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A PRIORI ERROR ESTIMATES FOR THE NUMERICAL
SOLUTION OF A COUPLED GEOMECHANICS AND

RESERVOIR FLOW MODEL WITH STRESS-DEPENDENT
PERMEABILITY

SÍLVIA BARBEIRO AND MARY F. WHEELER

Abstract: In this paper we consider the numerical solution of a coupled geome-
chanics and a stress-sensitive porous media reservoir flow model. We combine mixed
finite elements for Darcy flow and Galerkin finite elements for elasticity. This work
focuses on deriving convergence results for the numerical solution of this nonlinear
partial differential system. We establish convergence with respect to the L2-norm
for the pressure and for the average fluid velocity and with respect to the H1-norm
for the deformation. Estimates respect to the L2-norm for mean stress, which is
of special importance since it is used in the computation of permeability for poro-
elasticity, can be derived using the estimates in the H1-norm for the deformation.
We start by deriving error estimates in a continuous-in-time setting. A cut-off op-
erator is introduced in the numerical scheme in order to derive convergence. The
spatial grids for the discrete approximations of the pressure and deformation do
not need be the same. Theoretical convergence error estimates in a discrete-in-time
setting are also derived in the scope of this investigation. A numerical example
supports the convergence results.

Keywords: stress-sensitive reservoir problem, poro-elasticity, mixed finite elements,
a priori error estimates.

1. Introduction

The modeling of coupled mechanics and flow in porous media attracts re-
searchers from different areas and is of great importance in a diverse range
of engineering fields. Land subsidence, due to consolidation or compaction,
which is often caused by exploitation of subsurface resources, has often been
a concern for reservoir engineers. Understanding the effects of groundwa-
ter pumping or oil extraction and its impact on the environment has been
motivating extensive studies in subsurface flow and geomechanics modeling.
Poroelastic models are also used in biomechanics. Another major applica-
tion arises in sequestration of carbon in saline aquifers. Some of the modern
applications of poroelasticity modeling are highlighted in [10].
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The most recent mathematical models that we find in specialized engi-
neering literature describe very complex fluid/medium interactions and mul-
tiple porous media heterogeneities. Clearly, the reliability of predictions
depends how well the models describe the realistic field. For example, in
stress-sensitive reservoirs, variation of the effective stress resulting from fluid
production may induce deformation of the rocks and cause permeability re-
duction. This effect may significantly reduced expected productivity ([4],
[15]). The correlation of stress induced loss in productivity for rocks with
different types of stress dependent permeability is discussed in [15].

In this paper we present a numerical method for a fully coupled model that
simulates single-phase flow through a deforming porous medium. The cou-
pled equations used for the model were formulated on the basis of Darcy’s law
and the conservation principles for mass and linear momentum. We selected
the isotropic, linear-elastic model to simulate the constitutive behaviour of
reservoir rocks. The analysis of this type of model combining a mixed method
and a continuous or discontinuous Galerkin method was considered e.g. in
[6], [7], [11] and [12]. In the present article, the permeability tensor used in
the model is stress-dependent. This introduces a nonlinear term and therein
a novel analysis is required.

We will consider mixed finite elements (MFE) for the Darcy flow and
Galerkin finite elements (CG) for elasticity. We present a priori optimal
continuous in time and discrete in time error estimates.

Let Ω ⊂ R
d, d = 1, 2 or 3, denote the domain of interest. The coupled

balance equations are written as follow: find (u, p) such that

−(λ+ µ)∇(∇ · u) − µ∇2u + α∇p = f in Ω × (0, T ]
∂
∂t(c0p+ α∇ · u) − 1

µf
∇ ·K(σm)(∇p− ρfg) = sf in Ω × (0, T ]

p = pD on Γp × (0, T ]
− 1

µf
K(σm)(∇p− ρfg) · η = ξ on Γf × (0, T ]

u = uD on Γ0 × (0, T ]
σ̃η = rN on ΓN × (0, T ]
p(0) = p0 in Ω,

(1)

where ∂Ω = Γp ∪ Γf and ∂Ω = Γ0 ∪ ΓN , with meas(Γ0) > 0. The symbol η
represents the outward normal vector on ∂Ω.

The physical parameters of the model are: λ, µ, the Lamé constants, c0,
the constrained specific storage coefficient, α, the Biot-Willis constant, µf ,
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the fluid viscosity, ρf , the fluid mass density and g, the body force per unit
of mass.

The primary variables are the pressure p and the deformation u. The
effective stress σ, is the standard stress tensor from elasticity,

σ(u) = 2µǫ(u) + λtr(ǫ(u))I,

where

ǫ(u) =
1

2

(

gradu + (gradu)t
)

,

and I is the identity matrix in R
d×R

d, σm denotes the effective mean stress,

σm =
1

d
tr(ǫ(u))

and the total stress, σ̃, is given by

σ̃(u, p) = σ(u) − αpI.

K denotes the symmetric permeability tensor which is stress dependent. In
[15], the stress dependent relationship between permeability and effective
mean stress is defined for three common types of rocks, assuming the per-
meability tensor to be isotropic. The relationship between permeability and
effective mean stress for the first type of rock is defined by K = K0 e

−kbσm,
where kb is a parameter characteristic of the rock that may be determined by
experimental data, and K0 is the reference permeability (i.e. the permeabil-
ity of the rock sample measured under effective mean stress σm = 0). For the
second type of rock, the permeability is defined by K = K0(1−mσm), where
m is the variable that determines the reduction in permeability. For the
third type of rock, the authors relate the permability with the rock porosity
φ, K = K0(φ/φ0)

n, where K0 is the permability at reference porosity φ0 and
n is a variable that may be determined by experimental data. In the com-
putational results presented in Section 5 we restrict our attention to rocks of
the first type.

In practice, if the initial conditions p0 is unknown, then p0 can be found by
considering ∇p(0) = ρfg and then use the first equation of (1) to find u(0).

This paper is organized as follows: in Section 2, we present the variational
formulation of the problem. In Section 3 we describe and prove optimal error
estimates for the numerical method in the continuous in time case. The fully
discrete scheme and its error analysis is presented in Section 4. In Section
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5 we carry out numerical experiments. The last section concludes the paper
with a summary and discussion of the main results.

2. Variational formulation

In this section we present the mixed variational formulation of the problem
(1).

The space used for the flux variable is

H(div) := {s ∈ (L2(Ω))d : ∇ · s ∈ L2(Ω)}

and we define its subset

S0 := {s ∈ H(div) : s · η|Γf
= 0}.

For the deformation we consider

V0 := {v ∈ H1((Ω))d : v|Γ0
= 0}.

Associated to this space we define the bilinear form au(., .) by

au(u,v) :=

∫

Ω

σ(u) : ǫ(v) dx,

or equivalently

au(u,v) =

∫

Ω

(2µ(ǫ(u) : ǫ(v)) + λ(∇ · u)(∇ · u)) dx.

