

José Diogo Terêncio Sobrinho

AUTOMATIC USER INTERFACE

GENERATION FOR

MULTI-USER/MULTI-DEVICE (MPCS)

Dissertation in the context of the Master in Informatics Engineering,

specialization in Software Engineering, advised by Professor Jorge Cardoso

and Professor Licínio Roque and presented to the Department of Informatics

Engineering of the Faculty of Sciences and Technology of the University of

Coimbra.

September, 2023

DEPARTMENT OF INFORMATICS ENGINEERING

José Diogo Terêncio Sobrinho

Automatic User Interface
Generation for

multi-user/multi-device (MPCS)

Dissertation in the context of the Master in Informatics Engineering,
specialization in Software Engineering, advised by Professor Jorge Cardoso and

Professor Licínio Roque and presented to the Department of Informatics
Engineering of the Faculty of Sciences and Technology of the University of

Coimbra.

September, 2023

Acknowledgements

I would like to thank my family and friends...

Funding

This work was partially funded by MPCS project #101048546 under UCPM-2021-
PP-MARIPOL, programme UCPM2027 and by the FCT - Foundation for Science
and Technology, I.P./MCTES through national funds (PIDDAC), within the scope
of CISUC R&D Unit - UIDB/00326/2020 or project code UIDP/00326/2020.

v

Abstract

The combat against marine pollution must be given special attention. In Portu-
gal, conducting a simulation to train the appropriate entities to fight pollution is
very expensive and time-consuming. To counteract this, a game was developed
for learning purposes called Marine Pollution Control Simulator (MPCS), which
simulates maritime pollution events, more specifically, oil spills, where the fu-
ture users can train so that they can be more effective in combating real maritime
pollution events, without spending large amounts of money, and doing it much
faster than normal. The implementation of this project was divided into five dif-
ferent dissertations, each having a part in the development process of the project.

When the initial ideas for the project were discussed, a problem was encountered:
the diverse number of possible interfaces in the game, given the diversification
of entities taking part in the game, can significantly increase the developing time.
That said, there was a need to reduce development time. With this in mind, this
dissertation demonstrates a model for automatically generating interfaces using
templates capable of reducing the development effort, implemented when devel-
oping the game. Using this model made it possible to develop the game much
faster than creating all the interfaces manually. However, this model had some
problems. That said, this dissertation also proposes another automatic generation
model using a JSON configuration file, capable of solving the generation prob-
lems using templates, such as the customization of interfaces and some aspects
of abstraction that needed to be met.

User studies were carried out to evaluate the interfaces generated. With the anal-
ysis of the results, we could conclude that the generation of the interfaces was a
success, with only a few aspects to improve.

Ultimately, we can conclude that the objectives of this dissertation have been met.
However, there is still room to improve the models developed to create a solution
that can better meet the client’s needs and make the game experience more en-
joyable.

Keywords

Automatic User Interface Generation, Model-based User Interface Generation,
Marine pollution Control Simulator, User Interface Language Description

vii

Resumo

O combate à poluição marinha deve merecer uma atenção especial. Em Portu-
gal, a realização de um ensaio para formar as entidades competentes no combate
à poluição é muito dispendiosa e demorada. Para contrariar este facto, foi de-
senvolvido um jogo com fins didáticos chamado Marine Polution Control Sim-
ulator (MPCS), que simula eventos de poluição marítima, mais concretamente
derrames de hidrocarbonetos, onde os futuros utilizadores poderão treinar para
serem mais eficazes no combate a eventos reais de poluição marítima, sem de-
spender grandes quantias de dinheiro, e fazendo-o muito mais rapidamente do
que o normal. A implementação deste projeto foi dividida em cinco dissertações
diferentes, cada uma com uma parte no processo de desenvolvimento do projeto.

Quando as ideias iniciais para o projeto foram discutidas, foi encontrado um
problema: o número diversificado de interfaces possíveis no jogo, dada a di-
versificação de entidades presentes no jogo, pode aumentar significativamente
o tempo de desenvolvimento. Assim sendo, houve a necessidade de reduzir o
tempo de desenvolvimento. Neste sentido, esta dissertação demonstra um mod-
elo de geração automática de interfaces através de templates, capaz de reduzir o
esforço de desenvolvimento, implementado no desenvolvimento do jogo. Com a
utilização deste modelo foi possível desenvolver o jogo muito mais rapidamente
do que criar todas as interfaces manualmente. No entanto, este modelo apresenta
alguns problemas. Dito isso, esta dissertação também propõe um outro modelo
de geração automática usando um ficheiro de configuração em JSON, capaz de
resolver os problemas de geração usando templates, como a customização das
interfaces e alguns aspectos de abstração que precisavam de existir

Foram realizados testes de usabilidade para avaliar as interfaces geradas. Com a
análise dos resultados, foi possível concluir que a geração das interfaces foi um
sucesso, com apenas alguns aspectos a melhorar.

Em última análise, podemos concluir que os objetivos desta dissertação foram
cumpridos. No entanto, ainda há espaço para melhorar os modelos desenvolvi-
dos para criar uma solução que possa responder melhor às necessidades do cliente,
e que possa tornar a experiência de jogo mais agradável.

Palavras-Chave

Geração Automática de Interfaces de Utilizador, Geração de Interfaces de Uti-
lizador baseada em modelos, Simulador de Controlo da Poluição Marítima, Lin-
guagens de Descrição de Interfaces de Utilizador

ix

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Scope . 3
1.3 Objectives . 4
1.4 Document structure . 4

2 Background 5
2.1 Execution . 6
2.2 Simulator . 8

3 State of The Art 13
3.1 Concepts . 13

3.1.1 User Interface . 13
3.1.2 User Interface Models . 13
3.1.3 User Interface Description Languages 14
3.1.4 Automatic User Interface Generation 14

3.2 User Interface Description Languages 14
3.3 Automatic UI Generation Approaches 18

3.3.1 The Personal Universal Controller Approach 18
3.3.2 SUPPLE: Automatically Generating User Interfaces 20
3.3.3 ICrafter: A Service Framework for Ubiquitous Computing

Environments . 21
3.3.4 Tool Support for Designing Nomadic Applications 23
3.3.5 User Interfaces for Smart Things – A Generative Approach

With Semantic Interaction Descriptions 26
3.4 Evaluation . 28

4 Methodology and Work Plan 31
4.1 Methodology . 31
4.2 Work Plan . 32
4.3 Risk Plan . 35

5 Design 37
5.1 Interface Design . 37

5.1.1 Mockups . 38
5.2 System Architecture and Interface Generation 46

5.2.1 System Architecture . 46
5.2.2 Interface Generation . 51

5.3 UI generation Model using a JSON configuration file 53

xi

Chapter 0

5.3.1 Mockups . 54
5.3.2 Architecture . 57

6 Development 61
6.1 Infrastructure . 61

6.1.1 Choice of Technologies . 61
6.1.2 Server deployment . 63
6.1.3 Client-Server communication channels 63

6.2 Development process . 66
6.2.1 Sprint 1 . 66
6.2.2 Sprint 2 . 67
6.2.3 Sprint 3 . 68
6.2.4 Sprint 4 . 71

6.3 UI Generation- Pratical Examples . 72
6.3.1 Templates . 72
6.3.2 Automatic UI Generation Proposal 85

7 Evaluation 93
7.1 First Evaluation . 93

7.1.1 Study material . 93
7.1.2 Results . 94

7.2 Second Evaluation . 94
7.2.1 Study material . 94
7.2.2 Results . 96

8 Conclusion 103

xii

Acronyms

AUI Abstract User Interface.

AUIG Automatic User Interface Generation.

AUIGM Automatic User Interface Generation Methods.

CCC Command and Control Center.

CUI ConcreteUser Interface.

DCPM Directorate for Combating Pollution of the Sea.

DEI Department of Informatics Engineering.

DGAM Central Services of the Directorate General of Maritime Authority.

GBL Game-Based Learning.

GUI Graphical User Interface.

HC HydroCarbons.

HP Health Points.

MAS Maritime Authority System.

MPCS Marine Polution Control Simulator.

NMA National Maritime Authority.

PUC Personal Universal Controller.

UI User Interface.

UIDL User Interface Description Language.

VR Virtual Reality.

xiii

List of Figures

2.1 Example of a possible gameplay [1] 10

3.1 A diagrammatic overview of PUC the system [5] 19
3.2 Tree depiction of the functional interface specification for a class-

room appliance controller [8] . 20
3.3 The classroom interface rendered for two devices with the same

size: (on the left) a pointer-based device (on the right) a touch-
panel device [8] . 21

3.4 The classroom interface rendered on a WAP cell phone(Sony Eric-
son T86i) [8] . 21

3.5 ICrafter architecture [9] . 22
3.6 Interface designed by ICrafter to control the projectors of a room [9] 23
3.7 Main transformations in TERESA in terms of XML-based applica-

tions supported [10] . 24
3.8 Configuring the presentation specifications in TERESA [10] 25
3.9 Task model after applying the filter for the desktop environment,

on the left and for the mobile phone on the right [10] 25
3.10 Resulting UI of the example from the task model [10] 26
3.11 Example of the generated interface description language to control

a window blind in JSON [11] . 27
3.12 Example of the generated interface description language to control

a window blind in HTML microdata [11] 27
3.13 Smartphone interfaces for controlling the brightness of a LED on

left and middle, and a power switch on the right [11] 28

4.1 Gantt chart with the chronogram of the tasks of the work plan . . . 33

5.1 Set of all designed mockups . 37
5.2 Main Components of the interface 38
5.3 Map . 39
5.4 Participants and equipments close by 40
5.5 Interaction with a participant . 42
5.6 Interaction with equipment and movement 43
5.7 Placing a boom around the spilled oi 45
5.8 System’s Architecture . 47
5.9 Entity-Relationship Diagram . 49
5.10 Interface Generation Model . 52
5.10 Property Priority being applied . 55
5.11 Property Customization being applied 55

xv

Chapter 0

5.11 Property Grouping being applied . 56
5.12 Property Interaction being applied 56
5.13 Property Relevance being applied 57
5.14 UI generation Architecture . 58

6.1 Diagram showing the communications made for a player to move 65
6.2 Generation of an equipment Interface using Templates 72
6.3 Main Components of the Interface 73
6.4 Available Actions interfaces . 74
6.5 Map interfaces . 76
6.6 Interface with the Gps Route . 77
6.7 Vehicle Interfaces . 78
6.8 Map updated with new location of the boom and the participants

that carried it . 79
6.9 Placing a barrier and its result on the Map 80
6.10 Sensible/Interdict Areas . 81
6.11 Facilities Interfaces . 82
6.12 Email Interfaces . 83
6.13 Message Interfaces . 84
6.14 Sequential diagram of the automatic user interface model 85
6.15 First sample of the JSON configuration file 87
6.16 Second sample of the JSON configuration file 88
6.17 First example of the generated interface 89
6.18 Second example of the generated interface 90
6.19 Third example of the generated interface 91

7.1 Participants profiling graphs . 95
7.2 Duration taken in each task during the test 97
7.3 Errors counted in the execution of each task 97
7.4 Likert Scale Questions . 98
7.5 Semantical Scale Questions . 99

xvi

List of Tables

2.1 Performance evaluation . 9
2.2 Functional requirements [1] . 12

3.1 Comparison evaluation of the referenced UIDLs 18
3.2 Analysis on the studied approaches 29

4.1 Work plan for each semester . 33
4.2 Risk mitigation plan . 35

6.1 Input data for Figure 6.17 . 89
6.2 Input data for Figure 6.18 . 90
6.3 Input data for Figure 6.19 . 91

7.1 Tasks’s legend for the evaluation notes 96

xvii

Chapter 1

Introduction

In Portugal, the Central Services of the Directorate General of Maritime Author-
ity (DGAM) and the Directorate for Combating Pollution of the Sea (DCPM) are
aware of sea pollution events from all possible sources, hence being in charge
of Marine Pollution Control. The objective of Marine Pollution Control, as for
hydrocarbon (oil) spills, is the containment, collection or dispersion, the cleanup
of the contaminated areas on the shore and their storage or disposal as quickly
as possible and, of course, at the lowest cost [1]. To learn how to combat these
events, they need to have experience and training, so they are prepared and ex-
ecute the best aid possible when the time comes. Regular practical training is
required to keep the Marine pollution Control in a high state of readiness, such
as:

• Coordination of the means involved (direction, actions, sequence and time-
liness of actions, information management, means management, security,
and effectiveness).

• Communication (information, orders, clarity).

• Procedures (individual and teams): Logistics (movement of means), Tech-
nicians (equipment operation), Legal, national, and international adminis-
trative (appointments, information, request for support).

• Equipment Maintenance.

The training performed currently is not at all the best practice because it has a
high cost of execution, it cuts the traffic in the area where they are doing it and
and it takes a long time to do it, although they do it in a controlled area. Because
of all these costs, they cannot often perform this training and consequently cannot
reach the maximum effectiveness in combating the problem.

1

Chapter 1

1.1 Motivation

As explained earlier, the Marine Pollution Control entities must train and simu-
late the combat to the pollution events to be ready when the time comes. Still, the
conduct of this training is expensive.

To solve this problem, the department of Informatics Engineer of the Faculty of
Science and Technology of the University of Coimbra in association with Au-
toridade Marítima Nacional, EVM, IPTL, and Qualiseg are working together to
develop a software to simulate real-life scenarios and train to combat them, called
the Marine Polution Control Simulator (MPCS). MPCS main goal is to develop a
cloud-based platform easily reachable through different platforms (mobile, tablet,
or laptop) that allows the Game-Based Learning and performance evaluation of
marine pollution control operations and coordination.

MPCS is a tool for Game-Based Learning (GBL) that allows [1]:

• Skills development of first-responder teams and management teams un-
der complex multiplayer scenarios based on a discrete event simulation
methodology.

• Exercising scenario-based approach that aims towards individual and col-
lective experience and improvement of operational coordination in Marine
Pollution Control scenarios.

• Performance self-assessment by participants (executed versus expected/reference).

• Development of Collective Competence using state-of-the-art virtual envi-
ronments.

• Response Capacity Assessment of the actors involved in an incident-based
scenario.

The platform will be implemented in multiple devices, for multiple users, and
it will feature a considerable number of different persons, equipment, material,
elements, each one with a different interface. The user will be able to experi-
ence real-life scenarios, such as, for example, driving a car, placing barriers in the
containment area so that the spill does not spread, interacting with other users,
or using skimmers to recover spilled oil. The User Interface (UI) should be able
to adapt to every context and environment and every user’s preference of use.
The UI is essential because it needs to meet user expectations and support the
effective functioning of our application.

The main problem this dissertation aims to address is the wide variety of user in-
terfaces in the simulator, each one for every interaction possible. With that said,
there is a need to use Automatic User Interface Generation Methods (AUIGM)
that, depending on the interaction’s available information, will create the most
suitable interface. Using these methods also can bring other advantages to the
implementation since creating all these interfaces manually and saving them in
the system can be inefficient. It would waste unnecessary use of resources and

2

Introduction

extra developing effort, provoking some issues, such as massive code replication
and maintenance issues. Replication of code happens because the implementa-
tion for each interface is similar, changing only a few aspects between them. The
maintenance issues occur because, as it isn’t a modular solution, a change to the
interface code, whether for fixing a problem or a new feature, would require a
change in every interface created.

