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Unsupervised EEG preictal 
interval identification in patients 
with drug‑resistant epilepsy
Adriana Leal 1*, Juliana Curty 1, Fábio Lopes 1,2, Mauro F. Pinto 1, Ana Oliveira 1, 
Francisco Sales 3, Anna M. Bianchi 4, Maria G. Ruano 1,5, António Dourado 1, Jorge Henriques 1 & 
César A. Teixeira 1

Typical seizure prediction models aim at discriminating interictal brain activity from pre‑seizure 
electrographic patterns. Given the lack of a preictal clinical definition, a fixed interval is widely 
used to develop these models. Recent studies reporting preictal interval selection among a range 
of fixed intervals show inter‑ and intra‑patient preictal interval variability, possibly reflecting the 
heterogeneity of the seizure generation process. Obtaining accurate labels of the preictal interval can 
be used to train supervised prediction models and, hence, avoid setting a fixed preictal interval for all 
seizures within the same patient. Unsupervised learning methods hold great promise for exploring 
preictal alterations on a seizure‑specific scale. Multivariate and univariate linear and nonlinear 
features were extracted from scalp electroencephalography (EEG) signals collected from 41 patients 
with drug‑resistant epilepsy undergoing presurgical monitoring. Nonlinear dimensionality reduction 
was performed for each group of features and each of the 226 seizures. We applied different clustering 
methods in searching for preictal clusters located until 2 h before the seizure onset. We identified 
preictal patterns in 90% of patients and 51% of the visually inspected seizures. The preictal clusters 
manifested a seizure‑specific profile with varying duration (22.9 ± 21.0 min) and starting time before 
seizure onset (47.6 ± 27.3 min). Searching for preictal patterns on the EEG trace using unsupervised 
methods showed that it is possible to identify seizure‑specific preictal signatures for some patients 
and some seizures within the same patient.

Epilepsy research spans different areas, with researchers directing great efforts towards discovering 
electrophysiological biomarkers that may enable the design of seizure prediction  models1. The ability to predict 
when a seizure will occur has been linked to the potential of either stopping that seizure or preventing adverse 
effects stemming from its  occurrence1. Specifically, available nonpharmacological treatments aiming at seizure 
controlling, e.g., the use of intervention devices that enable electrical stimulation or administration of acute 
medication, rely on the correct prediction of seizures. Improving the efficacy of these treatments can become of 
great usefulness for people diagnosed with drug-resistant epilepsy (DRE)1,2. Patients with DRE represent about 
one-third of all patients with epilepsy and have their lives limited due to the recurrent spontaneous nature of 
seizures that cannot be prevented by delivering chronic antiseizure  medication3.

Seizure prediction models have been developed for over 40 years with the aim of discriminating between 
periods of normal, seizure-free brain activity (interictal state) and pre-seizure changes (preictal state)4. However, 
despite initial encouraging results, only recently have researchers proved that prospective seizure prediction is 
possible, at least for some  patients5. Comprehensive reviews have provided guidelines for performance assessment 
and statistical validation of seizure prediction  studies4,6. Adopting these guidelines has demonstrated that 
seizure prediction models generally perform poorly, being successful for only some patients. The heterogeneity 
of the ictogenesis mechanisms among seizures (intra- and inter-patient) can contribute to the unsatisfactory 
performance of current seizure prediction  models7,8. As such, understanding the transition from interictal to 
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ictal states can greatly influence the prediction performance, demanding for a proper characterisation of the 
preictal interval.

Literature shows evidence of the preictal interval firstly by observing changes in the electroencephalography 
(EEG) recordings seconds to hours before the seizure onset and, additionally, by the reported predictability of 
 seizures4,9. Starting in the early 1990s, with the application of the mathematical theory of nonlinear dynamics, 
the preictal interval became associated with the state during which the brain activity evolves deterministically 
towards the  seizure7,10. In other words, once the brain enters this state, a “point of no return” has been passed, 
meaning that the seizure will  occur6,7,11. In practice, integrating preictal information in supervised seizure 
prediction models consists of using preictal interval annotations to perform a prediction within a given prediction 
horizon. If an alarm is raised during this interval, it is counted as a true prediction; otherwise, it is considered 
a false  prediction4,6,8,11. As there is no clinical definition of the preictal interval, several studies present seizure 
prediction models using a fixed interval (typically a value in the range of 2–90 min)6,12. Since 2005, concerns 
regarding preictal’s starting time have been addressed through the evaluation of different preictal interval 
 durations13–22. There are statistical approaches that typically compare the distributions of interictal and preictal 
intervals and there are algorithmic approaches performing a grid-search on the preictal  interval6. In statistical 
approaches, a range of different preictal intervals is compared with the corresponding interictal intervals, with 
a conclusion being drawn for the most discriminating preictal interval. In algorithmic approaches, a range of 
intervals is considered when training algorithms and the one leading to the best prediction performance is 
integrated into the final prediction algorithm. In the literature, preictal intervals ranging from 2 to 240 min have 
been inspected. The highest discrimination (in the case of statistical analysis) or best performances (in the case 
of a seizure prediction algorithm) correspond to an average preictal interval in the range of 28–60  min13–19,21,22. 
However, in some cases, considering preictal intervals longer than 60 min could have changed this average, 
given that for some patients, this was the longest analysed interval yielding the best  performance14,16,19. The 
statistical approaches assessing preictal intervals with different duration indicate that the selected preictal interval 
varies among univariate and bivariate features and among seizures experienced by the same patient. Mormann 
et al.13 reported that bivariate features were associated with longer preictal intervals, possibly indicating a higher 
sensitivity to long-term seizure dynamics. Bandarabadi et al.18 reported seizure-specific preictal alterations in 70% 
of seizures. Despite being an improvement to the use of a fixed preictal interval for an entire group of patients, 
performing a patient grid-search on a user-defined range of preictal intervals still does not accurately address 
the variability of the seizure generation process.

Additionally, given that prediction models try to correctly classify interictal and preictals samples, it is natural 
that the prediction performance heavily relies on feeding the models with accurate preictal information. It follows 
that using unsupervised learning methods seems to have the potential to provide precise insight into the existence 
of preictal activity and possibly mitigate the limitation of a user-defined preictal interval. Moreover, it introduces 
the possibility of dealing with the heterogeneity of the ictogenesis mechanisms within the same patient. A proper 
characterisation will likely be reflected in obtaining more accurate, seizure-specific annotations of the preictal 
intervals that can be further integrated into the prediction algorithms during the training phase.

