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Abstract. We study polynomial identities satisfied by the mutation prod-
uct xpy−yqx on the underlying vector space of an associative algebra A,
where p, q are fixed elements of A. We simplify known results for identities
in degree 4, proving that only two identities are necessary and sufficient
to generate them all; in degree 5, we show that adding one new identity
suffices; in degree 6, we demonstrate the existence of a significant number
of new identities, which induce us to conjecture that the variety generated
by mutation algebras of associative algebras is not finitely based.
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1. Introduction

Let A be an associative algebra over a field F of characteristic 0. Fix two
elements p, q ∈ A and define a new bilinear operation on the underlying vector
space:

x ∗pq y = xpy − yqx.

The resulting nonassociative algebra Apq is called the pq-mutation of A.
Mutation algebras were introduced by theoretical physicists around 1980;

see [8, equation (1.6b)] and [17, equation (66)]. For a survey of early work by
mathematicians on this topic, see [15]. For a detailed exposition of the structure
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theory of mutation algebras, see [6]. For mutations of nonassociative algebras,
see [2].

To motivate the investigation of polynomial identities for mutation al-
gebras, we paraphrase some comments from [6, Preface]. Mutation algebras
are both Lie- and Jordan-admissible, but they also satisfy other more complex
identities of higher degree; see [6, Chapter 5]. It is an open problem to deter-
mine a complete set of independent identities satisfied by all mutation algebras
for arbitrary p, q. In fact, mutation algebras do not form a variety defined by
polynomial identities. We note that Lie- and Jordan-admissible algebras were
introduced by Albert in [1, IV.1-2].

Polynomial identities for mutation algebras were first studied systemat-
ically by Montaner [14] using the classical techniques of nonassociative alge-
bra [16,18]. That work did not consider the original operation ∗pq but de-
composed it as the sum of commutative and anticommutative operations:
x ∗pq y = {x, y} + [x, y] where

{x, y} = 1
2 (x ∗pq y + y ∗pq x), [x, y] = 1

2 (x ∗pq y − y ∗pq x).

For further information about the notion of polarization of a binary operation,
see [12]. Furthermore, the work of Montaner considered identities which are
not necessarily multilinear, but hand calculation restricted the degree of the
identities to n ≤ 4.

We use a different approach which allows us to simplify the known results
in degree 4, to determine a complete set of identities in degree 5, and to
demonstrate the existence of a significant number of new identities in degree
6:

• We use elementary concepts from the theory of algebraic operads [3,10,
11,13].

• Our main tool is computer algebra, in particular:
– Linear algebra over the rational numbers and finite prime fields: the

row canonical form of a matrix using Gaussian elimination.
– Linear algebra over the integers: the Hermite normal form of a ma-

trix and the Lenstra–Lenstra–Lovász algorithm (LLL, see [5,9]) for
lattice basis reduction.

• We consider only multilinear identities for the original operation x ∗pq y:
this allows us to use the representation theory of the symmetric group
[4] to decompose the computations into small pieces corresponding to
irreducible representations.

2. Algebraic Operads

2.1. The Free Nonsymmetric Operad

We write Tn for the set of all complete rooted plane binary trees with n leaves
denoted by asterisks; for n = 1 there is only the exceptional tree with one
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leaf and no root, T1 = {∗}. Each tree in Tn contains n−1 internal nodes
(including the root); hence the size of Tn is the Catalan number 1

n

(
2n−2
n−1

)
. We

write Un for the set of all association types in degree n: balanced placements
of parentheses in a sequence of n asterisks. There is a bijection μn : Tn →
Un defined recursively: μ1(∗) = ∗; for every internal node v with left and
right subtrees t1 ∈ Tn1 and t2 ∈ Tn2 we replace the subtree with root v by
(μn1(t1)μn2(t2) ). For example,
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(We omit the outermost pair of parentheses corresponding to the root of
the tree.)