AUIGM are beneficial to fix these issues. Using these methods, we only need to
implement the necessary code to manage every type of device or user and create
the interfaces for each. The interfaces are not created statically but depend on the
context of use. In other words, the interfaces are context-sensitive and generated
in real time. These methods would solve the replication of code, maintenance
issues, and design effort, as creating specific interfaces for every type of context
is unnecessary. Furthermore, they would save a good amount of resources, as the
interfaces are not pre-saved in the system but are created at the moment of use.

Therefore, this dissertation will study AUIGM and report their implementation
in MPCS.

1.2 Scope

This dissertation reports the study of AUIGM and their implementation in the
MPCS project. Furthermore, a game was developed for learning and evaluation
purposes, where the users can simulate real-life scenarios of pollution events,
specifically oil spills, and study and evaluate means to combat it.

The development of the MPCS project is divided into five different components,
more specifically, (1) a digital twin where the goal is to model and simulate real-
world phenomena (actors, organizational structures, environments, actions, and
resources), (2) a game editor and simulation model, that will take care of imple-
menting a model that calculates in real-time the responses to the actions of the
various agents in the simulation, and is in charge of creating simulation scenar-
ios, (3) the Virtual Reality (VR) operations, where it’s concerned to implement
a virtual reality interface for some actions in the simulator, (4) the multiplayer
server architecture that defines the overall multiplayer service architecture of the
MPCS simulation game system and finally (5) the UI generation, which is the one
this dissertation will report.

This dissertation’s project aims to develop every UI present in the simulator by
using AUIGM. Since there will be several types of interactions in the simulator,
the presence of multiple UIs creates a need to study and implement AUIGM to
spare design effort and other problems.

3

Chapter 1

1.3 Objectives

This work aims to study and analyze existing automatic user interface methods
and implement a solution using these methods in the context of the MPCS project.
More specifically:

• Define the solution’s architecture and explain how the automatic user inter-
face generation methods solved the problem.

• Develop a reference implementation for programmers wishing to use the
solution in the used MPCS project.

1.4 Document structure

Chapter 2 details the context of the practices conducted by the Marine pollu-
tion control entities, such as their training, combat procedures, and our vision for
what the simulator should be.

Chapter 3 presents some essential concepts necessary for understanding the Au-
tomatic User Interface Generation (AUIG). It conducts a study on User Interface
Description Language (UIDL)s and approaches that utilize AUIGM. A compari-
son is made, and a review of the acquired knowledge is provided.

Chapter 4 outlines the work plan devised to achieve the objectives of this project.
It also presents the methodologies utilized during the development phase and
introduces a risk mitigation plan.

Chapter ?? presents the steps taken in the planning phase of the MPCS project.
It details the system’s architecture, the entities diagram, the designed mockups
of the games’s interfaces, the automatic user interface generation model using
templates, and the proposed model of generating user interfaces using a JSON
configuration file.

Chapter 6 shows the infrastructure and communication channels between the
between each MPCS dissertations’ project in the game, the progress acquainted
in each sprint, the details and results of the usage of the automatic user interface
generation using templates, and the details and results of the proposed model of
generating interfaces using a JSON configuration file.

Chapter 7 presents both evaluations, the one to the MPCS project and the one to
this dissertation’s project, which was done with user studies, and the discussion
about the results obtained from those.

Chapter 8 presents the conclusions about the objectives of the dissertation’s project,
the work done, the evaluations and results obtained, and future work.

4

Chapter 2

Background

describes how the various public/national authority’ entities involved in marine
pollution control perform and train to combat pollution events and will report
the detailed usage of the simulator.

The entities in charge of marine pollution control are responsible for interven-
ing, controlling, and combating pollution events. Combating Maritime pollution
requires means consisting of the following [1]: (1) Equipment, such as booms,
skimmers, pumps, air compressors, vehicles, ships, boats, and aircraft, suitable
for the most common types of HydroCarbons (HC) spills, (2) People, profes-
sionals trained and competent to operate this equipment, continually adopting
adequate procedures, whether in terms of personal, environmental and material
safety or terms of efficiency and economic cost, means that are geographically,
administratively and functionally distributed by (3) Facilities, belonging to (4)
Organizations, public and private entities referenced in the Clean Sea Plan.

To be prepared to combat pollution, there is a need to be in a high state of readi-
ness. To accomplish this, regular practical training is required. This training con-
sists of the following [1]: (a) Coordination of the means involved (direction, ac-
tions, sequence and timeliness of actions, information management, means man-
agement, security, and effectiveness), (b) Communication (information, orders,
clarity), (c) Procedures (individual and teams) such as Logistics (movement of
means), Technicians (equipment operation) and Legal, national and international
administrative (appointments, information, request for support). There is also the
need to keep the equipment maintained. The Central Services of Central Services
of the Directorate General of Maritime Authority (DGAM) and the Directorate
for Combating Pollution of the Sea (DCPM), in particular, are aware of all the sea
pollution events from all possible sources and are responsible for informing the
appropriate entities [1].

The Maritime Authority System (MAS), upon learning of the spill, should pro-
vide the appropriate response, taking into account the following criteria [1]: (1)
Safeguarding human lives at risk; (2) Do not unnecessarily put human lives at
risk; in particular, it must be stressed that personnel can only start operations
if they are properly equipped; (3) Reduce damage to property (goods) and the
environment; (4) Do not cause unnecessary damage to property (goods) and the

5

Chapter 2

environment.

2.1 Execution

The plan of execution to combat the oil spills is divided into three parts, prepara-
tion, combat, and investigation.

In preparation, the actions aim to confirm the event, inform the competent en-
tities and define the command and intervention structure. These actions occur,
preferably, before the combat and are the following [1]:

1. Definition of the entity responsible for directing and coordinating mar-
itime pollution response: where the designation of the pollution response
coordinator depends on the nature, location, and severity of the spill event,
and is chosen by the Director General of the National Maritime Authority
(NMA).

2. Establishing the Degree of Readiness: when the pollution event is iden-
tified. The responsible entities establish the degree of preparedness appro-
priate to the situation.

3. Information from the Responsible Entities: It is important to make the
pollution episode known to other entities interested in the matter, according
to the urgency and their attributions and competencies.

4. Activation of the Command and Control Center (CCC): This presupposes
the appointment of technical advisors, the organization of communications,
and the distribution of responsibilities.

5. Activation of the 1st Intervention Team(s): This is the team that performs
the first response to the pollution event.

6. Start Recording the facts and actions: This is the first action to take. It
is a document to record time facts and actions, including the record of all
material and human resources.

7. Collecting Samples and Sending them for analysis to determine the pol-
lutant and its subsequent condemnation.

8. Public Relations Officer Appointment that is responsible for contact with
the Media.

9. Liaison Officer Appointment: In the case of a significant pollution inci-
dent or an incident, which may also affect neighboring States, the compe-
tent maritime authority must designate a liaison officer to expedite contacts
with other bodies involved, including those of neighboring States, as ap-
propriate, and inform them accordingly.

The combat actions aim to reduce the risk of a spill or containment or eliminate
its environmental and economic effects. These actions consist of the following [1]:

6

Background

1. Situation Assessment: There the authority directing and coordinating the
operations must always take into account the main points when assessing
the situation to define or correct the course of action to pursue, such as dis-
persing or collecting the spilled HC the fastest way to minimize the dam-
age it can cause to marine life and economic activities and prevent them
to reaching coastal spaces because, if it gets there, it is a very costly and
labor-intensive operation.

2. First Intervention Team: must be mobilized to the pollution event site, to
try to minimize the damage and begin pollution response operations.

3. Intervention by DCPM: It can support maritime authorities if requested
by them and authorized by the Director General of the Maritime Author-
ity. They can provide technical advice, support with equipment, or even
reinforcement of the teams in terms of personnel and material.

4. Safety and health of the intervention teams: This is the first priority, and
to accomplish this, the teams should use the appropriate protective equip-
ment, execute the procedures safely and have the guarantee of adequate
food, rest and medical support.

5. Civilian health and safety: This is the priority of combat actions, saving
human lives and isolating areas at risk for their safety.

6. Material safety and health: The material must be in perfect condition to
use; all general safety rules must be followed, as well as safety rules and
operating procedures advised by the manufacturer.

7. Containment and Guidance of the spill/Protection of sensitive areas (har-
bor entrances, water intakes, aquaculture, nature reserve). This is the first
objective of pollution response to prevent further damage and facilitate pol-
lutant collection.

8. Collection, Cleaning, and/or Dispersion. In the sea are done by skimmers.
Some types of reclaimers can be used on land, but the collection is mainly
by human labor.

9. Temporary Storage: On the sea, the collected materials may be stored tem-
porarily in a safe and suitable place, like spill recovery vessels or floating
tanks, until appropriate and safe recycling or disposal can be planned, like
a ship. On land, as the polluted site can be difficult to access for motor ve-
hicles, the collected pollutants are stored in rigid bags or containers waiting
to be collected or carried by hand to the vehicles that will transport them
to the places that the municipal and environmental protection authorities
indicate for temporary, adequate and safe storage.

10. Final destination. Pollutants collected at sea and on the shore are tem-
porarily stored but must then be transported to treatment sites or durable
storage.

7

Chapter 2

The final part, the investigation, aims to determine the causes and responsibilities
of the vent. These actions consist of the following [1]:

1. Record of facts and actions.

2. Identification of ships/vessels and persons involved.

3. Visit the event site to collect evidence.

4. Witness Interviews.

5. Forensic Analysis.

6. Analysis of the spilled HC.

7. Cost evaluation.

2.2 Simulator

To lower the high costs of real-time training, train more frequently and better
prepare the entities to combat the pollution events, the opportunity to construct a
simulator to perform real-time scenarios for training and evaluating the trainees
to respond to future pollution events appeared. The creation of this simulator is
a good concept since, as it was already noted, it saves much money and allows
users to train more frequently because it is less expensive, which helps them be
more prepared to act.

The simulator’s main focus will be training, giving users a virtual experience
whose realism is both required and adequate for efficient learning and training
in its transfer to a real-world environment. After logging in, the user can interact
with other users and carry out the same tasks as they would in the real world.

The mathematical model operating in the Simulator will mimic the Spill based on
computed hydrodynamic and climatic data seen in the recent past, the site where
the exercise occurs, and the military activities carried out. Every user will behave
and act in the same manner as they would in their respective real-world roles.

There is a configuration phase where the user can configure the event and its evo-
lution in time, which depends on the sea’s state, the atmosphere, the tides, and
the combat actions. These configurations constitute relevant information for the
Marine Pollution Combat. The simulator has two modes: exercise and teaching.

In exercise mode for training, the simulation will not have any aid or tips to help
the user. At the end of the simulation, there will be an individual and team per-
formance evaluation related to the combat, stating the actions that were done
well and the actions that were mistakes so that the user can learn and do better in
future simulations. All the user actions will be saved in history so that a manual
review can be done for evaluation purposes. The team performance evaluation
will be based on an automatic analysis based on performance indicators. Also,
the Event setup parameters should be created mostly randomly.

8

Background

The performance evaluation will be made based on the following criteria [1]:

Objectives Stop criterion (end of Fiscal Year)
Collect as much spilled HC as
possible in x hours of Exercise

The first that occurs between x hours of
Exercise or all spilled HC being collected

Contain the largest possible volume
of HC spilled in x hours of Exercise

The first that occurs between the expiration
of x hours of Exercise or when all spilled
HC has been contained

Perform the Preparation phase in the
shortest possible time up to x hours
of Exercise

The first that occurs between the end time
of Preparation and x hours of Exercise

Table 2.1: Performance evaluation

The teaching mode, as the name says, consists of simulating with the purpose of
the user learning how to use the simulator. Aids or tips are available to help the
user to learn how to act and interact in the simulation. Three types of e-learning
courses are to be implemented in the Marine Polution Control Simulator (MPCS)
project [1]:

1. E-learning courses to teach regulations, legislation, technologies, method-
ologies, and leadership in Marine Pollution Control (MPC Knowledge).

2. E-learning course to teach how to operate the Simulator (Simulator Opera-
tion).

3. E-learning course to teach how to manage the Simulator (MPCS Manage-
ment).

Figure 2.1 shows an example of a possible gameplay. We can see that the user has
access to his main stats and several lists of information he may need to work with.
We can also see the interaction between the user and the equipment to access the
main stats of the equipment.

9

Chapter 2

Figure 2.1: Example of a possible gameplay [1]

Table 2.2 lists the general and fundamental functional requirements of the simu-
lator [1].

ID Description

1

The Simulator should allow time compression, managed by the MPCS Manager,
which should be automatically stopped as soon as any user performs any action
or when any automatically running action ends. The MPCS Manager should not
have access to time compression while actions are being performed by different
users.

2 The Exercise should be able to be stopped and resumed by the MPCS Manager.

3 Whenever there is a time compression, or interruption of the Exercise, all users
should be made aware of the situation and the reasons.

4
The MPCS Manager, during an Exercise, should be able to communicate with
each user, or all users, through a pop-up window that should open on each
user’s computer.

5
Throughout the Exercise, there should always be the possibility for the user to
press the F1 key for help in operating the Simulator and the F2 key for
help/knowledge on Marine Pollution Control.

6

The Maritime Pollution Combat aids should exist in the base version, but they
can be changed and others can be created by the MPCS Manager on his own
initiative and/or at the request of the different entities that combat maritime
pollution and that naturally participate in the exercises. These aids should be able
to be in text, image and/or 2D and 3D video/animation.

10

Background

ID Description

7

The mathematical model should provide the simulation, for each instant of time,
with all relevant spill data (type of HC, physical and chemical properties of HC,
leak rate, volume, spill area, ...) and the hydrodynamic and meteorological
database should provide the simulation with the state of the sea (current speed
and direction, water temperature, swell, ...) and the state of the atmosphere
(wind strength and direction, air temperature, precipitation, ...). The hydrodynamic
and meteorological data should be actual data that actually occurred in the time
interval, some years ago, and in the geographical area in which the Exercise takes
place.

8

In marine pollution response, it is important for the CCC to forecast the drift of
the spill, the sea state and the atmosphere. The drift forecast is, of course, made
on the basis of the available information of the spill and the state of the sea and
the atmosphere at the location, as well as the forecast of the evolution of the
meteorological conditions. There are entities, such as IPMA
(Portuguese Institute of Sea and Atmosphere) and IH (Hydrographic Institute)
, that can provide weather forecasts. In the simulation, the forecasts provided by
these entities to the CCC will be simulated based on the actual data from the
hydrodynamic and meteorological database, but with a random error, variable
depending on the time interval considered, to give realism to the forecasts.

9

For all user actions, or commands, on the person, other people, facilities, and
equipment, the Simulator should display a 3D animation illustrating the action
that the user initiates and another that ends. (For example: if the action is to get
into a car, the animation should show a person getting into a car).

10

In the Simulator, a naval or aerial means is a piece of equipment. In each
installation to which that means belongs, there should exist, at least, a virtual
person that will operate (use) it, as, for example, setting course and speed, putting
in the sea a semi-rig or communicating with the CCC, collecting samples from
the HC, etc....