Unsupervised learning methods have been scarcely employed to automatically identify preictal activity. The 
first study was conducted in 2005 by Le Van Quyen et al.23 whom reported the use of K-means clustering 
algorithm to build a library of interictal patterns based on the analysis of the degree of phase synchronisation. The 
interictal recordings were found to generally fit into 5 to 10 clusters, suggesting the existence of recurrent patterns 
of interictal activity. The results varied widely among  patients23. From 2019 onward, the use of unsupervised 
learning methods for preictal determination was  resumed24–26. Results across studies indicate that the preictal 
interval may manifest in human electrographic data only for some seizures (in 41% of seizures in ECG  data26 
and ranging from 38% to 70%23–25 in EEG data). The preictal heterogeneity observed within seizures for the same 
patient supports exploring seizure-specific preictal  profiles8,27–29.

Our study explores the existence of preictal intervals in EEG data using unsupervised learning methods. First, 
we extracted univariate and multivariate features from 4.5 h of EEG data recorded before seizure onset. Second, 
we applied four clustering methods to each seizure’s feature data obtained after dimensionality reduction. Then, 
we performed a visual inspection in search of any pattern that could be distinguishable from interictal activity 
in the 2 h preceding seizure onset. When those patterns were identified, we characterised them in terms of 
duration, density, and starting time.

Methods
The following sections describe each step performed to explore the preictal interval in EEG data from patients 
with DRE (see Fig. 1). We started by preprocessing the EEG recordings to minimise the effects of possible 
confounding artefacts. Then, we extracted handcrafted features from the preprocessed EEG data. Afterwards, 
given the obtained high-dimensional feature space, we performed dimensionality reduction and applied four 
clustering methods to the reduced three-dimensional feature space. We visually inspected each seizure’s data 
distribution and clustering solutions in search of preictal activity. When a cluster has been discovered for a given 
seizure in the 120 min before onset, we considered it evidence of the preictal state, and we gathered information 
on its starting time, duration, and density.

Database. The European Epilepsy Database, also known as the EPILEPSIAE database, provided the dataset 
used in this study. Data were recorded in patients with DRE under presurgical monitoring at three hospitals: 
Epilepsiezentrum, Universitätsklinikum Freiburg (Germany), Centro Hospitalar e Universitário de Coimbra 
(Portugal), and Hôpital de la Pitié-Salpêtrière, Paris (France)30,31. During the hospital stay, seizure frequency 
was increased by reducing the number and dose of antiepileptic  medication30. The local ethics committees of 
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the three hospitals involved in the database development (Ethik-Kommission der Albert-Ludwigs-Universität 
Freiburg; Comité consultatif sur le traitement de l’information en matière de recherche dans le domaine de la 
santé, Hôpital de la Pitié-Salpêtrière; and Comité de Ética do Centro Hospitalar e Universitário de Coimbra) 
approved the recording and use of data for research purposes. Informed consent was obtained from patients and 
the parents and/or legal guardians of patients under 18 years of age.

We inspected a group of 41 patients (24 male; age range: 13-67 years; mean age: 41± 16 years) for whom 
only seizures occurring in the temporal lobe have been annotated. Patient data contains scalp EEG, and ECG 
signals recorded simultaneously. Data from 19 EEG electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, 
P7, P3, Pz, P4, P8, O1, and O2), sampled at 256 Hz, were analysed. Refer to Supplementary Section 2 for more 
details on patient and seizure metadata. This dataset, previously analysed by Leal et al.26, has also been analysed 
here for comparison purposes.

This study concerns the inspection of EEG data acquired for lead seizures, i.e., for seizures preceded by at least 
4.5 h of seizure-free interval, therefore considered as independent  events22,32. Given this criterion, 162 seizures 
separated by less than 4.5 h were discarded from a total of 388 seizures, leading to the 226 seizures considered 
herein.

EEG signal preprocessing. EEG preprocessing is crucial to allow a meaningful application of clustering 
methods. But it must be performed in a way that appropriately preserves the useful, brain-related information 
contained in the EEG. One important step is to remove artefacts naturally occurring in the non-controlled 
environment of presurgical monitoring. This step was performed using the algorithm developed by Lopes et al.33 
described below. First, the scalp EEG signals were filtered using a 0.5–100 Hz bandpass 4th-order Butterworth 
filter and a 50 Hz 2nd-order notch filter. Secondly, segments containing flatlines, constant saturated signals and 
abnormal peaks were automatically identified and discarded. Then, the 4.5-h signals were divided into 10-min 
segments.

After automatically removing the remaining experimental errors, the EEG segments were re-referenced 
to average reference and decomposed using extended infomax independent component analysis. Some of the 
obtained independent components (ICs) would still contain artefacts, including eye blinks, eye movements and 
muscle activity. As such, a deep neural network (DNN) model was used to classify the ICs as brain-related or 
artefact. The model was trained on 61092 ICs from 20 patients and tested on 16334 ICs from 5 patients. Two 
trained experts labelled each IC as brain or noise based on three plots: the IC time series, the IC power spectral 
densities (PSDs) and the IC topographic maps. Given the low number of EEG channels (19), some ICs would 
contain both brain and artefact information. To avoid the loss of valuable brain information, these ICs were still 
labelled brain-related. The experts’ labelling then favoured retaining the maximum of brain information at the 
cost of also keeping some physiological artefacts such as muscle activity. Sensitivity and specificity of 93% and 
94%, respectively, were reported after applying the DNN model to the test dataset.

The EEG signals used in the feature engineering phase then resulted from the signal reconstruction using the 
brain-related independent components automatically classified with the DNN model.

Figure 1.  Block diagram of the proposed methodology. The study’s first phase corresponded to preprocessing 
and feature engineering and preparation. The second phase encompassed dimensionality reduction of 
each feature group (univariate linear, univariate nonlinear and multivariate), followed by the application of 
unsupervised learning methods and the preictal interval inspection.
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EEG feature engineering. Several features were extracted from EEG data. It is common to group features 
into (i) univariate linear, capturing, for example, the characteristics of the frequency spectrum in different 
frequency bands, (ii) univariate nonlinear, capturing the nonlinear behaviour of the EEG, and (iii) multivariate 
measures, measuring brain connectivity patterns (refer to Supplementary Section  3 for more details). The 
frequency bands considered in univariate linear and multivariate feature extraction comprise delta (0.5 to <4 
Hz), theta (4 to <8 Hz), alpha (8 to < 13 Hz), beta (13 to <30 Hz), and gamma (30 to < 47 Hz)6,12,14,34.

We computed each value of the features from 5-second non-overlapping windows of  EEG12. The final feature 
dataset comprised 42 univariate linear features per channel, 29 univariate nonlinear features per channel and 
495 multivariate features.

