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A PALEY-WIENER THEOREM FOR THE ASKEY-WILSON
FUNCTION TRANSFORM

LUIS DANIEL ABREU† AND FETHI BOUZEFFOUR

Abstract: We define an analogue of the Paley-Wiener space in the context of the
Askey-Wilson function transform, compute explicitly its reproducing kernel and
prove that the growth of functions in this space of entire functions is of order two
and type ln q−1, providing a Paley-Wiener Theorem for the Askey-Wilson transform.
Up to a change of scale, this growth is related to the refined concepts of exponential
order and growth proposed by J. P. Ramis. The Paley-Wiener theorem is proved
by combining a sampling theorem with a result on interpolation of entire functions
due to M. E. H. Ismail and D. Stanton.

Keywords: Askey-Wilson function, Paley-Wiener theorem, Reproducing Kernels,
Sampling Theorem.

1. Introduction

Let M(r; f) = sup{|f(z)| : |z| ≤ r} and consider the space A, constituted
by the analytic continuation to the whole complex plane of the functions
f ∈ L2 (R) satisfying

M(r; f) = O(eπr). (1)

Consider also the space PW constituted by the analytic continuation to
the whole complex plane of the functions f ∈ L2 (R) such that, for some
u ∈ L2 (−π, π),

f(z) =
1√
2π

∫ π

−π

eiztu (t) dt. (2)

A celebrated classical theorem of Paley and Wiener says that

A =PW .

The growth condition (1) means that f : C−→C has order one and type π
and the space PW is called the Paley-Wiener space of band-limited functions;
it is the reproducing kernel Hilbert space mapped via the Fourier transform
into L2 functions supported on the interval [−π, π]. See [24] for more details.
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Another famous result, the Whittaker-Shannon-Kolte´nikov sampling the-
orem, asserts that every function in the space PW admits the following
representation

f (x) =
∞∑

n=−∞
f (n)

sin π (x − n)

π (x − n)
. (3)

As a result, research concerning extensions of the sampling theorem has been
historically associated with the corresponding extensions of the Paley-Wiener
theorem.

The sampling theorem is known to hold for more general transforms, in-
cluding the Hankel and Jacobi functions transforms [13], [25] and the Paley-
Wiener theorem is know to extend to such special functions transforms [9].

Many sampling theorems have been recently considered in the q-case [1],
[2],[5], [16]. When thinking about these extensions, one should keep in mind
that many of the classical q-functions are special cases of a very general basic
hypergeometric function known as the Askey-Wilson function. This fact is
known as ”the Askey-Wilson transform scheme” [8].

Recently, one of us has found a sampling theorem for the Askey-Wilson
function transform [6]. Thus, it is natural to ask for the associated Paley-
Wiener theorem. It is the purpose of this paper to address this question,
providing a Paley-Wiener theorem for the Askey-Wilson function transform.
This will be done after rephrasing the results in [6] in the convenient repro-
ducing kernel Hilbert space setting.

Recent research concerning q-difference equations [19], interpolation of en-
tire functions [17] and moment problems [4], strongly suggests that in order
to del with basic hypergeometric functions one should use the following con-
cepts. A function f has logarithmic order ρ if

lim
r→+∞

sup
ln lnM(r; f)

ln ln r
= ρ

and f with logarithmic order ρ has logarithmic type c if

lim
r→+∞

sup
lnM(r; f)

(ln r)ρ = c.

This is because basic hypergeometric functions are of order zero and therefore
require a refined concept of order to define their growth. However, we will
approach the topic in a slightly different manner in this paper: Instead of
considering a function in µ, we will considerer a function in z = qµ. Looking
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at objects from this point of view, our Askey-Wilson Paley-Wiener space
turns out to be constituted by functions of order two with type ln(1/q). This
is equivalent to say that, in the variable z = qµ, they have logarithmic order
two and logarithmic type ln(1/q).