The space V0 is endowed with the energy norm ‖.‖au
where ‖v‖2

au

:= au(v,v).
The bilinear form is continuous and coercive in V0 × V0 ([2]); therefore,

for some positive real number Ccont and Ccoer holds

au(u,v) ≤ Ccont‖u‖H1‖v‖H1, ∀u,v ∈ V0,

au(v,v) ≥ Ccoer‖v‖
2
H1, ∀v ∈ V0.

In order to introduce the mixed formulation for the flow, we consider the
variable for the flux z = − 1

µf
K(σm)(∇p− ρfg).

We define the linear functional

ℓ1(v) =

∫

Ω

f · v +

∫

ΓN

rN · v, v ∈ V0,

ℓ2(w) =

∫

Ω

sfw, w ∈ L2(Ω),

ℓ3(s) = −

∫

Γp

pDs · η +

∫

Ω

ρfg · s, s ∈ S0.
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Since the boundary conditions are allowed to be inhomogeneous, we need to
select, for each t ∈ [0, T ], a function ud(., t) ∈ (H1(Ω))d such that ud(., t)|Γ0

=
uD(., t) and a function zd(., t) ∈ H(div) such that zd(., t)|Γf

· η = ξ(., t).
The variational problem becomes: find u ∈ ud + H1([0, T ];V0), p ∈

H1([0, T ];L2(Ω)) and z ∈ zd + L2([0, T ];S0) such that

au(u,v)− α(∇ · v, p) = ℓ1(v), (2)
(

c0
∂p

∂t
, w

)

+ α
( ∂

∂t
∇ · u, w

)

+ (∇ · z, w) = ℓ2(w), (3)

µf (K
−1(σm)z, s)− (p,∇ · s) = ℓ3(s) (4)

holds for all (v, w, s) ∈ (V0, L
2(Ω),S0) and t ∈ [0, T ].

We also make the following smoothness assumptions, in order the above
variational formulation makes sense:

f ∈ C1([0, T ]; (H−1(Ω))d),
sf ∈ C([0, T ];L2(Ω)),
pD ∈ C([0, T ];L2(Γp)),
ξ ∈ C([0, T ];TrS), T rS = {s · η|Γf

: s ∈ H(div)},

uD ∈ C1([0, T ]; (H1/2(Γ0))
d),

rN ∈ C1([0, T ]; (H−1/2(ΓN)d)),
g ∈ C([0, T ]; (L2(Ω))d),
u0 ∈ (H1(Ω))d,
p0 ∈ L2(Ω).

For the permeability tensor we require that

K−1(σm) ∈ C([0, T ]; (L∞(Ω))d×d), (5)

and for simplicity we assume the storage coefficient to be strictly positive
and uniformly bounded:

0 < γc ≤ co(x) ≤ Lc, ∀x ∈ Ω. (6)

A more refined analysis in required to treat co(x) ≥ 0 (see [10]).

3. Semi-discrete approximation

In this section we define the semi-discrete approximation, continuous in
time, for our initial boundary problem. In what follows, C will be a generic
positive constant with different values. In order to approximate the varia-
tional problem (2)-(4) with a finite element scheme we need to provide some
definitions.
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Let Eh and EH be two nondegenerate partitions of the polyhedral domain
Ω, with maximal element diameter h and H, respectively. The elements of
Eh and EH are triangles or convex quadrilaterals, if d = 2, and tetrahedra,
hexahedra or prisms, if d = 3. Let (Wh,Sh) ⊂ (L2(Ω) × H(div)) denote a
standard mixed finite element space (see e.g. [3]) on Eh, of order k, and

Sh,0 := {s ∈ Sh : s · η |Γf
= 0}.

We consider linear operators Πh : H(div) → Sh and Ph : L2 → Wh which
satisfy the following properties:

(∇ · (s− Πhs), w) = 0, ∀w ∈ Wh,

‖s− Πhs‖L2(Ω) ≤ Chκ‖s‖Hκ(Ω), 1 ≤ κ ≤ k + 1, (7)

∇ · Πh = Ph∇·, (8)

(∇ · sh, p− Php) = 0, ∀sh ∈ Sh,

‖p− Php‖L2(Ω) ≤ Chκ‖p‖Hκ(Ω), 0 ≤ κ ≤ k + 1. (9)

The above conditions are crucial for deriving our results. Examples of mixed
spaces with these properties are the Raviart-Thomas-Nedelec (RTN) spaces
([9],[16]).

Let VH be the space of continuous piecewise polynomials of degree r defined
on EH and

VH,0 := {v ∈ VH : v|Γ0
= 0}.

The elliptic projector P̃ : (H1(Ω))d → VH is defined by

au(u − P̃u,vH) = 0, ∀vH ∈ VH , (10)

and satisfies (see [2])

‖u − P̃u‖au
≤ CHτ‖u‖(Hτ+1(Ω))d, 0 ≤ τ ≤ r. (11)

For each t ∈ [0, T ], we define the cut-off operator M as

M(ρ)(x, t) = min(|ρ(x, t)|,M) a.e. in Ω,

where the constant M is sufficiently large in order to satisfy

M(σm)(x, t) = σm(x, t), a.e. in Ω. (12)

The cut-off operator M is introduced in the numerical scheme in order to
derive convergence estimates. More precisely, we use the properties (15) and
(14) below in the convergence proof. Those two conditions motivated the
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definition of M. A similar operator is used in [14] for a coupled flow and
reactive transport problem.

It is straightforward to prove that the cut-off operator M is uniformly
Lipschitz continuous:

‖M(ρ) −M(ς)‖L2(Ω) ≤ ‖ρ− ς‖L2(Ω), ∀ρ, ς ∈ L2(Ω). (13)

The inequalities (12) and (15) can easily to be shown to be valid for rocks of
types one and two. We require the existence of the inverse of the operator K
and we assume that K−1(M(ρ)) is positive definite for all ρ ∈ L2(Ω); that
is, there exists a positive constant ζ such that, for all s ∈ (L2(Ω))d,

(K−1(M(ρ))s, s) ≥ ζ‖s‖L2(Ω). (14)

We also make the assumption that K−1 is a uniformly Lipschitz continuous
function with Lipschitz constant L, and using (13), we see that

‖K−1(M(ρ)) −K−1(M(ξ))‖ ≤ L‖ρ− ς‖L2(Ω), ∀ρ, ς ∈ L2(Ω). (15)

.
Let ūd(x, t) = P̃ud(x, t) and z̄d(x, t) = Πhzd(x, t).
The finite element method becomes: find ū ∈ ūd + H1([0, T ];VH,0), p̄ ∈

H1([0, T ];Wh) and z̄ ∈ z̄d + L2([0, T ];Sh,0)

au(ū,v) − α(p̄,∇ · v) = ℓ1(v), (16)

(c0p̄t, w) + α(∇ · ūt, w) + (∇ · z̄, w) = ℓ2(w), (17)

µf(K
−1(M(σ̄m))z̄, s) − (p̄,∇ · s) = ℓ3(s), (18)

holds for every t ∈ [0, T ] and (v, w, s) ∈ (VH,0,Wh,Sh,0). Here σ̄m is defined
locally in EH by

σ̄m =
1

d
tr(ǫ(ū)).

