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In this paper we study numerical solutions for a hyperbolic system of equations using finite differences. In
this setting, we propose the method of lines, with high precision in space. A class of some explicit, implicit
and also semi-implicit schemes, with code variable methods, are presented. Finally, the analysis of some
qualitative and quantitative proprieties of these methods is included.
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1. Introduction

Let us consider the equations of motion and continuity

∂u

∂t
= −g

∂ζ

∂x
, g ∈ IR

∂ζ

∂t
= −∂(Hu)

∂x
, H(x) > 0

(1)

These equations arise in many domains of science. They are used, in particular, in the modelling
of the behaviour of waves in a channel or the propagation of a tsunami. In these cases, u is the
velocity, ζ denotes the surface elevation, t is the time, x denotes horizontal coordinate, g is the
Earth’s gravity acceleration (g = 981 cm s−2), and H is depth (H can be seen as a constant or a
function depending of x).

According to Kowalik’s [2] analysis of this problem, we are able to control the resolution of time
in the process of finding a numerical solution to this problem, but the spatial resolution depends on
the available bathymetric data. To improve the quality of solutions, we shall apply higher order of
approximations for the first derivatives in space. Note that this strategy is also useful for hyperbolic
systems defined on a very large spatial domain.
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590 M.F. Patrício

Higher order methods for spatial derivatives have been the object of numerous studies. Several
numerical methods have been tried in the search. These include Runge–Kutta methods, optimiza-
tion strategy, pseudospectral operators, finite-volume scheme – we cite some works, without being
exhaustive, Zingg [9], Tam and Webb [7], Mead and Renaut [4], Schwartzkoptt et al. [5].

Also higher-order finite difference discretisation has to be used in both space and, Tam and
Webb [7], and Djambazov et al. [1].

Here, we will build a class of variable formula methods for the integration of (1), which
depends on two parameters. The scope of this paper is the following. In Section 2, we construct
approximations, for the spatial derivatives, with high order. We establish the numerical solution
for the system, in Section 3. Stability, precision and convergence are studied in Section 4. Finally,
we include, in Section 5 some numerical examples.

2. Numerical approximations for the spatial derivatives

We now briefly discuss the spatial discretization of high-order. This will be useful in what follows,
to approximate the derivatives that arise in the PDE.

Let us consider y = f (x), where throughout this section f is a generic sufficiently differentiable
function in D ⊂ IR, as well as the following grid in the domain D:

· · · < xi−j/2 < xi < xi+j/2 < · · ·

Here, xi±j/2 = xi ± j (h/2) and h = xi+1 − xi .
In order to obtain an approach of high-order for y ′(xk), we can apply the following proposition:

Proposition 2.1 Let y = f (x) be a sufficiently differentiable function in D ⊂ IR. Consider a
partition with a mesh size h/2 in D.

Then

y ′(x
k
) = f ′(xk) ≈ 1

h

q∑
j=1
j odd

βj

[
yk+j/2 − yk−j/2

]
, (2)

is an approximation for the derivative of y = f (x) in xk, with precision O(hq+1), where the
unknowns βj which appear in (2) are the solutions of the linear system

C1 =
q∑

j=1
j odd

j βj = 1, Cp =
q∑

j=1
j odd

jp βj = 0, p = 3, 5, . . . , q,

where yk
∼= y(xk), yk±j/2

∼= y(xk ± jh/2)

Proof It suffices to apply the Taylor theorem. �

2.1 Particular cases

In Table 1 we include some coefficients βj , as given in (2), for methods with order r = 2, 4, 6, 8.
We note that for q = 1, 3 the approximations we obtained, as displayed above, coincide with

the central difference and that referred by Kowalik in ref. [2].
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Table 1. Coefficients of βj .

q β1 β3 β5 β7

1 1 – – –
3 9/8 −1/24 – –
5 75/64 −25/384 3/640 –
7 1225/1024 −245/3072 49/5120 −5/7168

