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Center-of-Mass Correction in a Relativistic Hartree Approximation
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We use the Peierls-Yoccoz projection method to evaluate the center-of-mass correction of a relativistic system
of nucleons and sigma and omega mesons, described in a mean-field Hartree approach. This correction for 4He,
16O and 40Ca is compared with the pure harmonic oscillator center-of-mass energy correction.
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It is a well known fact that mean-field approximation to
the nuclear many-body problem introduces center-of-mass
(CM) spurious components in the solutions. In particular,
Hartree-Fock self-consistent mean-fields obtained using real-
istic forces in a non-relativistic approach have been consid-
ered, and the corresponding CM corrections have been cal-
culated for the energy [1, 2] as well as for other observables
[3] in a fully microscopic way. For relativistic theories, as the
widely used relativistic mean field theory [4] in the Hartree
or Hartree-Fock approximations, the correction for the energy
is usually estimated using the harmonic oscillator basis [5].
In this case, the treatment for the CM motion becomes triv-
ial, though generally not consistent with the nuclear wave-
function obtained variationally.

In this paper we also address the problem of the CM energy
correction in the framework of a relativistic Hartree approach,
including both nucleon and meson degrees of freedom. We
consider σ and ω mesons, without self-interactions, linearly
coupled to nucleons. The CM correction is implemented by
means of the Peierls-Yoccoz projection, assuming that the nu-
cleus as a whole is a nonrelativistic system, though the nucle-
ons inside are relativistic particles.

The mesons are explicitly included in the Lagrangian den-
sity, and their effect should, in principle, be also considered
in the projection procedure. This issue was recently tackled
in reference [6] for light nuclei, but a more systematic study
is needed. In this paper we only take into account the nu-
cleon contributions to the CM corrections. The calculations
of the meson contribution are under way and the results will
be reported elsewhere. Moreover, in this work we restrict our
analysis to N = Z closed-shell nuclei only. The Lagrangian
density for a system of nucleons interacting with sigmas and
omegas reads (we use the notation and definitions as in refer-
ence [7])

L = Lfree
N +Lfree

σ +Lfree
ω +Lint

NNσ +Lint
NNω, (1)

where N denotes the nucleon and σ, ω the mesons. The La-

grangians for the free fields are:

Lfree
N = ψ(x)(iγµ∂µ +M)ψ(x), (2)

Lfree
σ = −1

2
[
m2

σϕ2(x)−∂µϕ(x)∂µϕ(x)
]
, (3)

Lfree
ω = −1

4
Fµν(x)Fµν(x)+

1
2

m2
ωων(x)ων(x),

where

Fµν ≡ ∂µων(x)−∂νωµ(x)

and M is the rest mass of the nucleon, and mσ and mω the
meson masses. The sigma and omega fields are denoted re-
spectively by ϕ(x) and ων(x), and the nucleon field by ψ(x).
For the interaction parts of the Lagrangian one has

Lint
NNσ = gσψ(x)ϕ(x)ψ(x) (4)

Lint
NNω = −gωψ(x)ων(x)γνψ(x)+

fω

4M
ψ(x)σµνFµν(x)ψ(x) .

(5)

The nucleon field can be expanded as

ψ(x) = ∑
α

uα(�r)e−iEαtbα +∑
α

vα(�r)eiEαtd†
α (6)

ψ†(x) = ∑
α

u†
α(�r)eiEαtb†

α +∑
α

v†
α(�r)e−iEαtdα , (7)

where uα(�r) and vα(�r) form a complete set of Dirac spinors
in the coordinate space, and bα and b†

α are the creation and
annihilation operators of a nucleon in the state α. By dα and
d†

α we denote the creation and the annihilation operators for
the anti-nucleons in the same state α. Thus, starting from the
above Lagrangian, and disregarding the tensor coupling, one
obtains the following Hamiltonian, already restricted to the
nucleon subspace [7]:

H = ∑
αα′

∫
f †
α′(�r)(−iγ0�γ.�∇+ γ0M) fα(�r)d3�r b†

α′bα

+
1
2 ∑

α,α′,β,β′

∫
f †
α′(�r1) f †

β′(�r2)Vα,α′(| �r1 −�r2 |)

× fβ(�r2) fα(�r1)d3rd3r1d3r2 b†
α′b

†
β′bβbα (8)
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with the potential given by

Vα,α′(| �r1 −�r2 |) = Vα,α′(r) = ∑
i=σ,ω

g2
i

4π
γ0(1)γ0(2)Γi(1,2)