Additionally, we consider the initial conditions

au(ū,v)|t=0
= au(u0,v), ∀vH ∈ VH ,

(p̄, w)|t=0
= (p0, w), ∀w ∈ Wh.
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3.1. Existence and uniqueness. Results of existence, uniqueness and reg-
ularity for the linear continuous problem can be found in [13]. We now
establish the existence and uniqueness of a solution of semi-discrete prob-
lem (16)-(18). For the proof, we essentially follow [11]. However a special
attention needs to be given due to treatment of the nonlinearity

By construction, we can represent any function in VH , Wh or Sh as a linear
combination of the respective basis functions.

Let VH =< v1,v2, . . . ,vnu
>, Wh =< w1, w2, . . . , wnp

> and Sh =<
s1, s2, . . . , snz

>. We write the functions ū, p̄ and z̄ as components of their
respective basis functions:

ū(x, t) =

nu
∑

j=1

uj(t)vj(x) +

nu
∑

j=1

ud,j(t)vj(x), (19)

p̄(x, t) =

np
∑

j=1

pj(t)wj(x), (20)

z̄(x, t) =

nz
∑

j=1

zj(t)sj(x) +

nz
∑

j=1

zd,j(t)sj(x). (21)

The vector udH(t) = [ud,1(t), . . . ,ud,nu
(t)]T has the components of the func-

tion ūd and zdh(t) = [zd,1(t), . . . , zd,nz
(t)]T has the components of z̄d, which

come from the given boundary conditions. Let uH(t) = [u1(t), . . . ,unu
(t)]T ,

ph(t) = [p1(t), . . . , pnp
(t)]T and zh(t) = [z1(t), . . . , znz

(t)]T .
Substituting (19)-(21) in (16)-(18) we observe that we rewrite the problem

in a matrix form: find uH(t), ph(t) and zh(t) such that

AuuuH − αApuph = l1 (22)

c0App
∂ph

∂t
+ αAT

pu

∂uH

∂t
+ Azpzh = l2 (23)

Azz(σ̄m)zh −Apzph = l3. (24)

Since Auu is nonsingular, equation (22) is equivalent to

uH = A−1
uu

l1 + αA−1
uu
Apuph. (25)

Differentiating with respect to time we obtain

∂uH

∂t
= A−1

uu

∂l1
∂t

+ αA−1
uu
Apu

∂ph

∂t
.
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Condition (14) ensures the nonsingularity of Azz(σ̄m) and then the equation
(22) can be rewritten in the form

zh = (Azz(σ̄m))−1l3 + A−1
zz

(σ̄m)AT
zpph. (26)

Using (25), we can write σ̄m as a function of ph, σ̄m = F (ph).
From (23) we obtain

(

c0App + αAT
puA

−1
uu
Apu

)∂ph

∂t

= l2 − αAT
puA

−1
uu

∂l1
∂t

−Azp(Azz(F (ph)))
−1l3 − Azp(Azz(F (ph)))

−1AT
zpph.

The matrix multiplying ∂ph

∂t
is symmetric and positive definite and the right

hand side of the resulting equation is continuous in time. Therefore, together
with the given initial condition for p and u, we obtain an initial value problem.
Thus, by Peano’s existence theorem for ordinary differential equations, there
exists at least one solution of the equation on [0, ǫ], for some ǫ > 0.

For the proof of the uniqueness of the solution of the problem (16)-(18),
we follow [11] and use the property (14).

3.2. Continuous in time a priori error estimate. In this section we
examine the a priori error estimates for the semi-discretization previously
defined. Even if this approximation is not computed in practice, this analysis
provides information about the quality of the spatial discretization. The fully
discrete approximation will be presented in the next section.

The analysis we employ is an extension of the techniques presented in [11]
to the case of stress dependent permeability.

For the study of the error, we assume that the weak solution of the problem
(2)–(4) is sufficiently regular, e.g. we assume that u ∈ L∞([0, T ]; (Hr+1(Ω))d),
ut ∈ L2([0, T ]; (Hr+1(Ω))d), p ∈ L∞([0, T ];L2(Ω)) ∩ L2([0, T ];Hk+1(Ω)), pt

∈ L2([0, T ];Hk+1(Ω)) and z ∈ L2([0, T ]; (Hk+1(Ω))d). The order of the error
in the convergent results, which we will establish in this section, depends on
r and k.

To simplify the notation in what follows we use ‖.‖0, ‖.‖∞ and ‖.‖1, re-
spectively, for the L2, L∞ and H1 norms.

In the next theorem we present auxiliary error estimates. With this result,
the problem of finding error bounds will be reduced to applying the interpo-
lation theory in Hilbert spaces, presented in the beginning of this section.
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Theorem 1. Let (u, p, z) be the solution of (2)–(4) and (ū, p̄, z̄) be the solu-
tion of (16)–(18). Then

‖P̃u − ū‖2
L∞(H1) + ‖Php− p̄‖2

L∞(L2) + ‖Πhz − z̄‖2
L2(L2) ≤ C(H2r + h2k+2),

where C depends on the model parameters, T, ζ, L, γc, Ccoer, p, pt,u,ut and on
M being sufficiently large but is not dependent on H and h.

Proof For the simplicity in the analysis, we assume that u0,ud ∈ VH , p0 ∈
Wh and zd ∈ Sh. This assumption does not affect the rate of convergence.
The following equations

au(u− ū,v) − α(p− p̄,∇ · v) = 0, (27)

(c0(p− p̄)t, w) + α(∇ · (u − ū)t, w) + (∇ · (z − z̄), w) = 0, (28)

µf (K
−1(σm)z −K−1(M(σ̄m))z̄, s) − (p− p̄,∇ · s) = 0, (29)

hold for all (v, w, s) ∈ (VH,0,Wh,Sh,0).