Feature data preparation. We removed information contained in the 10 min before the seizure onset 
and the 30  min after the previous seizure offset, in the case of subsequent seizures (refer to Supplementary 
Fig. S1 for a detailed explanation). The 30-min interval corresponds to the period following the ictal discharge, 
known as postictal, that may be captured in the electrographic  trace13,35–39. The 10-min interval corresponds to 
the seizure prediction horizon (SPH)21,22,40–42. Accordingly, we searched for preictal patterns until a maximum 
of 4.5 h of EEG data before seizure onset and a minimum of 4 h (in case of subsequent seizures separated by 
exactly 4.5 h and excluding the postictal interval). After excluding the SPH interval (and the postictal interval 
when necessary), we effectively analysed a maximum and a minimum of 4.33 and 3.88 h of EEG data (mean±std: 
4.31 ± 0.07 h) per seizure.

Inspection of the feature dataset resulted in identifying constant and quasi-constant features in the three fea-
ture groups (univariate linear, univariate nonlinear, and multivariate). Constant features correspond to features 
for which all values are equal. Quasi-constant features correspond to features for which more than half of the 
values are equal. Constant and quasi-constant features were discarded from the analysis (refer to Supplementary 
Section 4 for further details).

Afterwards, we applied the z-score normalisation to each feature group dataset.

Dimensionality reduction. The feature dataset of each seizure contains 741 univariate linear, 532 
univariate nonlinear, and between 235 and 329 multivariate features. Dimensionality reduction was applied to 
obtain the three-dimensional space where clusters are further drawn. This way, it was possible to visually inspect 
and interpret the clustering results.

Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP), a recently proposed 
nonlinear manifold dimensionality reduction method, was used in this study. This method produces low-dimen-
sional datasets while preserving the local and global structure of the original  data43. The basic principle of this 
graph algorithm is to keep similar points close and dissimilar points  apart44. Although we have tried other 
feature reduction methods (principal component analysis and t-distributed Stochastic Neighbour Embedding), 
we concluded that UMAP more consistently presented separated rounded or elongated clusters. The UMAP’s 
superiority over the other state-of-the-art methods has also been widely reported in the  literature43–46. As such, 
we decided to conduct the unsupervised learning task on the UMAP-reduced data.

UMAP starts by building a high dimensional weighted graph representation of the data where the edge 
weights correspond to the likelihood that two points are connected. Then a cost function is used to optimise a 
low-dimensional graph while maintaining the original structural similarity. UMAP has two main input param-
eters that control the trade-off between local and global structures: the number of nearest neighbours and the 
minimum distance. The former defines the number of nearest neighbours required to obtain the initial high-
dimensional graph. The latter corresponds to the minimum distance between points in low-dimensional  space44.

We performed hyperparameter tuning for UMAP (see Fig. 2). Namely, we applied UMAP considering dif-
ferent values of nearest neighbours (ten values in the range of [10, 100]) and minimum distance (nine values in 
the range of [0.1, 0.9]). In the next section, we elaborate on finding the best parameters.

Unsupervised learning (clustering). Four clustering methods were applied to the three-dimensional 
datasets obtained for each seizure, resulting from applying UMAP (for each hyperparameter combination): 
k-means, agglomerative hierarchical, hierarchical density-based spatial clustering of applications with noise 
(HDBSC AN) and Expectation-maximisation clustering using Gaussian mixture  models26.

With the previous clustering methods (described in detail in Supplementary Section 5), we aimed to max-
imise the possibility of identifying preictal signatures across the different data spatial distributions (observed 
after dimensionality reduction for each seizure). The different clustering methods were chosen according to 
each method’s ability to identify a specific shape of clusters, whether it be round, elongated, or other arbitrary 
shapes. Whenever a clustering method was applied, we evaluated the obtained clustering solution using the 
Dunn’s Index (DI) cluster evaluation  metric47. Specifically, for each seizure, we selected the best parameter 
combination for UMAP by searching for the maximum DI value among the values obtained for each clustering 
method (see Fig. 2).

After parameter tuning, we obtained the final UMAP-reduced data for each seizure, yielding 226 three-dimen-
sional representations for each feature group. For each seizure’s reduced data, the final clustering solution would 
be given by the clustering method yielding the maximum value of DI. A visual inspection was then performed to 
determine if the clustering method selected with the DI matched the observed clusters in each seizure’s reduced 
data. There were a few cases for which no match was achieved. We visually inspected the results obtained in 
those cases by applying the described clustering methods. If none of these methods could capture the observed 
clusters, we would increase the number of clusters in agglomerative hierarchical, K-means and Gaussian mixture 

https://umap-learn.readthedocs.io/en/latest/
https://hdbscan.readthedocs.io/en/latest/index.html
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models in trying to fit visual inspection. When a good fit was not achieved by increasing the number of clusters, 
we would try DBSCAN for different values of ε , as performed in another  study26.

Searching for preictal patterns. Having selected the best parameters for UMAP, we inspected the reduced 
datasets and the respective clustering solutions in the search for preictal alterations. Published  works14,16,19 
report changes 1 h before seizures, with significant inter- and intra-patient variability. To take that into account, 
we considered that a preictal interval would start 120 min before seizure onset. We assumed that a putative 
preictal activity would manifest as abnormal fluctuations in the EEG feature dataset with a higher probability 
of occurrence starting at the 120  min before the seizure onset until the seizure. In addition, in the case of 
identifying a preictal pattern in a clustering solution with multiple clusters, that state was typically associated 
with the cluster that locates, in time, nearer the seizure onset, but not necessarily extending to the onset time 
(refer to Supplementary Fig. S1, for some examples).

After a first visual inspection of the three-dimensional data distributions, it was possible to identify six data 
distributions that repeatedly showed across seizures and groups of features. Each category is described in Table 1 
and exemplified in Fig. 3. Each seizure’s three-dimensional representation was then assigned to one of the six 
categories of distributions. This categorisation enabled quantification of the different patterns arising before the 
seizure onset.

Most data distributions would easily fit one of those six categories. However, there were a few seizures for 
which the corresponding data distribution could be difficult to associate with a single category. Consequently, we 
assembled a group of five team members conducting research in the context of seizure prediction to perform this 
categorisation independently. Each member categorised the clustering solutions into one of the six categories.

After each expert has voted, the final category would correspond to the one gathering three or more votes. 
If three or more votes were not assigned to a given category, the team would discuss over the reduced data, and, 
through knowledge exchange, the team would agree on a final category. It is important to note that none of the 
team members suggested removing an existing category or adding a new category.