We have organized the paper in the following way. The next section reviews
the definitions of the Askey-Wilson polynomials and functions an provides a
short outline of the L2 theory of the Askey-Wilson transform. Then, in the
third section, we present a detailed study of the reproducing kernel Hilbert
space which is naturally associated to the Askey-Wilson functions transform
(in much the same way PW is associated to the Fourier transform). We com-
pute a basis for this space as well as the explicit formula for the reproducing
kernel and recover by this method the sampling theorem of [6]. Finally, in
the last section we prove a Paley-Wiener theorem, by describing the growth
of functions in the reproducing kernel Hilbert space in terms of their order
and type.

2. The Askey-Wilson function transform

2.1. The Askey-Wilson polynomials. Choose a number q such that 0 <
q < 1. The notational conventions from [11]

(a; q)0 = 1, (a; q)n =
n∏

k=1

(1 − aqk−1),

(a; q)∞ = lim
n→∞

(a; q)n, (a1, ..., am; q)n =
m∏

l=1

(al; q)n, |q| < 1,

where n = 1, 2, . . . , will be used. The symbol r+1φr stands for the function

r+1φr

(
a1, . . . , ar+1

b1, . . . , br

∣∣∣∣ q, z
)

=

∞∑

n=0

(a1, . . . , ar+1; q)n

(q, b1, . . . , br; q)n
zn.

The Askey-Wilson polynomials pn(x; a, b, c, d), with x = z+z−1

2 , are defined
by

pn(
z + z−1

2
; a, b, c, d) =

(ab, ac, ad; q)n

an 4φ3

(
q−n, qn−1abcd, az, a/z

ab, ac, ad

∣∣∣∣ q; q
)

.

(4)
If a, b, c, d ∈ C are four reals or two reals and one pair of conjugates,

or two pairs of conjugates such that |ab| , |ac| , |ad| , |bc| , |cd| < 1, then the
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Askey-Wilson polynomials are real valued and their orthogonality can be
written as an integral over x = z+z−1

2 ∈ [−1, 1] plus a finite sum over a
discrete set with mass points outside [−1, 1]. This finite sum does no occur
if |a| , |b| , |c| , |d| < 1. When max (|a| , |b| , |c| , |d|) < 1, the Askey-Wilson
polynomials satisfy the orthogonality relation

∫ 1

−1

pn(x; a, b, c, d)pm(x; a, b, c, d)w(x)dx = hnδm,n,

where

w (x) =
(x2, 1/x2; q)∞ sin θ

(ax, a/x, bx, b/x, cx, c/x, dx, d/x; q)∞
,

and

hn =
2π(abcdq2n; q)∞(abcdqn−1; q)n

(qn+1, abqn, acqn, adqn, bcqn, bdqn, cdqn; q)∞
.

The Askey-Wilson function is defined as

φγ (z) =
1

(bc, q/ad; q)∞
4φ3

(
ã/γ, ãγ, az, a/z

ab, ac, ad

∣∣∣∣ q; q
)

+

(ã/γ, ãγ, qb/d, qc/d, az, a/z; q)∞

(qγ/d̃, q/γd̃, ab, ac, bc, ad/q, qz/d, q/zd; q)∞
4φ3

(
qγ/d̃, q/γd̃, qz/d, q/zd

qb/d, qc/d, q2/ad

∣∣∣∣ q; q
)

,

where

ã =
√

q−1abcd,

b̃ = ab/ã = qã/cd,

c̃ = ac/ã = qãbd,

d̃ = ad/ã = qã/bc.

The function φγ is introduced in [15] and it can also be defined as a single 8φ7

with a very-well poised 8W7 structure [23]. The function φγ is meromorphic
in γ. Moreover, its poles are simple and can be removed multiplying it by
the factor (qγ/d̃, q/γd̃; q)∞.

Now we will define the Askey-Wilson function transform, following the
construction in [7]. A new weight function is defined as

W (x) = ∆ (x)Θ (x)
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where, using the notation θ (x) = (x, q/x; q)∞ for the renormalized Jacobi
theta function, the function Θ is defined as

Θ (x) =
θ (dx, d/x)

θ (dtx, dt/x)
.