Let v = (P̃u− ū)t, w = Php− p̄ and s = Πhz− z̄. Using in (27) the chain
rule in time, the symmetry of au and noticing that au(u−P̃u, (P̃u−ū)t) = 0,
we obtain

1

2

∂

∂t
au(P̃u − ū, P̃u − ū) − α(p− Php,∇ · (P̃u − ū)t)

−α(Php− p̄,∇ · (P̃u − ū)t) = 0. (30)

From (28), (29), and using the fact that

(∇ · (z − Πhz), Php− p̄) = 0 and (p− Php,∇ · (Πhz − z̄)) = 0,

we obtain, respectively,

(c0(p− Php)t, Php− p̄) + (c0(Php− p̄)t, Php− p̄)

+α(∇ · (u − P̃u)t, Php− p̄) + α(∇ · (P̃u − ū)t, Php− p̄)

+(∇ · (Πhz − z̄), Php− p̄) = 0 (31)

and

µf(K
−1(σm)z −K−1(M(σ̄m))z̄,Πhz − z̄) − (Php− p̄,∇ · (Πhz − z̄)) = 0.

(32)
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Summing (31) and (32) and again applying the chain rule, we obtain

1

2

∂

∂t
(c0(Php− p̄), Php− p̄) + α(∇ · (P̃u − ū)t, Php− p̄)

+µf(K
−1(σm)z−K−1(M(σ̄m))z̄,Πhz − z̄)

= −(c0(p− Php)t, Php− p̄) − α(∇ · (u − P̃u)t, Php− p̄). (33)

Summing (30) and (33), yields

1

2

∂

∂t
au(P̃u − ū, P̃u − ū) +

1

2

∂

∂t
(c0(Php− p̄), Php− p̄)

+µf(K
−1(σm)z −K−1(M(σ̄m))z̄,Πhz − z̄)

= α(∇ · (P̃u − ū)t, p− Php) − (c0(p− Php)t, Php− p̄)

−α(∇ · (u − P̃u)t, Php− p̄). (34)

In (34) we use the following equality

K−1(σm)z −K−1(M(σ̄m))z̄ = K−1(σm)(z− Πhz)

+(K−1(σm) −K−1(M(σ̄m)))Πhz +K−1(M(σ̄m))(Πhz − z̄),

and then, summing (33) and (34), integrating from 0 to T and using the
assumptions (P̃u − ū)(0) = 0 and (Php− p̄)(0) = 0, we deduce the result

1

2
[au(P̃u − ū, P̃u − ū) + (c0(Php− p̄), Php− p̄)]|t=T

+

∫ T

0

µf(K
−1(M(σ̄m))(Πhz − z̄),Πhz − z̄)(τ) dτ

= Φ1 + Φ2 + Φ3 + Φ4, (35)

where

Φ1 = −

∫ T

0

µf((K
−1(σm) −K−1(M(σ̄m)))Πhz,Πhz − z̄)(τ) dτ

−

∫ T

0

µf(K
−1(σm)(z − Πhz),Πhz − z̄)(τ) dτ, (36)

Φ2 = −

∫ T

0

α(∇ · (u − P̃u)t, Php− p̄)(τ) dτ, (37)

Φ3 =

∫ T

0

α(∇ · (P̃u − ū)t, p− Php)(τ) dτ, (38)
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Φ4 = −

∫ T

0

(c0(p− Php)t, Php− p̄)(τ) dτ. (39)

Cauchy-Schwartz and Young’s inequalities are now applied in bounding the
above inequalities.

Using (12), (15) and the Lipschitz continuity of K−1 we obtain

Φ1 ≤
L

2ǫ1

∫ T

0

‖(σm − σ̄m)(τ)‖2
0‖Πhz(τ)‖2

∞ dτ +
ǫ1
2

∫ T

0

‖(Πhz − z̄)(τ)‖2
0 dτ

+
µ2

f

2ǫ1

∫ T

0

‖K−1(σm)‖2
∞‖(z− Πhz)(τ)‖2

0 dτ +
ǫ1
2

∫ T

0

‖(Πhz − z̄)(τ)‖2
0 dτ

≤
L

2dǫ1
(2µ+ 3λ)2

∫ T

0

‖(u − ū)(τ)‖2
1‖Πhz(τ)‖2

∞ dτ

+
µ2

f

2ǫ1

∫ T

0

‖K−1(σm)‖2
∞‖(z− Πhz)(τ)‖2

0 + ǫ1

∫ T

0

‖(Πhz − z̄)(τ)‖2
0 dτ

≤
L

2dǫ1
(2µ+ 3λ)2

∫ T

0

‖(u − P̃u)(τ)‖2
1‖Πhz(τ)‖2

∞ dτ

+
L

2dǫ1
(2µ+ 3λ)2

∫ T

0

‖(P̃u − ū)(τ)‖2
1‖Πhz(τ)‖2

∞ dτ

+
µ2

f

2ǫ1

∫ T

0

‖K−1(σm)‖2
∞‖(z− Πhz)(τ)‖2

0 + ǫ1

∫ T

0

‖(Πhz − z̄)(τ)‖2
0 dτ,

where ǫ1 is an arbitrary small constant.
For Φ2 we obtain

Φ2 ≤ α

∫ T

0

‖∇ · (u− P̃u)t(τ)‖0‖(Php− p̄)(τ)‖0 dτ

≤
α2

2

∫ T

0

‖∇ · (u − P̃u)t(τ)‖
2
0 dτ +

1

2

∫ T

0

‖(Php− p̄)(τ)‖2
0 dτ.
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To bound Φ3, we integrate by parts in time and observe that

Φ3 = −

∫ T

0

α(∇ · (P̃u − ū), (p− Php)t)(τ) dτ

+α(∇ · (P̃u − ū), (p− Php))|t=T

≤

∫ T

0

α‖∇ · (P̃u − ū)(τ)‖0‖(p− Php)t(τ)‖0 dτ

+α‖∇ · (P̃u − ū)(T )‖0‖(p− Php)(T )‖0

≤
α2

2

∫ T

0

‖(P̃u − ū)(τ)‖2
1 dτ +

1

2

∫ T

0

‖(p− Php)t(τ)‖
2
0 dτ

+ǫ2‖(P̃u − ū)(T )‖2
1 +

α2

4ǫ2
‖(p− Php)(T )‖2

0,

where ǫ2 is an arbitrary small constant.
For Φ4 we obtain

Φ4 = −

∫ T

0

(c
1/2
0 (p− Php)t, c

1/2
0 (Php− p̄))(τ) dτ

≤
1

2

∫ T

0

‖c
1/2
0 (p− Php)t(τ)‖

2
0 dτ +

1

2

∫ T

0

‖c
1/2
0 (Php− p̄)(τ)‖2

0 dτ.