Evidence of preictal interval was more reliably observed in the data distribution from categories 3 and 6. 
After discarding noisy samples, we registered the preictal interval starting and ending samples (see Fig. 4). With 
this information, we computed three preictal characteristics: interval starting time before seizure onset, interval 

Figure 2.  Representation of the number of clustering solutions obtained for each seizure and feature group. 
Four clustering methods were applied to UMAP-reduced three-dimensional datasets (KM: K-means clustering 
for k = 2, 3, 4 , AH: agglomerative hierarchical clustering for k = 2, 3, 4 , GMM: Gaussian mixture models for 
k = 2, 3, 4 and HDBSCAN). Parameter tuning was performed for UMAP (ten values of nearest neighbours 
and nine values of minimum distance). The final reduced data obtained before each seizure’s onset and for each 
feature reduction method corresponds to the maximum DI obtained among the computed clustering solutions.
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Figure 3.  Process of searching for the preictal interval. Each example of the six data distribution categories is 
represented by the projected UMAP components (labelled x, y, and z). The seizure occurs at 0 min. Category 1 
was obtained from patient 21902, seizure 4, reduced multivariate features. Category 2 was obtained from patient 
98102, seizure 5, reduced univariate nonlinear features. Category 3 was obtained from patient 58602, seizure 4, 
reduced multivariate features. Category 4 was obtained from patient 110602, seizure 3, reduced univariate linear 
features. Category 5 was obtained from patient 98202, seizure 2, reduced univariate nonlinear features. Category 
6 was obtained from patient 123902, seizure 2, reduced univariate linear features.
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duration, and density. The preictal density is merely an indicator of the number of preictal samples within the 
preictal interval defined by the starting and ending times. It corresponds to the number of preictal samples 
divided by the total number of samples comprised in that interval.

Sleep‑wake cycle detection. After performing a visual inspection of the reduced datasets and 
corresponding clustering solutions, particularly category 2 solutions, we observed that, in some cases, the 
clusters’ separation would occur during day-to-night transitions and vice-versa. We are aware that the oscillations 
observed in the EEG features during the unsupervised study may reflect the copresence of other confounders 
rather than preictal activity, such as the sleep-wake cycle and/or other internal body circadian cycles. These 
normal oscillations translate to changes in EEG data distribution over time called concept drifts. We considered 
that one of the most frequent types of concept drifts present in our data is the sleep-wake cycle. Based on this, 
we used a model to detect the sleep-wake cycle for each patient and confirm the effect of the sleep-wake cycle 
on the  analysis48.

Then, we computed the phi coefficient (also known as Matthews correlation coefficient)49,50 between the 
binary sleep-wake vector and a binary vector representing a given cluster distribution for categories 2, 3, and 6. 
As such, for the case of categories 3 and 6, the binary vector contains ones corresponding to the cluster samples 
indicating preictal alterations and zeros corresponding to the remaining samples (see Fig. 4). For category 2, as 
the clustering solution always comprised two equivalently sized clusters, the binary vector would contain zeros 
and ones corresponding to the samples in each cluster.

Figure 4, depicting reduced data, the clustering solution, and the sleep-wake cycle before onset, was obtained 
for each seizure’s data and each feature group, for all categories. All figures and developed code are publicly avail-
able on GitHub via adria naleal/ eeg- preic tal- ident ifica tion- epile psy. git. To ensure reproducible results, we set a 
random seed state on the following Python functions: UMAP, k-means and Gaussian mixture models.

Comparison with control intervals. The methodology described in the previous sections was repeated 
for control intervals. These intervals, of 4.5 h duration, ended at the corresponding seizure EEG onset hour but 
on the day before the seizure. This way, we could compare the results for the 4.5-h interval before the seizure 
onset with the results for the seizure-free intervals occurring at the same time of the 24-h day. If similar data 
distributions occur in both intervals, it means that the clusters observed in the 2 h before the seizure onset are 
not related to preictal activity but instead to another unknown variable.

By selecting the control intervals from the exact same time of the 24-h day, on the previous day, we are con-
trolling for the effect of circadian rhythms on the data distribution. Additionally, given that we are considering a 
seizure-specific approach throughout the study, the control intervals are located within the interictal time before 
the onset of the seizure under analysis (see Supplementary Fig. S8 for some examples). Accordingly, a minimum 
of 33 h of seizure-free signal is required before the onset. In other words, the control intervals start and end at 
28.5 and 24 h before the seizure onset, respectively, and are separated by at least 4.5 h from the previous seizure. 
According to these criteria, we analysed 47 control intervals. These control intervals were only analysed for the 
univariate linear features, which require less computational time to extract.

Metadata analysis. We quantified the association between each of the four seizure variables (vigilance 
state, seizure type, EEG onset hour, and percentage of noise) and the preictal characteristics (starting time, 
duration, and density) of the seizures for which preictal was found. Notice that we included the percentage 
of noise determined for each seizure’s 4.5 h of data in order to discard the effect of obtaining a clear cluster 
separation due to missing feature values introduced by preprocessing. This metadata analysis was performed for 
each group of features.

Results
By looking at the examples in Fig. 3, it is possible to conclude that finding evidence of the preictal interval would 
correspond to obtaining reduced data and clustering solutions categorised as either category 3 or 6. In the case 
of category 3, we can see a smaller cluster clearly separated from the remaining samples. For the case of category 

Table 1.  Data distribution categories defined after data reduction and clustering solution inspection.

Category Definition

Category 1 There is no evidence of a preictal structure. There might be a clear separation into a smaller cluster, but that either comprises 
samples separated in time or comprises samples strictly located previously to the 120 min before seizure onset

Category 2 Separation into two evenly distributed clusters that might indicate some external interference, such as the transition of the 
sleep-wake cycle

Category 3 Clear separation into two differently sized clusters, the smaller one resembling a preictal interval located within the 120 min 
before seizure onset

Category 4 Data distribution indicating progression over time, with samples following a temporal trajectory

Category 5 It seems that a smaller cluster can be identified, but it would be difficult to isolate it in a cluster using clustering methods

Category 6
Category assigned when the clustering solution comprises more than two clusters that may indicate the existence of brain 
multistates and even progression over time. The preictal interval is represented by the cluster located within 120 min before 
seizure onset and nearest to the onset. It might be possible to observe evidence of sleep stage transition, preictal interval aside

https://github.com/adrianaleal/eeg-preictal-identification-epilepsy.git
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Figure 4.  Example of clustering solution inspection. Data was acquired for patient 112802 before the onset 
of seizure 6. (a) UMAP dimensionality reduction was performed on multivariate features. (b) The clustering 
solution was obtained using HDBSCAN. (c) Representation of the clustering solution and the preictal interval 
categorised as category 3. The preictal interval started 38.6 min before seizure onset, lasted for 19.9 min and 
verified 98.7% density. (d) Representation of the preictal interval and sleep-wake cycle, with a phi coefficient of 
0.18.
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6, we have data distributions comprising small clusters clearly separated from each other, possibly indicating 
the existence of different brain states. We assume that some of these states are associated with pre-seizure altera-
tions. To quantify the possible presence of preictal activity, we considered that the preictal would correspond to 
the cluster located near the seizure. Additionally, category 5 data distributions also inform about clusters of data 
containing samples that are close in time. However, contrarily to categories 3 and 6, category 5 clusters could 
not be automatically distinguished and isolated by the clustering methods.