× exp{−r[m2
i − (Eα −Eα′)2]1/2}

r
, (9)

where Γσ(1,2) = 1 and Γω(1,2) = γµ(1)γµ(2) and Eα are the
single-particle energies. In the model space, the state vector
for a system of A-nucleons is approximated by

| Ψ >= b†
α1

b†
α2
· · ·b†

αA
| 0 > , (10)

where α1, . . . ,αA are sets of single-particle quantum numbers
and | 0 > is the bare vacuum. In the Hartree approximation the
single-particle energies and wave functions are obtained in the
standard fashion by minimizing the ground state energy. We
start from [7]

< Ψ | H | Ψ > =
A

∑
α=1

∫
u†

α(�r)(−iγ0�γ.�∇+ γ0M)uα(�r)d3r

+
1
2

A

∑
α,α′=1

∫
u†

α(�r1)u
†
α′(�r2)Vα,α(r)uα(�r1)uα′(�r2)d3r1 d3r2 ,

(11)

where the first term corresponds to the kinetic energy and
mass, and the second one to the direct potential. The spinors
uα(�r) are explicitly given by

uα(�r) =


 gnl j(r)ϕl jm(r̂)

i fnl j(r)�σ.r̂ϕl jm(r̂)


ξ1/2,τα , (12)

where

ϕl jm(�r) = ∑
ml ,µ

(lml
1
2

µ | jm)Yl,ml (r̂)χ1/2,µ . (13)

We denote by χ1/2,µ and ξ1/2,τα the spin and isospin wave
functions, respectively. For a closed shell nucleus the Hartree
equations for the radial functions in both components of the
Dirac spinor are given by

dFα(r)
dr

= [M−Eα +U (+)
α (r)]Gα(r)+

κ
r

Fα(r) (14)

dGα(r)
dr

= [M +Eα +U (−)
α (r)]Fα(r)− κ

r
Gα(r) , (15)

where κ = ∓( j + 1
2 ) for j = l ± 1

2 and α ≡ (n, l, j). In the
previous equation we have introduced new radial functions
related to the original ones through

gα =
Gα(r)

r
, (16)

fα =
Fα(r)

r
. (17)

We have also introduced

U (±)
α (r1) = W σ

α (r1)±W ω
α (r1) (18)

and

W k
α(r1) = ±mk

g2
k

4π ∑
α

2(2 jα +1)Ik
α(r1) , (19)

where k = σ,ω. The functions Ik
α are given by

Ik
α(r1) =

∫ ∞

0
dr2 j0(imkr<)h(+)

0 (imkr>)[G2
α(r2)∓F2

α (r2)] ,

(20)
where mk are the masses of the corresponding mesons. The ±
signs in the above equations are related to the σ(+) and ω(−)
mesons. In (20) j0 and h(+)

0 are Bessel and Hankel spherical
functions and r< (r>) is the smaller (larger) value between r1
and r2. We solve the set of equations (14) to (19) by expand-
ing the radial functions f (r) and g(r) in a harmonic oscillator
basis, as explained in [5]. A fast convergence is achieved for
all nuclei studied in this work.

Next, we want to obtain the center-of-mass correction to
the energy using the model just described. It is well known,
from the nuclear many-body problem, that the Hartree (or
Hartree-Fock) approximation breaks translational invariance
(see Ref. [1]) and that the broken symmetry can be recov-
ered in the symmetry-breaking state by applying the Peierls-
Yoccoz projection operator

P�p =
∫

exp[i(�̂P−�p) ·�a]d3a, (21)

which has the property

P�p P�p′ = δ(�p−�p ′)P�p. (22)

In (21), �̂P is the total linear momentum operator and �p the
corresponding eigenvalue. Our approach consists in assuming
that the physical nucleus state is obtained by projecting the
product mean-field state into a zero momentum (�p =�0) state
(projection after variation). Because the many-body Hamil-
tonian, expressed by (8) and (9), commutes with the projec-
tion operator, the total energy can be cast in the form:

E�p=0 =
< Ψ | HP�p=�0 | Ψ >

< Ψ | P�p=�0 | Ψ >
. (23)

The denominator, < Ψ | P�p=�0 | Ψ >, is a norm overlap matrix
element. We start with the calculation of this overlap matrix
normalization factor. The easiest way to compute this quan-
tity is in momentum space. In configuration space the radial
functions are expanded in the oscillator basis as

gnl j(r) =
N

∑
n=0

CnRnl j(r) (24)

fnl j(r) =
N
′

∑
n=0

C̃nRnl j(r). (25)
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where N
′

must be, at least, N +1 [5] and Cn,C̃n are expansion
coefficients determined by the variational procedure. Insert-
ing these expansions in equation (12) and going to the mo-

mentum space representation, we arrive, after a lengthy but
straightforward calculation, to the following overlap kernel:

< Ψ | P�p=�0 | Ψ >=
∫

< Ψ | Ψ(a) > d3a =
∫

detBd3a. (26)

