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A PALEY-WIENER THEOREM FOR THE ASKEY-WILSON
FUNCTION TRANSFORM
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ABSTRACT: We define an analogue of the Paley-Wiener space in the context of the
Askey-Wilson function transform, compute explicitly its reproducing kernel and
prove that the growth of functions in this space of entire functions is of order two
and type In ¢~!, providing a Paley-Wiener Theorem for the Askey-Wilson transform.
Up to a change of scale, this growth is related to the refined concepts of exponential
order and growth proposed by J. P. Ramis. The Paley-Wiener theorem is proved
by combining a sampling theorem with a result on interpolation of entire functions
due to M. E. H. Ismail and D. Stanton.

KEYWORDS: Askey-Wilson function, Paley-Wiener theorem, Reproducing Kernels,
Sampling Theorem.

1. Introduction

Let M(r; f) = sup{|f(2)| : |z| < r} and consider the space A, constituted
by the analytic continuation to the whole complex plane of the functions
f € L*(R) satisfying

M(r; f) = O(e™). (1)

Consider also the space PW constituted by the analytic continuation to

the whole complex plane of the functions f € L?(R) such that, for some

u € L?(—m, ),
1 T
2) = —— e“u (t) dt. 2
16 === | et )
A celebrated classical theorem of Paley and Wiener says that
A =PW.

The growth condition (1) means that f : C—C has order one and type 7
and the space PW is called the Paley-Wiener space of band-limited functions;
it is the reproducing kernel Hilbert space mapped via the Fourier transform
into L? functions supported on the interval [—m, 7]. See [24] for more details.
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Another famous result, the Whittaker-Shannon-Kolte ‘nikov sampling the-
orem, asserts that every function in the space PW admits the following
representation

sinm (x —n)

fx)= > fn) (3)

= 7 (x —n)
As a result, research concerning extensions of the sampling theorem has been
historically associated with the corresponding extensions of the Paley-Wiener
theorem.

The sampling theorem is known to hold for more general transforms, in-
cluding the Hankel and Jacobi functions transforms [13], [25] and the Paley-
Wiener theorem is know to extend to such special functions transforms [9].

Many sampling theorems have been recently considered in the ¢-case [1],
2],[5], [16]. When thinking about these extensions, one should keep in mind
that many of the classical g-functions are special cases of a very general basic
hypergeometric function known as the Askey-Wilson function. This fact is
known as ”the Askey-Wilson transform scheme” [8].

Recently, one of us has found a sampling theorem for the Askey-Wilson
function transform [6]. Thus, it is natural to ask for the associated Paley-
Wiener theorem. It is the purpose of this paper to address this question,
providing a Paley-Wiener theorem for the Askey-Wilson function transform.
This will be done after rephrasing the results in [6] in the convenient repro-
ducing kernel Hilbert space setting.

Recent research concerning g-difference equations [19], interpolation of en-
tire functions [17] and moment problems [4], strongly suggests that in order
to del with basic hypergeometric functions one should use the following con-
cepts. A function f has logarithmic order p if

Inln M (r:
lim sup nIn M(r; f) =

7—+00 Inlnr

and f with logarithmic order p has logarithmic type c if

lim s In M(r; f)
im — =
roioe P (Inr)”

This is because basic hypergeometric functions are of order zero and therefore
require a refined concept of order to define their growth. However, we will
approach the topic in a slightly different manner in this paper: Instead of
considering a function in u, we will considerer a function in z = ¢*. Looking
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at objects from this point of view, our Askey-Wilson Paley-Wiener space
turns out to be constituted by functions of order two with type In(1/¢). This
is equivalent to say that, in the variable z = ¢, they have logarithmic order
two and logarithmic type In(1/q).

We have organized the paper in the following way. The next section reviews
the definitions of the Askey-Wilson polynomials and functions an provides a
short outline of the L? theory of the Askey-Wilson transform. Then, in the
third section, we present a detailed study of the reproducing kernel Hilbert
space which is naturally associated to the Askey-Wilson functions transform
(in much the same way PW is associated to the Fourier transform). We com-
pute a basis for this space as well as the explicit formula for the reproducing
kernel and recover by this method the sampling theorem of [6]. Finally, in
the last section we prove a Paley-Wiener theorem, by describing the growth
of functions in the reproducing kernel Hilbert space in terms of their order
and type.