The results for the categorisation performed by each of the five experts are presented in Supplementary Sec-
tion 6.1. A consensus was not achieved for 8%, 7%, 8%, and 11% of the seizures for the univariate linear, univari-
ate nonlinear, and multivariate, and control univariate linear feature groups, respectively.

Figure 5 presents the prevalence of each category in the three groups of features after analysing the doubtful 
seizures. Evidence of the preictal interval represented by category 3 was found for all feature groups extracted 
from the 4.5 h preceding the seizure onset, with similar prevalence (8.4% in univariate linear, 11.5% in univariate 
nonlinear, and 9.7% in multivariate).

Additionally, data distributions showing several small and structured clusters over time (represented by 
category 6) were widely seen for the group of univariate linear features. Univariate nonlinear features were the 
largest source of category 2 data distributions. For this group of features, the clustering methods often could 
separate two major, evenly sized clusters. This data distribution might indicate a clear transition between two 
brain states that may not be related to epileptogenic activity but other phenomena, e.g. the sleep-wake cycle.

Regarding category 5, we observed that this type of data distribution occurred in at least one-quarter of the 
seizures in all groups of features. At last, we observed a residual prevalence of category 4 distributions. These 
distributions are characterised by a gradual and continuous evolution of the samples’ trajectory over the ana-
lysed data. Analysis of the distributions obtained for the reduced univariate linear features group resulted in 
categorising the lowest number of uninformative distributions. Namely, only 16.8% of seizures in the univariate 
linear group belonged to category 1.

Figure 6 shows information about the existence of preictal activity for each of the analysed seizures and 
patients. Among the 41 patients selected for this study, there were 37 for whom at least one seizure showed a 

Figure 5.  Results for data distribution categorisation. The categorisation of data distributions after experts 
voting and discussion of doubtful data distributions is presented for each feature group: (a) multivariate, (b) 
univariate linear, (c) univariate nonlinear, and (d) control univariate linear.
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distinct pattern in the reduced data (either with univariate linear, univariate nonlinear or multivariate) that might 
indicate a preictal alteration (categories 3 or 6). From the 226 seizures studied, 116 seizures (51%) were catego-
rised as containing distinctive pre-seizure information. Multivariate feature reduction led to the identification 
of preictal clusters in four seizures for which preictal clusters were not found with univariate features. Category 
5 preictal appearance is characterised by data clustered in time, however, with a less distinguishable separation 
from the remaining samples. If we include category 5 in preictal quantification, preictal patterns increase to a 
total of 183 seizures (81%) in 41 patients.

We compared this article’s information with the results reported in a previous study regarding the search 
for preictal patterns in ECG data (acquired simultaneously with EEG in the group of patients selected for the 
current study)26. In that work, preictal clusters were found for 41% of the seizures and 90% of the patients. As 
shown in Fig. 6, the preictal interval was identified both in EEG and ECG (considering categories 3 and 6) in 50 
out of 226 seizures (22%). Additionally, when comparing the starting time before the seizure onset between both 
modalities (see Supplementary Section 6.5), it was possible to observe that while the preictal intervals started 
mainly 20–40 min before the onset in the EEG recordings, in the ECG there was also a large number of preictals 
starting from 70 to 120 min.

Figure 7 presents the statistics of the preictal interval characteristics when it was found and assigned catego-
ries 3 or 6. The distributions of preictal (i) starting time before seizure onset, (ii) duration, and (iii) density are 
depicted. The average preictal’s starting time, computed over all seizures and feature groups, was 47.6± 27.3 min 
(mean ± standard deviation). It started in the 40 min preceding seizure in 53.0% of the preictal clusters. It lasted 
for 22.9± 21.0 min (mean ± standard deviation) and was often nearly continuous (90% density observed for 
62.4% of preictal clusters found for all groups of features). Contrarily to the other features groups, results show 
that the vast majority (84.8%) of preictals found for the multivariate group lasted less than 20 min. Addition-
ally, we observed preictal alterations ending at the seizure onset in 45.3% of the preictal clusters identified for 
categories 3 and 6.

For some seizures, a preictal cluster was found for more than one feature group. To perform a comparison 
with state-of-the-art studies, it was necessary to select a final preictal interval to compare with. This selection 
was performed according to the preictal intervals characteristics (refer to Supplementary Section 2). The average 
of the final preictal intervals’ starting time before seizure onset found in our study ( 50.1± 28.9 min) falls in 
the range of average preictal intervals (28–60 min) obtained by performing grid-search to develop seizure 
prediction  algorithms13–19,21,22. Additionally, we compared the starting time of the preictal intervals identified 
using unsupervised learning with the preictal intervals found using grid-search supervised learning on EEG data 
from the EPILEPSIAE database (refer to Table S9 and Fig. S18 in Supplementary Section 6.6). Namely, there 
are two  studies21,22 documenting results of preictal grid-search, which also report the identification number for 
each patient. Providing that information allows for a more straightforward comparison, though not ideal, as 
we obtained seizure-specific preictal intervals only for some seizures (within the same patient) rather than all 
seizures. The vast majority of patient averaged preictal intervals found in these two studies started between 65 
and 40 min before seizure onset. Conversely, using the unsupervised learning approach led to the identification 
of averaged preictal patterns starting at very distinct times before seizure onset, mainly occurring between 80 
and 20 min before seizure onset.

Figure 7d presents the values of the phi coefficient between the obtained putative preictal binary represen-
tation and the sleep-wake cycle for categories 3 and 6. We observed more than 80% association between both 
vectors in 5.9%, 12.8%, and 3.0% of the preictals in univariate linear, univariate nonlinear, and multivariate 

Figure 6.  Results for preictal interval identification. The preictal interval was found for 37 patients (90%) and 
116 seizures (51%). These results correspond to the evidence of preictal interval found for categories 3 and 6 
(together) and category 5, for all groups of features. The results for category 5 were presented for a given seizure 
when categories 3 or 6 have not been previously assigned in any of the group of features. Asterisks indicate 
seizures for which preictal patterns have also been identified in a study using ECG data concurrent with the 
EEG data under analysis (considering that these preictal intervals started before the SPH)26. Preictal patterns 
were found in both EEG and ECG in 22% of the seizures analysed in this study.
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feature groups, respectively. We also computed the association between category 2 two-cluster solutions and the 
sleep-wake cycle. Association above 80% was found for 57.1%, 37.5%, and 0.0% of univariate linear, univariate 
nonlinear, and multivariate data distributions, respectively.