The matrix is given by

Bαβ = 4π∑
λ

(
1+(−)λ+lα+lβ

2
)[iλ+lα−lβ

∫
jλ(pa)g∗αgβ p2d p+ iλ+l̄α−l̄β

∫
jλ(pa) f ∗α fβ p2d p]Sαβ. (27)

where l̄ = l ±1 for j = l ±1/2 and

Sαβ = (−)mα+mβ+1

√
2 jα +1
2 jβ +1

2λ+1
4π

( jα −mαλ0| jβ −mβ)( jα1/2λ0| jβ1/2)δτα,τβ (28)

In equation (27) we have explicitly used the fact that we are dealing with closed shell nuclei, so no angular dependence should
appear in the overlap matrix. For the Hamiltonian kernel calculation, we have used the following general expressions[8]:

< Ψ | Ô | Ψ(a) >=< Ψ | Ψ(a) > ∑
αβ

< α | Ô | β(a) > B−1
βα (29)

and

< Ψ | Ô12 | Ψ(a) >=
1
2

< Ψ | Ψ(a) > ∑
αβγδ

< αβ | Ô12 | γ(a)δ(a) > B−1
γα B−1

δβ , (30)

where Ô and Ô12 are one and two body operators, respectively and only the direct term of the two-body operator has been kept.
Using the same technique applied in the case of the overlap kernel, we find, for the kinetic term, T̂ ≡−γ0�γ ·�P, in the Hamiltonian
kernel,

< α | T̂ | β(a) >=< Ψ | Ψ(a) > ∑
αβ

TαβB−1
βα , (31)

with

Tαβ = 4π∑
λ

(
1+(−)λ+lα+lβ

2
)[ −iλ+1+lα−l̄β

∫
jλ(pa)g∗αgβ p3d p+

+iλ+1+l̄α−lβ
∫

jλ(pa) f ∗α fβ p3d p]Sαβ . (32)

For the mass term one finds

< α | γ0M | β(a) >=< Ψ | Ψ(a) > ∑
αβ

MαβB−1
βα , (33)

with

Mαβ = 4πM∑
λ

(
1+(−)λ+lα+lβ

2
)[ iλ+lα−lβ

∫
jλ(pa)g∗αgβ p2d p−

−iλ+l̄α−l̄β
∫

jλ(pa) f ∗α fβ p2d p]Sαβ . (34)

The calculation of the potential term is more involved and it turned out to be easier to perform it in configuration space. Our
starting point is to substitute equation (9) with α = α′

in eq.(30), since we are neglecting the Fock correction in the present
approach [7]. Again, after a lengthy but straightforward calculation, we arrive at the following potential term:

< ψ |Vk | ψ(a) >=
1
2

g2
kmk < Ψ | Ψ(a) > ∑

L

∫
dr1 dr2 r2

1r2
2 jL(imk r<)hL(imk r>)

FL(r1,a)GL(r2,a), (35)

where k = σ,ω. The functions FL(r1,a) and GL(r2,a) have essentially the same structure, so that we have only to write
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TABLE I: Ground-state energy, E, without the CM correction for
the three double-closed shell nuclei considered in this work, the CM
correction, ∆Eproj, calculated as described in the text, and the CM
correction, ∆Eharm, calculated in the harmonic oscillator approxima-
tion.

Nucleus E [MeV] ∆Eproj [MeV] ∆Eharm [MeV]
4He −4.71 −13.22 −19.37
16O −93.66 −13.24 −12.20
40Ca −329.88 −11.24 −8.99

down the first one:

FL(r,a) = ∑
αβ

∫
d(cosθ)[g∗α(r−)gβ(r+)φαβ(θ,θ−,θ+)+

+ f ∗α(r−) fβ(r+)φ−α−β(θ,θ−,θ+)]B−1
βα . (36)

We have defined r± =|�r± | with�r± =�r± �a
2 and θ (θ±), which

is the azimuthal angle associated with the position vector �r
(�r±). The function φ is proportional to the product of three
spherical harmonics with different (translated) arguments [9].

The minus sign, as in −α, means that the orbital quantum
number lα is changed to l̄α, i.e. the orbital angular momentum
of the lower component.

With the previous expressions we have calculated the CM
correction to the ground state energy for 4He,16O and 40Ca
and the results are shown in table I (to check the accuracy of
our calculations we compared our ground state energies – col-
umn 1 of table I – with the TIMORA code[10]). For compari-
son, we also show the CM correction calculated in the simple
harmonic approximation, as described in [5]. Except for the
lightest nucleus (4He), the harmonic approximation gives re-
alistic values for the CM energy correction, as compared to
the Peierls-Yoccoz projection values. However, as discussed
in [2, 3], other observables, as the root mean square radius,
form factors and spectroscopic factors should be investigated
before a firm conclusion might be established. Moreover, as
pointed out at the beginning, the meson degrees of freedom
should be included in our calculation, and that work is already
in progress.
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