If t1 ∈ Tn1 and t2 ∈ Tn2 then the partial composition t1 ◦i t2 ∈ Tn1+n2−1

for 1 ≤ i ≤ n1 is obtained by grafting the right tree into the left at position
i: that is, identifying leaf i of t1 (from left to right) with the root of t2. For
example,
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In terms of association types, μn1(t1) ◦i μn2(t2) corresponds to substitution
of (μn2(t2) ) for argument i of μn1(t1); we omit the parentheses if n2 = 1. For
example, (∗∗)(∗∗) ◦3 ∗(∗∗) = (∗∗)((∗(∗∗))∗).

Partial composition is nonassociative but satisfies sequential and parallel
axioms [3, Definition 3.2.2.3] (see also [10,13]). We state these axioms following
[11, Definition 11, Figure 1]. If f ∈ Tm, g ∈ Tn, h ∈ Tp then

(f ◦j g) ◦i h =

⎧
⎪⎨

⎪⎩

(f ◦i h) ◦j+p−1 g 1 ≤ i ≤ j − 1
f ◦j (g ◦i−j+1 h) j ≤ i ≤ n + j − 1
(f ◦i−n+1 h) ◦j g n + j ≤ i ≤ m + n − 1

.

Let T denote the disjoint union of the Tn for n ≥ 1:

T =
⊔

n≥1

Tn.

The set T together with all partial compositions is isomorphic to the free
nonsymmetric set operad generated by one binary operation ω corresponding
to the tree with root and two leaves. (Nonsymmetric means that we have not
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yet introduced the action of the symmetric group on the arguments.) Let T (n)
denote the vector space with basis Tn. On the direct sum

T =
⊕

n≥1

T (n),

we extend partial compositions so that they are linear in each factor. The
vector space T together with the extended partial compositions is isomorphic
to the free nonsymmetric vector operad generated by ω.

2.2. The Free Symmetric Operad

Consider an integer n ≥ 1 and the set of indeterminates {x1, . . . , xn}. We
write Sn for the symmetric group of all n! permutations of {1, . . . , n}. For
each α ∈ Sn and t ∈ Tn we obtain the labelled tree αt consisting of t with
leaves labelled α(1), . . . , α(n) from left to right. We write LTn for the set of all
such labelled trees. Similarly, we apply the association type μn(t) for t ∈ Tn

to the multilinear associative monomial xα(1) · · · xα(n) and obtain the nonasso-
ciative monomial αμn(t). We write LUn for the set of all such nonassociative
monomials. The bijection μn : Tn → Un extends in the obvious way to the
bijection λμn : LTn → LUn. For example,
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We extend partial compositions to labelled trees. Consider two labelled
trees αt ∈ LTm and βu ∈ LTn. If 1 ≤ i ≤ m then the partial composition αt◦i

βu ∈ LTm+n−1 must be a tree with m+n−1 leaves labelled by a permutation in
Sm+n−1. (Simple grafting of one labelled tree onto the other does not produce
a permutation.) This must be done in a manner which is equivariant with
respect to the action of the symmetric group. Following [13, Definion 1.37]
with minor changes, we have:

• A leaf of αt with label j for 1 ≤ j ≤ α(i) − 1 retains its label.
• A leaf of βu with label j for 1 ≤ j ≤ n is relabelled j + α(i) − 1.
• A leaf of αt with label j for α(i) + 1 ≤ j ≤ m is relabelled j + n − 1.

For example,
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Let LT (n) denote the Sn-module with linear basis LTn; we use the natural
left action on labels (not on positions). The direct sum of these Sn-modules,

LT =
⊕

n≥1

LT (n),

together with the bilinear extension of the partial compositions, is isomorphic
to the free symmetric vector operad generated by ω. (This binary operation
has no symmetry: it is neither commutative nor anticommutative.)