11

A naval or aerial means, when approaching the Event and/or Spill site, should
automatically report (without user intervention), depending on its location and
spill evolution, the information provided by the mathematical model of the
MPCS. The report can only contain information that in a real situation would
be accessible, that is, if the naval means is at a distance that in reality would
allow it to visually observe the spill and the accident and to contact the ship’s
commander, it can inform the approximate area of the spill (this area will be
calculated by the Simulator multiplying the area, provided by the mathematical
model, by a random error), if there are crew members in danger, if the accidented
ship has maneuvering capacity, etc... Likewise, the response to a request for analysis
of the spilled HC should include the characteristics of the HC, defined in the Event,
as if they were the result of the analysis by an analytical laboratory.

12 In the automatic movement of people and equipment by land, the Simulator should
follow the fastest route suggested by a map’s platform.

13 The hydrodynamic data and meteorology of the Exercise should be based on actual
data but which occurred in the recent past.

14 The effect of combat actions on the spill should be calculated by the mathematical
model adopted and/or developed.

11

Chapter 2

ID Description

15
People should have their health depend on their working time, their rest time, their
food, and accidents. People may be injured or killed. Each person should have a
cost of Hxh (Man x hour) in euros.

16

Equipment should have its health dependent on its working time, maintenance, and
accidents. Equipment may break down or be lost (beyond repair). The performance
of equipment should be dependent on its health, its proper use, and its technical
specifications. Each type of equipment should have an Exh cost (Equipment x hour).

17 Only people should be able to move in manual or automatic mode. All equipment of
the means of transport type should only be able to move in automatic.

18 All entities must be able to be georeferenced with a resolution of 0.3 m.

Table 2.2: Functional requirements [1]

12

Chapter 3

State of The Art

This chapter presents some concepts needed to understand the Automatic User
Interface Generation (AUIG). It conducts a study about User Interface Descrip-
tion Language (UIDL)s and approaches that use Automatic User Interface Gener-
ation Methods (AUIGM). It shows a comparison between the studied approaches
and a review of the learned things that may be used to solve our problem.

3.1 Concepts

This section presents some concepts to be considered to give context to the follow-
up of the document.

3.1.1 User Interface

The means of human-computer interaction is called User Interface (UI). The defi-
nition of UI is the point of interaction and communication between a Human and
a computer. The UI should be simple and intuitive so that the user can use the
application best.

3.1.2 User Interface Models

A UI model is a framework for understanding and designing how users interact
with a particular system or device. It is a crucial element of user experience de-
sign, as it determines how users will navigate through and utilize the features of
a product or service. They attempt to formally describe the tasks, data, and users
an application will have and then use formal models to guide the generation of
the UI [2]. Several different UI models [2] have been developed over the years,
each with unique characteristics and capabilities. Some examples of UI models
are the following:

1. Application model: Defines the capabilities of the application, such as de-

13

Chapter 3

scribing various classes in terms of their attributes, exceptions that methods
may throw, methods together with their preconditions, and a list of events
published by the class [3].

2. Task model: It describes the task to be accomplished by the user [4]. This
model includes such tasks as, for example, preventing information to the
user, obtaining information from the user, and invoking application func-
tionality [3].

3. Domain model: The domain model describes the objects the user manipu-
lates, accesses, or visualizes through the UIs [4].

4. Presentation model: The presentation model contains the static representa-
tion of the UI [4] by describing how the information will be presented to the
user regarding low-level elements such as buttons, and menus. [3].

5. Dialogue model: Holds the conversational aspect of the UI [4] by describ-
ing the tasks that the user can perform with the system [3].

3.1.3 User Interface Description Languages

A UI description language is a high-level computer language used to describe the
structure and behavior of a graphical user interface UI concerning the rest of an
interactive application [4]. Determining a syntax (how these features might be
articulated in terms of the language) and semantics for such a language is nec-
essary (what do these characteristics mean in the real world). It can be viewed
as a typical approach to UI specification, independent of the programming or
markup language used to implement the UI [4]. The objective is to provide a way
to describe the UI in a way that is independent of the underlying hardware and
software platforms so that the same UI can be rendered consistently across differ-
ent devices and operating systems [4]. Some common examples are HTML, XML,
and JSON. Section 3.2 presents a more in-depth description of these languages,
and a comparison is performed between some examples of these languages.

3.1.4 Automatic User Interface Generation

AUIG refers to generating UIs based on the context of use. It separates the UI
from the application logic [5]. These methods are context-sensitive [5]. Contrary
to manually creating the interfaces, they do not previously describe the interface
to be generated; instead, they receive a description of the context and generate the
interface in real time based on that description. The interface could use familiar
elements the user has seen recently [5].

3.2 User Interface Description Languages

A UIDL specifies the interface to be generated.

14

State of The Art

The primary issue that prompted the need for UIDLs was the requirement to
create a UI that functioned as a module of an interactive program modeled by a
set of specifications in order to share and communicate these specifications with
stakeholders, or to (semi) automatically generate the code of the UI, as desired
in model-based approaches for developing UIs [4]. Also, this need grew with
the portability issues; that is, when a UI was required to run simultaneously on
different computing platforms, this need took form in some language that would
be exchanged from one platform to another without any changes to avoid any
extraneous development effort [4].

Many approaches have emerged to solve the portability problem of UI on differ-
ent platforms. Some of these approaches are listed below:

• Binary emulation: Allows an application to be used on different platforms
without recompiling, thanks to a software emulator.

• Virtual toolkits: Have been introduced to reduce the development effort:
the developer writes a unique code using an API executed on all platforms
where the API exists. It does not accommodate many platform constraints.
This can be performed by actualization, where the toolkit binds the virtual
created object to the real platform by actualizing them. The main benefit
of this approach lies in the large range of virtual primitives. Nevertheless,
its usage is limited by a massive run-time library. It can also be done by
re-implementation, where the toolkit re-implements each virtual object for
each platform. Although these tools contain some abstractions, they do not
accommodate many platform constraints.

• Ported APIs: Support native APIs (usually Windows) on other environ-
ments.

• Tools generating adaptive UIs: Tools that generate a UI that can be adapted
at runtime depending on the context of use.

• Multi-context tools at the logical event: Generate at design time a concrete
UI for a specific context, from an abstract description of the UI. The abstract
description is written in a specific language that differs from one tool to
another.

Multi-context tools at the logical event is the approach related to this thesis. UIDLs
describe one or more aspects of the UI: the static structure of the UIs, that is,
the description of the UI elements and their composition; the dynamic behavior,
including event actions and behavioral constraints; and finally the presentation
attributes [6]. Following it is presented some examples of UIDLs and their re-
spective description:

• UIML: It’s a meta-language that allows designers to describe the UI in generic
terms and to use a style description language to map the UI to various op-
erating systems, languages, and devices [4]. UIML document contains a

15

Chapter 3

UI description, a peers section that defines mappings from the UIML doc-
ument to external entities, and a section used as a template that permits
the reuse of previously authored material. The interface description is then
produced following the presentation component’s specifications and uses
logic definitions to interact with the application logic. The renderer inter-
prets UIML or compiles it into another language on the client device. The
limitations of this language include the fact that it only provides a single
language for defining various user interface types and that it does not per-
mit the development of UIs for various languages or devices from a single
description, necessitating the design of separate UI for various devices [4].

• AUIML: It’s a language that focuses on defining the intent of an interac-
tion with a user instead of focusing on the appearance. Designers have
to concentrate only on the semantics of the interactions. It is intended to
be independent of any client platform, implementation language, and any
UI implementation technology. A single intent should execute on numer-
ous devices and is designed to be independent of any client platform, im-
plementation language, and UI implementation technology [4]. UI is de-
scribed in terms of manipulated elements (a data model that organizes the
information needed to support a specific interaction), interaction elements
(a presentation model that specifies how the UI will look, such as choice,
group, table, or tree), and actions that allow describing a micro-dialogue to
manage events between the interface and the data. The presentation model
offers freedom in the level of detail anticipated by the renderer in addition
to the specification of the UI’s appearance: the designer may choose to can
either decide to precisely control what is to be displayed or only specify the
interaction style, leaving the decision to the renderer [4].

• XAML: It’s a language developed by Microsoft, used in many of their tech-
nologies, that defines the structure and layout of a UI. It is available not only
on Windows computers but also on windows-based mobile devices. Devel-
opers need to define the layout elements and provide the policies in order to
adapt (to a certain extent) automatically the Graphical User Interface (GUI)
to the specific device [7].

• XIML: It’s a language that provinces a way to describe a UI without wor-
rying about how to implement it. The task component, which captures the
business process and user tasks the interface supports, is one of the five fun-
damental interface components that XIML predefines. The user component
captures the characteristics of the (group of) users who can use the appli-
cation, the domain component is a collection of all the objects and classes
used, the dialog component determines how the user interface interacts
with the user, and the presentation component are the other components
[4]. A XIML description comprises characteristics and relations in addition
to the interface components. An attribute is a feature or property with a
value and is a part of a component. There is already a set of predefined
properties. A relationship connects one or more components(s) within the
same model component or across several ones.

• HTML5: Its a markup language for structuring and presenting content on

16

State of The Art

the Web [7]. While it can be considered content-oriented, it offers several
form tags to interact with the user, making it useful to define UIs [7]. This
technology can be beneficial because of the usefulness of the client-server
model to allow frequent content updates rather than providing application
updates [7].

• QML: It’s an UIDL that has been adopted by Ubuntu OS applications. It
is a JSON-like language where the graphical elements are grouped in li-
braries that can be imported as needed [7]. It provides layout mechanisms
to support device adaptation, which makes adopting this language a feasi-
ble solution for multi-platform development [7].

Now that some examples of UI description languages were introduced with a
description, this paper presents a general comparison between them, presented
in Table 3.1, using the following criteria:

• Target: It refers to the target the language was designed for, for example,
mono/multi-platform, mono/multi-user, mono/multi-environment.

• Supported languages: This criterion refers to the languages that can be
used with UIDL to support the application logic.

• Supported platforms: This criterion refers to whether the UIDL can be exe-
cuted in different platforms with different characteristics (for example, dif-
ferent screen sizes).

• Layout support: It refers to whether the UIDL allows developers or not to
select predefined GUI layouts.

17

Chapter 3

Table 3.1 evaluates the referred UIDLs, using the metrics of comparison defined.

Target Supported
platforms

Supported
Languages

Layout
support Pros Cons

UIML Multi-platform [4] Multi-device JAVA, C++,
WML, PalmOS [4] Yes - Easy to use - Obsolete

AUIML

Multi-platform
(available
interactors,
displays) [4]

Handheld devices,
such as
PGA, and
desktop PC

Java Swing,
PalmOS,
WML [4]

Yes

- Independent of any
platform,
implementation
language

- Developed for internal
use in IBM, not publicly
available [4]

XAML Multi-platform

Multi-device, as
long as it is a
Windows-based
device

Programming
languages under
the .Net platform
(like Java, C++)

Yes - Widely used - Mostly used on Windows platforms

XIML

In theory,
multi-platform,
multi-user, and
multi-environment;
In practice,
multi-platform

Multi-device WML, Java [4] Yes - Predefines any
concept model - Obsolete

HTML5 Multi-platform
Any device,
but requires
a web browser

CSS, JavaScript No

- Ubiquity of web browsers,
the usefulness of
client-server model to allow
frequent content updates
(rather than application
updates) [7]

- Does not have layout
support, so without using
the stack
HTML+CSS+Javascript,
is kind of incomplete,
raising the development effort
to have full potential

QML Multi-platform Multi-device JavaScript Yes
- Provides layout
mechanisms in order to
support device adaptation [7]

- Does not offer a high
level of customization

Table 3.1: Comparison evaluation of the referenced UIDLs

All the mentioned UIDLs are supported to be used in a multi-device environ-
ment; however, HTML requires a Web browser to be available in each device [7].
While suitable for developing GUIs for several platforms, XAML is restricted to
work within Windows devices. Regarding programming languages, as for QML,
Javascript is recommended to be used in Ubuntu OS, but many more languages
can be used using Qt libraries. Also, for HTML, the application logic is devel-
oped in Javascript. For XAML, the support languages are available under the
.NET platform [7]. Regarding the layout support, all UIDL have it except for
HTML, which needs help from CSS to layout the structure of the interface [7].

Overall, AUIGM can use UIDLs to specify the desired layout, appearance and
the behavior of the generated user interface, potentially saving time and effort
for the developer. The UI generator can then use this description to create the
user interface automatically.

3.3 Automatic UI Generation Approaches

This section focuses on AUIG approaches and evaluate them using comparing
methods.

3.3.1 The Personal Universal Controller Approach

The objective of this project was to use handheld devices the users carry, such as
PDAs and mobile phones, to remotely control homes’ and office appliances, such
as televisions, microwave ovens, and copy machines [5].

18

State of The Art

To accomplish this, they would need to develop multiple interfaces, each for a
kind of device. This is a major problem because it creates a lot of design effort
because of the variety of devices possible to use with this system. To fight this
problem, they studied automatic user interface methods and implemented them
to solve this problem.

The authors state that using AUIG, the UI can be context-driven by incorporating
the user’s specific information and current situation into the design of the UI.
For example, the UI can be displayed on the user’s device, or the UI can display
familiar elements that the user has seen recently.

Figure 3.1: A diagrammatic overview of PUC the system [5]

The Personal Universal Controller (PUC) project is applying model-based tech-
niques to automatically generate remote control interfaces for all of the computer-
ized appliances in the environment and is exploring how the generated interfaces
can be automatically customized to both the control device and the user. When
a user requests an interface to control a device, the user’s appliance downloads
a functional model and uses it to generate an interface automatically [5]. A func-
tional and concise XML-based language for modeling the appliance’s functions
was designed, and rules for generating user interfaces from their language on
several different devices.

These rules define how the generated UI will be based on the appliances’ descrip-
tion. These descriptions include a few parameters such as data type information,
for example, boolean, integer, enumerated; state variables, that is, a variable that
represents the alter the state of the appliance, for example, for a DVD, the power
button; commands that represent more complex components that cannot be rep-
resented by state; label information that represents the interface components that
represent state variables and commands; group trees that layouts the interface
by aggregating similar elements in the interface and keeps far way different el-
ements, for example, the play and stop button being together; and finally de-
pendency information that contains information about the dependencies of an
interface, that is, a state variable is disabled depending on the values of other
state variables.

With all this information in the description of an appliance, they created a set of
rules that, depending on the information, creates different XML-based interface

19

Chapter 3

descriptions that are then generated by a graphical interface generator.

The workers state that this approach was not successful for general application
interfaces but that it can be a valuable tool in specific situations. They believe that
AUIG is essential for supporting User Interfaces on multiple devices and incorpo-
rating situational information into interfaces. They encountered challenges such
as finding specific domains where automatic generation was possible, improving
modeling techniques and combining models to improve usability [5].

3.3.2 SUPPLE: Automatically Generating User Interfaces

The authors state that to give people ubiquitous access to software applications,
device controllers, and Internet services, it will be necessary to adapt user inter-
faces to the computational devices at hand automatically [8]. A critical aspect
of this vision is the premise that every application (whether an email client or
room-lighting controller) should be able to render an interface on any device at
the user’s disposal. Furthermore, the rendering of an interface should reflect the
needs and usage patterns of individual users. Given the wide range of device
types, form factors, input methods, and personal needs and interaction styles, it
is unscalable for developers to create interfaces for each type of device and every
kind of user. Instead, an automated solution is necessary [8].