2. The Askey-Wilson function transform

2.1. The Askey-Wilson polynomials. Choose a number ¢ such that 0 <
g < 1. The notational conventions from [11]

n

(@ qo=1, (a:q),=]](1—ag"),

k=1

(a; Q)oo = lim (a; Q)na (ala coey Qs Q)n = H(aU Q)na ‘Q| <1,

where n = 1,2, ..., will be used. The symbol , ¢, stands for the function
Ay, ...y Qryl - (a17"'7a7"+1;q)n n

r r y 2 | = z.
+1¢ ( bla~-~abr 1 ) nz_o(q’bla---abr;Q)n

The Askey-Wilson polynomials p,(z;a,b,c,d), with z = %Z_l, are defined

by

zZ+ 'Z_l, _ (Clb, ac, Cld, Q)n q_”,qn_labcd, CLZ,G/Z )
pn( 9 3 @y b7 ¢, d) — ar 4¢3 CLb, ac, ad q;9 | -

(4)
If a,b,c,d € C are four reals or two reals and one pair of conjugates,
or two pairs of conjugates such that |ab|, |ac|, |ad|, |bc|,|cd| < 1, then the
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Askey-Wilson polynomials are real valued and their orthogonality can be
written as an integral over x = %’fl € [-1,1] plus a finite sum over a
discrete set with mass points outside [—1, 1]. This finite sum does no occur
if |a|, |b],]|c|,|d] < 1. When max (|al,|b|,|c|,|d]) < 1, the Askey-Wilson

polynomials satisfy the orthogonality relation

1
| pawiab e dpaleiab e du@ds = hobo.
~1

where
w(z) = (22,1/2% q)so sin 6 |
(ax,a/x,br,b/x, cx,c/r,dr,d/x;q)
and
ho_ 27 (abedg™; q)oo(abedg™ ™5 q)n

(¢"*1, abg”, acq", adq", beq", bdq™, cdg™; ) oo
The Askey-Wilson function is defined as
q; Q> +

_ 1 a/y,ary,az,a/z

¢’Y (Z) - (bC, Q/ad, q)oo4¢3 ( Clb, ac, Cld
~(€L/fy,~€w,qb/d,qc/d,az,a/z; 7)o é (qv/ci,q/vcz,qz/d,q/zd‘ 'q>

(¢7/d, q/~d, ab, ac,be, ad/q, qz/d, q/ 2d; @) gb/d,qc/d,¢*/ad |7 7)"

where

= V¢ labed,

ab/a = qa/cd,
= ac/a = qabd,

d = ad/a = qa/be.

oOr St N
I

The function ¢, is introduced in [15] and it can also be defined as a single g¢7
with a very-well poised sW7 structure [23]. The function ¢, is meromorphic
in . Moreover, its poles are simple and can be removed multiplying it by
the factor (¢v/d, q¢/vd; q)o-

Now we will define the Askey-Wilson function transform, following the
construction in [7]. A new weight function is defined as

W(z)=A(z)0O(x)
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where, using the notation 0 (z) = (x,q/x;q)~ for the renormalized Jacobi
theta function, the function © is defined as

0 (dx,d/x)

O @) = gtz dtjz)

For generic parameters a, b, ¢, d such that the weight function W has simple
poles we define a measure v, depending on these parameters, by

[r@w@ = o [ f@e@w @
—l—% Z (f(z)+ f (x_l)) Resy—y (WT(y)> :
xeD

where K is a constant (the exact value will not be required), S = S_U S, is
the infinite, discrete set given by

S_ = {dt¢"; k€ Z, dtq" < -1},
S, ={a¢"; k€ Z, ag" > 1}.

In the next sections we will often refer to the measure defined above as
being of the form v = v, + 4, where v, is the continuous measure

dv.(z) = O(z)A (z) dx/x

continuous and vy, is the discrete part, supported in the set S.

Now, let Li (v) be the Hilbert space with respect to the measure v consti-
tuted by functions f satisfying f (z) = f (x_l), v-almost everywhere. The
Askey-Wilson function transform is defined by

(FF) () = / £ (@) 6, () dv (z)

for compactly supported functions f € L% (v). Let L2 (?) be the same space
with respect to the same measure, but replacing the parameters a, b, ¢, d by
the dual parameters a, b, ¢, d.The main result in [7] states that F extends to
an isometric isomorphism

F: L2 (v) — L% (©).
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3. The Askey-Wilson Paley-Wiener space

3.1. Reproducing kernel Hilbert spaces. We will now introduce some
concepts concerning reproducing kernel Hilbert spaces. This exposition is
taken from [13], [10] and [20].

