introduction of novel probabilistic frameworks [310,311], and the
exploration of semantic mapping and terrain modelling [14,312,313]; please also refer to
Section 4.1.3.

The feasibility of achieving precise pose and localization estimation with single cam-
eras through the application of advanced SLAM methodologies has been showcased in
recent years. Notable examples include RatSLAM [314–316], a SLAM system inspired by
biological principles, and ORB SLAM [317,318], a feature-based monocular SLAM method.
Furthermore, research has shown the potential for extending individual SLAM approaches
to distributed teams of multiple robots (as discussed in Section 4.3). This prospect is par-
ticularly pronounced in the context of graphSLAM approaches, which can be leveraged
to optimize both the map and 6D pose estimates for all participating robots, as illustrated
in [319].

Considering the aforementioned points, a significant body of research has focused on
outdoor perception and mapping applications for forest harvesters and precision agricul-
ture [58,89,90,293,320,321]. For example, Miettinen et al. [322] introduced a feature-based
approach that combines 2D laser localization and mapping with GPS information to con-
struct global tree maps. This study explores various scan correlation and data association
techniques to generate simplified 2D tree maps of the forest. In [323], an extended in-
formation filter (EIF) SLAM method for precision agriculture was deployed in an olive
grove, relying on stem detection in conjunction with a monocular vision system and a
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laser range sensor. In [324], outdoor robot localization for tasks related to steep slope
vineyard monitoring was enhanced through the utilization of agricultural wireless sensors.
The received signal strength indication (RSSI) of iBeacons (Bluetooth-based sensors) was
employed for distance estimation, thus augmenting localization accuracy in environments
with unstable GPS signals.

Notwithstanding all the reported advances, however, an examination of this body
of work shows that the conclusions drawn by Chahine and Pradalier [258] regarding the
many open scientific and technological challenges for visual odometry and SLAM applied
to natural outdoor environments still hold. In fact, these challenges, particularly those
resulting from the constraints posed by visual sensor limitations listed and described in
Section 3, remain relevant today. For example, forestry environments pose many obstacles
for sensing, which can lead to corner cases in feature matching and loop closure techniques.
Additionally, as can also be inferred from that section, high vibration and other motion
biases have a significant effect on proprioceptive sensors and their calibration, resulting in
motion blur, hampering optical flow techniques and leading to high variance of image scale,
as well as rolling shutter effects on vision sensors [325]. When it comes to LiDARs and
IMUs, motion during data acquisition and the lack of stabilization inevitably increase noise
in the collected sensing data. The cost aspect also poses a challenge in the development of
outdoor-resistant and compliant solutions. Most affordable and commonly used sensors in
robotics are ill-suited for use in rainy, foggy/smoky, and windy conditions. Additionally,
as noted in [326], the high computational cost of image processing remains a significant
technological hurdle that persists today in contemporary visual odometry and visual
SLAM solutions.

Finally, SLAM techniques still face difficulties in handling extremely dynamic and
harsh environments, especially in the data association step, and there are no fail-safe
algorithms that can deal explicitly with metric re-localization or provide proper recovery
strategies. Moreover, despite the advances in SLAM in the last decade, there are still three
key issues that remain open: (i) the lack of techniques for automatic parameter tuning for
out-of-the-box SLAM; (ii) the implementation of an automatic memory-saving solution for
offloading parts of the map when not in use and recalling them when needed again; (iii) the
use of high-level representations beyond point clouds, meshes, surface models, etc. [327].

4.3. Cooperative Perception

Mobile robot teams [328], eventually comprising robots with heterogeneous percep-
tion capabilities, have the potential of scaling up robot perception to cover vast areas, thus
being an important asset in forestry applications. As sensors of multiple robots, operat-
ing simultaneously in different places of the environment, provide data from different
locations, distributed robots can perceive simultaneously different spots, i.e., they provide
space distribution. Moreover, sensors from different robots, eventually involving diverse
sensor modalities, allow distributed robots to provide data from the same place in the
environment at different time instants, i.e., they allow for temporal perception. In other
words, distributed robots can update percepts at locations previously visited by other
robotic teammates, allowing them to adapt to the evolution of dynamic environments over
time. Exploiting the complementary features of different sensory modalities through multi-
sensor data fusion [329] is important for enabling robots to operate robustly in forestry
environments. For instance, the long range and high precision of LiDARs sensors can be
complemented and enhanced even further by colour and texture features provided by
vision-based sensors (e.g., stereo vision).

Therefore, distributed robot teams potentially allow for persistent, long-term per-
ception in vast areas. However, in order to fulfil this potential of robotic collectives, two
fundamental scientific sub-problems of cooperative perception need to be effectively tack-
led: (i) building and updating a consistent perceptual model shared by multiple robots,
eventually over a large time span; (ii) multi-robot coordination to optimise the informa-
tion gain in active perception. The first sub-problem pertains to the spatial and temporal
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distribution of information, involving the fusion of fragmented perceptual data from in-
dividual robots into a unified and globally coherent perceptual model that encompasses
the collaboratively explored spatial and temporal domains. On the other hand, the sec-
ond sub-problem revolves around harnessing the partial information contained within
the perceptual model to make decisions regarding the next course of action for either an
individual robot or the entire robot team. This decision-making process aims to identify
areas where new or more recent data can be gathered to enhance or update the existing
perceptual model, thus establishing a closed-loop relationship between sensing and action.
To maximize collective performance and fully leverage the spatial distribution capabilities
offered by the multi-robot system, active perception requires seamless coordination of
actions in the robotic team. This coordination typically relies on the exchange of certain
coordination data, such as state information, among the robots.