Figure 7.  Results for preictal interval characterisation. Preictal interval was characterised for categories 3 and 
6, for the three groups of features, according to three characteristics: (a) starting time before seizure onset, 
(b) duration, and (c) density. (d) Phi coefficient was computed between preictal clustering solution and the 
sleep-wake cycle for categories 3, 6, and 2 for the three groups of features. Dots correspond to one of the three 
preictal characterising variables or to the phi coefficient. Solid and dashed lines indicate medians and means, 
respectively. Box’s tops and bottoms correspond to the 75th and 25th percentiles, respectively. Whiskers refer to 
the span of the preictals characteristics or the phi coefficient after discarding outliers.
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Comparing the results for control intervals and intervals preceding seizures for the univariate linear feature 
group, it was possible to conclude that the prevalence of category 6 data distributions drastically reduced in the 
control intervals (decreasing from 36.3% to 4.3%). However, a high prevalence of category 3 data distributions 
was also observed (increasing from 8.4% to 17.0%). For the eight seizures assigned category 3 in the control 
intervals, Fig. 7 shows that the putative preictal starting time and duration are more spread compared to the 
other three feature groups. Additionally, we visually inspected the data distributions of the 4.5 h of data preceding 
seizure onset and the corresponding control interval (available on the GitHub page) when the same category had 
been assigned. We observed similar data distributions in three out of five seizures with the same categorisation.

Regarding the metadata analysis (refer to Supplementary Section 7 for more details), the results showed no 
evident association when inspecting the relationship between four seizure variables (vigilance state at onset, 
type of seizure, EEG onset hour, and percentage of noise) and the preictal characteristics (starting time, dura-
tion, and density).

Discussion
We aimed to explore the existence of pre-seizure alterations in EEG data collected from patients with drug-
resistant epilepsy under presurgical monitoring. Unsupervised learning methods were applied to provide new 
insights into the complexity of the transition from interictal activity to seizure. The success of seizure prediction 
models heavily relies on the accurate characterisation of the preictal interval when it manifests in the biosignal 
under  analysis4.

We observed clusters suggestive of preictal activity in 51% of the analysed seizures. This percentage increases 
to 81% if, in addition to categories 3 and 6, we also include category 5 as an indication of possible preictal activity. 
These findings are in accordance with previous studies that, using statistical and clustering approaches, reported 
preictal interval identification on EEG data in 38%25, 69%24 and 70%18,23 of seizures, respectively.

Despite the results obtained for category 3 in the control intervals (an increase from 8.4% to 17.0%), the con-
siderable reduction in category 6 and 5 data distributions (from 63.3% to 8.6%) increases our confidence in the 
results on the presence of preictal activity in the 4.5 hours preceding seizures observed in the three feature groups.

Preictal changes in light of the nonlinear nature of brain dynamics. The preictal clusters identified 
in categories 3 and 6 were clearly separated from the remaining samples. For the case of category 6 data 
distributions, preictal clusters were also often preceded by other similarly sized clusters. We speculate that the 
presence of these small clusters might reflect the occurrence of distinct separated states of brain activity. This 
observation might be aligned with early beliefs that “neuronal networks may have bi(multi)-stable states”51, 
depending on which of the different paths of brain activity lead to the seizure  state51–53. Studies on the basic 
mechanisms underlying neural network evolution towards a  seizure51,52, refer to three possible paths that can lead 
to abnormal ictal dynamics: (i) a continuous sequence of states reflecting a gradual transition from an interictal 
to an ictal attractor, (ii) an abrupt change caused by a fast trajectory convergence to ictal state, assuming a system 
having interictal and ictal attractors simultaneously or (iii) a combination of  both8,54. In the second case, the 
transition might result from an abrupt random perturbation, making prediction even more difficult. External 
or endogenous factors can influence the three types of transition to the ictal state. The fast nonlinear dynamic 
evolution towards a seizure has been described as the crossing of a threshold, or separatrix, between interictal 
and ictal  states51–54. The three scenarios above might explain the results regarding the determination of a preictal 
cluster. For 49% of seizures, the occurrence of a very fast, sharp transition in brain activity may be missed by 
the  EEG54 or by the EEG features (e.g., due to the size of the window under  analysis27), and, therefore, there are 
no seizure precursors. For the remaining 51%, we found distinguishable clusters that might reflect either a still 
sharp, but not so fast, transition or a gradual (possibly multistate) preictal  transition51,55.

Nearly 20 years after Lopes da Silva et al.  study51, it is especially interesting to note that we still ask the same 
question: “which of all these measurable dynamical changes in the state of neuronal networks do lead to an epi-
leptic seizure?”. Particularly for the case of category 6 data distributions, we struggled to provide preictal insight, 
wondering which clusters (within the 120-min interval) would be indicative of ictogenesis or “normal” brain 
function. We assumed that preictal activity would correspond to the cluster showing closer to the seizure as this 
assumption more closely relates to the preictal  concept54. However, it might be possible that both the preictal and 
interictal intervals could comprise distinct sub-intervals that we cannot classify into normal or abnormal brain 
activity but rather on multi-classes representative of such sub-intervals in both main classes.

Additionally, we acknowledge the difficulty in interpreting category 3 reduced data distributions. Namely, 
two scenarios often occurred when observing clusters within the 120 min before onset in category 3: (i) a 
gradual interictal to ictal transition reflected in a preictal interval ending on the seizure onset and (ii) a fast (but 
EEG perceptible) preictal interval not ending at the seizure onset (as in Fig. 4). The first case corresponds to 
an increase in the features’ value until the seizure onset. Supervised learning methods are typically successful 
when this scenario occurs as it allows for a binary classification of the data into interictal state and subsequent 
preictal state. In the second scenario, we hypothesised that, even though regulatory mechanisms may have been 
triggered in the brain towards seizure suppression (hence the decrease in features value before the seizure onset), 
the seizure threshold may have been crossed, triggering a  seizure8,55. Interestingly, some studies on seizure risk 
forecasting analysing long-term EEG data show a similar behaviour preceding seizures. Karoly et al.27 noticed 
the existence of a peak in seizure likelihood that is followed by a gradual decrease until the seizure onset. This 
evidence is also depicted in a comprehensive  survey56, where authors present real-time EEG recorded over five 
days, (from the previously mentioned  study27), weighted by the prior risk of seizures given the time of day. The 
corresponding proictal states and seizure timing are also depicted. Some seizures seem to occur shortly after or 
during a decrease in the circadian-weighted EEG, within the respective proictal state. Regarding the transition 
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between interictal and preictal intervals, it was often possible to observe “jumps” from the main cluster, e.g., 
representing the interictal state, to another smaller cluster, a putative preictal state. Importantly, these “jumps” 
unlikely correspond to a trajectory of samples from interictal to preictal and back to interictal again, but rather 
a trajectory from a main, non-preictal cluster (that may contain mainly interictal samples spread over the three-
dimensional feature space) to a preictal state and back to another location in the main cluster.