3. The method

Let us consider the hyperbolic system (1). For the sake of simplify we write it in the form

Vt(x, t) = AVx(x, t) + BV (x, t), (3)

where V (x, t) = [u(x, t), ζ(x, t)]T , A =
[

0 −g

−H 0

]
, B =

[
0 0

−H̄ 0

]
, ∂V /∂ t = Vt , ∂V /∂ x =

Vx and H̄ = ∂H/∂ x.
Let the initial and boundary conditions associated with (3) be given by

V (x, 0) = [f1(x, 0), f2(x, 0)]T ,

V (0, t) = [g1(x, 0), g2(x, 0)]T .
(4)

Assume that the domain is covered by a grid with mesh size �x (in space) and �t (in time). Using
the approximation (2) for space and method-θ for time – see Lambert [3] – the numerical solution
for (3) is given by

V n+1
k = V n

k + ρ A
[
θ δ V n

k,q + (1 − θ) δ V n+1
k,q

]
+ �t B V n

k , ρ = � t

� x
, (5)

where θ ∈ [0, 1] is a parameter. The initial points are denoted by x0 and t0, respectively, for space
and time and

δV n
k,q =

q∑
j=1
j odd

βj

[
V n

k+j/2 − V n
k−j/2

]
. (6)

Now, by splitting the matrix A in the form A = A1 + A2, A1 =

[
0 −g

0 0

]
, A2 =

[
0 0

−H 0

]
, the

system (3) takes the form

∂V

∂ t
= A1

∂V

∂ x
+ A2

∂V

∂ x
+ BV. (7)

The semi-implicit scheme

V n+1
k = V n

k + ρ
[
A1δV

n
k,q + A2δV

n+1
k,q

]
+ �tBV n

k , (8)

can be obtained for the solution of (3) or (7) with the initial conditions (4).
In the following sections we consider, respectively, the classes of methods defined by

(5) and by (8).
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4. Qualitative and quantitative behaviour: stability, precision and convergence

4.1 Stability

In order to study the stability of the scheme, it is convenient to observe that the matrix A is
diagonalizable. In fact, there exists a matrix S such that D = SAS−1 is a diagonal matrix,

S =
[

1 1

−
√

gH

g

√
gH

g

]
and D = diag

[√
gH −√

gH
]
.

We investigate the stability of the later difference schemes – (5) and (8) – by taking the discrete
Fourier transform, Thomas [8].

In order to simplify the presentation, we will consider only q = 3 in (5) and (8). So these
schemes may be written, respectively, in the form

V n+1
k = V n

k + ρA
[
θδV n

k,3 + (1 − θ) δV n+1
k,3

] + �t BV n
k , (9)

V n+1
k = V n

k + ρ
[
A1δV

n
k,3 + A2δV

n+1
k,3

] + �t BV n
k (10)

The usage of the discrete Fourier transform makes it an easy task to conclude that the amplification
error for (9) is given by

G1(η) = [I − 2iρc(η) (1 − θ) A]
−1 × [I + 2iρc(η)θA + �tB] , (11)

where c(η) = β1 sin η + β3 sin 3η, η ∈ [0, 2π ].
We observe that

(i) Let us H̄ = 0. Attending to the matrix A is diagonalizable, we can establish

G(η) = S−1G1(η)S = [I − 2iρc(η)(1 − θ)D]−1 × [I + 2iρc(η)θD] ,

and so the eigenvalues of G are

λj (η) = 1 + 2iρc(η)θ
√

gH

1 − 2iρc(η)(1 − θ)
√

gH
, j = 1, 2. (12)

(ii) The function c(η) is bounded, for η ∈ [0, 2π ].
The equality (11) allows us to establish the stability of (9). We begin with the simpler case.

Proposition 4.1 Consider the class (9) in the integration of problem (1), with H̄ = 0 and together
with the initial conditions given by (4). If θ = 1/2, 1 the differences scheme (9) is not stable; whilst
for θ = 0 the method is stable.