In both of these sub-problems, the development of decentralised collective architec-
tures that do not depend on a central point of failure stands as a critical prerequisite for
effectively operating in unstructured and dynamic environments, such as those encoun-
tered in forestry settings. Firstly, this is important to scale up perception to large robot teams
by exploiting spatial locality to process raw data for perception as close as possible to the
place where they are collected, rather than doing it on a remote centralised computational
node. This allows for saving communication bandwidth, avoiding transmission latency,
and mostly confining the sharing of information to robots located in the same neighbour-
hood. Then, at a higher level of the architecture, a robot can take the role of perceptual data
aggregator within its robotic cluster and share perceptual data with peer representatives of
other robotic clusters to build cooperatively a consistent global perceptual model in a decen-
tralised hierarchical way. Secondly, decentralization makes the robotic collective resilient
and robust in harsh operational conditions, including individual robots’ hardware failures
and communication outages. This is achieved at the expense of some loss of optimality
provided by centralised schemes because often decisions taken by individual robots need
to be made under incomplete and uncertain information. Thus, tackling those problems
by using decentralised control schemes tends to significantly increase the complexity of
robotic collectives’ design and is still an essentially open research problem, especially for
many robot systems performing cooperative perception over very wide areas.

Although these two sub-problems have been studied in specific robotics application
domains, such as long-term security and care services in man-made environments [330],
search and rescue [331,332], environmental monitoring [333–336], or monitoring of atmo-
spheric dispersion of pollutants [337], they have been only partially and sparsely solved
and are still essentially open research problems, especially in forestry environments and
field robotic applications in general. Only a scarcity of research studies have specifically
investigated the utilization of teams of robots in forest-like applications. In particular,
the focus has been primarily on UAVs [296,338,339] or UGVs, but without conducting
real-world experimentation [340,341]. A few research works have also been devoted to
precision agriculture [37,38,342], an application domain having similar requirements to
robotic forestry.

The Modular Framework for Distributed Semantic Mapping (MoDSeM) has been
proposed and designed in [343] and further detailed in [344] to address the first sub-problem
in forestry robotics. MoDSeM aims to systematise artificial perception development by
splitting it into three main elements: (i) sensors, producing raw data; (ii) perception modules
(PMs), which take sensor data and produce percepts; and (iii) the semantic map (SM), which
maintains the percepts produced by PMs in a layered structure. PMs implement particular
perception methods that require well-defined sets of inputs and provide a set of outputs.
The information from multiple PMs is consolidated into layers within the SM, with each
layer corresponding to a specific aspect of the physical world. The system also foresees
the sharing of information within teams of robots (see Figure 17). As a consequence,
cooperative perception becomes a natural feature of the framework: agents share their
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semantic map layers, which other agents fuse into theirs and make use of when making
decisions.
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Figure 17. An overview of a robot team operating with the Modular Framework for Distributed
Semantic Mapping (MoDSeM) [343,344]. Each team member can have its own sensors, perception
modules and semantic map. These can be shared arbitrarily with the rest of the team, as needed.
Each robot is also able to receive signals and semantic map layers from other robots, which are used
as input by perception modules to achieve a unified semantic map.

Rocha et al. [345] pursued seminal research on cooperative mobile robots based on
a distributed control scheme. They demonstrated the potential advantages of this design
strategy for multi-robot systems in a 3D cooperative mapping case study, i.e., a specific
cooperative perception task. The proposed distributed architecture was based on the re-
ciprocal altruism principle, whereby each robot used an information theoretic criterion,
to efficiently share information with its peers when building a 3D map of the environ-
ment. Another more recent example of multi-robot system cooperative task allocation and
execution is given by Das et al. [346].

Singh et al. [333] studied informative paths to achieve the required sensing coverage
by multiple robots in environmental monitoring tasks. A path-planning algorithm to
coordinate robots’ monitoring actions was presented whereby robots maximize information
gain in their visited locations. Information gain was formulated using Gaussian processes
and mutual information to measure the reduction of uncertainty at unobserved locations.

More recently, Ma et al. [335] refined the use of this type of information-driven ap-
proach to propose a path-planning method for an unmanned underwater vehicle used for
long-term ocean monitoring, by considering spatiotemporal variations of ocean phenomena
and an information-theoretic component that plans the most informative observation way-
points for reducing the uncertainty of ocean phenomena modelling and prediction. Within a
similar line of research, Manjanna and Dudek [336] coined the concept of a multi-scale path
to produce a variable resolution map of the spatial field being studied, and proposed an
anytime algorithm for active data-driven sampling that provides a trade-off between data
sampling resolution and cost (e.g., time spent, distance travelled, or energy spent).

Euler and von Stryk [337] addressed the distributed control of groups of UAVs used for
monitoring atmospheric dispersion processes, such as atmospheric dispersion of volcanic
ashes or hazardous material in the sequel of industrial or nuclear accidents. By formulating
the robotic collective as a hybrid system, a distributed model-predictive control scheme
was proposed. Special attention was given to scalability with the team size through the
discretization and linearization of time, and limitation of the state variable of each UAV
controller.