To solve this problem, they developed a system called SUPPLE, which treats in-
terface generation as a combinatoric optimization problem. The combinatoric op-
timization is based on a functional description of a UI, which says what function-
ality the interface should expose to the user, and takes into account both device
and user properties. When this system is asked to render an interface (specified
functionally) on a specific device for a specific user, the system searches for the
rendition that meets the device’s constraints and minimizes the estimated cost
(user effort) of the person’s activity. The UI generation process is an optimization
problem where the algorithm tries to minimize the estimated overall effort [8].
Figure 3.2 illustrates the formal specification of the classroom interface.

Figure 3.2: Tree depiction of the functional interface specification for a classroom
appliance controller [8]

20

State of The Art

Figure 3.3: The classroom interface rendered for two devices with the same size:
(on the left) a pointer-based device (on the right) a touch-panel device [8]

Figure 3.4: The classroom interface rendered on a WAP cell phone(Sony Ericson
T86i) [8]

As we can see, the approach takes on the functional interface specification and
renders a different user interface for each type of device. This approach reduces
the design effort, as we can conclude by observing Figures 3.3 and 3.4, where
one implementation, depending on a functional interface specification, worked
to generate interfaces for three different devices. Doing this manually would
increase the design effort significantly as they would have to design each interface
isolatedly.

3.3.3 ICrafter: A Service Framework for Ubiquitous Computing
Environments

ICrafter is a framework for services and their user interfaces in a class of ubiqui-
tous computing environments [9]. The authors describe an interactive workspace
as a technology-rich space with interconnected computers, like conference/meeting
rooms and classrooms. The objective of this system is to allow users of an inter-
active workspace to interact with the services presented in this space, such as
projectors, lights, scanners, or applications like PowerPoint. The users interact
with these devices using various access/input devices, like laptops, and hand-
held devices. These input devices are called appliances.

21

Chapter 3

Figure 3.5: ICrafter architecture [9]

Appliances provide a self-description and ask the Interface Manager for User in-
terfaces. Based on the requesting appliance and the services for which the UI was
requested, the Interface Manager initially chooses the suitable UI generators. In
order to generate the UI, it then executes the generators with access to the service
descriptions, appliance descriptions, and context [9].

ICrafter uses unique UI generators (target platforms) for various services and UI
description languages. A template system is used to implement the majority of
them.

The use of so-called service patterns is an intriguing concept introduced by the
ICrafter approach. The services offered exhibit patterns that can be identified.
Then, ICrafter produces UIs for these designs. On the one hand, this facilitates
easier service aggregation and higher consistency. On the other hand, the ag-
gregated service does not offer distinctive features. ICrafter, to create a UI for
a projector control works the following way: (1) Have a context memory with
all the devices and services that need the information of; (2) For each service,
has UIDL representing the service; (3) Then have the services’ templates written
in HTML; (4) For the final step, they combine the information from the service
UIDL and the respective service template, and with both information generate
the corresponding HTML, that is then rendered in the browser.

22

State of The Art

Figure 3.6: Interface designed by ICrafter to control the projectors of a room [9]

As we can see in Figure 3.6, there is an example of an interface generated by
ICrafter for a computer.

3.3.4 Tool Support for Designing Nomadic Applications

They present a tool called TERESA that supports top-down transformations from
task models to Abstract User Interface (AUI) and then to UIs for different types
of interaction platforms, such as mobile phones or desktop computers [10].

They state common problems that developers have when developing software
for multiple different platforms, such as extra developing effort, expensive main-
tenance costs, and an increase in the problems related to configuration manage-
ment.

Their approach considers three aspects: developers can define the input and out-
put needs of their applications, vendors can describe their devices’ input and out-
put capabilities, and users can specify their preferences [10]. The general idea of
this approach is to have an abstract UI description and then an environment that
suggests the design of the UI based on the specific device and possible context of
use.

This model-based approach is composed of four main steps, which are the fol-
lowing [10]:

• High-level task modeling of multi-platform application: In this phase,

23

Chapter 3

the developers create a single model containing all possible contexts of use,
roles involved in the application, and a domain model aiming to identify all
the objects that have to be used in order to perform the tasks and relations
between all the objects. These models are created using the ConcurTaskTrees
notation.

• Developing the system task model for the different platforms considered:
Here, the designers have to filter the task model created based on each tar-
get device and, if necessary, refine it depending on the device considered,
obtaining the system task model for the specific target device.

• From system task model to abstract user interface: In this phase, an anal-
ysis is conducted on the task model relations, aiming to obtain an abstract
notation of the user interface to be composed.

• User interface generation: In the last step, there is a consideration of spe-
cific properties of the target device, and then every interactor is mapped
into interaction techniques supported by the particular device configura-
tion considered, such as the operating system or toolkit.

Figure 3.7: Main transformations in TERESA in terms of XML-based applications
supported [10]

Analysing Figure 3.7, we can relate it to the four phases mentioned above. It is
possible to obtain the set of tasks from the XML specification of a Concurrent Task
Tree (CTT) task model. The XML task model and presentation set specifications
are the input for the transformation generating the associated AUI. The created
AUI yields the respective ConcreteUser Interface (CUI) according to the selected
interaction platform. In the last step, the tool automatically generates the final
UI, based on the concrete UI previously created.

24

State of The Art

Figure 3.8: Configuring the presentation specifications in TERESA [10]

In Figure 3.8, we can see how the tasks presented in the task model will be con-
verted into the concrete UI. Also, we can see how we customize how the concrete
UI elements are going to be. Next, it presented the filter application on the task
model for each type of selected device and the resulting user interfaces.

Figure 3.9: Task model after applying the filter for the desktop environment, on
the left and for the mobile phone on the right [10]

25

Chapter 3

Figure 3.10: Resulting UI of the example from the task model [10]

In Figures 3.9 and 3.10, we can see how a filter applied on the application task
model, for each type of device, desktop and mobile phone, makes the differ-
ence in the task model, and consequently in the resulting UIs, as expected. With
this, we can conclude that the workers successfully developed a model-based ap-
proach, based on a task model, to create concrete UI from different platforms, in
this case, a desktop computer and a mobile phone.

3.3.5 User Interfaces for Smart Things – A Generative Approach
With Semantic Interaction Descriptions

In this approach, the workers believe that bringing smart devices into peoples’
homes and enabling the user to have better interaction and be more intuitive
with these devices, requires deployable interaction mechanisms [11]. The prob-
lem with this interaction is the need to create interfaces for every kind of smart
device. To solve this, the workers wanted to generate UI based on the semantics
of the interaction rather than providing an explicit concrete encoding of an ap-
propriate type of UI or its appearance, reducing greatly the amount of time and
work needed to create appropriate and easy usable UI for smart devices.

In order to enable the automatic generation of user interfaces, they developed
a model-based approach where the smart device provides a description of how
other devices can interact with it, in a form of a UIDL.

This proposed description technology makes use of data type information, but
only to describe the exchange of data between the devices and not to specify the
user interface component. This description consists of two different parts, one is
the information about the high-level semantics of the interaction and the other
one is the data type information for the data exchanged [11]. The high-level se-
mantics information is organized in hierarchical taxonomies representing inter-
action abstractions. The data type represents the type of entity state for sensors

26

State of The Art

and stateful actuators.

Both this information together with a set of rules to process it, define a concrete
semantic interface description language by embedding information for the ap-
propriate data type and interaction abstraction as metadata into the interactive
components of devices, as we can see in the example shown in Figure 3.11

Figure 3.11: Example of the generated interface description language to control a
window blind in JSON [11]

This generated description can be expressed and embedded in multiple formats,
such as XML documents, or as HTML-based Microformats [11]. Using these for-
mats facilitates the change of information between the devices by using the web,
preventing the information from being meaningful for the users and for the de-
vices to be in different documents. Figure 3.12 represents the window’s blind
interface description in HTML microdata.

Figure 3.12: Example of the generated interface description language to control a
window blind in HTML microdata [11]

The workers implemented a prototype application for mobile devices running on
Android system that interprets the interaction descriptions and allow the users
to interact with devices via automatically generated interfaces [11], as we can
observe in Figure 3.13

27

Chapter 3

Figure 3.13: Smartphone interfaces for controlling the brightness of a LED on left
and middle, and a power switch on the right [11]

3.4 Evaluation

In this section, we define some evaluation criteria and use them to compare the
previously studied approaches in section 3.3 and perform an analysis.

The metrics for comparing evaluation that it is going to be used are the following:

• Supported platforms: This criterion refers to whether the UIDL can be ex-
ecuted in different platforms with different characteristics(for example, dif-
ferent screen sizes).

• Principle: This criterion refers to a small summary of how the solution was
built in each approach.

• Context-Sensitive: This criterion refers to if this approach is context-sensitive
or not.

28

State of The Art

Principle Supported
platforms

Context-
sensitive Pros Cons

PUC [5] Rule-based
transformation Multidevice No - Multimodal

- Multidevice - Obsolete

ICrafter [9]
Template-based
transformation,
service aggregation

Multidevice Yes,
- Multidevice
- Well designed
model-based solution

- Obsolete
- Platform specific templates
must be developed for each
service/appliance
- Limited to interactive workspaces

SUPPLE [8] Combinatoric
optimization Multidevice Yes

- Multidevice
- UI generation
combinatoric
optimization

- Hard to support of
multiple platforms

TERESA [10]

Task model that
gets filtered for
each device, and
converts to an uidl
that can be rendered

Cellphone,
PDA, Desktop No

- Easy customization
of the rendered UIs
- Automatic filtering
for each type of device

- Low variety of possible
devices.
- Obsolete
- designing effort by
having to design the
full task
model of the application

UI for Smart
Things [11]

Rule-based
transformation,
but context-sensitive

Multidevice Yes

- Very adaptive to new
unknown devices
- Modular solution by
aggregating possible UI
based on respective
data type

- Possibility of the
rendered UI
not being the most
suitable

Table 3.2: Analysis on the studied approaches

Reviewing the previous comparison, we can get much important information that
we may use in the development of the project. As mentioned earlier, we need to
automatically generate interfaces for various interfaces. Although SUPPLE [8]
and TERESA [10] are interesting approaches that use a functional model to gen-
erate the interfaces, we do not find them valuable enough for the development of
this project.

The other three approaches have their strengths and weaknesses, for example, UI
for smart things [11]; although it supplies the UI generator with a series of possi-
ble UI elements to generate, it may not have one that can be suitable enough for
the user experience. On the other hand, this approach and PUC [5] use an inter-
esting principle based on rules that, depending on the description, have a set of
rules that modulate the UI based on the needs. The ICrafter also has an interest-
ing approach that uses pre-created templates for each service and, together with
the service description, generates the needed UI. ICrafter [9], instead of using a
set of rules, uses a template-based transformation, where a set of templates are
created, and according to the information provided in the device’s description,
the software chooses the most appropriate template for the provided description,
and the UI is generated. This approach has an interesting solution that could
be of great use in the future when all the possible UIs that will be required in
the simulator are studied, but for now, by not knowing them, we can’t use this
technique, because we do not know how the templates will be. Although this is a
more straightforward and more organized solution than PUC [5] and UI for smart
things [11] (both approaches can get a very complex set of rules) having templates
can also increase a lot the design effort when the number of different interfaces
to be generated increases because it would be needed to create a template for a
single/group of interfaces.

29

Chapter 4

Methodology and Work Plan

This chapter focuses on the methodologies and work plan used to develop this
project. It defines and explains the techniques used in the development phase
and the tasks necessary to accomplish the project’s objectives. Also, it presents
a risk plan, which shows the possible risks of this project and their respective
mitigation plan.

4.1 Methodology

For the development of this project, the methodology used was Scrum. Scrum
is a lightweight framework that helps people, teams, and organizations generate
value through adaptive solutions for complex problems [12]. As Linda Rising
and Norman S. Janoff say, Scrum is a development process for small teams [13].
This methodology is composed of the development team, which will work to
develop the product, a Scrum Master, that is in charge of advising and controlling
the developers and supports the Product Owner, that involves all stakeholders
relative to the project and orders the work for a complex problem into a product
backlog[12], that is a list of the features that the client wants to see implemented
in the product and maximizes the value of the resulting product. Scrum has three
pillars [12]:

• Transparency: The emergent work process must be visible to those per-
forming and receiving the work.

• Inspection: The Scrum artifacts and progress to the agreed goals must be
inspected frequently and diligently to detect potentially undesirable vari-
ances of problems.

• Adaption: If any aspects of a process deviate outside acceptable limits or
if the resulting product is unacceptable, the process being applied or the
materials being produced must be adjusted.

This methodology has an initial planning phase, where the team must define an
architecture and the Scrum master. After the initial planning phase follows a

31

Chapter 4

series of short development phases called sprints, where each sprint lasts about
one to four weeks, with a goal, and the team delivers the product incrementally
until the final delivery [13]. During each one of the sprints, there are several short
meetings, usually weekly, where each team member addresses three questions
[13]:

• What have you completed since the last meeting?

• What obstacles got in your way?

• What do you plan to accomplish between now and the next meeting?

These questions are discussed with every team member in every meeting, making
it fundamental because it helps every member track their colleague’s progress
and vice-versa. These meetings are short, lasting for 10-15 minutes, and only
serve to address the questions mentioned before and not to brainstorm a solution
[13]. At the end of the sprint, the team produces an increment that builds on the
previous increments, and everyone involved meets for the Sprint review to report
the information to the client. In this meeting, anything can be changed, such as
more or less work or even reprioritization of work. After this meeting, there is a
sprint retrospective where improvements are discussed to be implemented in the
next sprint.

Scrum was chosen as the methodology for this project because we found it the
most suitable because of its transparency and robust features of planning and
organization. Since there are some dependencies between the team members, we
were able to know the progress of our colleagues and vice-versa and better plan
and organize our work based on it. With the sprints and the weekly meetings, we
could keep tracking the time needed to accomplish the sprint goal, making our
progress more planned and organized.

Given the complexity of the project, these meetings also served to get guidance
and brainstorm ideas to achieve the best solution possible. There was a lot of
discussion about new ideas to implement, features to remove, and guidance for
our dissertation. Every interface presented in the game’s final version emerged
from the weekly discussion.

4.2 Work Plan

Taking into account the objectives defined in section 1.3, a set of tasks was defined
to better plan and organize the work needed to accomplish them, presented in
Table 4.1.

32

Methodology and Work Plan

Semester Task

First semester

1 - Get acquainted with the MPCS project and
definition of the document structure
2 - Study automatic UI generation, UI models,
UI description languages
3 - Write intermediate report
4 - Propose a UI generation approach and develop
a proof-of-concept

Second Semester
5 - Design the system architecture and infrastructure
6 - Creation of the UI mockups
7 - Implement the proposed UI generation strategy
8 - Assess the proposed UIs with user studies
9 - Write dissertation

Table 4.1: Work plan for each semester

Figure 4.1 is a Gantt chart showing the duration, in days, taken into the accom-
plishment of each one of the tasks defined in Table 4.1.

Figure 4.1: Gantt chart with the chronogram of the tasks of the work plan

As we can see by analyzing the diagram, in the first semester, the tasks that took
more time to be accomplished was the study of useful subjects related to the ob-
jectives of the project, where a study was conducted by reading various articles,
where other workers explained their researches, and where we could learn how
could we develop the solution for this project. Also, the implementation took
some time because we had to create the architecture of the possible solution be-
fore implementing it. An analysis was conducted to research possible tools and
resources we could use to develop the solution.