Proof According to (12), we can verify that the eigenvalues λj , j = 1, 2, of the matrix G satisfy

(i) |λj | > 1, θ = 1/2, 1
(ii) |λj | < 1, θ = 0.

The proposition follows immediately. �

We observe that if H̄ �= 0 the Proposition above is also true. In fact, as we know – Thomas [8] –
any result obtained without the B term will also be true with that term.
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Furthermore, for other values of the parameter θ , θ �= 0, 1/2, 1, in order to ensure stability we
must verify |λj | < 1, j = 1, 2.

Let us consider the method (10), where we can suppose, without lost of generality, that H̄ = 0.
Using the discrete Fourier transform, the amplification error is

G2(η) = [I − 2iρc(η)A2]−1 × [I + 2iρc(η)A1] . (13)

Regarding the stability of the scheme (10) we can state:

Proposition 4.2 Let us consider the method (10) in the integration of problem (1)–(4). If
ρ < 6/7

√
g H, the method is stable.

Proof The eigenvalues of the matrix G2 are the roots λj , j = 1, 2, of the polynomial

λ2 + λ
⌊
g H d2(η) − 2

⌋ + 1,

where d(η) = β1 sin η + β3 sin 3η, η ∈ [0, 2π ].
So, |λj | < 1, j = 1, 2 if and only if ρ2 < (1/d2(η) g H). The result arises attending to d(η) <

β1 − β3 = (7/6), ∀η ∈ [0, 2π ]. �

Remark The analysis above can be applied in an analogous way for q > 3.

In particular, Proposition 4.1 is also true and in what concerns Proposition 4.2, the restriction
imposed is now

ρ2 <
1

gH
q∑

j=0

[
β4j+1 − β4j+3

] . (14)

If we define the function c(η, q) = ∑q

j=0 [β4j+1 sin[(4j + 1)η] + β4j+3 sin[(4j + 3)η]], η ∈
[0, π ], we can conclude that c is a non-decreasing function in the variable q. So the higher
the value of q, the higher the restriction that we must impose to ρ. In other words, when q is
big, �x may also be big. This result is satisfactory, namely when we take into account that one
wishes to integrate hyperbolic systems with a large spatial domain. Figure 1 shows the function
c for different values of q.

Figure 1. Function c(η, q).
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4.2 Precision and Convergence

We will now study the precision of the difference schemes (5) and (8).
Using a Taylor expansion in (5), we can write

V n+1
k − V n

k − ρA
⌊
θδV n

k,q + (1 − θ)δV n+1
k,q

⌋
= �t2

[
1

2

∂2V

∂2t
− A(1 − θ)

∂2V

∂x ∂t

]
+ O(�t3)

+ O(�t)O(�xq+1)

where the second derivatives arising in the right bracket must be calculated in (xk, tn).
The difference scheme (5) then has q + 1 order accuracy in �x. It is second-order accurate in

�t if θ �= 1/2 and third-order accurate in �t if θ = 1/2.
Hence the scheme (5) is consistent for any value of θ and hence convergent if θ = 0.
Let us consider the method (8). Using again a Taylor expansion we conclude that

V n+1
k − V n

k − ρ
[
A1δV

n
k,q + A2δV

n+1
k,q

]
= O(�t2) + O(�t)O(�xq+1)

and the precision for the scheme is q + 1th order accurate in �x and second order accurate in �t

respectively. So, if the value ρ satisfies (14), the scheme (8) is convergent if

∣∣∣∣ 1 + 2iρc(η)θ
√

gH

1 − 2iρc(η)(1 − θ)
√

gH

∣∣∣∣ < 1, j = 1, 2.