An ideal I in the free symmetric operad LT is a graded subspace (that
is, I(n) ⊆ LT (n) for n ≥ 1) such that

• Sn · I(n) = I(n): each homogeneous space I(n) is an Sn-module (that is,
closed under the action of the symmetric group), and

• if f ∈ I(m) and g ∈ LT (n) then f ◦i g (1 ≤ i ≤ m) and g ◦j f (1 ≤ j ≤ n)
belong to I(m+n−1) (that is, I is closed under partial compositions).

The ideal 〈f1, f2, . . . 〉 ⊆ LT generated by homogeneous elements f1, f2, . . . is
the smallest ideal of LT containing f1, f2, . . . If I = 〈f1, f2, . . . 〉 then we say
that G = {f1, f2, . . . } is a minimal set of generators for I if no proper subset
of G generates I; this condition does not uniquely determine G.

2.3. Associativity, Nullary Operations, and the Expansion Map

In general, an n-ary operation (n ≥ 0) on a vector space V is a multilinear
map f : V n → V . For n = 1 we have V 1 = V , so a unary operation is simply
a linear operator on V ; for n = 0 we have V 0 = F, so a nullary operation is
equivalent to the choice of a constant vector f(1) ∈ V . If we write Endn(V ) for
the vector space of all n-ary operations on V , then the direct sum End(V ) =⊕

n≥0 Endn(V ), together with partial compositions (substitution of the output
of one operation for an input of another operation), is the endomorphism
operad of V .

Let p, q be symbols denoting nullary operations on some underlying vec-
tor space. For n ≥ 1, consider monomials v1v2 · · · v2n−1 with an odd number
of factors such that the n odd-indexed factors v2i−1 (1 ≤ i ≤ n) form a mul-
tilinear associative monomial xα(1) · · · xα(n) for some α ∈ Sn, and each of the
n − 1 even-indexed factors is either p or q. We write Wn for the set of all such
monomials; Sn acts by permuting the odd-indexed factors. For v ∈ Wm and
w ∈ Wn, we define v ◦i w ∈ Wm+n−1 for 1 ≤ i ≤ m by substituting w for v2i−1

(with the appropriate change of labels). We write W (n) for the vector space
whose basis consists of all such monomials. The direct sum W =

⊕
n≥1 W (n) is

a suboperad of the symmetric associative operad with two nullary operations.

Definition 2.1. The expansion map Xn : LT (n) → W (n) on monomials αt ∈
LTn is defined recursively. For a leaf with label i, we set Xn(i) = xi. If tu
denotes an internal node with left and right subtrees t ∈ LTr and u ∈ LTs

with r + s = n then

Xn(tu) = Xr(t)pXs(u) − Xs(u)qXr(t).
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((ab)c)d →−� apbpcpd − dqapbpc − cqapbpd+ dqcqapb
− bqapcpd+ dqbqapc+ cqbqapd − dqcqbqa,

(a(bc))d →−� apbpcpd − dqapbpc − bpcqapd+ dqbpcqa
− apcqbpd+ dqapcqb+ cqbqapd − dqcqbqa,

(ab)(cd) →−� apbpcpd − cpdqapb − apbpdqc+ dqcqapb
− bqapcpd+ cpdqbqa+ bqapdqc − dqcqbqa,

a((bc)d) →−� apbpcpd − bpcpdqa − apdqbpc+ dqbpcqa
− apcqbpd+ cqbpdqa+ apdqcqb − dqcqbqa,

a(b(cd)) →−� apbpcpd − bpcpdqa − apcpdqb+ cpdqbqa
− apbpdqc+ bpdqcqa+ apdqcqb − dqcqbqa.

Figure 1. Expansions of basis monomials in degree 4

That is, we replace each internal node by the operation ∗pq.