Emmi and Gonzalez-de-Santos [37] surveyed very few recent works and projects
related to the deployment of groups of robots in agriculture tasks, usually possessing
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heterogeneous capabilities. In [38], the authors describe the RHEA project (see Section 2),
in which robotic collectives, comprising both unmanned ground vehicles and unmanned
aerial vehicles with complementary perception and actuation capabilities, are used to detect
and eliminate weed patches, thus diminishing the use of pesticides through their selective
application in the areas where they are really needed to control pests.

When used in agriculture, these multi-robot systems allow for the required space
and time distribution of weed and crop sensors and actuators to cover effectively large
areas [342]. Also, it is technologically and economically more interesting to use a collective
of simpler and cheaper robots than one big machine possessing all the required perception
and actuation capabilities. Although using robotic collectives in cooperative perception
and the actuation required by precision agriculture is still a preliminary and pioneering
effort, it presents a huge potential that is certainly also important for robotic forestry,
which has several intersecting technical requirements with the former. Lightweight robots
can cause less topsoil damage even with repeated wheeling, as shown by Calleja-Huerta
et al. [347]; therefore, the use of multiple lighter autonomous machines operating as a
coordinated team instead of one big and heavier machine can help reduce soil compaction
and damage [348], as suggested by Tarapore et al. [341], who propose the use of what
they term “sparse swarms” in forestry robotics. However, although some work has been
conducted in preparation for this type of solution (e.g., [190,349]), no systematic work has
been published that we are aware of. In summary, multi-robot cooperation in forestry can
lead to more efficient and sustainable operations, reducing soil damage, improving overall
forest health and protecting vegetation that should be preserved in the interventions sought
with typical forestry tasks (see discussion in Section 5.1.4).

4.4. Perception Systems and Architectures

In their review paper, da Silva et al. [350] presented an analysis of unimodal and
multimodal perception systems for forest management. The work made a comparison
between existing perception methods and presented a new multimodal dataset, composed
of images and laser scanning data, and collected with the platform illustrated in Figure 18.
The authors divided the works into vision-based, LiDAR-based and multimodal perception
methods, categorising the applications into health and diseases, inventory and structure,
navigation, and species classification. The authors concluded that the expected advances
in these topics, including fully unmanned navigation, may allow autonomous operations,
such as cleaning, pruning, fertilising, and planting by forestry robots.

In general terms, the traditional workflow that perception follows in field robotics
usually begins with perception techniques receiving raw signals from sensors, such as
images (Section 3), and processing them either linearly or in batches. The results of this
process are percepts, i.e., information that encapsulates a meaningful aspect of the signals
received by the system, such as the location of trees and humans in the environment, the
traversability of the observed locations, or the health status of the observed plants by the
system.

In practical terms, complete frameworks that perform all of the above functions are
rare, and their development usually constitutes more of a technological advancement
than a scientific one [55]. Furthermore, while there exists an open-source architecture for
autonomous unmanned systems called FroboMind [351], it does not support multi-robot
systems and cooperative perception, and its development website (http://frobomind.
org/web/doku.php, accessed on 1 July 2023) does not seem to be maintained any longer;
therefore, there is a lack of all-encompassing software frameworks specifically applicable
to perception. Given the relative immaturity of the field of precision forestry, we focus on
surveying two aspects of the latest literature: works developed in the context of precision
forestry applications itself (forestry-specific), and a wider look at unrelated but applicable
perception techniques in adjacent fields (forestry-relevant).

http://frobomind.org/web/doku.php
http://frobomind.org/web/doku.php
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Figure 18. AgRob V16 mobile platform and its multisensory system for forestry perception. Repro-
duced from [350] with permission.

Relatively few perception systems are explicitly dedicated to the solution of forestry-
related problems, as seen before. Perception systems dedicated to precision forestry tackle
mainly problems related to the localization of target plants and the determination of terrain
traversability. In contrast, Russell et al. [31] integrated LiDARs, stereo cameras, and IMU
into a semantic SLAM system using an OctoMap representation as shown in the diagram in
Figure 19 to identify flammable materials from a UAV’s point of view. Similarly, Andrada
et al. [107] use an unmanned ground vehicle (UGV) with a multispectral camera and
LiDARs to identify and locate clusters of flammable materials in a forestry environment
in real-time scenarios. A diagram of this pipeline can be seen in Figure 20. Figure 21
provides the full perceptual architecture for decision-making based on this pipeline and
the MoDSeM framework introduced in Section 4.3 for the SEMFIRE forest landscaping use
case [343,344,352].
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Figure 19. Diagram overview of a UAV operating with a perception system developed at Carnegie
Mellon’s Robotics Institute, which ultimately creates a dense semantic map to identify flammable
materials in a forest environment using a full OctoMap representation [31].
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Figure 20. An overview of the perceptual pipeline developed by the FRUC group for identify-
ing clusters of flammable material for maintenance using a UGV in forestry environments with a
multispectral camera and LiDAR in real-time scenarios [107].
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Figure 21. SEMFIRE distributed system architecture based on the perceptual pipeline of Figure 20
and the Modular Framework for Distributed Semantic Mapping (MoDSeM) of Figure 17. Please refer
to [107,343,344,352] for more details.