33

Chapter 4

In the second semester, as we can observe, a lot of time was invested in the plan-
ning phase consisting of tasks 5 and 6, which are better detailed in chapter ??.
To avoid wasting time on changes to the solution and consequently delaying the
development of the project, we decided to dedicate a big portion of time to calcu-
lating and planning what we were going to do, trying to predict the adversities,
and designing the possible architecture of the solution. The design of the mock-
ups, where we discussed through various meetings what the appearance of the
interfaces should be like. Finally, as expected, the implementation was the one
that took the most time due to the project’s complexity, which generated a lot
of discussion in the development phase, better explained in section 6.2. It was
performed in 4 different sprints, each one with a duration of three weeks. At the
beginning of each sprint, we defined a set of tasks to implement in the project and
a state of the project wanted at the end of the sprint. Each one of these sprints is
better described in section 6.2. The last month was dedicated to writing the dis-
sertation and performing evaluation tests.

34

Methodology and Work Plan

4.3 Risk Plan

This section presents a risk mitigation plan, presented in Table 4.2, which shows
the possible risks that must be taken into account in the development of the
project, and also a mitigation plan to decrease the chances of a risk occurring
or decrease the impact of the risk if it occurs.

ID Description Impact Mitigation plan

1
Scope creep: The progress of
work suffering a deviation from
the goal or objectives

High

- Create clear project parameters
from the start
- Verify that everyone involved
knows the objectives of the project

2 Time risk: The risk of tasks taking
more time than scheduled Medium

- Overestimate the time needed
to complete tasks
- Overvalue planning, organization,
and cooperation with the team to
avoid delays

3

Communication risk: The lack of
communication means or effort,
between the project stakeholders
and team members, resulting in
loss of data or misinformation,
leading to project disruption

High

- Create well defined
communication channels,
between the team, and with the
stakeholders.
- Have regular meetings to verify
if everyone is on the same page

4

Operational risk: The stallment on
project’s evolution due to ineffective
or failed internal processes, such as
people, systems or external events

High

- Have regular meetings to keep
up with every members’ progress
- Do regular backups of the work,
so that it does not get lost, due to
external factors

5
Performance risk: The project is
unlikely to achieve the performance
results as intended

Medium

- Study and implement the most
suitable solution based on the
project goals
- Make regular tests to the
solution performance, to
analyze and conclude
if there is a need to change

Table 4.2: Risk mitigation plan

35

Chapter 5

Design

This chapter focuses on detailing the design aspects of the interfaces that were
developed, the system’s architecture, and the solution proposal for the Automatic
User Interface Generation (AUIG) model.

5.1 Interface Design

Throughout the planning phase, every meeting served as a way to brainstorm
new ideas for the interfaces in the visual and functional aspects. The mockups
were also presented to the client, where he also contributed to the final aspect of
the interfaces.

At the beginning of the planning phase, the functional requirements were care-
fully analyzed in order to draw the desired sketches. These sketches were drawn
with the help of the Figma tool to understand better what we wanted and make it
easier to manipulate and change the sketches when needed. The mockups were
based on the functional requirements and a document supplied by the client con-
taining a real-life walk-through with detailed descriptions for every action per-
formed from the notification of a maritime pollution event until the end of the
combat. With all this information, the objective was to create mockups for every
interface needed to simulate this scenario in-game.

Figure 5.1 presents the total number of mockups drawn during the planning
phase. As said earlier, these drawings represent the actions presented in the sup-
plied walkthrough step-by-step from the beginning until the end of the combat
operations. Each little square in the figure, represents a possible screen of the
game.

Figure 5.1: Set of all designed mockups

37

Chapter 5

Figure 5.1 serves to highlight the high number of mockups designed and, conse-
quently, the time invested in them. As we can conclude by observing the figure,
there are many drawings, meaning that the overall process of combat operations
is complex and vast.

5.1.1 Mockups

Below are examples of mockups of some of the core actions of the game and
detailed descriptions to explain their functionalities and the decisions made when
choosing certain components. These represent some of the core components of
the interface, such as the map, and also some of the main actions of the game,
such as movement, putting a boom (a maritime barrier that surrounds the spilled
oil to prevent it from spreading), interaction with equipment or participants.

5.1.1.1 Main Components of the interface

(a) Main components of the interface, first version

(b) Main components of the interface visually up-
dated

Figure 5.2: Main Components of the interface

38

Design

Figure 5.2 contains two mockups that explain the interface’s main components
that are displayed throughout the game’s entire time. Figure 5.2a shows the first
version of these components. As this is not a 3D game, the background image
changes according to the location to give context to the participant of where he
is at. The interface contains three different containers: the lists container, the
actions container, and the user status. In the lists container, the participant can
access the list of close participants to interact with them, as shown in Figure 5.4b;
the close equipment list where the participant can interact with the list of close
equipment as shown in 5.4a; and the inventory where the participant can access
to the equipment that he brings with him. In the actions container, the participant
can access the available actions to perform. This container is context-sensitive,
which means the actions may change according to the role and location of the
participant. The user status contains the participant’s status, like his location,
health, and indication if he’s performing any particular action like eating, resting,
or moving. Finally, there is the map button on the left, where the participant can
access the map at any time of the game further explained in Figure 5.3.

Figure 5.2b contains the final version of the mockup for the components defined
before. The change was due to the visual aspect and other functional aspects,
such as the unnecessary step to access the lists or the inventory. As this informa-
tion is important, this step was removed, and instead, they are always showing
so that the participant doesn’t have to click every time he wants to check the in-
formation from those lists. The status container moved to the top of the page
and got a visual update to present the information better, making it clearer. This
mockup was only created after finishing every mockup, so the rest of the mock-
ups presented in this section have the first version of the components.

5.1.1.2 Map

Figure 5.3: Map

39

Chapter 5

Figure 5.3 presents the map the participant can access at any time during the
game. This map contains vital information for the course of the game. It contains
icons representing other participants, equipments, the spilled oil, and facilities.
With this information, the participant is able to guide himself and be aware of the
position of the other participants/equipments in the game. In the left part of this
container is a legend indicating the entities marked on the map and their name.
On the right part, there are three buttons that, when clicked, apply a layer to the
map, such as the interdiction zones or the sensible areas. The other button allows
the participant to get the characteristics of the incident, such as the volume of
spilled oil, the number of injured people, and other characteristics. These layers
are explained better in section 6.3.

5.1.1.3 Close Participant/Equipment List

(a) Close Equipment List

(b) Close participant List

Figure 5.4: Participants and equipments close by

40

Design

Figure 5.4 presents the result of clicking in the participant/equipment close lists.
It shows an interface with the list, where each element has a button to interact
with the element. In the case of trying to interact with a participant, there is a
try to live chat with him. This is better demonstrated in Figure 5.5. When trying
to interact with an equipment, an interface appears, showing the status of the
equipment and actions to perform with it, as it is better shown in Figure 5.6. As
said earlier, these interfaces were not implemented because this information is
constantly showing on the screen instead, but they are being presented to give
context to other mockups.

41

Chapter 5

5.1.1.4 Interaction with other participants

(a) Acessing close participant List

(b) Waiting for the other participant to join the chat

(c) Chat with other participant

Figure 5.5: Interaction with a participant

42

Design

Figure 5.5 presents the process of interacting with a participant. When pressing
the button interact, the participant waits until the other participant connects, and
after, they can write messages in the chat to each other. When implementing the
communication between participants, there were some changes that are better
explained in section 6.3, which shows how the communication was implemented
and the differences in relation to this mockup.

5.1.1.5 Interaction with a vehicle and participant movement

(a) Acessing close equipment List (b) Boat Interface outside the boat

(c) Boat Interface inside the boat
(d) Choosing the point in the map to
where to move

(e) Movement Interface

Figure 5.6: Interaction with equipment and movement

43

Chapter 5

Figure 5.6 presents the interaction with a vehicle. This interface component con-
tains the status of the vehicle and the possible actions to perform with it in the
current context. In order to drive it and move, we need to access the list of close
equipment and interact with the boat to get the corresponding interface, as shown
in Figure 5.6a. After entering the vehicle, we have the move action, which, when
clicked, shows the map. Then, the participant only has to click on the destination
point, and an interface showing the action being performed appears.

44

Design

5.1.1.6 Placing a boom

(a) Boat Interface (b) Boat Inventory

(c) Boom Interface
(d) Waiting for people to help put the
boom

(e) Chosing the points in the map to put
the boom

(f) Message of success after putting the
boom in water

Figure 5.7: Placing a boom around the spilled oi

Figure 5.7 presents the action of putting a boom in the water to contain the spill.
To do so, we need to be inside a boat, next to the spill, and have a boom in the
boat’s inventory, as shown in Figure 5.7c. This action requires more focus on
choosing the points for the boom to be put in place. As shown in Figure 5.7f, the
participant chooses the points of the vertices of the boom to be put by clicking on
the map until he hits the confirm button to end the action. The objective of this

45

Chapter 5

action, regarding the interaction, was to have an interactive moment so that there
is more precision when choosing the boom’s vertices and that the game does not
get monotonous with only button clicks.

These were examples of mockups of some of the most important actions in the
game. In section 6.3, the corresponding interfaces for these actions are shown
again, explaining every change that happened, implementation adversities, and
interface improvements.

5.2 System Architecture and Interface Generation

This section presents the system’s architecture and the model for the interface
generation.

5.2.1 System Architecture

As mentioned in chapter 1, these project is divided in five different dissertations,
each with different objectives and tasks, set to develop a component to be inte-
grated with the other components and form the game. The cooperation and coor-
dination between these components was mandatory for the success of the project,
hence the need for the system’s architecture to be robust and well designed. Let’s
remember each general task of each dissertation’s component:

• Digital twin - Works with a mathematical model system called MOHID
responsible for giving realism to the game by calculating, for example, the
increase/decrease in the spilled oil taking. This component aims to be the
intermediary between MOHID and the other components.

• Game editor - is responsible for creating the data model of the game, like
the entities and relationships, for example.

• Multiplayer Service Framework - Is in charge of creating the game’s multi-
player service and establishing the communication channels between every
component.

• Automatic User Interface Generation - Responsible for automatically gen-
erating every interface based on the game’s current state.

• VR Operations - where It is concerned to implement a virtual reality inter-
face for specific actions in the simulator.

Although there are five components, the project was done on the first four be-
cause it was not possible to integrate the VR operations together with the rest of
the components. Below is represented the System’s Architecture.

46

Design

Fi
gu

re
5.

8:
Sy

st
em

’s
A

rc
hi

te
ct

ur
e

47

Chapter 5

Figure 5.8 represents the System’s Architecture. The four components are repre-
sented, plus the database and MOHID. As we can observe in the architecture, this
dissertation’s component is the intermediary between the client (browser) and
the server. It communicates with the use of WebSockets or controllers (Spring
boot), which will be better explained in chapter 6. The multiplayer Server frame-
work is connected to every other component because it is in charge of updating
the state of the game by passing the information to every component. As men-
tioned earlier, the Digital Twin component is the intermediary between the other
components and the MOHID. Finally, the Game Editor component is in charge of
creating the entities and methods to create or alter the state of the repository.

When an action happens in the browser (any type of request), we can create a set
of steps of what happens then:

1. The UI generation component communicates with the multiplayer compo-
nent, indicating the request.

2. Then the multiplayer service framework, based on the request, makes the
necessary communications to process the request, which can be:

• Communicates directly with the database or uses a method from the
Game Editor component to alter the state of an entity in the repository,
for example.

• Communicates with the Digital Twin in case the request needs to be
processed by MOHID, for example, updating the state of the spilled
oil after putting a boom or a skimmer.

3. With the result, the multiplayer server framework communicates back the
reply to the UI generation component

4. Lastly, the UI Generation component makes the necessary changes to the
interface in the client, based on the received reply.

Below is represented the entity-relationship diagram:

48

Design

Fi
gu

re
5.

9:
En

ti
ty

-R
el

at
io

ns
hi

p
D

ia
gr

am

49

Chapter 5

This project is complex and vast, and in order to meet the supplied functional
requirements and the project’s goals, there is a need to have a solid and robust
data model, as represented in Figure 5.9. As we can observe, this diagram is
complex. It has a lot of entities and relations between them. The following are
the most important:

• Exercise - An exercise mainly consists of an incident (maritime pollution
event), participants, equipment, and organizations. The exercise is the game
itself where the users are going to play at. The exercises can be configured
to alter the data of the aforementioned entities in order to create realism and
diversity.

• Users and Participants - Users are real people and Log in to the website of
the project. When it comes to playing the game, they are associated to a par-
ticipant, that is, a fictitious person that has a role in the game. Participants
have roles, are associated to organizations, and can have equipment, and
consumables with them.

• Organizations - Organizations represent themselves in the game. They con-
sist of facilities that have equipment, consumables, and participants associ-
ated with them.

• Incident - Incident consists of the event that triggers the beginning of the
exercise. It is associated with a type of Hydrocarbon and other important
information relevant to the game.

• Messages and Notifications - The way of communication between the par-
ticipants in the game is represented by the entity message. The notifications
are shown to the participants when they receive a message from other par-
ticipants or there is some update in the game that requires the participant
to be noticed.

• Equipment - The equipment has various types: vehicles, like boats, cars,
airplanes; Skimmer; Boom or other pieces of equipment that can be trans-
ported by the participant, like phones, for example. They are associated
with actions that the participant can perform with each piece of equipment.

With the entities’ diagram, together with the system’s architecture diagram, we
managed to have a solid base plan to start developing the initial state of the
project, like the database, the communication channels between each component,
the infrastructure, and the components of each dissertation.

50

Design

5.2.2 Interface Generation

Interface generation was achieved with the use of templates. Out of all the ap-
proaches studied, this seemed to be the most appropriate. By studying these
approaches, we have obtained important information and ideas to implement in
this dissertation’s project. But, for some of the approaches it would be neces-
sary to use external systems to use them, such as SUPPLE [10] and TERESA [3].
Since it will already be difficult to coordinate all the components of the Marine
Polution Control Simulator (MPCS) project, we wanted the approach used to be
easy to integrate to maximize decoupling. Using templates, we are able to imple-
ment the automatic user interface model using the technologies and languages
that the other components of the MPCS project will be using. In addition, other
approaches studied required a study of the technologies and tools to be used to
accomplish the automatic generation, such as PUC [9], where using templates,
the needed study is way less. We only design a model of how the generation will
work, and start implementing right away, as the usage of templates is simple.
Finally, after studying and analyzing the possible the mockups, we reached the
conclusion that only a few interfaces should be dynamically generated since there
are a lot of interfaces that will be static without changing their state, like menus,
and others that can change the state but are fixed in the screen, like the profile
of the participant, the lists of close participants/equipment and the inventory;
therefore, they were generated manually. We reached the conclusion that the in-
terfaces that need to be generated automatically, can easily get grouped where
a single template can generate various different interfaces maximizing efficiency
and decreasing development time.

Therefore, these reasons made the use of templates the choice for automatically
generating interfaces.

The mockups were studied and grouped to create templates that would work
for different occasions to maximize efficiency and decrease development effort.
Also, it was conducted an analysis on what data should be in each template and
what data should be irrelevant. In the case of equipment/consumables, only
the most important data is shown, like the health, location, and other relevant
data depending on the type of equipment, like the autonomy for vehicles or the
quantity for consumables.