If we represent trees by nonassociative monomials and leaf labels by let-
ters then X2(ab) = apb − bqa and

X3((ab)c) = (apb−bqa)pc − cq(apb−bqa) = apbpc − bqapc − cqapb + cqbqa,
X3(a(bc)) = ap(bpc−cqb) − (bpc−cqb)qa = apbpc − apcqb − bpcqa + cqbqa.

(1)
For the expansions in degree 4, see Fig. 1.

Definition 2.2. For each n ≥ 1, the expansion map Xn : LT (n) → W(n) is
a morphism of Sn-modules; we write K(n) = ker(Xn). Combining all the
expansion maps we obtain the morphism of operads X : LT → W with kernel
K =

⊕
n≥1 K(n). The polynomial identities satisfied by ∗pq for all associative

algebras A and all p, q ∈ A coincide with K, which is an operad ideal in LT .
These identities are the linear dependence relations among the expansions
of the nonassociative monomials. We refer to K(n) as the Sn-module of all
identities in degree n.

Our ultimate goal is to determine a set of generators for K.

3. Polynomial Identities in Degree n ≤ 3

Definition 3.1. In a nonassociative algebra, the Lie-admissible identity is

L(a, b, c) =
∑

σ∈S3

ε(σ)
(
(aσbσ)cσ − aσ(bσcσ)

)
,

where ε : S3 → {±1} is the sign homomorphism. If L(a, b, c) ≡ 0 then the
commutator xy − yx satisfies the Jacobi identity.
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We provide a different proof of the next result using elementary linear
algebra.

Theorem 3.2 [14]. Over a field of characteristic 0, every multilinear polynomial
identity in degree n ≤ 3 satisfied by every mutation of every associative algebra
is a consequence of the Lie-admissible identity.

Proof. It is straightforward to verify that kerXn = {0} for 1 ≤ n ≤ 2. The
monomial basis of LT (3) consists of 12 elements ordered first by association
type and then by permutation of the variables:

(ab)c, (ac)b, (ba)c, (bc)a, (ca)b, (cb)a,
a(bc), a(cb), b(ac), b(ca), c(ab), c(ba). (2)

The monomial basis of W(3) consists of 24 elements ordered first by lex order
of the pair of nullary operations (pp, pq, qp, qq) and then by permutation of
the variables:

apbpc, apcpb, bpapc, bpcpa, cpapb, cpbpa,
apbqc, apcqb, bpaqc, bpcqa, cpaqb, cpbqa,
aqbpc, aqcpb, bqapc, bqcpa, cqapb, cqbpa,
aqbqc, aqcqb, bqaqc, bqcqa, cqaqb, cqbqa.

(3)

The expansion map X3 : LT (3) → W(3) is determined by its values on the
nonassociative monomials with the identity permutation of the arguments; see
(1). We apply all permutations in S3 to the arguments a, b, c and store the
coefficients of the monomials in the 24 × 12 matrix E3 representing X3 with
respect to the ordered bases; see Fig. 2. That is, the (i, j) entry of E3 is the
coefficient of the ith associative monomial (3) in the expansion of the jth
nonassociative monomial (2). It is easy to check that this matrix has rank 11
and hence nullity 1, and that a basis for its nullspace is the coefficient vector
of the Lie-admissible identity. �

4. Polynomial Identities in Degree 4

Montaner [14] (see also [6, Chapter 5]) showed that every identity in degree
n ≤ 4 satisfied by every mutation algebra is a consequence of the Lie-admissible
identity, the Jordan-admissible identity, and two further identities; further-
more, none of these identities is a consequence of the other three. In this section
we use computer algebra to simplify this result: we discover two new multi-
linear identities in degree 4, which are not consequences of the Lie-admissible
identity, and which generate all identities in degree 4 (including the Jordan-
admissible identity).