In our study, each cluster showing in categories 3 or 6 data distribution seems to reflect the existence of a 
preictal pattern. Unsupervised learning methods may leverage knowledge on the evolution of the EEG time 
series during the seizure generation process. Simultaneously, the clusters obtained with unsupervised learning 
methods can further shed light on the rate of false positives hampering the performance of supervised learning 
prediction models. However, new questions arise: which brain processes explain these clusters? Are those the 
reflection of normal brain functioning or pathological phenomena? These questions closely relate to the knowl-
edge gap regarding the influence of, for instance, interictal brain processes (e.g., interictal epileptiform activity) 
during  ictogenesis7,53,54. Answering such questions requires performing more studies to provide an insightful 
interpretation of data distributions and subsequent clustering results. Clinicians’ insight would also be crucial 
to obtain a ground truth to validate the origin of the different  clusters57.

Influence of methodological aspects. The results obtained with nonlinear feature reduction methods 
such as UMAP may be more suitable to reveal the nonlinear dynamical functioning of the brain. Accordingly, 
most studies propose nonlinear systems for epilepsy EEG  modelling10,12. Nevertheless, we are aware that 
using this nonlinear method and the consequent parameter tuning could significantly impact further data 
 interpretations58. Additionally, applying UMAP is limiting as it does not allow extracting information on feature 
importance.

Regarding the different groups of features extracted, we concluded that univariate features were the major 
source of data distributions containing preictal clusters (and data distribution heterogeneity). The analysis of 
the reduced multivariate features led to the observation of preictal clusters for only an additional four seizures 
compared to the univariate features. Specifically, univariate feature extraction has provided preictal information 
for 96.5% of the seizures.

The multivariate features are single global measures of functional brain connectivity obtained by applying 
graph measures to bivariate features. As such, these features reflect global changes in brain activity over time. 
Even though multivariate and bivariate measures have been associated with high prediction performances, some 
authors reported preictal alterations predominantly showing in specific  channels6,13,23. In addition, when we 
identified preictal clusters in both reduced multivariate and univariate data, the vast majority of these intervals 
would start at the same point in time and have the same duration for most seizures (see Fig. S9 and S10 in Sup-
plementary Section 6.2).

Using unsupervised learning seems to appropriately address the problem of preictal interval identification and 
characterisation. Given the missing knowledge regarding the sequence of brain activity leading to a seizure, it 
might be limiting to define fixed intervals of preictal activity for supervised seizure prediction. In fact, the preictal 
intervals determined in this study started in the range of 14.2–120 min before seizure onset, which is a range dif-
ficult to cover with grid-search supervised learning due to the computational load. This range of preictals’ starting 
time demonstrates how the constraints of a preictal grid-search over a user-defined range of preictal intervals can 
influence results. Unsupervised approaches allow for a relaxation of these constraints and, therefore, to increase 
the probability of finding the correct labels of the preictal interval for each seizure. Additionally, applying cluster-
ing methods to physiological data collected before a seizure might unravel seizure-specific preictal profiles that 
do not arise when conducting the standard interictal versus preictal binary classification.

Nevertheless, unsupervised learning methods are not without limitations. A potential pitfall of the unsuper-
vised methodology corresponds to the difficulty in inferring the source of the different observed clusters. We 
assume that the cluster located near the seizure onset corresponds to preictal activity that causally led to that 
seizure. However, these pre-seizure oscillations may not correspond to epilepsy manifestations but be produced 
by other unrelated confounders (discussed in the next section). Even though we tried to address this concern by 
assessing the association between preictal manifestations and the sleep-wake cycle, we enforce the need for clini-
cal annotations, either obtained by video monitoring or EEG interictal close observation, in future unsupervised 
learning studies. Such information may be crucial to strengthen the conclusions derived from preictal interval 
exploration through unsupervised learning.

At last, we also highlight that even though we have attempted to produce a fully automatic framework for 
preictal interval exploration, such a goal was not fulfilled. In fact, we have explored clustering evaluation indexes 
in search of a measure that would automatically identify preictal activity. However, due to the high variability 
observed among the seizures’ three-dimensional representation, we could not select a measure matching expert 
visual inspection. Such variability also explains the difficulty in categorising some seizures’ data distributions 
into only one of the six reported categories. The contribution of our research team was the solution found to 
overcome this problem. Five experts, all working in the epilepsy field, categorised the data distributions. The 
problematic cases were discussed, and a final categorisation was achieved. Notwithstanding, resorting to expert 
voting is a major limitation of this study. Increasing the number of experts would allow for more trustworthy 
voting and less subjectivity in the results. Thus, we enforce the need for new strategies to allow for an automatic 
and user-independent unsupervised preictal interval search.

Influence of confounders in seizure susceptibility. Seizure susceptibility can vary depending on the 
current brain state, sleep-wake cycle, circadian and ultradian rhythms, medication tapering, stress, or other 
exogenous and endogenous  factors4,8,13,59,60. The EEG features may also be subjected to a different interpretation 
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depending on the patient’s  age34 and  aetiology61. These factors may help explain the variability observed among 
seizures and patients that support the development of patient-specific  approaches4,8,11. Additionally, the existence 
of a large number of epilepsy syndromes (resulting in considerable heterogeneity concerning aetiology and 
clinical manifestations) and non-cerebral confounders may also contribute to such  variability7,62. Accordingly, 
the results in our study may also be heavily influenced by epilepsy-characterising aspects such as aetiology, age, 
and lateralisation. However, given our study’s seizure-specific nature, we only performed a metadata analysis 
using information annotated for each seizure. The results indicate that, in the analysed dataset, there is no 
significant influence of the vigilance state at seizure onset, type of seizure and EEG onset hour on the obtained 
results. Nevertheless, future studies should continue the search for correlations between preictal characteristics 
and available metadata. Such analysis can translate into training models for the different concept drifts present 
in data (e.g., training seizure prediction models for a given epilepsy aetiology, type of medication or type of 
seizures)3,8.

Applying the unsupervised learning methods to control intervals was performed to address the existence of 
other variables that might be confused with preictal activity. The fact that we could not obtain control intervals for 
all seizures is a limitation arising from the analysis of data collected during presurgical evaluation characterised 
by an increase in seizure frequency and a consequent reduction in seizure-free time. Ideally, this analysis would 
be conducted on the entire seizure-free data. However, as this is a user-dependent analysis that requires a visual 
inspection, it would be a time-consuming task. Nevertheless, results show that, in contrast to the 4.5 h of data 
preceding seizures, there is a low prevalence of data distributions with multiple clusters in control intervals. This 
difference contributes to increased confidence in the reported results regarding the existence of preictal patterns.