Michez et al. [75], aiming to segment riparian (riverside) trees from the landscape us-
ing images taken from UAVs, have implemented their developed perception modules using
both RGB and NIR cameras. Using a random forest classification approach, the technique
was able to achieve an accuracy of 80% in species classification, and 90% in binary health
status classification. Bradley et al. [121] presented a technique that, among other function-
alities, estimated the ground plane and complemented that information with traversal
costs and an estimate of the rigidity of obstacles. The technique employs not only LiDARs
but also RGB, NIR, and NDVI data obtained from satellite imagery. More recently, Giusti
et al. [224] presented a technique that aims to determine the direction that an off-road
trail is taking. This technique implements RGB images collected with a UAV, which are
processed using a neural network and output the direction of any trail visible in the image.

Despite not properly tackling precision forestry, many perception systems in field
robotics can be applicable to the problems of precision forestry, warranting their discussion
in this section. These problems include common autonomous agriculture problems, such as
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ground coverage, weed/crop discrimination or plant part segmentation. These techniques
are also summarised in Table 5 under the “agriculture” application.

In order to allow a robotic system to position itself correctly for the task at hand,
in [87], the research group at the Agricultural Institute of Slovenia presented a technique
through which the robot becomes able to localize, with respect to itself, three spraying
arms, with a total of eight degrees of freedom. This technique implements the flow using a
laser rangefinder as the main sensor, and outputs the kinematic configuration of the robot
as a percept.

Agricultural robots employ crop–weed detection techniques to select and distinguish
between vegetation at the work site, usually implement the flow with RGB images, and
output the classification of each pixel as crop or weed. In the RHEA project, García-Santillán
and Pajares [45] developed a solution, focusing on crop–weed detection in initial growth
stages, which rules out simpler techniques, such as height filtering. The authors use a
Unmanned Ground Vehicle (UGV) to collect RGB images, which are processed by several
classification techniques, demonstrating that their approach achieves around 90% accuracy
for all of them. Researchers at the University of Bonn presented techniques in [69,70] that
used a UGV with a perceptual system comprised of CNN-based models to detect weeds
present in RGB and NIR images, achieving 95% precision in detecting both weeds and
crops. UAVs have also been used to carry cameras to detect weeds, such as in [68], where
the authors employed random forests for classification. In precision forestry, the distinction
between plant species is a central problem, particularly if the goal of the mission is to select
and intervene in areas affected by invading species, or species that need to be removed
or protected in a cleaning operation. In order to distinguish between these, crop–weed
detection-based techniques could be used to classify the environment into desirable and
undesirable portions.

As seen in Section 4.1, segmenting observable plants and determining the spatial
distribution of their parts is a key issue. Bac et al. [62] presented a technique for segmenting
plants into five parts: stem, top of a leaf, bottom of a leaf, fruit and petiole, using multi-
spectral images from a rig aboard a UGV as input. The authors achieved a recognition rate
ranging from 40% to 70% for several different plant segments.

The health status of plants is also a central issue in agricultural robotics: automating
information collection and classifying health status is a boon for human users. This
represents a broad issue, as the spectrum of possible diseases and health indicators is
vast. Mozgeris et al. [85] presented a technique, developed at the Aleksandras Stulginskis
University, for estimating the chlorophyll content of spring wheat. This work implemented
RGB cameras to provide input and used several algorithms to compare them. In the context
of precision forestry, these techniques can provide important information for the selection
of areas of intervention, as unhealthy plants may result in higher risks of forest fires.

Table 5 presents a comparison summary of the perception systems reviewed in this
section.

Table 5. Summary of the perception systems under survey.

Ref. Year Application Platform a Input b Percepts c Algorithms d

[65] 2017 Agriculture UAV
Swarm

Position of agent, position of
other agents, detected weed
density, confidence

Weed density map Model fitting

[62] 2013 Agriculture UGV Multispectral Images Detected hard and soft obstacles, seg-
mented plant parts

CART

[68] 2017 Agriculture UAV RGB Segmented crop and weed sections Random Forests

[69] 2018 Agriculture UGV RGB Segmented crop and weed sections CNN

[70] 2018 Agriculture UGV RGB, NIR Segmented crop and weed sections CNN
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Table 5. Cont.

Ref. Year Application Platform a Input b Percepts c Algorithms d

[45] 2018 Agriculture UGV RGB, crop row model Segmented crop and weed sections SVM, LVQ, AES,
ODMD

[85] 2018 Agriculture MAV Hyperspectral, RGB Chlorophyll values in given area Several

[87] 2013 Agriculture UGV LRF Geometry of sprayed plant Model fitting

[75] 2016 Forestry UAV RGB, NIR Tree species distribution, health status RF

[107] 2022 Forestry UGV LRF, Multispectral Images Depth registered image, Segmented
Image, 3D point clouds with live
flammable material

CNN, IPBasic

[121] 2007 Forestry UGV LRF, RGB, NDVI, NIR 2D Grid of traversal costs, ground plane
estimate, rigid and soft obstacle classifi-
cation