Definition 4.1. In a nonassociative algebra, the linearized Jordan identity is

((bc)a)d + ((bd)a)c + ((cd)a)b − (ab)(cd) − (ac)(bd) − (ad)(bc).
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Figure 2. The matrix E3 representing the expansion map
X3 (here a dot represents a zero entry)

If we expand each nonassociative product xy as the anticommutator xy + yx
then we obtain the Jordan-admissible identity :

J(a, b, c, d) = ((bc)a)d + ((bd)a)c + ((cb)a)d + ((cd)a)b + ((db)a)c + ((dc)a)b
+ (a(bc))d + (a(bd))c + (a(cb))d + (a(cd))b + (a(db))c + (a(dc))b − (ab)(cd)
− (ab)(dc) − (ac)(bd) − (ac)(db) − (ad)(bc) − (ad)(cb) − (ba)(cd) − (ba)(dc)
− (bc)(ad) − (bc)(da) − (bd)(ac) − (bd)(ca) − (ca)(bd) − (ca)(db) − (cb)(ad)
− (cb)(da) − (cd)(ab) − (cd)(ba) − (da)(bc) − (da)(cb) − (db)(ac) − (db)(ca)
− (dc)(ab) − (dc)(ba) + b((cd)a) + b((dc)a) + c((bd)a) + c((db)a) + d((bc)a)
+ d((cb)a) + b(a(cd)) + b(a(dc)) + c(a(bd)) + c(a(db)) + d(a(bc)) + d(a(cb)).

If J(a, b, c, d) ≡ 0 then the anticommutator xy+yx satisfies the Jordan identity.

Definition 4.2. In a nonassociative algebra, we consider the following identities
where (x, y, z) = (xy)z − x(yz) and x ◦ y = xy + yx:

H(a, b, c, d) =
(
(a, c, b) + (b, a, c) + (c, b, a)

)
d −

∑

σ∈S3

(
(aσbσ)(cσd) − aσ((bσcσ)d)

)
,

I(a, b, c, d) = (bc, a, d) − (a, bc, d) + (a, d, bc) + (b, a ◦ d, c) − (b, d, c) ◦ a

− (b, a, c) ◦ d.
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In identity H, the first three terms include a cyclic sum of associators [7,
Equation (5)], and each term in the summation can be written as the difference
of two associators.

The next result improves [14, Theorem 2.3]: we have only two new iden-
tities in degree 4, not three. In addition, even though our new identities H
and I are multilinear, each contains only 18 nonassociative monomials (af-
ter expanding the associators and anticommutators), whereas the new identi-
ties of [14] have 48 monomials (the Jordan-admissible identity), 20 monomials
(identity E), and 52 monomials (identity K). Furthermore, our new identities
have only coefficients ±1, whereas identity K has coefficients 1, 2, 4, 6. Fi-
nally, we show that the new identities also generate the consequences of the
Lie-admissible identity, and thus the latter do not need to be considered.

Theorem 4.3. Every identity in degree 4 satisfied by every mutation algebra
follows from the identities H and I from Definition 4.2.

Proof. We first consider the expansion matrix. The monomial basis of LT (4)
consists of 120 elements ordered first by association type and then by lex order
of permutations σ ∈ S4 (indicated by superscripts):

((aσbσ)cσ)dσ, (aσ(bσcσ))dσ, (aσbσ)(cσdσ), aσ((bσcσ)dσ), aσ(bσ(cσdσ)).
(4)

The monomial basis of W(4) consists of 192 elements ordered first by lex order
of the triple of nullary operations and then by lex order of permutations σ ∈ S4:

aσp bσp cσp dσ, aσp bσp cσq dσ, aσp bσq cσp dσ, aσp bσq cσq dσ,
aσq bσp cσp dσ, aσq bσp cσq dσ, aσq bσq cσp dσ, aσq bσq cσq dσ.

(5)

The expansion map X4 : LT (4) → W(4) is determined by its values on the
nonassociative monomials with the identity permutation of the arguments
(Fig. 1). We apply all permutations in S4 to the arguments a, b, c, d in the
expansions and store the coefficients in the 192 × 120 matrix E4 represent-
ing X4 with respect to the ordered bases (4) and (5). The (i, j) entry of E4

is the coefficient of the ith associative monomial in the expansion of the jth
nonassociative monomial. Thus each column of E4 contains 1 and −1 each
four times.