From (35), using the above estimates, the coercivity of au:

au(P̃u − ū, P̃u − ū)|t=T
≥ Ccoer‖(P̃u − ū)(T )‖2

1,
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and the assumptions (5), (6) and (14), we find the inequality

(1

2
Ccoer − ǫ2

)

‖(P̃u − ū)(T )‖2
1 +

γc

2
‖(Php− p̄)(T )‖2

0

+
(

µfζ − ǫ1

)

∫ T

0

‖(Πhz − z̄)(τ)‖2
0 dτ

≤
L(2µ+ 3λ)2

2dǫ1

(
∫ T

0

‖(u − P̃u)(τ)‖2
1 dτ +

∫ T

0

‖(P̃u − ū)(τ)‖2
1 dτ

)

+
µ2

f

2ǫ1

∫ T

0

‖K−1(σm)‖2
∞‖(z − Πhz)(τ)‖2

0 +
α2

2

∫ T

0

‖(u− P̃u)t(τ)‖
2
1 dτ

+
1

2

∫ T

0

‖(Php− p̄)(τ)‖2
0 dτ +

α2

2

∫ T

0

‖(P̃u − ū)(τ)‖2
1 dτ

+
1

2

∫ T

0

‖(p− Php)t(τ)‖
2
0 dτ +

α2

4ǫ2
‖(p− Php)(T )‖2

0

+
c0
2

∫ T

0

‖(p− Php)t(τ)‖
2
0 dτ +

c0
2

∫ T

0

‖(Php− p̄)(τ)‖2
0 dτ. (40)

Using Gronwall’s inequality and combining constants on the right hand
side of (40), we obtain

(1

2
Ccoer − ǫ2

)

‖(P̃u − ū)(T )‖2
1 +

γc

2
‖(Php− p̄)(T )‖2

0

+
(

µfζ − ǫ1

)

∫ T

0

‖(Πhz − z̄)(τ)‖2
0 dτ

≤ C
[

∫ T

0

‖(u − P̃u)(τ)‖2
1 dτ +

∫ T

0

‖(z − Πhz)(τ)‖2
0 dτ

+

∫ T

0

‖(p− Php)(τ)‖
2
0 dτ +

∫ T

0

‖(u − P̃u)t(τ)‖
2
1 dτ

+

∫ T

0

‖(p− Php)t(τ)‖
2
0 dτ

]

.

We conclude the proof using the approximation properties (7), (9) and
(11).
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Combining the estimate given by Theorem 1, the triangle inequality and
the interpolation estimates (7), (9) and (11), yields the following convergence
result.

Theorem 2. Let (u, p, z) be the solution of (2)–(4) and (ū, p̄, z̄) be the solu-
tion of (16)–(18). Then

‖u − ū‖2
L∞(H1) + ‖p− p̄‖2

L∞(L2) + ‖z − z̄‖2
L2(L2) ≤ C(H2r + h2k+2), (41)

where C depends on the model parameters, T, ζ, L, γc, Ccoer, p, pt,u,ut and on
M being sufficiently large but is not dependent on H and h.

Corollary 1. Under the conditions of Theorem 2, the method is stable.

Proof Using the triangle inequality we get

‖ū‖L∞(H1) ≤ ‖u − ū‖L∞(H1) + ‖u‖L∞(H1).

From Theorem 2 and writing analogous inequalities for p̄ and z̄, the result is
immediate.

4. Fully discrete approximation

In this section we formulate the fully-discrete method by introducing the
time discretization. For that purpose we use the Theta method.

Let ∆t = T/N , where N denotes the number of time steps and tj = j∆t.
We use the following notation gj = g(., tj), gj,θ = 1

2(1 + θ)gj+1 + 1
2(1 − θ)gj.

The fully discrete method becomes: find ūj ∈ ūd,j + Vh,0, p̄j ∈ Wh, z̄j ∈
z̄d,j + Vh,0 such that

au(ūj,θ,v) − α(p̄j,θ,∇ · v) = ℓ1j,θ(v), (42)
(

c0
p̄j+1 − p̄j

∆t
, w

)

+ α
(

∇ ·
ūj+1 − ūj

∆t
, w

)

+ (∇ · z̄j,θ, w) = ℓ2j,θ(w), (43)

µf(K
−1(M(σ̄m))j,θz̄j,θ, s) − (p̄j,θ,∇ · s) = ℓ3j,θ(s), (44)

for all (v, w, s) ∈ (Vh,0,Wh,Sh,0).
The time discretization corresponds to the backward Euler method if θ = 1,

and to the Crank-Nicolson method if θ = 0.
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4.1. Discrete in time a priori error estimate. We assume the following
regularity for the weak solution of the problem (2)–(4): u ∈ W 2,∞([0, T ];
(Hr+1(Ω))d), p ∈ W 2,∞([0, T ];Hk+1(Ω)), z ∈ L2([0, T ]; (Hk+1(Ω))d).

The following properties are well known:

pj+1 − pj

∆t
= pt(x, tj,θ) + ∆tρp,j,θ, ∀x ∈ Ω, (45)

with

‖ρp,j,θ‖0 ≤ C‖ptt‖L∞((tj ,tj+1),H1), (46)

and
uj+1 − uj

∆t
= ut(x, tj,θ) + ∆tρu,j,θ, ∀x ∈ Ω, (47)

with

‖ρu,j,θ‖0 ≤ C‖utt‖L∞((tj ,tj+1),H1), (48)

where ρp and ρu denote dependent on time derivatives of p and u, respectively.
In the particular case of θ = 0, we also have

‖ρp,j,θ‖0 ≤ ∆tC‖pttt‖L∞((tj ,tj+1),H1), (49)

and

‖ρu,j,θ‖0 ≤ ∆tC‖uttt‖L∞((tj ,tj+1),H1). (50)

Theorem 3. Let (u, p, z) be the solution of (2)–(4) and (ū, p̄, z̄) be the solu-
tion of (42)–(44). Then, if ∆t small enough, the exists C > 0 such that

‖P̃u−ū‖2
L∞(H1)+‖Php−p̄‖

2
L∞(L2)+‖Πhz−z̄‖2

L2(L2) ≤ C(H2r+h2k+2)+O(∆t2),

(51)
where C depends on the model parameters, T, ζ, L, γc, Ccoer, p, pt,u,ut and on
M being sufficiently large but is not dependent on H, h and ∆t.

Proof For simplicity, let us assume that u0,ud ∈ VH , p0 ∈Wh and zd ∈ Sh.
This assumption does not affect the rate of convergence.

From (3), using (45) and (47) at time t = tj,θ, we obtain
(

c0
pj+1 − pj

∆t
, w

)

+ α
(

∇ ·
uj+1 − uj

∆t
, w

)

+ (∇ · zj,θ, w)

= ℓ2,j,θ(w) − c0∆t(ρp,j,θ, w) − α∆t(∇ · ρu,j,θ, w).

Subtracting (42)–(44) from (2)–(4) and using the above equality, we have

au(uj,θ − ūj,θ,v) − α(pj,θ − p̄j,θ,∇ · v) = 0, (52)
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(

c0
(pj+1 − p̄j+1) − (pj − p̄j)

∆t
, w

)

+ α
(

∇ ·
(uj+1 − ūj+1) − (uj − ūj)

∆t
, w

)

+(∇ · (zj,θ − z̄j,θ), w) = −c0∆t(ρp,j,θ, w) − α∆t(∇ · ρu,j,θ, w)(53)

and

µf

(

(K−1(σm)j,θzj,θ −K−1(M(σ̄m))j,θ)z̄j,θ, s
)

−
(

p̄j,θ,∇ · s
)

= 0. (54)

Let v =
(P̃u − ū)j+1 − (P̃u − ū)j

∆t
, w = (Php− p̄)j,θ and s = (Πhz − z̄)j,θ.