Let H,., be a class of complex valued functions, defined in a set X C C,
such that H,., is a Hilbert space. We say that k (v, x) is a reproducing kernel
of Hyep if k(7v,2) € H,p for every v € X and every f € H,., satisfies the
reproducing equation

f(fY) - <f ()7k(7fy)>H

rep ’

Now we will use the language in Saitoh [20], and we proceed to give a brief
account of the required results.

Consider a second Hilbert space, H. For each t belonging to a domain X,
let K(.,t) belong to H. Then,

]ﬂ(”)/,$> - <K('77>7K('ax)>H

is defined on X x X . Suppose that we have an isometric transformation

(Fg)(v) = <9,W>

and denote the set of images by F'(H). The following theorem can be found
in [20]:

Theorem A If F is a one to one isometric transformation, the kernel
k(v,x) determines uniquely a reproducing kernel Hilbert space for which it
1s the reproducing kernel. This reproducing kernel Hilbert space 1s precisely
F(H) and it can have no other reproducing kernel. If {S,} is a basis of
F(H), then

H

(v, 2) =Y Su(7)Su().

There is a general formulation of the sampling theorem in reproducing
kernel Hilbert spaces [14]. We will use the following ”orthogonal basis case”.

Theorem B With the notations established earlier, we have: If there exists
{tn},c1cz such that {K(.,t,)},cx s an orthogonal basis, we then have the
sampling expansion

)= 3 ftn) g

nel n)



PALEY-WIENER THEOREM 7

in F(H), pointwise over I, and uniformly over any compact subset of X for
which || K| is bounded.

The chief example of a reproducing kernel Hilbert space is PW. In this
situation the reproducing kernel is the function sinz (z — ) /7 (z — ), the
sampling points are t, = n and the uniformly convergent expansion is the
Whittaker-Shannon-Kolte “nikov sampling formula.

3.2. The Askey-Wilson function reproducing kernel. Let us look at
the reproducing kernel Hilbert space associated to the Askey-Wilson function
transform.

The first task is to consider a proper analogue of bandlimited functions.
This is done by defining a finite continuous Askey-wilson function in much
the same way it was done in [6].

We start by removing the poles of the function ¢gz,: Consider a function
u,,, analytic in the variable p, defined as

w, (z,a,b,c,d| q) = (ag"; ag™"; q)odaq: (€) , © = cosb.

Then we consider what is going to be the analogue of the transform (2): if
max(|al,|b|,|c|,|d|) < 1, the finite continuous Askey-Wilson transform J is
defined by

J(f) () = /_1 f(x)u, (z;a,b,¢c,d | q)w(z,a,b,c,d]| q)dx. (5)

The continuous Askey-Wilson relates to the Askey-Wilson transform as fol-
lows: If f is the analytic function such that f (cos) = f (eie), then

4o,

J(f)(p) = f(aQ“;dq‘“;Q)oof (é) (aq").

Definition 1. The Askey-Wilson Paley-Wiener space, PW w, is the space
constituted by the analytic extension to the complex plane of the functions
f € L% (v) such that, for some u € L* (w(z,a,b,c,d | q),dz),

f=J(u).

Let us look at this particular setting from the point of view of Theorem A.
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Theorem 1. If max(|a|, |b],]|c|,|d]|) < 1, then the set PWaw is a Hilbert
space of entire functions with reproducing kernel k (v, \). The functions

n netl) n - -
S@ (11: ) = (-1)"q = (1-a%"") (ag",aq " q)
n K4 (q; q)n (a7 &2qn; q)oo (1 — CLq”+N) (1 _ dq”—ﬂ)'

constitute an orthogonal basis of PWaw and the reproducing kernel is given

explicitly by
Z S W (X q).

Proof: To fulfill the conditions in Theorem A, we need to show that the
finite continuous Askey-Wilson is a one to one isomorphism between Ay
and PW . To see that it is one-to-one, observe that, since, if

1
/ f(x)u, (x;a,b,c,d| q)w(x,a,b,c,d|q)dr=0,for all peC,
~1
then we have, in particular, that

1
/ f(@)uy (z;a,b,¢,d | q)w(x,a,b,c,d| q)dx, forn=0,1,...
-1

Since for integer values of p, u,, is a multiple of the Askey-Wilson polynomials,

—1)» —n(n—1)/2
Un(; 0,0, c;d) = L)

d_n n ; 7b7 7d Y 6
(ab,ac,be; @), * (50, ,c,d) (©)

we can use the completeness of the system of the Askey-Wilson polynomials
to get f = 0. Consequently, J(f) is one to one. From the definition,

PWaw = J [L* (w(z,a,b,c,d| q)dz)] .