For generic parameters a, b, c, d such that the weight function W has simple
poles we define a measure v, depending on these parameters, by

∫
f (x) dv (x) =

K

4iπ

∫

T

f(x)φγ (x)W (x)
dx

x

+
K

2

∑

x∈D

(
f (x) + f

(
x−1
))

Resy=x

(
W (y)

y

)
,

where K is a constant (the exact value will not be required), S = S− ∪ S+ is
the infinite, discrete set given by

S− = {dtqk; k ∈ Z, dtqk < −1},
S+ = {aqk; k ∈ Z, aqk > 1}.

In the next sections we will often refer to the measure defined above as
being of the form v = vc + νd, where vc is the continuous measure

dvc(x) = Θ(x)∆ (x) dx/x

continuous and νd is the discrete part, supported in the set S.
Now, let L2

+ (v) be the Hilbert space with respect to the measure v consti-
tuted by functions f satisfying f (x) = f

(
x−1
)
, ν-almost everywhere. The

Askey-Wilson function transform is defined by

(Ff) (γ) =

∫
f (x)φγ (x) dv (x)

for compactly supported functions f ∈ L2
+ (ν) . Let L2

+ (ṽ) be the same space
with respect to the same measure, but replacing the parameters a, b, c, d by
the dual parameters ã, b̃, c̃, d̃.The main result in [7] states that F extends to
an isometric isomorphism

F : L2
+ (v) → L2

+ (ṽ) .
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3. The Askey-Wilson Paley-Wiener space

3.1. Reproducing kernel Hilbert spaces. We will now introduce some
concepts concerning reproducing kernel Hilbert spaces. This exposition is
taken from [13], [10] and [20].

Let Hrep be a class of complex valued functions, defined in a set X ⊂ C,
such that Hrep is a Hilbert space. We say that k (γ, x) is a reproducing kernel

of Hrep if k (γ, x) ∈ Hrep for every γ ∈ X and every f ∈ Hrep satisfies the
reproducing equation

f (γ) = 〈f (.) , k (., γ)〉Hrep
.

Now we will use the language in Saitoh [20], and we proceed to give a brief
account of the required results.

Consider a second Hilbert space, H. For each t belonging to a domain X,
let K(., t) belong to H. Then,

k(γ, x) = 〈K(., γ), K(., x)〉H
is defined on X × X . Suppose that we have an isometric transformation

(Fg)(γ) =
〈
g, K(, γ)

〉
H

and denote the set of images by F (H). The following theorem can be found
in [20]:

Theorem A If F is a one to one isometric transformation, the kernel

k(γ, x) determines uniquely a reproducing kernel Hilbert space for which it

is the reproducing kernel. This reproducing kernel Hilbert space is precisely

F (H) and it can have no other reproducing kernel. If {Sn} is a basis of
F (H), then

k(γ, x) =
∑

n

Sn(γ)Sn(x).

There is a general formulation of the sampling theorem in reproducing
kernel Hilbert spaces [14]. We will use the following ”orthogonal basis case”.

Theorem B With the notations established earlier, we have: If there exists

{tn}n∈I⊂Z
such that {K(., tn)}n∈I

is an orthogonal basis, we then have the

sampling expansion

f(t) =
∑

n∈I

f(tn)
k(t, tn)

k(tn, tn)
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in F (H), pointwise over I, and uniformly over any compact subset of X for

which ‖Kt‖ is bounded.

The chief example of a reproducing kernel Hilbert space is PW . In this
situation the reproducing kernel is the function sinπ (x − γ) /π (x − γ), the
sampling points are tn = n and the uniformly convergent expansion is the
Whittaker-Shannon-Kolte´nikov sampling formula.

3.2. The Askey-Wilson function reproducing kernel. Let us look at
the reproducing kernel Hilbert space associated to the Askey-Wilson function
transform.

The first task is to consider a proper analogue of bandlimited functions.
This is done by defining a finite continuous Askey-wilson function in much
the same way it was done in [6].

We start by removing the poles of the function φãqµ: Consider a function
uµ, analytic in the variable µ, defined as

uµ (x, a, b, c, d | q) = (ãqµ; ãq−µ; q)∞φãqµ

(
eiθ
)
, x = cos θ.