5. Numerical results

In this section we apply the class of methods we have introduced for two problems, one of which
defined on a very large domain space. A well weighted choice for the parameters θ and q, of
which these methods depend, will certainly influence their computational cost. These parameters
are related respectively to the stability – see Section 4.1 – and the spatial precision. Naturally, the
gradient of the solution should reflect on our choice of q.

Using the classes in a practical code ‘constant formula methods’, that is the same method along
the whole integration domain, the results may not be satisfactory/efficient, namely if one has
to integrate over a large domain space. Alternatively, a pratical code ‘variable formula methods’
should be applied.

One may define an algorithm which arises from a code variable formula method in the following
manner:

Assume that we start with a method associated to a value of ρ and q. Let δ be the prescribed
tolerance.

(i) Apply the method and calculate V n
k+1 − V n

k , k = 1, 2, . . . .

If

max
k

∣∣V n
k+1 − V n

k

∣∣ ≤ δ, (15)

the numerical solution obtained is acceptable and the next level is considered.
(ii) If (15) does not hold in some sub domains, apply refinements at these domains (by increasing

the value of (q) and repeat (i)).
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5.1 First problem

Let us consider the problem

∂u

∂t
= ∂ζ

∂x

∂ζ

∂t
= ∂u

∂x

in D = {(x, t) : x ∈ [0, 5], t > 0} (16)

with the initial conditions

ζ(x, 0) =

⎧⎪⎨
⎪⎩

0, x ≤ 1

1, 1 ≤ x ≤ 2

0, other cases

and u(x, 0) = 1

We integrate the problem using the method (5), with �x = 1/10, �t = 1/100 and applying 0
algorithm anterior. For small gradients, we take q = 1 and θ = 1 (explicit method), otherwise we
take q ≥ 3 and the θ = 0 (implicit method).

The results obtained are included in Figure 2, where we represent in (a) the numerical solution
and in (b) the numerical solution and the exact solution, for t = 1/4.

As can be seen, the numerical results are in agreement with what was expected. Now, for
t = 1/2 we represent similar results in Figures 3.

We observe that we must apply the method with a refined grid in the region where the solution
has a large gradient, as before.

Figure 2. Exact and numerical solution, t = 1/4.

Figure 3. Exact and numerical solution, t = 1/2.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
-
o
n
 
C
o
n
s
o
r
t
i
u
m
 
-
 
2
0
0
7
]
 
A
t
:
 
1
2
:
1
9
 
2
5
 
A
u
g
u
s
t
 
2
0
0
9
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5.2 Second problem

Let us now consider the problem

∂2u

∂2t
= ∂2u

∂2x
in D = {(x, t) : x ∈ [0, L], t > 0} (17)

with the initial conditions

u(x, 0) = e−20x2
.

Naturally, one may rewrite Equation (17) as a system of the form (1), using an appropriate change
variable.

The exact solution is represented in Figure 4 for different time levels. We took L = 10.
In order to solve (17) − L = 1, L = 5 − we apply the class (5) in a code constant formula

methods, with �x = 1/80 and �t = 1/100. The results obtained are plotted in Figure 5. For a
small spatial domain, the results were satisfactory. The same can not be said for a larger domain.
In this case, the solution is rather imprecise, especially in the initial part of the domain.

Figure 4. Problem (17): exact solution.

Figure 5. Problem (17): numerical solution for (17), t = 1.
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Table 2. Error of numerical solution of (17).

Error Error
L (constant formula) (variable formula)

1 0.050 0.0004
5 0.059 0.0004
10 0.063 0.0002

Next, we integrate (17) using code variable formula methods (the proposed algorithm). We take
δ = 0.0001, θ = 0, 1.

Table 2 displays the error of the obtained approximation, the maximum absolute value of the
difference between the exact and approximated values at t = 2, for different values of L. We also
include the error obtained when code constant formula methods were used with �x = 1/800 and
�t = 1/100.

6. Conclusion

The class we have presented is quite efficient when the problem one wishes to integrate has a
large spatial integration domain, and when code variable formula methods are used.
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