From (52), using the properties of the elliptic projection, we derive

au

(

(P̃u − ū)j,θ,
(P̃u − ū)j+1 − (P̃u − ū)j

∆t

)

−α
(

(p− Php)j,θ,∇ ·
(P̃u − ū)j+1 − (P̃u − ū)j

∆t

)

−α
(

(Php− p̄)j,θ,∇ ·
(P̃u − ū)j+1 − (P̃u − ū)j

∆t

)

= 0. (55)

Summing (53) and (54) and noting orthogonality relationships, we have
(

c0
(Php− p̄)j+1 − (Php− p̄)j

∆t
, (Php− p̄)j,θ

)

+α
(

∇ ·
(u− P̃u)j+1 − (u − P̃u)j

∆t
, (Php− p̄)j,θ

)

+α
(

∇ ·
(P̃u − ū)j+1 − (P̃u − ū)j

∆t
, (Php− p̄)j,θ

)

+µf

(

K−1(σm)j,θ(z − Πhz)j,θ, (Πhz − z̄)j,θ

)

+µf

(

(K−1(σm)j,θ −K−1(M(σ̄m))j,θ)Πhzj,θ, (Πhz − z̄)j,θ

)

+µf

(

K−1(M(σ̄m))j,θ(Πhz − z̄)j,θ, (Πhz − z̄)j,θ

)

= −c0∆t
(

ρp,j,θ, (Php− p̄)j,θ

)

− α∆t
(

∇ · ρu,j,θ, (Php− p̄)j,θ

)

. (56)

Summing (55) and (56), we obtain

au

(

(P̃u − ū)j,θ,
(P̃u − ū)j+1 − (P̃u − ū)j

∆t

)

+
(

c0(Php− p̄)j,θ,
(Php− p̄)j+1 − (Php− p̄)j

∆t

)

+µf (K
−1(M(σ̄m))j,θ(Πhz − z̄)j,θ, (Πhz − z̄)j,θ)
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= α
(

∇ ·
(P̃u − ū)j+1 − (P̃u − ū)j

∆t
, (p− Php)j,θ

)

−α
(

∇ ·
(u − P̃u)j+1 − (u − P̃u)j

∆t
, (Php− p̄)j,θ

)

−µf

(

K−1(σm)j,θ(z − Πhz)j,θ, (Πhz − z̄)j,θ

)

−µf

(

(K−1(σm)j,θ −K−1(M(σ̄m))j,θ)Πhzj,θ, (Πhz − z̄)j,θ

)

−c0∆t
(

ρp,j,θ, (Php− p̄)j,θ

)

− α∆t
(

∇ · ρu,j,θ, (Php− p̄)j,θ

)

. (57)

In order to provide the desire bounds we start by deducing the following
inequality

au

(

(P̃u − ū)j,θ,
(P̃u − ū)j+1 − (P̃u − ū)j

∆t

)

=
1 + θ

2∆t
au

(

(P̃u − ū)j+1, (P̃u − ū)j+1

)

−
1 + θ

2∆t
au

(

(P̃u − ū)j+1, (P̃u − ū)j

)

+
1 − θ

2∆t
au

(

(P̃u − ū)j, (P̃u − ū)j+1

)

−
1 − θ

2∆t
au

(

(P̃u − ū)j, (P̃u − ū)j

)

=
1

2∆t
‖(P̃u − ū)j+1‖au

−
1

2∆t
‖(P̃u − ū)j‖au

+
θ

2∆t
‖(P̃u − ū)j+1 − (P̃u − ū)j‖au

≥
1

2∆t

(

‖(P̃u − ū)j+1‖au
− ‖(P̃u − ū)j‖au

)

. (58)

Likewise, we have
(

(Php− p̄)j,θ,
(Php− p̄)j+1 − (Php− p̄)j

∆t

)

≥
1

2∆t

(

‖(Php− p̄)j+1‖0 − ‖(Php− p̄)j‖0

)

. (59)

In the next bound we take in account that ‖(P̃u − ū)|t=0
‖au

= 0, ‖(Php −
p̄)|t=0

‖0 = 0, and we use (6), (14), (58) and (59). Multiplying (57) by 2∆t
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and summing from 0 to N − 1, we obtain

‖(P̃u − ū)N‖
2
au

+ γc‖(Php− p̄)N‖
2
0 + 2µfζ

N−1
∑

j=0

‖(Πhz − z̄)j,θ‖
2
0∆t

≤ ψ1 + ψ2 + ψ3 + ψ4 + ψ5 + ψ6, (60)

where

ψ1 = 2α
N−1
∑

j=0

(

∇ ·
(P̃u − ū)j+1 − (P̃u − ū)j

∆t
, (p− Php)j,θ

)

∆t,

ψ2 = −2α

N−1
∑

j=0

(

∇ ·
(u − P̃u)j+1 − (u − P̃u)j

∆t
, (Php− p̄)j,θ

)

∆t,

ψ3 = −2µf

N−1
∑

j=0

(

K−1(σm)j,θ(z − Πhz)j,θ, (Πhz − z̄)j,θ

)

∆t

−2µf

N−1
∑

j=0

(

(K−1(σm)j,θ −K−1(M(σ̄m))j,θ)Πhzj,θ, (Πhz − z̄)j,θ

)

∆t,

ψ4 = −2c0

N−1
∑

j=0

∆t
(

ρp,j,θ, (Php− p̄)j,θ

)

∆t,

ψ5 = −2α
N−1
∑

j=0

∆t
(

∇ · ρu,j,θ, (Php− p̄)j,θ

)

∆t.

Summing by parts and noting that ‖(P̃u − ū)|t=0
‖1 = 0, we see that

ψ1 = 2α(∇ · (P̃u − ū)N , (p− Php)N,θ)

−2α

N−1
∑

j=0

(

∇ · (P̃u − ū)j+1,
(p− Php)j+1,θ − (p− Php)j,θ

∆t

)

∆t

≤ 2α‖∇ · (P̃u − ū)N‖0‖(p− Php)N,θ‖0

+2α∆t
N−1
∑

j=0

‖∇ · (P̃u − ū)j+1‖0‖
(p− Php)j+1,θ − (p− Php)j,θ

∆t
‖0.
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Using (46), we obtain

ψ1 ≤ ǫ1‖(P̃u − ū)N‖
2
1 +

α2

4ǫ1
‖(p− Php)N,θ‖

2
0 + α∆t

N
∑

j=0

‖(P̃u − ū)j‖
2
1

+2α∆t

N
∑

j=0

‖ ((p− Php)j)t ‖
2
0 + 2α∆t2‖ρp,j,θ‖

2
0,

where ǫ1 is an arbitrary small constant. Likewise, approximating the differ-
ence with a derivative, yields the bound

ψ2 ≤ 2α∆t
N

∑

j=0

‖
(

(u − P̃u)j,θ

)

t
‖2

1 + α∆t
N

∑

j=0

‖(Php− p̄)j‖
2
0 + C∆t2.