Additionally, the scalp EEG data analysed in this article were collected while patients with DRE were in an 
epilepsy monitoring unit under presurgical evaluation. Consequently, we explored data that are not representa-
tive of normal ambulatory brain activity but rather data collected while the patient was hospitalised for several 
 days30. During the hospital stay, patients were submitted to antiepileptic drug tapering to precipitate seizures. 
Thus, interpreting the results might not directly translate to DRE interictal and preictal functioning during 
real-world  conditions7,8. On the one hand, medication withdrawal preceding surgery has been associated with 
increased seizure  susceptibility7. On the other hand, the administration of certain types of medication, such as 
benzodiazepines, has been reported to increase beta wave activity in EEG  recordings34,63.

The possibility of recording long-term EEG data (days to years) has opened a new avenue in exploring cir-
cadian rhythms’ influence on seizure  occurrence27,60,64,65. Baud et al.60 found that interictal epileptiform activity 
fluctuations are governed by circadian and multidien rhythms, which in turn determine seizure risk in some 
subjects. Improved seizure forecasting was reported in Karoly et al.27 study after integrating information about 
the circadian rhythm of seizures in patient-specific models. Identifying subjects for which seizures tend to occur 
during specific phases of the circadian rhythm could explain some patterns of data distributions we have found 
in our research.

The sleep-wake cycle seems to be associated with the pattern of seizure  occurrence5. We observed that the 
highest number of category 3 and 6 seizures, verifying a high association between the sleep-wake cycle and 
the preictal cluster, was found for the univariate nonlinear features (12.8%). The highest association found for 
category 2 was 57.1% using the reduced univariate linear features. Such observation may motivate the use of 
sleep-wake cycle information when developing seizure prediction models, at least for some seizures.

Another possible confounder is the influence of postictal activity. A postictal interval of 30 min has been 
considered in this study and removed in the case of subsequent seizures. Nevertheless, despite EEG slowing or 
suppression occurring on average about 5 min after seizure offset, it has been reported to occur 40–60 min after 
the offset of some  seizures39. Again, this aspect is more evident when analysing data collected in presurgical 
monitoring due to reduced interseizure interval.

Despite the thorough preprocessing performed on the scalp EEG recordings, it is important to highlight that 
physiological artefacts such as muscle artefacts may still be present in the data. This study’s limitation results 
from the difficulty in distinguishing the EEG power in the frequencies of interest from the muscle artefact 
 frequencies66,67.

Additionally, in a previous study, conducted in the same group of patients, preictal changes in heart rate 
variability have been reported in 41% of the seizures and 90% of the patients, evidencing the effect of seizures in 
the autonomous nervous  system26. That study, as well as ours, attempted to characterise preictal patterns using 
unsupervised learning. However, on the former, three-dimensional combinations of ECG features were inspected, 
and clustering solutions comprising only two clusters were explored. In the present study, we performed feature 
reduction to obtain a three-dimensional dataset for each seizure and feature group. Then, we applied clustering 
methods to search for (i) four clusters, for the case of K-means, agglomerative hierarchical, and Gaussian mixture 
models clustering and (ii) an unlimited number of clusters in the case of HDBSCAN. These methodological 
differences may partly explain that preictal changes were identified in EEG and ECG in only 22% of the seizures 
in the analysed group of patients. Contrarily to EEG, a large number of putative preictal intervals found in ECG 
started between 70 and 120 min before onset. This might indicate that the cardiac changes captured in the ECG 
might not directly reflect epilepsy-related cardiac manifestations but rather result from medication oscillations 
and sleep stages, that induce differences in the activation of brain mechanisms (and consequent autonomic modu-
lation) over normal to seizure  transition68,69. Nevertheless, such changes may still contain predictive potential.

Future work. We have laid the path for the retrospective identification of pre-seizure patterns using 
unsupervised learning methods. However, we admit that it can be challenging to envision future prospective 
applications. The available preictal clusters discovered during our unsupervised learning study require further 
validation. Specifically, it is now critical to integrate EEG and ECG preictal activity information in seizure 
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prediction models and compare the obtained performance with the performance of a model integrating a preictal 
interval derived from grid-search. A practical application could be to train machine learning models using the 
preictal starting time information found using clustering methods. For instance, it might be possible to train 
individual models for specific types of seizures or seizures that follow a given circadian pattern if similar preictal 
intervals are found for these groups. This approach, however, is dependent on the analysis of a considerable 
number of seizures to train each model. Even though we have not found a correlation between the preictal 
starting time and seizure metadata (vigilance state, seizure type, and EEG onset hour), we believe that further 
unsupervised learning studies might reveal such a correlation when exploring other long-term databases. In 
our case, the problem grows more complicated when a different preictal interval is identified for each seizure 
within a patient, with no apparent pattern among seizures. When training the models, it is necessary to think 
about a strategy to use a final preictal interval label, considering that no preictal pattern has been found for 
some seizures. We suggest a possible hybrid solution that consists in defining a final preictal interval to use in 
training and testing as the average of the clustering preictal intervals and the grid-search preictal intervals for 
the remaining seizures.

Less invasive procedures, such as subscalp EEG, have been recently developed for ultra-long-term brain 
 monitoring70–72. The method involves implanting subscalp (or subcutaneous) electrodes, for example, unilater-
ally behind the  ear70. Subscalp EEG and scalp EEG similarly capture background activity with closed and open 
eyes, showing a similar signal-to-noise ratio. Additionally, despite subscalp EEG may still be affected by artefacts 
such as muscle activity, these recordings present improved signal quality compared to scalp EEG, particularly 
during body movements that produce interferences due to the movement of  wires70–72. Concomitantly, scalp EEG 
devices able to collect data from a few electrodes (placed, e.g. in the temporal lobe) are emerging as alternatives 
to conventional scalp EEG by providing patients with more comfort and  usability73. As such, we encourage the 
design of new studies that use unsupervised learning to explore the capacity of, e.g., scalp EEG temporal chan-
nels to capture preictal activity.

Additionally, our study may provide evidence for a future application of unsupervised learning to obtain pro-
ictal annotations. Namely, semi-supervised annotation methods could be envisioned to facilitate the annotation 
of periods of seizure risk while still requiring the clinician’s input to obtain the final stratification of seizure risk.

Ultimately, considering multimodal approaches might be crucial to understand seizure generation. There are 
clearly several factors influencing brain activity shift from normal functioning to seizure that EEG alone cannot 
capture. Monitoring non-neurological biomarkers such as heart rate, blood pressure, galvanic skin response, 
and movement might provide critical information regarding seizure triggering and driving  mechanisms4,8,59.

Data availability
The dataset used and/or analysed during the current study are available from the corresponding author upon 
reasonable request.
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