Next, we consider the consequences of the Lie-admissible identity. The
identity L(a, b, c) ∈ LT (3) is skew-symmetric:

L(aσ, bσ, cσ) = ε(σ)L(a, b, c).

We write L ⊂ LT for the operad ideal generated by L; clearly L ⊆ K. The
homogeneous component L(4) is generated as an S4-module by the partial
compositions

L ◦1 ω = L(ω(a, b), c, d) = L(ab, c, d),
ω ◦1 L = ω(L(a, b, c), d) = L(a, b, c)d,
ω ◦2 L = ω(a, L(b, c, d)) = aL(b, c, d).

(6)
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We refer to the elements of L(4) as the old identities in degree 4. Applying
all permutations σ ∈ S4 to the generators (6) allows us to represent L(4) as
the row space of the 72 × 120 matrix C4 whose columns are labelled by the
monomials (4). The row space of C4 is a subspace (in fact an S4-submodule)
of the nullspace of the matrix E4. We set o4 = rank(C4) and write C4 for the
o4 × 120 matrix in RCF (row canonical form) whose row space equals that of
C4.

Finally, we consider the new identities. The elements of the nullspace of
E4 are the coefficient vectors of K(4). We set a4 = nullity(E4) and write N4 for
the a4 × 120 matrix in RCF whose row space is the nullspace of E4. The rows
of N4 span the S4-module of all identities in degree 4. Clearly the row space
of C4 is a subspace of the row space of N4, and hence o4 ≤ a4. The quotient
K(4)/L(4) is the S4-module of new identities in degree 4, and its dimension is
a4 − o4.

Let A,O ⊆ {1, . . . , 120} be the column indices of the leading 1 s in N4 and
C4 respectively. A linear basis of K(4)/L(4) corresponds to (the cosets of) the
rows of N4 whose leading 1 s have column indices in A\O. It is straightforward
using the module generators algorithm [4] to compute a subset of this linear
basis which represents a set of S4-module generators for the quotient module.
Computations with the computer algebra system SageMath show that a4 = 88
and hence N4 has rank n4 = 32; the nonzero entries of N4 are ± 1

2 ,±1,− 3
2 . For

each row of N4, we multiply the coefficients by the LCM of their denominators
to obtain integers and then divide by the GCD of these integers to obtain vec-
tors with relatively prime integer coefficients. The squared Euclidean lengths
of the resulting vectors with multiplicities in parentheses are

12 (4), 18 (4), 42 (8), 48 (2), 56 (1), 60 (4), 64 (1), 72 (2),
74 (3), 82 (1), 100 (2).

We sort the rows of the new integer matrix, also called N4, by increasing length.
Further SageMath computations show that o4 = 19, which implies that the
quotient module K(4)/L(4) has dimension 13.

We next use the module generators algorithm again to determine the
smallest subset of the shortest rows of N4 which generates the quotient module
K(4)/L(4). We obtain two identities and verify that neither is a consequence
of the other. The first has 18 terms and coefficients ± 1 (squared length 18);
the second has 33 terms and coefficients ± 1,± 2 (squared length 42).

We can obtain better results using linear algebra over the integers; this
requires replacing the RCF by the HNF (Hermite normal form), and applying
the LLL algorithm [5] to determine shorter integer vectors.