Then we consider what is going to be the analogue of the transform (2): if
max(|a| , |b| , |c| , |d|) < 1, the finite continuous Askey-Wilson transform J is
defined by

J (f)(µ) =

∫ 1

−1

f(x)uµ (x; a, b, c, d | q)w(x, a, b, c, d | q)dx. (5)

The continuous Askey-Wilson relates to the Askey-Wilson transform as fol-
lows: If f̆ is the analytic function such that f (cos θ) = f̆

(
eiθ
)
, then

J (f)(µ) =
4iπ

K
(ãqµ; ãq−µ; q)∞F

(
f̆

Θ

)
(ãqµ).

Definition 1. The Askey-Wilson Paley-Wiener space, PWAW , is the space

constituted by the analytic extension to the complex plane of the functions

f ∈ L2
+ (v) such that, for some u ∈ L2 (w(x, a, b, c, d | q), dx),

f = J (u).

Let us look at this particular setting from the point of view of Theorem A.
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Theorem 1. If max(|a| , |b| , |c| , |d|) < 1, then the set PWAW is a Hilbert

space of entire functions with reproducing kernel k (γ, λ). The functions

S(ã)
n (µ; q) =

(−1)n q
n(n+1)

2

(
1 − ã2q2n

)
(ãqµ, ãq−µ; q)∞

(q; q)n (a, ã2qn; q)∞ (1 − ãqn+µ) (1 − ãqn−µ)
.

constitute an orthogonal basis of PWAW and the reproducing kernel is given

explicitly by

k (γ, λ) =
∞∑

n=0

S(ã)
n (γ; q)S(ã)

n (λ; q) .

Proof : To fulfill the conditions in Theorem A, we need to show that the
finite continuous Askey-Wilson is a one to one isomorphism between AAW

and PWAW . To see that it is one-to-one, observe that, since, if
∫ 1

−1

f(x)uµ (x; a, b, c, d | q)w(x, a, b, c, d | q)dx = 0, for all µ ∈ C,

then we have, in particular, that
∫ 1

−1

f(x)un (x; a, b, c, d | q) w(x, a, b, c, d | q)dx, for n = 0, 1, ...

Since for integer values of µ, uµ is a multiple of the Askey-Wilson polynomials,

un(x; a, b, c; d) =
(−1)nq−n(n−1)/2

(ab, ac, bc; q)n
d−npn(x; a, b, c, d), (6)

we can use the completeness of the system of the Askey-Wilson polynomials
to get f = 0. Consequently, J (f) is one to one. From the definition,

PWAW = J
[
L2 (w(x, a, b, c, d | q)dx)

]
.

Therefore, endowing PWAW with the inner product

〈J (f),J (g)〉PWAW
=

∫ 1

−1

f (x) g (x)w(x, a, b, c, d | q)dx, (7)

the finite Askey-Wilson transform J becomes a Hilbert space isometry be-
tween L2 (w(x, a, b, c, d | q)dx) and PWAW .

It remains to show that the functions S
(ã)
n (µ; q) provide an orthogonal basis

for PWAW . By the definition (5) and (6),

J (un)(µ) =

∫ 1

−1

un(x)uµ (x)w(x, a, b, c, d | q)dx



PALEY-WIENER THEOREM 9

=
(−1)nq−n(n−1)/2

dn(ab, ac, bc; q)n

∫ 1

−1

pn(x)uµ (x)w(x, a, b, c, d | q)dx.

Now we can use Proposition 6 of [6] to conclude that

J (un)(µ) = S(ã)
n (µ; q) .

By (6), {un} is an orthogonal basis of L2 (w(x, a, b, c, d | q)dx). Since J is

isometric onto PWAW , it follows that S
(ã)
n (µ; q) is a basis of PWAW .

Remark 1. The functions S
(ã)
n (γ; q) play the same role in our setting as do

the functions sin π (x − n) /π (x − n) in the Paley-Wiener space.

Now, Theorem 1 and Theorem B give the following sampling theorem. This
has been proved in [6], but the approach with reproducing kernels provides
the uniform convergence that will be used in the next section.