Using (12) and (15), it follows that

ψ3 ≤ 2µf

N−1
∑

j=0

‖K−1(σm)j,θ‖∞‖(z − Πhz)j,θ‖0‖(Πhz − z̄)j,θ‖0∆t

+2µf

N−1
∑

j=0

‖(K−1(σm)j,θ −K−1(M(σ̄m))j,θ‖0‖Πhzj,θ‖∞‖(Πhz − z̄)j,θ‖0∆t

≤
µ2

f

ǫ2

N−1
∑

j=0

‖K−1(σm)j,θ‖
2
∞‖(z− Πhz)j,θ‖

2
0∆t+ ǫ2

N−1
∑

j=0

‖(Πhz − z̄)j,θ‖
2
0∆t

+
L

ǫ2

N−1
∑

j=0

‖(σm)j,θ − (σ̄m)j,θ‖
2
0‖Πhzj,θ‖

2
∞∆t+ ǫ2

N−1
∑

j=0

‖(Πhz − z̄)j,θ‖
2
0∆t

≤
µ2

f

ǫ2

N−1
∑

j=0

‖K−1(σm)j,θ‖
2
∞‖(z− Πhz)j,θ‖

2
0∆t+ 2ǫ2

N−1
∑

j=0

‖(Πhz − z̄)j,θ‖
2
0∆t

+
L

2ǫ2
(2µ+ 2λ)2

N−1
∑

j=0

‖uj,θ − P̃uj,θ‖
2
1‖Πhzj,θ‖

2
∞∆t

+
L

2ǫ2
(2µ+ 2λ)2

N−1
∑

j=0

‖P̃uj,θ − ūj,θ‖
2
1‖Πhzj,θ‖

2
∞∆t,

where ǫ2 is an arbitrary small constant.



A PRIORI ERROR ESTIMATES FOR A COUPLED GEOMECHANICS AND FLOW MODEL 21

By the Cauchy-Schwarz inequality we find the relations

ψ4 ≤ c0

N−1
∑

j=0

∆t2‖ρp,j,θ‖
2
0 + c0

N−1
∑

j=0

∆t2‖(Php− p̄)j,θ‖
2
0,

ψ5 ≤ α

N−1
∑

j=0

∆t2‖ρu,j,θ‖
2
1 + α

N−1
∑

j=0

∆t2‖(Php− p̄)j,θ‖
2
0.

Using the above bounds, the coercivity of au and the assumptions (5) and
(6), we obtain the inequality

(Ccoer − ǫ1)‖(P̃u − ū)N‖
2
1 + γc‖(Php− p̄)N‖

2
0

+2(µfζ − ǫ2)
N−1
∑

j=0

‖(Πhz − z̄)j,θ‖
2
0∆t

≤ C
(

∆t

N−1
∑

j=0

‖(P̃u − ū)j,θ‖
2
1 + ∆t

N−1
∑

j=0

‖(Php− p̄)j‖
2
0 + ‖(p− Php)N,θ‖

2
0

+∆t
∑N

j=0 ‖ ((p− Php)j)t ‖
2
0 + ∆t

∑N
j=0 ‖

(

(P̃u − ū)j

)

t
‖2

1

+∆t
N−1
∑

j=0

‖(z − Πhz)j,θ‖
2
0

)

+ O(∆t2).

For ∆t sufficiently small, we may apply the discrete version of Gronwall’s
lemma (see e.g. [5]), in order to obtain (51).

If we consider the Crank-Nicolson method (θ = 0) in (42)–(44) and if
we assume the regularity u ∈ W 3,∞([0, T ]; (Hr+1(Ω))d) and p ∈ W 3,∞([0, T ];
(Hk+1(Ω))d), then we can replace (51) by

‖P̃u−ū‖2
L∞(H1)+‖Php−p̄‖

2
L∞(L2)+‖Πhz−z̄‖2

L2(L2) ≤ C(H2r+h2k+2)+O(∆t4).

The convergence result in the next theorem is obtained combining the
interpolation estimates and the auxiliary estimates by the triangle inequality.

Theorem 4. Let (u, p, z) be the solution of (2)–(4) and (ū, p̄, z̄) be the solu-
tion of (42)–(44). Then, if ∆t small enough, there exists C > 0 such that

‖u−ū‖2
L∞(H1)+‖p−p̄‖2

L∞(L2)+‖z−z̄‖2
L2(L2) ≤ C(H2r+h2k+2)+O(∆t2), (61)

where C depends on on the model parameters, T, ζ, L, γc, Ccoer, p, pt,u,ut and
on M being sufficiently large but is not dependent on H, h and ∆t.
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If we use the Crank-Nicolson method, under the mentioned regularity con-
ditions for this case, holds

‖u − ū‖2
L∞(H1) + ‖p− p̄‖2

L∞(L2) + ‖z − z̄‖2
L2(L2) ≤ C(H2r + h2k+2) + O(∆t4).

5. Numerical results

For the numerical experiments we consider the Mandel’s problem ([1],[8]).
This example involves a poroelastic rectangular infinitely long slab, of extent
2a in the x direction and 2b in the y direction, sandwiched at the top and the
bottom by two rigid plates. In the initial instant a force of magnitude 2F
is applied at the top and at the bottom plates, pointing to the slab. Since
the plates are rigid then the slab remains in contact with the plates, that is,
the vertical displacements at the top and bottom are uniform. The problem
is symmetric about the x and y axes and we can reduce the computational
domain to only the upper right quadrant Ω = (0, a) × (0, b). Thus, the
governing equations are the following:

−(λ+ µ)∇(∇ · u) − µ∇2u + α∇p = 0 in Ω × (0, T ]
∂
∂t(c0p+ α∇ · u) − 1

µf
∇ ·K(σm)∇p = 0 in Ω × (0, T ]

p = 0, x = a, t ∈ (0, T ]
− 1

µf
K(σm)∇p · η = 0, x = 0, y = 0, y = b, t ∈ (0, T ]

ux = 0, x = 0, t ∈ (0, T ]
uy = 0, y = 0, t ∈ (0, T ]

∂uy

∂x
= 0, y = b, t ∈ (0, T ]

σ̃η = (−F/a)η, y = b, t ∈ (0, T ]
σ̃η = 0, x = 0, x = a, y = 0, t ∈ (0, T ]
p(0) = 0 in Ω,

where ux and uy are the components of u.
The analytical solution of the Mandel’s model is available, in [1], for the

linear model, where the permeability is considered constant. In this case,
the numerical solution can be directly compared with the analytical solution,
which motivates the use of the Mandel’s model as a benchmark problem for
testing numerical codes (e.g. [6], [7], [11]).

