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The Color Flavor Locked Phase in the Chromodielectric Model and Quark Stars
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Recent results obtained in the Chromodielectric Model (CDM) have shown that strange quark matter at very
high densities may appear in two phases, namely a chiral broken and a chiral symmetric phase, which may
not be absolutely stable. In the chiral symmetric phase, the abundance of the quarks flavors u, d and s is the
same and there are no electrons. In this paper we study an extended version of the Chromodielectric model
(CDM) with a BCS quark pairing implemented, and analyze the superconducting color flavor locked phase. We
show that the inclusion in the free energy density of a negative term of the diquark condensate guarantees the
stability of quark matter. We also analyze the phase transition between matter described by different equations
of state and only find a first order transition, at a very low pressure, from the CFL phase to the unpaired strange
quark matter, which opens the possibility for a quark-hadron phase transition. Our study has implications in
astrophysics, in particular regarding the formation and the structure of compact quark stars. We explicitly show
that CFL stars can be absolutely stable and more compact than strange stars.
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I. INTRODUCTION

Twenty years ago, Bailin and Love [1, 2] conjectured that
the attractive channel of the one gluon exchange of QCD
could lead to quark pairs of equal momenta and opposite di-
rections near the Fermi surface, in analogy with the electron
pairs of the BCS theory [3] of superconductivity in solid state
physics. For these pairs to be created (BCS ground state), an
attractive interaction, even very small, is enough. The QCD
attractive interaction of quarks close to the Fermi surface may
lead to the formation of Cooper pairs which condense since
they are bosons. The condensates generate gaps in the fermi-
onic spectra which can be understood as the masses of these
quasi-quarks. Since quark pairs in QCD cannot be color sin-
glets, the color symmetry must be broken and this phenom-
enon is known as color superconductivity. In the case of three
flavors and massless quarks (including the strange quark), a
new phenomenon occurs when a condensate of quark pairs
is formed: since the Cooper pairs cannot be flavor isosin-
glets, both the chiral symmetry and the color symmetry are
broken. The condensate formed through the attractive chan-
nel of the one gluon exchange exhibits what it is known in
literature as Color Flavour Locking (CFL) [4]. The rotation
transformations in the flavor space SU(3)L are “locked” with
the color rotations SU(3)color, in the sense that the condensate
is not invariant for none of these transformations separately,
but it is invariant for the simultaneous transformations of the
color-flavor SU(3)L+color (the same happens for the conden-
sates formed by the right hand helicity spinores which are in-
variant under SU(3)R+color rotations). Thus, the chiral sym-

metry is broken in the CFL phase due to this new phenom-
enon and not because of the formation of any quark-antiquark
condensate which, at these densities, is simply absent. In this
work we are going to investigate, using the chromodieletric
model (CDM) [5–7], high density strange quark matter in the
CFL phase. We choose this model, where quarks interact with
effective mesons fields, since its chiral symmetry is sponta-
neously broken, generating dynamical masses for quarks (a
common feature with NJL models), and since it confines at
low energies. The confinement results from an effective field,
χ, that can be regarded as an integrated gluon field [8]. At
low energies the model yields a good account of the nucleon
phenomenology [9, 10]. Therefore, it is tempting to investi-
gated in the same model whether the confinement information
still remains at high densities where we expect the CFL quark
matter to be formed.

Moreover, in the framework of the same model, a study of
the unpaired three flavor quark matter in β equilibrium has
been carried out on [11, 12] and problems with the stabil-
ity of this strange matter at high densities have been found
[13]. These problems are solved through the introduction of
quark pairing, since the strange matter in the superconduct-
ing phase has a lower energy per particle than in the unpaired
quark phase. Preliminary results have already been presented
in [14, 15] and, in this work, we will add more results and
also analyze the importance of the CFL phase as far as the
structure of compact stars is concerned [16].

The CDM model will be used with a quartic potential. This
version of the model yields two self-consistent equations of
state (EOS) for strange quark matter in β equilibrium [11, 12].
One of them, for low densities, shows up a chiral symmetry
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breaking, a symmetry that is restored in the other one, for high
densities. In this one, the Fermi momenta are the same for
all three flavors and, therefore, there are no electrons in the
neutral quark matter. Similarly, quark matter in the CFL phase
also does not contain any electrons, but in the unpaired phase
the gap energy is zero [11, 12].

We investigated the phase transition between the equations
of state and concluded that, at intermediate densities, the color
superconducting phase may undergo a transition to the strange
unpaired quark matter, if pressure is low enough. However,
at sufficiently high densities the transition does not occur.
Hence, one should conclude that the CFL state is the true
ground state of strange quark matter in the CDM model in
that regime.