Theorem 2. For f ∈ PWAW we have

f (µ) =
∞∑

n=0

f (n)S(ã)
n (µ; q) . (8)

where S
(ã)
n (µ; q) is given by

S(ã)
n (µ; q) =

(−1)n q
n(n+1)

2

(
1 − ã2q2n

)
(ãqµ, ãq−µ; q)∞

(q; q)n (a, ã2qn; q)∞ (1 − ãqn+µ) (1 − ãqn−µ)
.

The convergence is uniform on every compact subset of the real line.

Proof : Observe that, from

S(ã)
n (m; q) = δn,m,

we obtain:

g (µ, m) =

∞∑

n=0

S(ã)
n (µ; q) S(ã)

n (m; q) = S(ã)
m (µ; q) .

Moreover,

g (m, m) = S(ã)
m (m; q) = 1,

and the result follows from Theorem 1 and Theorem B.
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4. The Askey-Wilson-Paley-Wiener theorem

Recall that the entire function f is of order ρ if

lim
r−→∞

ln ln(M(r; f))

ln r
= ρ.

A constant has order zero, by convention.
The entire function f of positive order ρ is of type τ if

lim
ln(M(r; f))

rρ
= τ .

Definition 2. The space AAW , which will be the analogue of A in the Askey-

Wilson setting, is the space constituted by the analytic continuation of the

functions from L2(w(x, a, b, c, d | q), dx) such that

M(r; f) = O(eln(1/q)r2

),

that is, of order 2 and type ln(1/q).

It is easy to see that the functions in AAW satisfy the conditions in [17,
Theorem 3.1]. We rewrite this statement as:

Theorem C Every f ∈ AAW admits the expansion

f (µ) =
∞∑

n=0

f (n)S(ã)
n (µ; q) . (9)

The next result is the Paley-Wiener theorem for the Askey-Wilson func-
tions transform. The cornerstone of its proof is the fact that the entire
function expansion (9) and the sampling expansion (8) are exactly the same.

Theorem 3. If max(|a| , |b| , |c| , |d|) < 1, then AAW = PWAW .

Proof : Take f ∈ PWAW . By definition we have, for some u ∈ L2(w(x, a, b, c, d |
q), dx),

f (µ) = J (u) (µ) =

∫ 1

−1

u(x)uµ (x)w(x, a, b, c, d | q)dx.

We need to study the growth of

M (r; uµ) .

From formula (5.4) in [23] and for 0 ≤ θ ≤ π, we have

ur (x) =

(
aeiθ, beiθ, ceiθ, qeiθ/d; q

)
∞

(ab, ac, bc, e2iθ; q)∞

(
q1−r/eiθd; q

)
∞ [1 + o (1)], as r −→ ∞.
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Let −1 < δ < 0, then

M(n + δ; uµ) = O
((

q1−δ−n/d; q
)
n

)
.

This implies

M(n + δ; uµ) = O
(
(q/d)nq−n(n+1+2δ)/2

)
.

Therefore,

lim
r→∞

sup
ln ln(M(r; uµ))

ln r
= 2,

and

lim
r→∞

sup
ln(M(r; uµ))

r2
= ln (1/q) .

This condition implies that uµ is of order 2 and type at most ln(1/q). There-
fore,

uµ (x) ∈ AAW .

This shows that f ∈ AAW . Conversely, let f ∈ AAW . By Theorem C,

f (µ) =

∞∑

n=0

f (n)S(ã)
n (µ; q) ,

In the end of the proof of Theorem 1 we have seen that

S(ã)
n (µ; q) = J (un) (µ).

Then, the sampling formula of Theorem 2 can be written as

f (µ) =
∞∑

n=0

f (n)J (un) (µ)

=
∞∑

n=0

f (n)

∫ 1

−1

un(x)uµ (x)w(x, a, b, c, d | q)dx.

The uniform convergence of the sampling series allows to interchange the
integral with the sum in such a way that

f (µ) =

∫ 1

−1

( ∞∑

n=0

f (n)un(x)

)
uµ (x)w(x, a, b, c, d | q)dx.

Then we have written f in the form

f (µ) = J (u)(µ),
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with

u (x) =

( ∞∑

n=0

f (n)un(x)

)
∈ L2(w(x, a, b, c, d | q), dx).

As a result, f ∈ PWAW .
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