The entries of the matrix E4 belong to {0,±1}. We compute the HNF
of the transpose Et

4, denoted by V , and a square matrix U with det(U) = ±1
such that UEt

4 = V . Since Et
4 has rank 88, the bottom 32 rows of V are zero,

and hence the bottom 32 rows of U form a matrix N whose rows form a lattice
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basis of the left nullspace of Et
4 (the right nullspace of E4). (By a lattice basis

we mean a set of free generators for a submodule of a free Z-module.)
After applying the LLL algorithm to the lattice generated by the rows

of N , we obtain a matrix NLLL whose nonzero entries are ±1 and whose
rows have the following squared Euclidean lengths with multiplicities given in
parentheses:

12 (13), 18 (12), 24 (1), 26 (1), 28 (1), 32 (3), 34 (1).

Further computations show that the quotient module K(4)/L(4) is generated
by two rows of NLLL with squared length 18. These are the coefficient vec-
tors of the identities I(a, b, c, d) and H(a, b, c, d). Moreover, the S4-module
generated by I(a, b, c, d) and H(a, b, c, d) has dimension 32, so it coincides
with K(4). �

Remark 4.4. Since the dimension of K(4) is 32 and the permutation of vari-
ables of a multilinear identity of degree 4 can produce at most 4! = 24 linearly
independent identities, a lower bound on the number of generators of K(4) as
an S4-module is 32/24� = 2. Therefore the set of generators {H, I} of K(4)
has minimum cardinal.

Corollary 4.5. Consider the consequences of the Lie-admissible identity

P (a, b, c, d) = L(ab, c, d), Q(a, b, c, d) = L(a, b, c)d, R(a, b, c, d) = aL(b, c, d).

Then

P (a, b, c, d) = I(c, a, b, d) − I(d, a, b, c),

Q(a, b, c, d) = H(a, c, b, d) − H(a, b, c, d),

2R(a, b, c, d) =
∑

σ∈S3

ε(σ)
(
H(a, bσ, cσ, dσ) + I(a, bσ, cσ, dσ) + I(cσ, a, bσ, dσ)

)

+
∑

σ∈S2

ε(σ)H(b, cσ, dσ, a),

2J(a, b, c, d) =
∑

σ∈S3

(
H(a, bσ, cσ, dσ) + I(a, bσ, cσ, dσ) + I(cσ, a, bσ, dσ)

)

+
∑

σ∈S2

H(b, cσ, dσ, a),

where J(a, b, c, d) stands for the Jordan-admissible identity.

Proof. Straightforward computation. �

5. Polynomial Identities in Degree 5

In degree 5 there are 14 association types and hence 14 · 5! = 1680 multilinear
nonassociative monomials; there are 5! · 24 = 1920 associative pq-monomials.



237 Page 12 of 16 M. R. Bremner et al. Results Math

G(a, b, c, d, e) =
∑

σ∈S2({a,c})
τ∈S2({d,e})

ε(σ)
(
{e, d, aσ(cσb)} − ({e, d, b}aσ)cσ + (e, b, aσ(cσd))

− ((eaσ)cσ, b, d) + (e, d, (baσ)cσ)− (e, (baσ)cσ, d) + ((e, b, d)aσ)cσ − aσ(cσ(e, d, b))

+ ((dτaσ)cσ)(eτ b)− dτ (aσ(cσ(eτ b))) + dτ (((eτ b)aσ)cσ)− dτ (((eτaσ)cσ)b)
)

,

where {x, y, z} = (xy)z + y(xz), and S2({x, y}) denotes S2 acting on the set {x, y}.

Figure 3. The new identity in degree 5

Recall that in degree 4, identities H and I from Definition 4.2 generate
the kernel K(4) of the expansion map as an S4-module. Each identity U in
degree 4 produces six consequences in degree 5:

U(ab, c, d, e), U(a, bc, d, e), U(a, b, cd, e), U(a, b, c, de),
U(a, b, c, d)e, aU(b, c, d, e).

Theorem 5.1. Every identity in degree 5 satisfied by every mutation algebra
follows from the consequences of H and I in degree 4, and the new identity G
in degree 5 displayed in Fig. 3.