The superconducting color phase of quark matter may have
interesting consequences in astrophysics. Inside a neutron
star, densities ten times larger than the nuclear matter density
can be reached, with chemical potentials of the order µ ∼ 400
to 500 MeV. This exceeds the strange quark mass and, for that
density, the CFL phase is favored. The existence of a core in a
neutron star made up of strange matter, or even the possibility
that stars made up entirely of quark matter may exist, was also
a motivation for our study. In the normal unpaired quark mat-
ter, it was shown that very small compact stars with radius less
than 8 km are metastable [11, 12]. We will show by means of
M×R diagrams obtained for CFL stars (pure quark stars with
the quark matter in the superconducting phase), that it is possi-
ble to obtain well compact stars, with maximum mass M/M�
= 1.43 and radius R∼ 7.5 km, where the quark matter is stable
(ε < ρM). This result seems to indicate that pure quark stars,
if they really exist in nature, must be in the CFL phase.

II. THE CFL PHASE IN THE CHROMODIELECTRIC
MODEL

The Lagrangian density of the CDM can be written as [5–7]

L = iψ̄γµ∂µψ+
1
2
(∂µσ∂µσ+∂µ�π ·∂µ�π)−W (σ,�π)+

+
g
χ

ψ̄(σ+ i�τ ·�πγ5)ψ+
gs

χ
ψ̄sψs +

1
2

∂µχ∂µχ−U(χ). (1)

The first and second terms describe the quark and meson ki-
netic energies, respectively, and the third one the chiral meson
self-interaction (Mexican hat potential for the scalar σ and the
pseudoscalar π mesons):

W (σ,�π) =
m2

σ
8 f 2

π
(σ2 +π2 − f 2

π )2 , (2)

where fπ is the pion decay constant.
The fourth and fifth terms in (1) describe the meson-quark

interaction: the former refers only to the two light quark fla-
vors (u and d) and the latter to the strange quark s, so the
model is extended to the strange sector. The last two terms
in the Lagrangian density (1) refer to the dynamical confining
χ field, namely to its kinetic (sixth term) and potential, U(χ),

energies. We use a CDM version with the following quartic
potential for the χ field:

U(χ) = 1
2 m2

χχ2

×
[

1+
(

8η4

γ2 −2
)(

χ
γmχ

)
+

(
1− 6η4

γ2

)(
χ

γmχ

)2
]

(3)

where mχ is the mass of the χ field. The potential has an
absolute minimum at χ = 0. The other two constants acquire
a simple meaning, when the potential is written as in Eq. (3):
γ defines the position of the second (local) minimum, located
at χ = γmχ, and η the value of the potential at this minimum:
U(γmχ) = (ηmχ)4. The range for η in this work is the same
as in [11, 13].

In the mean field approximation, where the meson fields
are constant classical fields, the energy density for an homo-
geneous system of u, d and s quarks, interacting with the χ
and σ fields is given by [11–13]:

ε = α ∑
i=u,d,s

∫ ki

0

d3k
(2π)3

√
k2 +mi(σ,χ)2 +U(χ)

+
m2

σ
8 f 2

π
(σ2 − f 2

π )2 (4)

(due to parity, the terms involving the pion field vanish in this
approximation). The degeneracy factor is α = 2 (spin) × 3
(color) = 6, and fπ = 93 MeV and mσ = 1.2 GeV. Since we are
dealing with an infinite and homogeneous system, the fermi-
ons are described by plain waves. The last two terms corre-
spond to the χ and σ potential energies, respectively. The first
term of Eq. (4) is the relativistic kinetic energy of a fermion
gas, corresponding to the three quark flavors.

The Fermi momentum of each quark, ki, is related to the
corresponding density, ρi, through:

ρi = α
k3

i
6π2 =

k3
i

π2 , (5)

where i = u,d and s.
The meson-quark interaction terms generate dynamical

quark masses that are all different [18], namely

mu(σ,χ) =
guσ
χ fπ

, md(σ,χ) =
gdσ
χ fπ

, ms(χ) =
gs

χ
, (6)

and the coupling constants for the u, d and s quarks are given,
respectively, by

gu = g( fπ +ξ3) , gd = g( fπ −ξ3) , gs = g(2 fK − fπ) (7)

where ξ3 =−0.75 MeV and the kaon decay constant fK = 113
MeV. The parameters that better reproduce the nucleon prop-
erties in this model are the coupling constant, g = 0.023 GeV,
the χ field mass, mχ = 1.7 GeV and γ = 0.2, which we keep
fixed at this value as in [11, 17]. Finally, since we are inter-
ested in the study of strange quark matter in compact stars,
we have to take in account the β equilibrium. Thus a relativis-
tic free electron gas should be added [11, 13] to the energy
density, Eq. (4).
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We now extend the chromodieletric model presented so far
in order to include the diquark condensate. The superconduct-
ing CFL phase appears when an attractive term responsible for
the quark pairing is introduced. This term reads −3(∆µ