Therefore, endowing PW 4y with the inner product

TOTD o = [ @@t abed i, @

the finite Askey-Wilson transform J becomes a Hilbert space isometry be-
tween L? (w(z,a,b,c,d | q)dxr) and PWAW

Tt remains to show that the functions S\ (,u; q) provide an orthogonal basis
for PW . By the definition (5) and (6),

) ) = [l () wlz,a.be.d] )da

1
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(_1>nq—n(n—1)/2 /1

B d"(ab, ac, be; q)y

Pu(@)uy (x) w(z,a,b,c,d| q)dz.
-1

Now we can use Proposition 6 of [6] to conclude that

T (un) (1) = S5 (13 q) .

By (6), {u,} is an orthogonal basis of @2 (w(zx,a,b,c,d| q)dx). Since T is
isometric onto PW 4y, it follows that S\@ (145 q) is a basis of PWayy. |

Remark 1. The functions Sﬁﬁ) (75 q) play the same role in our setting as do
the functions sinm (x — n) /7 (x — n) in the Paley- Wiener space.

Now, Theorem 1 and Theorem B give the following sampling theorem. This
has been proved in [6], but the approach with reproducing kernels provides
the uniform convergence that will be used in the next section.

Theorem 2. For f € PWaw we have
Flw) =Y Fn) S (uq). (8)
n=0

where S{Y (15q) 1s given by
n nntl) - n - - _
(—1)"q 7 (1 —a’¢") (ag",ag " q),,
(43 0),, (@, 6%q"; q) o (1 — ag"*#) (1 — ag"—+)

The convergence 1s uniform on every compact subset of the real line.

S\ (5 q) =

Proof: Observe that, from

we obtain:

Moreover,
g (m,m) = S§) (m;q) =1,

and the result follows from Theorem 1 and Theorem B. ]
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4. The Askey-Wilson-Paley-Wiener theorem
Recall that the entire function f is of order p if

Inln(M(r;
(M)
r—00 Inr
A constant has order zero, by convention.
The entire function f of positive order p is of type 7 if

In(M (r;

rP
Definition 2. The space A gy, which will be the analogue of A in the Askey-
Walson setting, 1s the space constituted by the analytic continuation of the

functions from L*(w(x,a,b,c,d | q),dx) such that
M(r; f) = O(eMor),
that is, of order 2 and type In(1/q).

It is easy to see that the functions in A4y satisfy the conditions in [17,
Theorem 3.1]. We rewrite this statement as:
Theorem C Fvery f € Aqwy admits the expansion

F)=>F(n) S (mq). 9)
n=0

The next result is the Paley-Wiener theorem for the Askey-Wilson func-
tions transform. The cornerstone of its proof is the fact that the entire
function expansion (9) and the sampling expansion (8) are exzactly the same.

Theorem 3. If max(|a|, |b],|c|,|d]) <1, then Aay = PWaw.

Proof: Take f € PW . By definition we have, for some u € L*(w(z, a,b, c,d |
q),dzx),

F = @0 = [ ule)u, (@)l abed] gds

1
We need to study the growth of

M (r;uy).
From formula (5.4) in [23] and for 0 < 6§ < 7, we have
(aew, be'? et qe'? /d; q)oo

1—r/ _i0
~ d; 1+o0(1 . 0.
(ab, ac, be, €2 q) (¢ /e"dsq) [ [1+0(1)], as r 00

u, () =
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Let —1 < 6 < 0, then
M(n+0;u,) = O ((¢""7"/d;q),)

This implies
M(TL + 5; uﬂ) -0 ((q/d)nq—n(n+1+25)/2> .

Therefore,
Inln(M (r;
lim sup nn(M(r; v,)) = 2,
r—00 Inr
and
In(M (r;
lim sup n(M(r; u,)) =In(1/q).

r—00 r?
This condition implies that w,, is of order 2 and type at most In(1/g). There-
fore,

uy, () € Aaw.
This shows that f € Ayyy. Conversely, let f € Aqn. By Theorem C,

Fw)=>_f () S (uiq),

In the end of the proof of Theorem 1 we have seen that

S (1;q) = T (un) (1)

Then, the sampling formula of Theorem 2 can be written as

=Y f(n) /_1un(:c)uu (z) w(z,a,b,c,d | q)dz.

The uniform convergence of the sampling series allows to interchange the
integral with the sum in such a way that

= | (Zf (n) un<x>) (@) (e, a,b,c.d | g)dr
-1 n=0

Then we have written f in the form

f(p) =T (u)(w),
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with

u(zr) = Zf(n) w,(z) | € L*(w(z,a,b,c,d| q),dx).

As a result, f € PWw. [
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