51

Chapter 5

Figure
5.10:Interface

G
eneration

M
odel

52

Design

Figure 5.10 represents the architecture of the interface generation model using
templates. When an action occurs on the browser, for example, putting a bar-
rier/skimmer, asking to interact with a piece of equipment, or wanting to move,
it triggers an event that sends a request, using WebSockets, to the respective end-
point to process the request. The information in the request will vary depending
on the context of the game. The server contains a controller mapped by this end-
point. This controller calls the necessary services to process the request. These
services can: obtain/update information in the database; call a defined method
to process the information, for example, a method to calculate the distance be-
tween two points; call a method to make an API request to the Digital Twin to
exchange information with MOHID and update the game’s state; call a method
to make an API request to an online service, for example, obtain the GPS route
between two points. After finishing processing the information, sends it back to
the client. Then, the client requests the corresponding template. This template
has empty divisions appropriate for the type of use case they are being gener-
ated. Then, the client creates searches for these divisions in the template and fills
them it with the corresponding data obtained before. After inputting all the data
in the template, displays it.

5.2.2.1 Problems encountered

Although this approach generates the interfaces dynamically based on the con-
text of the game in an abstract way, the templates are already created. This model
of generating interfaces is coded brutally to work as it is, to work with the current
version of the game. This can generate possible problems in the future because
the interface is always the same for the specific situation to be generated, which
means that the type of data to be displayed is always the same, and so is the vi-
sual appearance of the interface. So, if the game’s administrators want to see a
new equipment’s field displayed on the interface, they can’t. Another situation
is if the game’s administrators want to add a new type of entity to the game and
there is no suitable template to generate the interface. Finally, there is no way to
customize the visual aspect of the generated interfaces. These problems can be
solved by changing the template’s code and the system’s code, but it’s not prac-
tical for the administrators to do it, especially because they may not have any
experience in coding. Therefore, section 5.3 presents a proposal of a model using
AUIG capable of solving these problems, and section 6.3 shows how they were
implemented and the results.

5.3 UI generation Model using a JSON configuration
file

I propose the following automatic interface generation model that aims to solve
the automatic generation of user interfaces using templates by giving adminis-
trators complete customization of interfaces and complete abstraction to the gen-
eration of interfaces. This model was only applied to the equipment interface

53

Chapter 5

since it’s the one that can change the most. This model generates the interfaces
using an empty template and a JSON configuration file. The file contains the
interface specification for each type of equipment and a default specification in
case the type of equipment is not specified in the file. This specification contains
the equipment fields that will appear in the interface and also their datatype in a
high-level description, such as text for strings, numeric for numbers, and range for
numbers that belong to a range of numbers that is also specified. This file doesn’t
contain details about the visual aspect of the action buttons or the inventory but-
ton, so the customization only applies to the equipment fields. Each field has an
associated set of properties that will define the visual appearance of the interface.
These properties are the following:

• Priority: Defines the order in which the elements appear in the interface.
The possible values are numbers. The lower the number, the higher the
priority.

• Interaction: Defines whether the participant can interact with the field. If
the value is none, the field is displayed normally. If it’s not none, it can be
select to be represented by a component with various options to select the
field’s value, such as a dropdown. The property value can also be drag to
be represented by a draggable component, such as a slider. Finally, it can be
upDown to be represented by a component that can increment/decrement
the current field’s value. This property is used for fields that can be changed
during the interaction to change the state of the equipment, such as the
speed of a vehicle or the power of a piece of equipment in use.

• Grouping: Defines whether certain fields are close or not. The value can
be none or a number, and the fields with the same number will be closer in
the interface. The Priority property, together with this property, defines the
order of the elements in a group.

• Relevance: Defines the component’s relevance in the interface, whether the
information should be more noticeable or not. The possible values are Low
for subtle indicators of the field, such as less size and more discrete back-
ground colors and shadows; medium for medium indicators of relevance
and High for highlighting critical information.

• Customization: Defines the color and font of the field. The possible values
are none to have the default color and font of the game, or it can be ($font,
$color) where $font should be replaced by an existing font and $color should
be replaced by an existing color.

5.3.1 Mockups

To give better context about how the properties should be used, the following
figures represent the designed mockups explaining the use of each property.

Priority

54

Design

(a) First example of the Property Priority be-
ing applied

(b) Second example of the Property Priority
being applied

Figure 5.10: Property Priority being applied

Figure 5.10 shows two examples of how the property priority affects the interface.
Each Figure has the mockup on the left and the corresponding values used in the
priority property. As mentioned before, this property sets the order of how the
fields should appear in the interface. Figure 5.10a shows the result of the field
autonomy being placed first because of its priority having value 1. Then succeeds
health, brand, and speed, for having priority values 2,3 and 4, respectively. Lastly
is the field name, where its priority is 5. Figure 5.10b shows another example of
how this property looks like.

Customization

Figure 5.11: Property Customization being applied

As mentioned before, the customization priority sets the font and color of a field.

55

Chapter 5

As we can see in Figure 5.11, on the left are the values used for each field, and on
the right is the corresponding result of using each font and color.

Grouping

(a) First example of the Property Grouping
being applied

(b) Second example of the Property Group-
ing being applied

Figure 5.11: Property Grouping being applied

The grouping property aggregates fields that have the same grouping value. Fig-
ure 5.11a shows the corresponding grouping values on the left, and on the right,
we can see that name and speed are together because of having grouping value
1. Then brand and autonomy are together because of having grouping value 2.
Finally, health is isolated because it has grouping value none. Figure 5.11b shows
another example of how this property works

Interaction

Figure 5.12: Property Interaction being applied

56

Design

The interaction property defines if a field can be interactable or not. Figure 5.12
shows that name and brand are displayed normally, while autonomy being dis-
played as a draggable slider because of having Interaction value Drag, speed be-
ing displayed as an increment number because of having interaction value Incre-
ment and the health being displayed as a dropdown because of having interaction
value Select.

Relevance

Figure 5.13: Property Relevance being applied

The relevance property defines how much attention a field should get. Figure
5.13 shows that fields that have a relevance value High have more accentuated
borders, more critical colors, and bigger sizes. The fields with relevance value
Medium are also highlighted but slightly less than the aforementioned. Finally,
the fields with relevance value Low are the ones that are less noticeable in the
interface.

All these properties define the visual aspect of the interface to be so that the users
can decide on the aspect and change at will. The properties are customized di-
rectly on the JSON file. This, together with the equipment data, should be enough
to generate interfaces on an abstract and customizable way.

5.3.2 Architecture

The idea of this model is to generate an interface only based on the equipment’s
data and the JSON configuration file. Figure 5.14 shows the diagram that presents
how this model works.

57

Chapter 5

Figure
5.14:U

Igeneration
A

rchitecture

58

Design

As we can see by observing Figure 5.14, the process of generating and interface
is similar with one using templates. However, in this model there is acess to the
JSON configuration file to help generate the interface.

When an action occurs in the client, there is a method call that makes a request,
using WebSockets, for an interface to the server. When the Spring Boot controller
receives the request, makes a request to the database to obtain the equipment
data, the participant making the request and, based on this information, gets the
possible actions to perform. Then, with the equipment, it calls a method that
reads the JSON file and returns a JSON object containing the fields that should
appear in the interface plus their properties. This information is replied to the
client. Then, the client makes a request for a template, where the Spring Boot
Controller searches for it and replies it. The client then fills the template with the
information received and presents it to the user.

This model can generate the interfaces in an abstract way, depending on the cur-
rent context of the game, and also has the customization aspect for the adminis-
trator to define how he wants the interface to be like. With this being said, this
model is expected to solve the problems of interface generation using templates.
In section 6.3.2, the implementation of this model is further detailed, as well as
the results.

59

Chapter 6

Development

This chapter focuses on the development phase of the MPCSproject and this dis-
sertation’s project. It presents the development details of the infrastructure, the
chosen technologies, the development process describing the achievements in
each sprint, and the final practical results of the automatic user interface gen-
eration using templates and the the automatic user interface generation using a
JSON configuration file.

6.1 Infrastructure

This section presents the details of why Spring Boot was chosen for the server-
side framework, HTML for the client-side interface, and MySQL for the database
management system, drawing from each development team member and high-
lighting each choice’s advantages.

6.1.1 Choice of Technologies

Spring Boot

The decision to utilize Spring Boot as the server-side framework was primarily
driven by the experience with this technology. Spring Boot is a well-established
and widely adopted framework in the industry. It offers several advantages that
make it a suitable choice for this project [14]:

• Rapid Development: Spring Boot simplifies the development process by
providing a comprehensive set of libraries and tools. Its convention-over-
configuration approach reduces the need for boilerplate code, allowing de-
velopers to focus on the application’s core functionality. This accelerates
development and ensures code quality.

• Robust Ecosystem: The Spring ecosystem provides a wide range of mod-
ules and extensions that seamlessly integrate with Spring Boot. This allows

61

Chapter 6

for the easy implementation of various features such as security, data access,
and messaging.

• Strong Community Support: Spring Boot boasts a large and active com-
munity of developers, which means access to extensive documentation, fo-
rums, and resources. This support network can be invaluable when encoun-
tering challenges during the project.

HTML

HTML was chosen for the client-side interface due to its simplicity, ubiquity, and
familiarity with it. While HTML itself is not a programming language, it forms
the backbone of web development and offers several advantages for creating user
interfaces [15]:

• Cross-Platform Compatibility: HTML is universally supported by web
browsers, making it an excellent choice for creating a client-side interface
that can be accessed from a wide range of devices and platforms.

• Lightweight: HTML is lightweight and efficient, ensuring fast page loading
times and a smooth user experience. This is crucial for web applications, as
user satisfaction often hinges on responsive interfaces.

• Ease of Learning: HTML is relatively easy to learn, making it accessible to
developers.

MySQL

The selection of MySQL as the database management system was influenced by
previous experience and its suitability for the project’s requirements. MySQL
offers several advantages for managing relational data:

• Data Integrity: MySQL is renowned for its robust data integrity features,
including support for ACID (Atomicity, Consistency, Isolation, Durability)
transactions. This ensures the reliability and consistency of the data stored
in the database.

• Scalability: MySQL can efficiently handle large volumes of data, making it
suitable for projects that may experience growth in the future. Its scalability
options, such as replication and clustering, provide flexibility in accommo-
dating increased workloads.

• Cost-Effectiveness: MySQL is open-source, which means it is cost-effective
and aligns with budget constraints. This is especially valuable for academic
and research projects where cost efficiency is a consideration.

In conclusion, the choice of Spring Boot for the server, HTML for the client, and
MySQL for the database was based on a combination of previous experience and
the inherent advantages these technologies offer. Leveraging familiarity with

62

Development

these tools allowed for a more efficient development process and a higher like-
lihood of project success. Additionally, the selected technologies are well-suited
to the project’s requirements, ensuring robustness, cross-platform compatibility,
and cost-effectiveness.

6.1.2 Server deployment

The project was run most of the time on localhost. Each team member carried out
the tasks separately or together, depending on the task. To keep the project up
to date and coordinated, we used GitHub to keep up to date with the progress
of the other members and to coordinate our work better together. At the end
of the development phase, we deployed the project on a server provided by the
Department of Informatics Engineering (DEI), so that the project could run online
to carry out some tests with several players simultaneously and finally get the
project ready to show to the client.

6.1.3 Client-Server communication channels

The Client-Server communication is the core aspect of our system since every
action in the game makes a request to alter the state of the game and receives back
the response. Everything is processed in the server, and the client only shows the
game’s current state. Since we used HTMl as the client language and because
HTML is static, the usage of WebSockets and Spring Boot controllers creates the
capability of having the interfaces change dynamically during the execution of
the game.

WebSockets

When a player connects to the game, two WebSockets topics are created, one
where he only receives messages for himself and has the endpoint with the fol-
lowing format: /exerciseId/participantId. This topic receives messages such as up-
dating his life bar or getting equipment information. In the other topic, he re-
ceives messages destined for all participants and has the endpoint with the fol-
lowing format: /exerciseId. This topic receives messages such as, for example,
when a participant moves, a message is sent to all participants, which serves to
update each participant’s map with the new location of the moving player. These
topics receive messages throughout the game to update the game interface. To
distinguish each message received, they contain a label that defines what the
client does when receiving such a message. Then, depending on the label, an
If block separates the messages to execute different blocks of code. The message
also contains the necessary data to make the changes to the interface. Below are
some examples of the labels and messages used:

• UPDATEHEALTH: When a message with this label is received on a topic,
it also contains the new health value. The code enters the if statement when
the message label equals this one and calls a function that updates the health

63

Chapter 6

element in the interface with the new value. This message is normally re-
ceived when a participant’s health suffers an update.

• CLOSEPARTICIPANTSANDEQUIPMENTS: When a message with this
label is received on a topic, it also contains a list of the name, id and lo-
cation of the participants and equipment that are close to the respective
participant. Then, it calls a function to update the close participant list and
the close equipment list with the new received. This message is when a
player/equipment moves, and there is a need to update the corresponding
lists.

• PARTICIPANTSANDEQUIPMENTS: When a message with this label is
received on a topic, it also contains a list of the name, id, and location of
every participant and equipment in the game so that the map’s icons and
legend can get updated. This message is normally received when there is
a need to update the map, either by someone’s movement or action that
requires an update to the map.

• CHAT: When a message with this label is received on a topic, it also con-
tains: the type of chat received, whether it is an email, message, or someone
spoke; the content of the message and the sender. A function is called to
display a notification of the message received.

This is how the WebSockets deal with the messages received in topics. However,
they can work the other way around. They can perform a request to an endpoint
mapped by a controller, as it was mentioned before. Depending on the action that
requires the request, a message is built and sent to the respective endpoint, where
the controller processes the message and replies to one of the player’s topics.

Spring Boot Controllers

Spring Boot Controllers are classes with the annotation @Controller that have
methods that map an endpoint to execute the respective method when accessed
to this endpoint. These methods can return templates to show them in the inter-
face or can have the type void and return nothing. For example, when we wanted
to show a popup or change the page, we made a request to one of these meth-
ods, and he would return the corresponding template to show. When we didn’t
want to change the page but only interface components, the return type of the
method would be void, and we created Objects of the class SimpMessagingTem-
plate to send information to a WebSocket Topic to make the necessary changes, as
it was explained earlier. Before returning the new template or sending a message
to a WebSocket topic, we would call services or methods to process the request
received in the endpoint. Below is a diagram showing better how the communi-
cation works and its effect on the interface.

Communication Example Diagram

64

Development

Fi
gu

re
6.

1:
D

ia
gr

am
sh

ow
in

g
th

e
co

m
m

un
ic

at
io

ns
m

ad
e

fo
r

a
pl

ay
er

to
m

ov
e

65

Chapter 6

Figure 6.1 shows the exchange of information when a player wants to move.
When he double-clicks the map, a request is sent to the endpoint /interfaceMovi-
mento, where an API request is made to obtain the GPS route information. After
obtaining the information, reply with the full information about the route to the
destiny, such as the coordinates to travel, the distance, and the duration to the
participant’s WebSocket topic. With this information, the client makes another
request to the endpoint /routeTemplate to get the appropriate template to fill with
the obtained information. This interface is presented in Figure 6.6. This interface
aims to show the participant the route before moving so he can confirm or de-
cline the movement. After confirming, the function simulateMovement is executed
on a loop, having a time interval between each loop. The time interval depends
on the duration and number of coordinates to travel. This function updates the
participant’s location on his map and sends a request to the server to update his
location in the database. Then, a message is sent to every participant’s Websocket
topic with the updated list of participant equipment names and their location
and the updated list of close of participants and equipment. Upon receiving this
information, the client updates every participant’s map and their close lists of
participants and equipment. This process simulates the participant’s movement
and displays it on everyone’s map. This means that if the other participants have
the map opened, they can see the participant with the color yellow, which in-
dicates that he is moving. Also, they can see the participant’s marker moving
gradually through his corresponding route.