Linear Maximum
Entropy Classifiers

[224] 2016 Forestry UAV RGB Trail direction DNN

[296] 2020 Forestry Two
UAVs

2D LRF, IMU, Altimeter 2D collaborative map of explored forest
area, 3D voxel grid with tree positions

Frontier-based ex-
ploration, CSLAM

[31] 2022 Forestry UAV IMU, Stereo Cameras, LRF 3D Semantic Map, Traversability in-
dexes

Multi-sensor Fac-
tor Graph SLAM,
SegFormer CNN

a The type of robot used to test the system. UGV; UAV. b The signals used as input for the perception system,
such as images, point clouds, etc. LRF RGB; NIR; NDVI. c The percepts output by the system, such as maps,
plant types, localization, etc. d The algorithms employed by the system. CNN; Nearest neighbours (NN); SVM
DNN; RF.

4.5. Computational Resource Management and Real-Time Operation Considerations

Artificial perception systems often involve sensing and processing on the edge,
and generally need to adhere to strict execution time requirements. In fact, manufactur-
ers, such as Xilinx (available online: https://www.xilinx.com/applications/megatrends/
machine-learning.html, last accessed 25 June 2023), NVIDIA (available online: https:
//www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-tx2/, last
accessed 25 June 2023), and the Raspberry Pi (RPI) foundation (available online: https:
//forums.raspberrypi.com//viewtopic.php?t=239812, last accessed 25 June 2023) supply
are relevant computing systems for this purpose. Frequently, however, to keep costs low,
or due to power considerations, perception systems are implemented using limited compu-
tational resources. Autonomy is particularly critical in forestry applications—much more
than in agriculture, in fact—and as such, requires specific strategies to be put in place. For
example, Niu et al. [190,349] used a Raspberry Pi, chosen due to its compact size, low cost,
and low power requirements, for the deployment of their depth prediction model (see
Section 4.1.2) and navigation algorithm, which are executed successfully in real time.

However, in more complicated frameworks, as seen in Section 4.3, multiple different
modules need to be deployed, executed and coordinated across different systems. This
has a direct impact on performance and very important implications in terms of the
strategy for the deployment of each of these components on the available computational
resources. In this scenario, most likely tens of gigabytes per second of sensor data will be
generated which would be intractable to store locally or communicate between systems in
bulk. These data must, therefore, be processed at least in part at the edge, forwarding only
relevant information or higher-level constructs and representations to other systems. Finally,
in many instances, real-time performance and immediate reaction times are absolutely
essential for mission-critical tasks, such as avoiding obstacles and protecting surrounding
fauna or human beings.

Unfortunately, despite the crucial nature of these issues, we are not aware of works in
forestry robotics that explicitly address them in a systematic fashion. A notable exception

https://www.xilinx.com/applications/megatrends/machine-learning.html
https://www.xilinx.com/applications/megatrends/machine-learning.html
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-tx2/
https://forums.raspberrypi.com//viewtopic.php?t=239812
https://forums.raspberrypi.com//viewtopic.php?t=239812
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would be the research effort by Machado et al. [17] within the context of the SEMFIRE
project. In this project, as described in Section 2, a heterogeneous team of robots was used,
composed of the Ranger UGV platform and the supporting UAV platforms, called Scouts,
and these robots were fitted with the following computational resources:

• The distributed computing system of the Ranger consists of two main components.
The first component is the Sundance VCS-1, which is a PC/104 Linux stack com-
prising two main parts. The EMC2 board serves as a PCIe/104 OneBank carrier for
a Trenz-compatible SoC, and the AMD-Xilinx UltraScale+ ZU4EV Multi-Processor
System-On-Chip. The ZU4EV includes a quad-core ARM Cortex-A53 MPCore proces-
sor, an ARM Cortex-R5 PSU, an ARM MALI 400 GPU, and PL. The VCS-1 provides
2 GB of onboard DDR4 memory that is shared with the processor system and the
programmable logic unit. The second component is an Intel I7-8700 CPU with 16GB
of DDR4 memory and an NVIDIA GeForce RTX 600. This distributed system is specif-
ically designed for accelerating state-of-the-art AI algorithms using Vitis-AI, CUDA,
and CuDNN, implemented with AI frameworks like TensorFlow, Caffe, and PyTorch.
Both computational devices are powered by the Robot Operating System (ROS).

• The Scouts computing system is based on an Intel NUC i7 with 4 GB of DDR memory,
also powered by ROS. The Scouts are responsible for processing all sensory data
locally using Scout modules. Only a minimal set of localization and post-processed
data is exchanged with the Ranger through a wireless connection.

As explained in Section 2, the Ranger is a heavy-duty robot equipped with a haz-
ardous mulcher system that may pose serious risks to both humans and animals. Therefore,
to ensure safety during its operation, the robot includes both critical and non-critical sen-
sor networks. The critical network encompasses all sensors requiring near-zero latency
guarantee (i.e., LiDARs, encoders, and depth and IMU sensors) and critical localization
information collected by the Scout platforms used to improve safety. Conversely, the non-
critical network includes non-critical, low-priority sensors (i.e., GPS, encoders, multilatera-
tion transponder, and thermal and multispectral cameras). The SEMFIRE computational
resource architecture (including these networks) is presented in Figure 22.