Proof. The proof is similar to that of degree 4. We order the monomial bases of
LT (5) and W(5) as in Theorem 4.3. We need to perform computations on the
1920 × 1680 matrix E5 representing the expansion map X5 : LT (5) → W(5)
(with respect to the monomial bases above). To this end, we use the class of
rational sparse matrices in SageMath.

The kernel K(5) of the expansion map is an S5-module of dimension 778
(comprising all identities). The twelve consequences (in degree 5) of identities
H and I generate the S5-module O(5) of old identities, which has dimension
747. Hence the quotient module K(5)/O(5) of new identities has dimension
31. We compute the HNF, denoted by V , of Et

5 and a square matrix U with
det(U) = ±1 such that UEt

5 = V . The bottom 778 rows of U produce a
matrix N whose rows form a lattice basis of the right nullspace of E5. Next,
we apply the LLL algorithm to the lattice generated by the rows of N to obtain
the matrix NLLL; we find that the S5-module K(5)/O(5) is generated by one
row of NLLL having 48 nonzero ± 1 entries, which is the coefficient vector of
identity G(a, b, c, d, e). The computations required around 4 GB of RAM, and
had a runtime of 90 min, in an AMD Ryzen 5 5600X processor at 3.70 GHz
running SageMath 9.2 on Windows 10. �

Remark 5.2. The dimension of K(5) is 778 and permuting the variables of a
multilinear identity of degree 5 can produce at most 5! = 120 linearly inde-
pendent identities, so a lower bound on the number of generators of K(5) as
an S5-module is 778/120� = 7. In Theorem 5.1 we have obtained a set with
13 generators: the 12 consequences of identities H and I plus a new identity
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G. In fact, it can be checked that K(5) is already generated by identity G,
the consequences of identity I, and consequences H(ab, c, d, e), H(a, b, c, d)e
and aH(b, c, d, e) of identity H. Therefore an upper bound on the minimum
number of generators of K(5) as an S5-module is 10.

6. Polynomial Identities in Degree 6

In degree 6 there are 42 association types and hence 42 · 6! = 30,240 mul-
tilinear nonassociative monomials, and there are 6! · 25 = 23,040 associative
pq-monomials. So, to represent the expansion map X6 as a whole we would
need to use a matrix of size 30, 240 × 23, 040, which is too large to manipulate
with our computer system. We use the representation theory of the symmetric
group to reduce the problem to a set of matrices of smaller sizes and demon-
strate the existence of a number of new identities in degree 6. We choose a set
of conjugacy class representatives in S6 and calculate the matrices represent-
ing these permutations on the modules of old and all identities. Comparing
the traces of these matrices with the character table of S6, we obtain the
multiplicities of the irreducible representations of the S6-modules.

Theorem 6.1. For each of the 11 partitions λ of 6, the following table contains
the multiplicity of each irreducible representation in the S6-modules of all iden-
tities (the kernel of the expansion map), the old identities (the consequences of
the identities of lower degree), and the quotient module of new identities (the
difference of the previous two multiplicities):

λ 6 51 42 411 33 321 3111 222 2211 21111 111111

dim(λ) 1 5 9 10 5 16 10 5 9 5 1

all(λ) 41 205 369 410 205 656 410 205 369 205 41

old(λ) 29 136 237 268 131 422 267 131 236 133 28

new(λ) 12 69 132 142 74 234 143 74 133 72 13

Furthermore, the dimension of the quotient module of new identities is
∑

λ

new(λ) dim(λ) = 10449.

Proof. These methods have been described in detail in [4, Sections
2.4–2.7]. �

By the previous theorem, the number of generators of the S6-module of
new identities is at least 10449/6!� = 15. This observation motivates the next
conjecture.

Conjecture 6.2. The kernel of the expansion map in all degrees, that is, the
operad ideal K =

⊕
n≥1 K(n) (see Definition 2.2), is not finitely generated. In
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other words, no finite set of identities generates all the identities satisfied by
all mutation algebras.
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