π )2 and
its effect is to decrease the free energy of the system. The gap
energy, ∆, in principle, depends on the quark chemical poten-
tial, µ, in the range of neutron star densities (µ between 400
to 500 MeV), but we are going to take it as a constant [19].
This new term has not been derived in the CDM but rather
in the framework of QCD, in the one gluon approximation.
That interaction can be modelled by a four fermion interac-
tion that is linearized, in the spirit of NJL models [19, 20].
In the CDM, a similar interaction could be generated through
the introduction of an effective meson field that would rep-
resent the diquark pair. In this case, it would be possible to
derive a self-consistent equation for the gap as a function of
the density. Such a study is going to be carried on in a future
work, but here, we will be working in the most simple BCS
approximation, assuming the gap energy to be constant.

Moreover, as noted in [11, 12], the CDM model at high
density predicts an EOS for the unpaired strange quark matter
that is essentially the same as the one obtained by a perturba-
tive QCD expansion [21]. Since, the CDM model incorporates
the main QCD dynamics at high densities, we would expect
this to be also the case for the diquark condensate, making
it reasonable the introduction of the QCD pairing term in the
CDM.

For systems at zero temperature, the grand-potential di-
vided by the system volume is given by

Ω = ε−µρ (8)

where ε is the energy density, µ is the chemical potential and
ρ the particle density.

The grand-potential density of CDM in the superconduct-
ing color phase (CFL), is given by [14, 15]

ΩCFL = α ∑
i=u,d,s

∫ ki

0

d3k
(2π)3

(√
k2 +m2

i −µi

)

−3
(

∆µ
π

)2

+U(χ)+W (σ,�π) (9)

where the quark masses mi are given by Eqs. (6), and the me-
son potentials by Eqs. (2) and (3). Using spherical symmetry
and α = 6, Eq. (9) can be written as:

ΩCFL = εk − 1
π2 ∑

i=u,d,s
µik3

i −3
(

∆µ
π

)2

+U(χ)+W (σ,�π)

(10)
where

εk =
3
π2 ∑

i=u,d,s

∫ ki

0

(
k2

√
(k2 +m2

i )
)

dk (11)

is the kinetic energy for a relativistic quark gas [14, 15, 22].
Inserting (10) into (8), we obtain the following quark matter

energy density:

ε = εk − 1
π2 ∑

i=u,d,s
µik3

i −3
(

∆µ
π

)2

+ ∑
i=u,d,s

µiρi

+U(χ)+W (σ,�π) (12)

In the CFL phase, in order to guarantee the local charge neu-

trality [22], the Fermi momenta (ki =
√

µ2
i −m2

i ) of all quarks
are equal, as explained previously:

k f = ku = kd = ks = 2µ−
√

µ2 +
m2

s

3
(13)

where we define the quark chemical potential µ by

3µ = ∑
i=u,d,s

µi (14)

and admit that the u and d quark masses are very small [22].
When we derive the grand-potential, given by Eq. (10), to

respect the chemical potential of each quark, µi, we obtain the
same quark density for u, d and s if we take in account, as ex-
plained before, that all quarks have the same Fermi momen-
tum in the CFL phase. Thus, if we use the definition of the
average quark chemical potential, µ, expressed by Eq. (14),
the baryonic density ρ is given by

ρ = ρu = ρd = ρs =
1
π2 (k3

f +2∆2µ). (15)

As we can see from this expression, the baryonic density in
the superconducting phase also depends on the value of the
pairing constant, ∆, and not only on the Fermi momentum,
k f . This result reflects the well known fact that BCS theory
violates the particle number conservation since now there is a
dependence on the number of diquark pairs. Thus, for a given
density, the larger the gap, ∆, the smaller the Fermi momenta.
As we will see, this will affect the contribution to the energy
density of the quark kinetic energy term given in Eq. (12).