This diagram shows how the interfaces are updated dynamically and how the
Client-Server communication works. Every in-Game-Action works similarly with
this, meaning the client receives messages in the subscribed topics and executes
different things according to each message; and sends messages using WebSock-
ets that Spring Boot Controllers receive in the server, which process the request
and reply to one of those topics. This way, we can keep the client always in synch
with the server.

6.2 Development process

The Development Phase was divided into four sprints of three weeks. In each
sprint, the development team members had tasks assigned. During each week,
there were meetings where the team members showed the progress and the ad-
versities. These meetings served to discuss solutions, alterations to make, and
new ideas to implement. Close to the end of the sprint, there was a testing phase
where we tested the implemented functionalities. In the meeting where every
sprint ended, there was a final presentation about the progress, a planning phase,
and a new assignment of tasks for the next sprint.

6.2.1 Sprint 1

The first Sprint was dedicated to setting up the project and starting to build the
infrastructure. It consisted of creating the database and building the project and

66

Development

its connections to the database using the JDBC API methods, which consisted
of the methods portraying the operations reading/deleting/updating/inserting
with the database. Then, we proceeded to develop the infrastructure with small
increments by creating small development demonstrations/scenarios, where we
could test and implement simple functionalities in the project, such as retrieving
every user in the database and showing them in the interface to test the use of
the Spring Boot Controllers and WebSockets and their configuration. Then, we
created an exercise where the users could join. When they joined, they had a chat
where only the users from that exercise could talk with each other. Both scenar-
ios simulated the communication between the Multiplayer Service Framework
and Game Editor components using WebSockets, Spring Boot Controllers, the
database, and a message queue that we thought was needed at that moment for
the communication between the components in the server. Also, the interfaces
used for the scenarios were static and manually developed because the purpose
was to establish and set up the project first. This initial prototype established the
groundwork for the project to evolve into the simulator. At the end of the sprint,
we planned for the next sprint to start implementing in-game functionalities.

6.2.2 Sprint 2

The second sprint was dedicated to starting the implementation of the various
functionalities of the game. Throughout the implementation, we realized we
didn’t need a message queue to communicate between the server’s components.
Instead, we only needed to do method calls from the different components. The
communication using WebSockets and Spring Boot Controllers stayed the same.
After some discussion, we concluded that the components of the interface of
the profile status, the close list of equipment and participants, and the inven-
tory should always stay visible and, therefore, manually created. However, they
should be dynamically updated with the current state of the game with the help
of the established communication channels. The rest of the interfaces would al-
ready be developed using templates. In this sprint, the following actions were
implemented:

• Fixed Interfaces: The fixed interfaces are the ones that are always visible
to the participant and only change their state dynamically. These include
the participant’s profile status interface, the inventory, and the close lists
of participants and equipment. In the planning phase, the mockups also
had a component with the possible actions, but after some discussion, this
component was not implemented as the participant can perform every ac-
tion anyway by using other components such as the map or the equip-
ment/consumable interfaces. These interfaces, in terms of functionalities,
didn’t change. However, throughout the development phase, the visual ap-
pearance changed a little.

• Map: The map was implemented using the leaflet library. The start of using
this library was difficult because there was no prior experience with any-
thing similar, such as drawing figures in maps, placing markers, and the

67

Chapter 6

usage of coordinates. However, there is a lot of material online to help the
development of leaflet maps. With the map implemented, we were able
to place markers indicating participants/equipment/facilities in their re-
spective locations so that the participant could guide himself better when
playing the game. The map is also used to move. Firstly, the map container
had a button move, where the player clicked so he could choose a point in
the map to move to. After discussion, we didn’t find that visual intuitive or
appellative, so that button was removed, and, instead, the participant can
move using a double-click on the map. There were also implemented ver-
ifications in case a player wants to move/drive to water or a boat to land.
These verifications were implemented using API Services that verify if a
coordinate is on land or water.

• Equipment/Consumable Interface: This is where Automatica User Inter-
face is more noticeable using templates because there are a lot of different
equipment/vehicles/consumables to generate an interface for. When a par-
ticipant interacts with an equipment/consumable close by, an interface ap-
pears showing the details and status of that equipment/consumable. In this
Sprint, it was only possible to implement this informative interaction, not
being able to do some action with them.

• Sensible/Interdict Areas: These areas are important for the game’s punctu-
ation after the ending of the game. They serve to verify if a participant has
made an action in an area he shouldn’t do. The participants draw These ar-
eas on the map at the beginning of the game and color it according to their
classification (green zone, yellow zone, red zone). They can be accessed us-
ing the layers that a player can see when choosing the filters on the map
container. These areas are drawn polygons in the map. There were some
adversities again because there was no experience working with drawing
in maps, but in the end, they stayed pretty much the same.

For the next Sprint, we planned to implement more functionalities and have such
functionalities that could simulate a pollution event and carry out combat against
it.

6.2.3 Sprint 3

This sprint aimed to implement enough functionalities/in-game actions to simu-
late an exercise of combat to a pollution event. The following functionalities were
implemented:

• Spilled oil: With the coordinates of the pollution event and its spilled oil,
we draw a polygon in the map. This is done using GeoJson, that is hav-
ing the characteristics of polygons/lines/points in a JSON format, making
it easier to store in the database as a string and load it to the map when
needed.

68

Development

• Pollution event characteristics: This is a button in the map container where
we can access the information about the pollution event, such as the volume
of spilled oil, number of injured people, and type of HydroCarbon spilled.

• Facilities: The facilities are stored in the database. When the game starts,
they are loaded into the client so that the facilities’ markers are put in their
respective location. A participant can interact with a facility to enter in-
side. While inside, he can access the email and draw/consult/edit the sen-
sible and interdict areas. Also, every facility has a warehouse with equip-
ment/consumables/vehicles, where the participant can load his inventory,
get the right equipment to use for combat by loading it onto a vehicle and
driving it to the combat location.

• Routes: Until this point, the player could move or drive to a place instantly.
So, there was a need to give more realism to it by attributing a duration
and distance based on the speed of the participant/vehicle. After some
discussion, we also decided to generate an interface that simulates a GPS
route and its details to give even more realism to it. It was hard to get the
appropriate Service that could provide the information needed. After some
time searching and trying very different approaches, we chose the MapBox
API. This API receives the starting and destination points, the "traveler"
whether it’s a car or a person, and returns the coordinates of the route, the
duration, and the distance. They cannot supply this type of information for
boats, so for this type of vehicle, we manually calculate the distance and
duration, the coordinates to reach the destination, and the route to travel is
a straight line drawn to the map. This is a flaw to improve in future work
because the boat’s route can overlay land, like islands or other non-water
areas.

• Message/Email: We also implemented the functionalities of sending/reading
emails/messages. If a participant has a phone in his inventory, he can access
it to read/send messages. The same for the emails, when he is inside a fa-
cility where he can access a computer, to do that. Both the email and phone
interfaces are generated using templates even though their templates only
serve to generate them. However, since they are on a template and not hid-
den in the main game interface, we managed to spare some resources and
improve performance. With these functionalities, the participants are able
to talk with each other in game.

• Equipment Actions: We started implementing the core actions that a par-
ticipant can do with an equipment/consumable. These actions are stored
in the database, and they have an equipment type, equipment State, name,
and participant state associated. This way, we can load to the equipment’s
interface the appropriate actions depending on the context of the game. For
a consumable, the only actions possible are to consume it to gain Health
Points (HP), in the case it is in the participant’s inventory, and to add to the
participant’s inventory in case it is in the facility warehouse. The actions
implemented on an interaction with an equipment were:

– Vehicle’s Inventory: We implemented the functionality of having an

69

Chapter 6

inventory on equipment that are vehicles. This inventory can contain
other equipment that are not vehicles. This serves, for example, to
move equipment from place A to B, using a vehicle to be faster. The
inventory can be accessed from the equipment interface.

– Carry/Release equipment: We implemented the functionality of car-
rying equipment from place A to B. The participant can either choose
to carry the equipment to a point chosen on the map or to a nearby
vehicle. If he chooses to carry the equipment to a place on the map,
the carrying is done on foot. This action is a group action, meaning
that to do it, it needs more than one participant to help. When a player
clicks carry, an interface appears where he can cancel by releasing the
equipment or wait until the necessary people try to join to carry the
equipment. When the necessary people to carry are ready, they can
press the move button to carry the equipment to the aforementioned
options, place, or vehicle. After choosing the option, an interface ap-
pears to simulate the time taken to do this action based on the duration
and distance of the movement.

– Fuel equipment: We implemented the functionality to charge fuel on
equipment that runs on diesel. To do this, the participant needs to have
a fuel kit in its inventory. After pressing the fuel action, an interface
appears to simulate the time taken to do this action. After this, the
autonomy of the equipment increases.

– Unload: This action is the opposite of carrying equipment to vehi-
cles. When accessing a piece of equipment on a vehicle’s inventory,
the player can choose to unload it to have the chosen equipment out of
the respective vehicle to a place nearby.

– Repair: This functionality refers to repairing equipment. This can only
happen if the participant has a repair kit with him. After pressing the
repair action, an interface appears to simulate the time taken to do this
action. After this, the health of the equipment increases.

– Place/Remove boom: With the functionalities mentioned above, we
were able to do the following: carry a boom from a facility into a car;
drive the car from the facility into the combat area; unload the boom to
land; carry the boom to a boat; enter the boat and drive it to next to the
spilled oil. With this, we implemented the action of placing a boom in
the spilled oil to contain it. This is also a group action, so the process of
doing the action is similar to the carry action. The participants choose
to place the boom. When the necessary participants join in to place the
boom, they can finish the action by drawing the boom on the map, sim-
ilar to drawing sensible/interdict areas. After this, the boom appears
on the map constantly. If a participant is near the placed boom, he can
remove it as well if he has the necessary number of participants with
him, as it is a group action as well. Both the placing and removing ac-
tions needed to be communicated with the Digital Twin component to
report the action to MOHID, but at this moment, this wasn’t possible
as there were some problems on the Digital Twin Component.

70

Development

This was the hardest working sprint as there were a lot of functionalities to imple-
ment. In the testing phase, we discovered some bugs in the functioning of some
actions. We didn’t manage to have a working version with enough functionalities
to simulate an exercise to combat a pollution event.

6.2.4 Sprint 4

The final Sprint was dedicated to getting the final version of the project and de-
ploying it on the provided server at DEI, executing the final tests, presenting it to
the client, and a final meeting with the tutors. In this sprint, we implemented the
final touches in the project, like some in-game actions that were still not working
and others that did not exist, so we could have enough functionalities to simulate
a combat exercise.

Because of these actions, the interface changed a little, and the core actions ap-
pear as buttons on the page, such as speaking, notifications, accessing the map,
and resting. The speak action was implemented in this Sprint only. By press-
ing a button, the participant can write a message and send it. Everyone who is
close by, will receive a notification that someone spoke. The resting action was
not implemented as well until this point. Now, When the participant clicks the
rest button, an interface of resting appears, and in the end, the user gains some
HP. The notifications area was not implemented as well at this point. When a
participant received a notification and closed it, he couldn’t reaccess the notifica-
tions. So, we implemented a component where he has access to past notifications.
There was a need to implement this since, with the speak notifications and the
use of templates, there was a flaw that happened When one participant spoke
and then another participant spoke as well. The notification would be replaced
by the second participant who spoke, and the players could miss some impor-
tant information. We finally could put a barrier since we fully implemented the
communication between Digital Twin, MOHID, and the other components. Af-
ter this, we started the deployment of the project on the provided server, which
generated a lot of problems and took way more time than we thought we would
need to do it. These problems were happening because of misconfigurations and
uninstalled technologies in the server and small and almost undetectable errors
where a letter being in uppercase would not give an error in localhost but in the
server would generate one.

After this, we presented the final version to the client, where the feedback was
really good and better than expected because some actions were still not properly
working.

To finish the development phase, the final meeting with the tutors happened with
the objective of them playing and experiencing the game so that they can give
their feedback about the game and about each component individually for the
dissertation’s writing purposes. At the end of the development phase, we started
writing the dissertation.

71

Chapter 6

6.3 UI Generation- Pratical Examples

This section presents the results of the generation of interfaces and their details
for the most important functionalities using Templates and the results of the pro-
posed model.

6.3.1 Templates

As mentioned before, the Interface Generation was accomplished with the use of
templates. Figure 6.2 represents the process of generating an equipment’s inter-
face using templates.

Figure 6.2: Generation of an equipment Interface using Templates

As we can see by analyzing Figure 6.2, there is an action in the client that triggers
a request for an equipment interface to the server at getEquipmentPopup. This re-
quest contains the participant’s Id, the equipment’s Id, and the exercise’s Id. The
request is received by a Spring Boot Controller mapped at that endpoint. The
Controller searches for the equipment in the database and retrieves its informa-
tion. Then, it makes a request to the database to retrieve the possible actions to
perform with the equipment based on its type, state, and the participant’s state.
The obtained information is converted to a JSON String. Then, an object is cre-
ated with the Json String and the Label EQUIPMENTPOPUP. This object is sent to

72

Development

the WebSocket Topic respective to the participant at /exerciseId/participantId. The
WebSocket Broker reads the message and executes the code where the message’s
Label equals EQUIPMENTPOPUP. Then, the code proceeds to call a function that
fetches the endpoint equipmentTemplate to retrieve the appropriate template. In
the server, there is a controller that maps this endpoint. It searches for the tem-
plate and returns it. Templates are HTML files that contain divisions or variables
appropriate for their goal; for example, if it is an interface for a piece of equip-
ment, it already contains a division for placing the equipment’s status, an inven-
tory button, and a division where the actions available to be carried out on the
equipment will be located. Then the client dynamically loads the data to these
divisions. After loading it, presents the generated interface to the user.

The following Figures represent the main interfaces of the game, with detailed
descriptions.

6.3.1.1 Main Components of the Interface

Figure 6.3: Main Components of the Interface

Figure 6.3 contains the main interfaces of the game. These components are fixed
and always visible to the player.

On the left side of the screen, we can see: the list of nearby participants where
the player can see who is nearby to help do a group task like, for example, carry-
ing a piece of equipment or placing a boom; the list of nearby equipment where
he has access to the nearby equipment where he can interact with and perform
actions with it; and the inventory that contains equipment to use, for example, a
cellphone, or consumables to use, for example, a fuel kit to fuel a vehicle, or food
to gain HP.

In the top part of the screen is the participant’s status which gives information
and context about the game’s current state. It contains his name, the name of the
exercise being played, his health bar, his location, and the current date and time
of the game in the simulation.

In the right part of the screen are the actions always available for the player to

73

Chapter 6

perform. These include the rest action to gain HP, the speak action where he can
write a message for every player nearby to receive, the notifications area where
he receives the notifications of other participants who spoke, and the button that
accesses the map.