Scout n

Ranger

VCS-1 System (Critical Sensors Network)

Intel UP (Non-Critical Sensors Network)

Intel Core i7-
8700 CPU

16 GB
DDR 4

Ethernet WiFi
NVIDIA Geforce

RTX2060
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Processor System 
ARM Cortex A53

Real-Time 
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Programmable 
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i7-8665U
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Figure 22. SEMFIRE computational resource architecture [17].

5. Discussion and Conclusions

In the following text, and given what has been presented and argued in previous
sections, the current scientific and technological landscape will be discussed, including an
analysis of open research questions. We will finish by drawing our final conclusions and
proposing a tentative roadmap for the future.

5.1. Current Scientific and Technological Landscape: Open Questions and Opportunities

Despite many advances in field robotics and perceptions of outdoor robotics in partic-
ular, the current scientific and technological landscape still allows for substantial future
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work in the context of robotics in forestry applications. In the remainder of this subsection,
we will present several specific issues in which we believe the state of the art could be
improved with further work.

5.1.1. Lack of Attention to Precision Forestry

In general terms, the volume of work in agricultural robotics far outweighs that of
automated forestry, as seen in Table 5, resulting in the scientific under-development of the
latter sub-field. This naturally presents an issue for the development of forestry-specific
systems, which in effect lie at a lower TRL. However, the scientific overlap between the
fields raises an interesting opportunity: since both sub-fields share many of their specific
problems, the transfer of knowledge from one field to the other is expected not to be difficult.
In practical terms, while the sweet pepper localization system of [61] may not be directly
applicable to forestry, perhaps the underlying computer vision techniques could be used to
detect certain kinds of trees instead. Similarly, while the CNN used by Barth et al. [163] to
segment plants into their constituents might not find direct application in forestry, the same
concept and parts of its formulation can almost certainly be applied to segment trees into,
for instance, parts that should be kept and others that should be pruned.

The reasons behind the under-development of precision forestry include a generalised
lack of interest by roboticists since forestry work is hard and difficult to execute, as it often
involves heavy-duty machines and complex logistics. Additionally, only a relatively low
amount of forest machinery is sold each year when compared to automotive, agriculture, or
construction equipment industries, which implies a large percentage of R&D costs on each
machine and, in turn, reduces the total effort in the field, both in-house development and
collaborations with academia. Moreover, work is often published in “system papers”, which
are not as attractive to the scientific community. Efforts should be made to drive the industry
to collaborate in spite of the lack of an obvious return on investment. Opportunities include
attracting young scientists and developers by highlighting the potential positive impact
of precision forestry on the environment and operational health and safety, and thereby
“selling” forestry robotics in a “greener” and more ethical light, as opposed to allowing it to
be construed as an invasive technology that will contribute to unemployment.

5.1.2. Lack of Available Data

A clear drawback for artificial perception systems in forestry, and specifically ma-
chine learning systems in this context, is the lack of annotated data and its impact on the
development of advanced perception systems in forest environments. Data quality and
quantity are central to the successful performance of learning-based perception systems.
Thus, collecting and sharing massive amounts of data from forest scenarios is essential to
train models and improve current perception systems.

Recently, with the proliferation of machine learning application techniques for solving
complex problems, we witnessed a growing tendency in the scientific community to share
datasets. However, current efforts are still insufficient and the lack of data delays the
potential advances in this area. Open questions remain, such as: How should datasets be
handled? Should editors make dataset sharing mandatory for the publication of learning-
based systems in scientific journals? How can we make public sharing of datasets attractive
to scholars? How can we consistently share data in a uniform way? Although challenging
to put into practice, the community should address these issues sooner rather than later.
Other important and related opportunities include assessing the extent to which data
augmentation can help mitigate this problem (e.g., see [243]) and developing mechanisms to
collect data on the fly when machines are under operation to increase the learning database.
Finally, alternatives to fully supervised learning, such as semi-supervised learning, should
be explored to further improve model performance.
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5.1.3. Lack of All-Encompassing Open Software Frameworks for Perception

Software solutions, namely those devoted to artificial perception, tend to operate on
disparate standards; while one solution may need images as input and output a point cloud,
another might need laser scans and return 3D points, and so on. From a technological point
of view, this is a natural consequence of independent development; different groups will
employ different technological resources, and this will lead to different solutions. However,
in order to promote the development of robust, reusable and impactful solutions, these
should be integrated into a common standard framework that can be easily used in different
robots and operating conditions. A generally well-regarded effort in this aspect is the ROS,
which standardises the development of software modules, including perception modules,
intended for use in robots. It promotes the development of decoupled techniques that
can be easily reused between robots, have well-defined dependencies, and are generally
better engineered. For these reasons, ROS is, in general, the go-to choice for academic
researchers. However, it faces some struggles in the industry, as manufacturers often
choose to use closed source systems, in-house frameworks or fully distributed middleware
frameworks that offer aspects such as security, real-time support, availability on multiple
operating systems, reliability in constrained networks and others. For that reason, version 2
of ROS—ROS 2—has recently been released to address these issues, even though adoption
by the community proceeds at a very slow pace.