Inserting (13), (14) and (15) back into Eq. (12), one gets

ε = εk −
3µk3

f

π2 −3
(

∆µ
π

)2

+U(χ)+W (σ,π)

+
3µ
π2 (k3

f +2∆2µ) . (16)

This expression can still be re-arranged so that the energy den-
sity of the CFL phase of strange quark matter can be cast in
the form:

ε = εk +3
(

∆µ
π

)2

+U(χ)+W (σ,π) , (17)

where εk is given by Eq. (11).

III. RESULTS

As for the strange quark matter without pairing [11, 12], the
model accommodates two solutions: one for small values of χ
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(solution I) and the other one for large values of this field, near
to the second minimum of the confining potential χ∼ γmχ (so-
lution II). Keeping the masses of the mesons and of the χ field
as fixed parameters, the free parameters of the model are the
coupling constant g, and the γ and η parameters of the χ poten-
tial energy. These two parameters matter for solution II since
they determine the second minimum U(χ) potential (the other
minimum is always at χ = 0). However, the sensitivity of the
EOS for solution II on the parameter γ is negligible, since all
three quark masses are very small because they are determined
by the inverse of the χ field, which is always large for solution
II [11]. On the other hand, since the dependence of both EOS
on the coupling constant g is only through the quark dynam-
ical masses, which is almost zero in solution II, the EOS for
this solution only depends on the parameter η which fixes the
value of the potential energy at the local minimum. Moreover,
for both solutions, the self-consistent scalar field is σ ∼ fπ, so
the contribution of the Mexican hat potential almost vanishes.
The dependence of solution II on just one parameter explains
why the results for this EOS in the superconducting phase are
similar to those obtained using the MIT bag model [22]. In-
creasing η, which means increasing the potential energy at the
local minimum, is equivalent to increase the bag constant, B,
of the MIT bag model. So, as in [22], the CFL strange quark
matter of the solution II is more stable than the unpaired one.

In previous works, the stability of the unpaired strange
quark matter in β equilibrium [11] for solution II (ε < ρM)
was studied as a function of the model parameters. It was
shown that, for large confining potential energies (large val-
ues of η), the quark matter was unstable. However, as it can
seen from Eq. (10), the presence of the attractive pairing term
in the grand-potential may balance the positive contribution
coming from the confining potential energy, so the supercon-
dutivity of quark matter turns out to be the way to solve the
meta-stabilidade of the unpaired quark matter. From Eqs. (8)
and (17), and taking into account that the grand-potential van-
ishes when the energy per particle has a minimum (zero pres-
sure, µ = ε/ρ), one readily obtains the relationship between
the maximum value of η and the gap constant ∆, for which
the CFL quark matter in the solution II (where the quarks are
almost massless) is still stable (ε/ρ = M):

ηmax ∼ M
mχ

(
1

108π2

)1/4 (
1+

6∆2

M

)1/4

∼ 0.0966
(

1+
6∆2

M

)1/4

. (18)

This expression shows that, for unpaired quark matter (∆ = 0),
η > 0.0966 will make the quark matter unstable, corroborat-
ing what was obtained in Ref. [11]. For the CFL phase with
a strong pairing interaction, large values of η are still allowed
(larger potential energy) by the stability condition (18).

In Fig. 1-a, the energy per particle for the solution II is
shown as a function of the baryonic density, for various pair-
ing parameters. As we can observe, increasing of the pair-
ing interaction ∆ lowers the energy per particle, leading to
a more robust quark matter stability. In the case of solution
I (U(χ) ∼ 0), the strange matter is stable only for values of
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FIG. 1: Energy per particle as a function of the baryonic density with
η = 0.0966 and different ∆ pairing interaction for the solution II (a)
and for solution I (b).

∆ � 65 MeV. This happens because only for these values of ∆,
the pressure vanishes producing a minimum in Fig. 1-b. For
larger values of the pairing, the energy per particle does not
show a minimum, and the matter collapses for low densities.
In solution I, the values for the χ field are very small and the
dynamical quark masses large. This collapse indicates that the
superconducting phase of massive quarks is not favored.

After analyzing the effect of the strong pairing in the energy
density, it is worth investigating its effect on the pressure for
the two solutions. First, let us take η = 0.0966 and increase
the other parameter, starting at ∆ = 0. In Fig. 2-a we present
the EOS for solution II, while the EOS for solution I is shown
in Fig. 2-b. In these two figures we can observe that, for a
given energy density, increasing the pairing strength leads to
a corresponding increase in the pressure. This result shows
that the pairing interaction makes the EOS more stiff in the
CFL phase.