The optimal error estimates are obtained under the assumption of a suffi-
ciently smooth analytical solution. For the Mandel’s problem, as t → 0, the
pressure presents very large gradient, since p(0) = 0 and immediately after
the application of the force the pressure increases suddenly. For this reason,
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the regularity of the pressure might be limited. To overcome this limitation
and for the purpose of illustrating numerically the error estimate of Theorem
2, we use an initial time t0 > 0.

In the numerical experiments we used the following data: Ω = (0, 1) ×
(0, 0.1), µf = 1, F = 2, k = 1, kb = 1 and t0 = 5e−5. The other parameters,
which are not listed above, are given by the expressions

λ = (Eν)/((1 + ν)(1 − 2ν)),

µ = E/(2(ν + 1)),

α = 3(νu − ν)/(B(1− 2ν)(1 + νu)),

c0 = (9(νu − ν)(1 − 2νu))/(2µB
2(1 − 2ν)(1 + νu)

2),

that also depend on the Skempton poro pressure coefficient B, the Young’s
modulus E, the drained Poisson ratio ν and the undrained Poisson ratio νu.
For this parameters we considered B = 0.8, E = 10, ν = 0.2 and νu = 0.4.

The implicit Euler scheme is used. To minimize the effects of the error
produced by the time discretization, we choose the small time step ∆t =
1e− 8.

We start the computation using the analytical exact solution as starting
solution at the time t0, considering K = I,

H ‖u − ū‖H1 rate ‖p− p̄‖L2 rate ‖z − z̄‖L2 rate
5.000e-2 1.222e-3 1.39 1.389e-2 1.53 2.416e-1 1.35
2.500e-2 4.653e-4 1.19 4.798e-3 1.21 9.452e-2 0.94
1.667e-2 2.878e-4 1.05 2.933e-3 1.03 6.453e-2 1.14
1.250e-2 2.130e-4 1.10 2.179e-3 1.08 4.654e-2 0.82
1.000e-2 1.665e-4 0.89 1.711e-3 0.92 3.875e-2 1.14
8.333e-3 1.415e-4 - 1.446e-3 - 3.149e-2 -

Table 1. Convergence rates: linear problem, bilinear elements
for u, lowest order Raviart-Thomas space for p and z.

For numerical verification of our algorithms, we show the computed errors
for the linear case, taking K = kI. The analytical solution of this problem
can be found e.g. in [1].

For the nonlinear problem, we considered stress dependent permeability
using the formula for the first type of rock, K = K0 e

−kbσm, taking K0 = 0.9I.
A Newton iteration with the numerical solution of the previous time step

as starting guess is used to resolve the nonlinearity.



24 SÍLVIA BARBEIRO AND MARY F. WHEELER

H ‖u − ū‖H1 rate ‖p− p̄‖L2 rate ‖z − z̄‖L2 rate
5.000e-2 1.247e-4 2.35 1.247e-003 2.44 8.407e-2 3.05
2.500e-2 2.440e-5 2.14 2.306e-004 2.08 1.016e-2 2.30
1.667e-2 1.025e-5 2.33 9.929e-005 2.38 3.997e-3 2.05
1.250e-2 5.242e-6 1.73 5.002e-005 1.71 2.213e-3 2.43
1.000e-2 3.565e-6 2.26 3.414e-005 2.24 1.288e-3 1.60
8.333e-3 2.361e-6 - 2.268e-005 - 9.614e-4 -

Table 2. Convergence rates: linear problem, biquadratic ele-
ments for u, Raviart-Thomas space of order 1 for p and z.

H ‖u − ū‖H1 rate ‖p− p̄‖L2 rate ‖z − z̄‖L2 rate
5.000e-2 1.078e-3 1.45 9.591e-3 1.27 2.378e-1 0.91
2.500e-2 3.948e-4 1.05 3.978e-3 1.25 1.263e-1 1.15
1.667e-2 2.574e-4 1.09 2.394e-3 1.22 7.916e-2 1.17
1.250e-2 1.882e-4 0.70 1.684e-3 1.00 5.649e-2 1.13
1.000e-2 1.608e-4 1.84 1.348e-3 1.80 4.388e-2 1.10
8.333e-3 1.150e-4 - 9.715e-4 - 3.593e-2 -

Table 3. Convergence rates: nonlinear problem, bilinear ele-
ments for u, lowest order Raviart-Thomas space for p and z.

H ‖u − ū‖H1 rate ‖p− p̄‖L2 rate ‖z − z̄‖L2 rate
5.000e-2 1.316e-4 2.26 1.185e-3 2.30 2.157e-1 1.87
2.500e-2 2.756e-5 1.78 2.410e-4 1.85 5.885e-2 1.69
1.667e-2 1.338e-5 2.08 1.138e-4 2.04 2.969e-2 2.01
1.250e-2 7.354e-6 2.39 6.318e-5 2.33 1.667e-2 2.30
1.000e-2 4.310e-6 2.30 3.755e-5 1.96 9.975e03 2.74
8.333e-3 2.835e-6 - 2.628e-5 - 6.055e-3 -

Table 4. Convergence rates: nonlinear problem, biquadratic el-
ements for u, Raviart-Thomas space of order 1 for p and z.

Convergence rates are established by running cases for 6 levels of grid re-
finement, starting with H = h = 0.05. The errors are calculated using the
difference between the numerical solution and the exact solution, in the case
of the linear problem (tables 1 and 2) and the difference between the numer-
ical solution associated to each grid and the numerical solution associated
to a much finer grid, in the case of the nonlinear problem (tables 3 and 4).
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The numerical results correspond to the solution after 1000 time iterations
at time t = 6e− 5.

In our experiments we used standard continuous bilinear elements to ap-
proximate the displacement and the lowest Raviart-Thomas space for the
flow variables (tables 1 and 3), and standard continuous biquadratic linear
elements to approximate the displacement and the Raviart-Thomas space of
order 1 for the flow variables (tables 2 and 4).

The convergence rates conform the expected values.

6. Conclusions

The numerical solution of a fully coupled geomechanics and fluid-flow
model for astress-sensitive reservoir problems was considered. The CG/mixed
method for the nonlinear system produces optimal convergence rates with
respect to regularity. A cut-off operator was introduced in the CG/mixed
formulation to derive convergence. Numerical experiments support our con-
vergence results. The theoretical error estimates we derived include the possi-
bility for the displacement and the flow variables being calculated on different
grids.
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