However, when applying artificial perception to robotics in forestry applications, it is
important that various techniques contribute to a unified vision of the world. Thus, there is
space for a novel methodology that unifies the output of these techniques and enables them
to work in tandem seamlessly, while still maintaining their decoupling and portability. This
would allow, for instance, the traversal analysis technique of [121] to be combined with the
trail detection of [224] to obtain a combined map featuring the terrain’s traversability for
both human and robotic agents.

5.1.4. Lack of Solutions for Robot Swarms and Teams of Robots

Very few state-of-the-art solutions focus on cooperative teams of field robots, with the
notable exceptions of the SEMFIRE/SAFEFOREST [27], RHEA [38], and RASberry projects.
These projects make use of teams of robots, sometimes heterogeneous (i.e., involving
various kinds of platforms), which tend to not be numerous, and usually involve less than
10 robots. Heterogeneous teams are of particular interest since, for instance, they are able to
combine the actuation abilities of large robots with the perceptive abilities of UAVs, as seen
in Section 4.3.

Swarm robotics, on the other hand, operates on the principle of employing large teams
of small, relatively simple and cost-effective robots to perform a certain task. As mentioned
in Section 4.3, a sparsely distributed swarm of rovers holds the potential to aid in forest
monitoring. The swarm could collect spatiotemporal information, including census data
on the growth of healthy tree saplings, or visually examine bark and leaves to detect
signs of devastating invasive diseases. A collective swarm could collaboratively identify
forest areas susceptible to wildfires, enabling targeted preventive measures. Additionally,
multi-agent cooperation holds immense potential for executing distributed tasks, including
reforestation, harvesting, thinning, and forwarding. Naturally, the individual rovers
comprising the swarm must be compact in size (portable) to minimise their impact on
the environment, such as soil compaction [348]. Furthermore, the robots need to be cost-
effective to allow their widespread deployment as a swarm. Unfortunately, we could not
find significant work exploring the perceptual abilities of swarms of small robots for field
operations, which constitutes an important scientific and technological gap. This potential,
which has been largely overlooked in previous research in forestry and agricultural robotics,
should motivate further research on cooperative robotics in these application domains.
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5.1.5. Lack of End-User Involvement and Specific Use Case Scenarios

Work on automated forestry, e.g., for harvesting, landscape maintenance, tree inven-
tory, detection of flammable material, etc., can benefit from close contact with the end
users, who have the know-how regarding field operations, strategies for increased task
effectiveness, and valuable insight into the terrain and the overall forest environment.
Nevertheless, the involvement of end users in the development of technological solutions
in this area from an early stage is unfortunately a research gap.

Oftentimes, research groups tend to develop a “one-kill-all” system to address mul-
tiple issues, which may only work with the desired performance in specific portions of
time, due to the significant number of challenges that are tackled simultaneously. However,
interaction with end-users shows that robotic systems should be developed for particularly
well-defined tasks. As such, having a reliable solution that works in most cases for a specific
task can be more impactful than a multipurpose robotic system that is not designed for
the task at hand, which will inevitably fail under certain circumstances. Paradoxically,
researchers end up spending most of their time with technology issues, instead of scientific
issues when dealing with complex multipurpose systems (see also Section 5.1.1). Oppor-
tunities can be withdrawn by simplifying use cases for well-defined forestry scenarios,
itemising clearly what are the potential applications for end-users, and involving them in
the design and requirements stage [352] as well as in the decision on which metrics to use
to measure system performance.

5.1.6. Lack of Computational Resource Planning and Management to Satisfy Real-Time
Operation Constraints

As explained in Section 4.5, there is a lack of a systematic approach to computational
resource planning and management to satisfy real-time performance constraints by dealing
with the following requirements:

• Power consumption and cost;
• The potentially distributed nature of the available computational resources (both

in a single, specific robotic platform and between several members in a swarm or
heterogeneous team) and its consequences on module deployment and execution.

These considerations are crucial in order to create mature solutions that reach higher
TRLs.

5.1.7. Lack of Field Testing

From a scientific perspective, a solution can be validated in a laboratory environment
while operating solely on pre-acquired data. This methodology allows for techniques to
be tuned and refined offline, avoiding the repetition of potentially costly data collection
operations. Nonetheless, technological readiness demands that techniques be validated in
the operational scenario and operate in their target application under the supervision of end
users, e.g., overcoming hardware failures and actuator degradation. However, many tech-
niques, particularly software solutions, are tested in this scenario only for demonstration
purposes, or not at all, since their scientific value does not depend on it.

For example, the STRANDS project [330] provided interesting scientific and technical
contributions to the long-term autonomy of mobile robots in everyday environments,
i.e., man-made indoor environments, where mapping, localization, and perception software
components used in robots were designed to run persistently, consistently, and resiliently
over a large time span of continuous operation (e.g., several weeks) in a dynamic, always
changing environment, to provide security or care services. The lessons learned from the
project need to be extended and adapted to the more demanding and specific challenges of
field robotic applications, including robotic forestry.

This exposes a lack of technological maturity in the field of outdoor robotics, which
has been recently tackled by projects such as VineScout, which aim to produce marketable
and thoroughly tested solutions. Particularly in forestry applications; there are still wide
opportunities for thorough field testing.
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5.2. Conclusions

In this article, we have conducted a comprehensive survey of the state of sensing and
artificial perception systems for robots in precision forestry. Our analysis has shed light
on the challenges and opportunities, considering the current scientific and technological
landscape. Below, we summarize the key takeaways from our review and draw a tentative
roadmap for the future in this evolving field.