In order to study the possible phase transitions between dif-
ferent EOS (paired and unpaired strange quark matter) we
present, in Fig. 3 a plot of the pressure versus the quark
chemical potential, µ. These curves indicate a phase transi-
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FIG. 2: Equation of state for different pairing parameters for the so-
lution I (a) and solution II (b).
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FIG. 3: Pressure as a function of the quark chemical potential for
different quark EOS as explained in the text.

tion from the CFL quark matter (solution II) to the unpaired
quark matter in β equilibrium (solution I). We remind that the
unpaired strange matter appears in the chiral broken phase
with massive quarks [11]. This is a first order phase tran-
sition, indicating the existence of a mixing phase between
these two phases. The system changes from the CFL phase,
with a strong pairing interaction (∆ = 150 MeV), at a den-
sity around 0.67 fm−3 ∼ 4.5ρ0 to a smaller density of around
0.41 fm−3 ∼ 3.0ρ0 (ρ0 = 0.15 fm−3 is the normal nuclear mat-
ter density), with the quark matter in the unpaired phase and
in β equilibrium. This result shows that, in the CDM model,
there is a parameter range for which the CFL phase coexists
with the chiral broken phase of unpaired strange quark mat-
ter. Since this transition occurs at a much too low pressure,
even close to zero, it is possible that a quark-hadron transition
also takes place. To investigate this possibility some hadronic
EOS would be required. This is certainly a topic for future
work; here we rather concentrated on the strange quark matter
transitions.

One motivation for the present work, already pointed out in
the Introduction, is to investigate whether bare quark stars in
the CFL phase are absolutely stable, and how compact they
are in comparison with strange stars made up of unpaired
quark matter in β equilibrium. To address this issue, we solved
the Oppenheimer-Volkov equation for relativistic stars and ob-
tained the mass vs. radius diagram for the bare quark stars,
shown in Fig. 4. As the results show, keeping the pairing in-
teraction fixed and increasing the potential energy (i.e. in-
creasing η) we get CFL stars that are very compact and still
stable in contrast with the strange stars made up of unpaired
quark matter, which are metastable [11].

0.0 5.0 10.0 15.0
R [km]

0.0

1.0

2.0

3.0

M
su

m

η=0.1137
η=0.1053
η=0.0966

FIG. 4: Mass - radius diagram with ∆ = 150 MeV and different val-
ues of η.

We present in Table I the results for the maximum mass, M
of CFL strange stars (in units of the solar mass, M�), the ra-
dius, R, and the central energy density, εc, for different values
of η (all yielding a stable quark matter). As we can read from
this table, relatively large maximum masses for CFL stars can
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η ∆ [MeV] M [M�] R [km] εc [fm−4]

0.0966 0 1.56 8.48 9.62
100 1.81 9.61 7.18
150 2.11 10.81 5.72

0.1053 100 1.49 7.94 10.62
150 1.72 8.89 8.46

0.1137 150 1.43 7.45 11.87

TABLE I: Values of the maximum mass M, radius R and central den-
sity energy εc for the stable CFL star with different values of η and
∆.

be obtained. Most of the of neutrons stars have a mass M ∼
1.4 M�. It is interesting that in the maximum limit of quark
matter stability (large η, for ∆ = 150 MeV) the maximum
mass is around this value but with a much smaller radius –
only R ≤ 8 km – in comparison with the radius range from 10
to 14 km of a typical neutron star.

With the parameters considered in our model, the maximum
limit for the potential energy and for the gap energy to have
stable quark matter are η = 0.1137 and ∆ = 150 MeV respec-
tively. In this case we get very compact CFL stars as shown
in Fig. 4, which are stable, something that is not possible to
obtain in the case of the unpaired quark matter without facing
the problem of the metastability [11]. Thus, we can conclude
that the color superconducting matter is stable and CFL stars
can be rather small.

IV. CONCLUSIONS

Through the introduction of a QCD inspired diquark inter-
action in the CDM model, we have studied the superconduct-
ing color flavor locked phase of strange quark matter at high
densities, and compare with the previous results obtained in
this model for the unpaired quark matter in β equilibrium. Our
findings can be summarized as follow:

1. The CFL quark matter is more stable that the unpaired
phase; when pairing is allowed, the range of the η parameter
(which mimics the bag constant) is wider;

2. For standard CDM parameters, the CFL phase is ab-
solutely stable at high densities, showing a first order phase
transition to the β equilibrium unpaired quark phase at very
small pressures;

3. CFL stars are stable and can be very compact with a mass
similar to a neutron star mass but a smaller radius of the order
of 8 km.
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