5.2.1. Key Findings

• Challenges in artificial perception: We identified significant challenges in the devel-
opment of artificial perception systems for precision forestry, including ensuring safe
operations (for both the robot and other living beings), enabling multiscale sensing and
perception, and addressing specialised, expert-informed tasks. Despite remarkable
technical advances, these challenges persist and remain relevant today.

• Importance of precision forestry techniques: Our survey highlights the paramount
importance of precision forestry-specific artificial perception techniques, enabling
robots to navigate and perform localised precision tasks. While actuation aspects
such as flying, locomotion, or manipulation have seen significant progress, perception
remains the most challenging component, requiring ongoing attention.

• Robust and integrated perception: Achieving full autonomy in forestry robotics
requires the integration of a robust, integrated, and comprehensive set of perceptual
functionalities. While progress has been made, fully reliable multipurpose autonomy
remains an aspiration, with ongoing discussions about autonomy at task-specific
levels, and whether operations with no human in the loop are ever needed, given the
safety concerns involved.

• Software frameworks and interoperability: The absence of comprehensive software
frameworks specific to perception has led to a fragmented landscape of technological
resources. Addressing this issue is essential to advance the field, along with promoting
interoperability among existing techniques, which tend to have disparate requirements
and outputs.

5.2.2. Tentative Roadmap for the Future

Building upon our findings, we outline a tentative roadmap for the future of research
and development in precision forestry robotics:

• Advancements in sensing technologies: We have seen a consolidated use of popular
sensors in recent decades, and advancements in sensing and edge-processing tech-
nologies can be anticipated, which are likely to impact the next generation of artificial
perception and decision-making systems for automated forestry.

• Multi-robot systems for cooperative perception: Future research should focus on
multi-robot systems, both homogeneous and heterogeneous, to enhance cooperative
perception. This approach can help reduce soil damage and improve overall efficiency
in forestry operations.

• Addressing rural abandonment: Given the increasing issue of rural abandonment
in many developed countries, governments should improve the attractiveness and
consider investing in automated solutions to maintain and protect forested areas,
mitigating risks, such as wildfires in poorly maintained or abandoned forest areas.

• Clarifying requirements and use cases: Stakeholders should work together to specify
clear requirements and use cases that align machines with the tasks at hand, increasing
the academic drive and pushing the industry towards the introduction of robots
in forestry.

• Benchmarks and standards: The community should collaborate to develop bench-
marks and standard methods for measuring success and sharing useful datasets.

• Integrated co-robot-human teams: As we address current challenges, we envision a
future where autonomous robotic swarms or multiple robots engage in human–robot
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interaction (HRI) to assist human co-worker experts, thereby forming an integrated
co-robot–human team for joint forestry operations.

In conclusion, in this text, we have shown that the introduction of robotics to precision
forestry imposes very significant scientific and technological problems in artificial sensing
and perception, making this a particularly challenging field with an impact on economics,
society, technology, and standards. However, the potential benefits of forestry robotics
also make it an exciting field of research and development. By collectively addressing
the identified issues and following our proposed roadmap, we can advance the impact of
robotics in precision forestry, contributing more definitively to a sustainable environment
and the attainment of the United Nations’ sustainable development goals mentioned in
Section 1.1.
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Abbreviations
The following abbreviations are used in this manuscript:

2D two dimensions/two-dimensional
2.5D two dimensions plus depth
3D three dimensions/three-dimensional
6D six dimensions/six-dimensional
BNN Bayesian neural network
CNN convolutional neural network
CORE Centre of Operations for Rethinking Engineering
DNN deep neural network
FCN fully convolutional neural network
GAN generative adversarial network
GDP gross domestic product
GIS geographic information systems
GNSS global navigation satellite system
GPS global positioning system
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HRI human–robot interaction
ICP iterative closest point
IMU inertial measurement unit
LADAR laser detection and ranging
LiDAR light detection and ranging
LRDSI leaf rust disease severity index
LRF laser range finder
MCD Monte Carlo dropout
ML machine learning
MoDSeM modular framework for distributed semantic mapping
NDVI normalised difference vegetation index
NIR near-infrared
NN nearest neighbour
NPQI normalised phaeophytization index
NTFP non-timber forest product
NTU Nottingham Trent University
PCA principal component analysis
PRI photochemical reflectance index
PSRI plant senescence reflectance index
RAISE robotics and artificial intelligence initiative for a sustainable environment
RF random forest
RGB red–green–blue
RGB-D red–green–blue–depth
ROS Robot Operating System
SAFEFOREST semi-autonomous robotic system for forest cleaning and fire prevention
SDG UN sustainable development goal
SEMFIRE safety, exploration, and maintenance of forests with ecological robotics
SIPI structural independent pigment index
SLAM simultaneous localization and mapping
SRI simple ratio index
SVM support vector machine
SWIR short-wave infrared
TRL technological readiness level
TSDF truncated signed distance field
UAV unmanned aerial vehicle
UGV unmanned ground vehicle
VIS-NIR visible and near-infrared
VSWIR visible-to-short-wave-infrared
WWUI wildland and wildland–urban interface
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