The background image also updates according to the place where the participant
is. If he is inside a facility, the background image switches to an image that re-
sembles an office. If he is inside a vehicle, the background image switches to an
image that resembles the vehicle he is in, like a boat or a vehicle. The background
image serves to help the player know where he is at and give more context about
the game.

6.3.1.2 Available Actions

(a) Rest Action (b) Resting

(c) Speak Action (d) Writing the speak message

(e) Speak notification (f) Speak Notifications

(g) Speak Notification (h) Notifications empty

Figure 6.4: Available Actions interfaces

74

Development

Figure 6.4 represents the actions that are always available for the participant to
do. Figure 6.4a and Figure 6.4b show what happens when a participant clicks to
rest. An interface to simulate the time needed to rest appears, and the participant
gains HP. Figure 6.4c shows the speak action. When pressed, the user writes a
message as shown in Figure 6.4d and the participants nearby receive a notifica-
tion as presented in 6.4e. This notification can also be accessed in the notifications
area. When the participant receives a speak message, the notification icon turns
pink as shown in Figure 6.4f, and inside appears every speak notification as pre-
sented in 6.4g. The participant can choose to clear the notifications as shown in
Figure 6.4h. The map button serves to access the map as shown below in Figure
6.5.

75

Chapter 6

6.3.1.3 Map

(a) Accessing the map

(b) Map

(c) Sensible Areas in the map

(d) Characteristics of the incident

Figure 6.5: Map interfaces

Figure 6.5 contains the interfaces related to the map. Figure 6.5a shows where
the player can access the map. It’s in the button placed in the actions’ area, as
was shown before. Figure 6.5b shows the general aspect of the map container.
On the left side of the container is the legend of the map to help the player un-
derstand better what is marked on the map. The central area contains the map

76

Development

itself. Every marker placed on the map can be a participant, equipment, Facility,
or the spilled oil. The participant can drag the map at will. Besides providing
information about the current state of the game, the map also serves for the par-
ticipants/equipment to move. A participant can move by double-clicking the
map. If the participant is inside a vehicle, he can also double-click the map to
drive somewhere. On the right side of the container it’s the layers that the player
can apply to the map. Figure 6.5c shows an example of the participant applying
the Sensible Areas to the map. The interdict areas are shown the same as the Sen-
sible Areas. Figure 6.5d shows the last layer that the player can access, which is
the characteristics of the incident, where the participant can access the important
information about the incident, like the number of injured people, the volume of
Hydrocarbon spilled and the type of spilled oil.

6.3.1.4 Route Interface

Figure 6.6: Interface with the Gps Route

Figure 6.6 shows the generated interface when a participant wants to move. When
he double-clicks the map to move, the starting and destination points are sent to
the server. As mentioned before, the server makes an API request to an online
Service to get the GPS information. The server builds the necessary information,
like the coordinates of the route, the distance, and the travel duration. The client
receives this information and creates this interface. This interface, as shown in
the Figure, contains the distance and duration of the travel and the route the par-
ticipant will travel. The interface also contains two buttons where the participant
can cancel or confirm the travel. If he confirms, the Buttons disappear, and this
interface updates dynamically periodically with the new coordinates of the par-
ticipant and the new distance and duration.

77

Chapter 6

6.3.1.5 Equipment Interface

(a) Boat Interface

(b) Boat Interface while inside

Figure 6.7: Vehicle Interfaces

Figure 6.7 shows the interfaces representing equipment, in this case, a boat. As
we can see in Figure 6.7a, the interface contains on the top the name of the equip-
ment. Then, it follows the area containing the vehicle’s status, like its health,
autonomy, and location. Next follows the inventory button, where the player can
access the inventory of the equipment. This inventory contains other equipment
and consumables that the participant can interact with. At the bottom is an area

78

Development

containing the actions that the participant can perform with the equipment. The
actions are stored in the database and appear dynamically in the interface based
on the equipment’s state and type and the participant’s state. Figure 6.7b shows
how the interface is updated when the participant enters the boat. The actions
change to Leave. Also, as mentioned before, the background image changed to a
boat to give more context to the game.

6.3.1.6 Carry Equipment Action

(a) Interacting with a boom
(b) Waiting for other participants to help
carry the boom

(c) Available options to move (d) Choosing the place in the map to move

(e)

Figure 6.8: Map updated with new location of the boom and the participants that
carried it

Figure 6.8 contains the interfaces related to carrying a boom. Figure 6.8a rep-
resents the interaction between a participant and a boom. He can perform the
actions: Repair the equipment if he has a repair kit in his inventory so that the
equipment gains HP; Use to use the equipment, in this case, placing the boom;
Carry to carry the boom to either a point chosen in the map or a vehicle nearby.

79

Chapter 6

When he presses to carry, an interface appears where he has to wait for the nec-
essary participants to carry, as well as it is an action that requires more than one
participant to do, as shown in 6.8b. Other players can join by pressing the carry
action in the equipment’s interface. After the necessary participants join in, the
move button can be pressed to choose one of the available options as presented
in Figure 6.8c. These options are generated at the moment of the request. The
map is always an option. The vehicles depend whether there are any nearby or
not. In this example, the participant wants to carry the boom using the map as
shown in Figure 6.8d. He proceeds to choose a point on the map. Then, the map
updates periodically depending on the duration and distance of the travel, as
mentioned before. Figure 6.8e shows the map updated after the carrying action.
The participants and the equipment being carried are moved to the chosen place.

6.3.1.7 Placing a Boom

(a) Placing a Boom

(b) The result on the map

Figure 6.9: Placing a barrier and its result on the Map

Figure 6.9 shows the process of placing a boom in the water and its effect on
the map. When a participant is inside a boat containing a boom in its inventory,

80

Development

the participant can interact with the boom to place it. As this action is a group
task, an interface for waiting for other participants appears similar to Figure 6.8b.
When the necessary participants are available, the participant can start drawing
on the map the points where he wants the boom to be placed, as shown in Figure
6.9b. After doing this, the map updates for every participant in the game with
the boom appearing on the map, as presented in Figure 6.9b.

6.3.1.8 Sensible/Interdict Areas

(a) Drawing an area

(b) Coloring the areas

Figure 6.10: Sensible/Interdict Areas

Figure 6.10 shows the process of drawing an area and its coloring. The process of
drawing the areas is very similar to placing a boom. As shown in Figure 6.10a,
the player chooses the points to form a polygon. Then, he has to color the areas
to distinguish them, as presented in 6.10b. Then, the participants can access these
areas by applying the respective filters as shown before in Figure 6.5c.

81

Chapter 6

6.3.1.9 Facilities

(a) Interacting with a facility on the map

(b) Inside a facility

(c) Inside a facility’s warehouse

Figure 6.11: Facilities Interfaces

Figure 6.11 shows interfaces related to facilities. On the map, if the participant is
close enough, he can interact with an interface by clicking on the marker. Then, he
can either enter the facility’s warehouse or the facility itself. Figure 6.11b shows
how the interface looks like inside a facility. The background changed to an office-
lookalike image. Here, the participant can access the email, draw/create/edit
the Sensible/interdict Areas, and access other resources that contain features that
are not available at the moment. Two Buttons also appeared in the right part
of the interface, where the participant can click to exit the Facility or enter the
warehouse. Figure 6.11c presents the Facility’s warehouse. Here, there is a table
showing the equipment and consumables inside the Facility. The player can add
consumables to his inventory or interact with equipment to take them outside to
use them.

82

Development

6.3.1.10 Email

(a) Email Interface (b) Sending an Email

(c) Reading Emails (d) Viewing PDF files from received emails

Figure 6.12: Email Interfaces

Figure 6.12 contains the interfaces related to the email. This interface appears
when a participant is inside a Facility and clicks on the access email button that
appears in Figure 6.11b. Then, he can: send an email by writing the email of the
receiver, the subject, and the body of the email. He can also attach files; or he can
choose to read emails as shown in Figure 6.12c. The received emails can contain
pdf files that he can see by pressing the attached file, as shown in Figure 6.12d

83

Chapter 6

6.3.1.11 Messages

(a) Phone Interface (b) Sending a Message

(c) Message Notification (d) Reading Messages

Figure 6.13: Message Interfaces

Figure 6.13 contains the interfaces related to the Messages. Every participant has
a phone in his inventory. Besides emailing, this is how to communicate with other
participants who are not nearby. When interacting with the phone in the inven-
tory, the phone interface appears as shown in Figure 6.13a. The participant can
either choose to send a message and proceed to choose the receiver(s) and write
the body of the text message as it is shown in Figure 6.13b or read the messages
received, as shown in 6.13c. Figure 6.13c shows how the player is notified of a
new message. Every time he receives a message, a notification appears indicat-
ing the sender’s name and the content of the message.

84

Development

6.3.2 Automatic UI Generation Proposal

This subsection presents the development process of the automatic user interface
generation model proposed in 5.3. Instead of only using templates with empty
components and filling them when requested, this model takes a JSON configura-
tion file, where the game’s administrator can configure how the interface is going
to be like, such as the fields that it is going to contain, as well as their appearance.
This way, there are a lot of different interfaces that can be generated without the
administrators having to touch the code. This model was only applied for an
equipment interface since they are the ones that can be more diverse. Figure 6.14
presents a sequential diagram showing how the generation process works for an
equipment interface.

Figure 6.14: Sequential diagram of the automatic user interface model

By analyzing Figure 6.14, when the user clicks to interact with an equipment, the
web app calls the function getEquipmentPopup that makes a request to an end-
point, passing as arguments the equipment id, the exercise id and the partici-
pant id, to get the information about the equipment. The spring boot controller
mapped at that endpoint, calls a method to get that information using the same
arguments received. This method makes three requests to the database, one for
the equipment, another for the participant that is interacting, and another to get
the possible actions to perform with the equipment, based on its type and state,
and the participant’s state. After getting all this information, calls a method from
the class UI and passes the equipment as an argument. This method reads the
JSON file, and compares all the fields that the equipment has with the ones de-

85

Chapter 6

scribed in the JSON file. From the fields that match, it creates a list of the com-
ponents. These components are none other than the description for each field in
the JSON file, such as its data type and the set of properties, as we can see, for
example, in Figure 6.15. This list essentially contains a list of JSON objects, each
element describing one field of the equipment. A message is then created with
the label GETEQUIPMENTPOPUP, the list of components, and the list of actions,
and returned to the spring boot controller to return it to the web app. When the
web app receives this message, makes another request for the equipment tem-
plate. This template is empty, only containing a division for the action buttons to
be. The spring boot controller receives the request and calls a method to search
for and return the template. When the web app receives the template, calls a
function to analyze the list of components received prior and starts building the
HTML components based on the JSON description of each one. This process in-
cludes analyzing the data type and the set of properties of each field. Then, since
the template is empty, it just adds the HTML component to the template. After
finishing processing every component, shows the interface to the user.

Figure 6.15 represents a sample of the JSON configuration file for a maritime ve-
hicle. Since this file is big, Figure 6.15 presents an example of the field name that
has a text data type, and Figure 6.16 presents an example of the field health that
has a range data type. These examples serve to show the small differences that
there are between a text field and range fields in their configuration.

86

Development

Figure 6.15: First sample of the JSON configuration file

As we can see by analyzing Figure 6.15, the JSON file is divided by equipment
types. Then, each equipment type has an array of components that will be rep-
resented in the interface to be generated. Each component contains the details
about the field’s name, the data type, and the set of properties that will define the
visual aspect of the respective component to be generated, as explained before.
This example shows the component’s configuration for the field name.

87

Chapter 6

Figure 6.16: Second sample of the JSON configuration file

By analyzing Figure 6.16 we can see the configuration for the autonomy field. The
difference between the range fields and the text fields is that we have to specify
the minimum and maximum values of the range, as well as the units. When
implementing this model, a new property for the range fields, the DisplayType,
was also added. This property has three options and allows the administrator to
choose a special interface for a field. It can have the values: Gauge for representing
a field as a gauge component; Bar to represent the field as a bar, or none if the
administrator intends to let the interface be generated completely automatically.

With the description in this file plus the methods that interpret the JSON de-
scription mentioned before 6.14, we can generate interfaces that can look like the

88

Development

examples presented in Figures 6.17, 6.18, 6.19.

Table 6.1 presents the input data for the interface represented in Figure 6.17.

Name Type Priority Interaction Customization Group Relevance
name Text 1 none none 1 Medium
brand Text 2 none none 1 Medium
health Range 4 none none none Low
autonomy Range 5 none none none High
speed Range 3 select none 2 High

Table 6.1: Input data for Figure 6.17

Figure 6.17: First example of the generated interface

We can see how the set of properties generated the interface by analyzing Table
6.1 and Figure 6.17. The components appear in the order defined by the priority
property. Then, only the speed had an interaction value of select, resulting in a
select component to choose the most adequate value. In this example, there was
no customization in any field. Then there are two groups: Group 1 which joins
name and brand together, and group 2, which only has speed. In this example,
it’s not very clear the usage of groups because it just looks like they are sorted
by priority. We can see better the usage of groups in Figure 6.18 and Table 6.2.
Finally, autonomy and speed are the most noticeable components in the interface
since they have a relevance value of High, followed by name and brand, which
have a relevance value of medium. Speed is less noticeable since it has a relevance

89

Chapter 6

value of Low. For this interface, the autonomy also had a DisplayType value of
Gauge and health has a DisplayType of Bar.

Table 6.2 presents the input data for the interface represented in Figure 6.18.

Name Type Priority Interaction Customization Group Relevance
name Text 4 none red, impact none Low
brand Text 5 none none 1 High
health Range 4 none none 3 High
autonomy Range 7 none none 2 Medium
speed Range 2 drag none 2 Low

Table 6.2: Input data for Figure 6.18

Figure 6.18: Second example of the generated interface

As we can see by analyzing Table 6.2 and Figure 6.18, we can immediately no-
tice that although the autonomy field has a priority of 7, it appears as the second
element of the interface. This happens because when groups are involved, the
grouping property prioritizes sorting the elements. This means that the com-
ponent of a group with the highest priority creates the group. Then, the other
components of the group are aggregated, in a sorted way, next to the component
that created the group, ignoring the priority of components of other groups. this
makes it possible for the components of a group to be together regardless of the
priority of other components. Then we can see that the speed has an interaction

90

Development

value of drag, resulting in a slider component. Then, we can see that the compo-
nent brand has a customization value of red, impact, resulting in altering its font
and color to the specified. At last, once again, the relevance property made the
components with higher relevance more noticeable than the others.

Table 6.3 presents the input data for the interface represented in Figure 6.19.

Name Type Priority Interaction Customization Group Relevance
name Text 2 none none 2 High
brand Text 4 none red, impact 3 Medium
health Range 1 none none 1 High
autonomy Range 1 none none 2 Low
speed Range 2 select none 1 Medium

Table 6.3: Input data for Figure 6.19

Figure 6.19: Third example of the generated interface

As we can see by analyzing Table 6.3 and Figure 6.19, we can see the group prop-
erty being applied again together with the priority property. Although autonomy
has priority 1, since the speed belonged to group 1, it appeared first so that it
could be joined with its group. Then we can see again the interaction, customiza-
tion, and relevance properties applied, as shown in the prior examples.

To summarize, this model can solve the problems encountered with the use of
templates, such as enabling the administrator to customize the interface without

91

Chapter 6

having to touch the code and also being able to generate any interface for any
entity as long as it is configured in the JSON file, providing more flexibility and
abstraction to the generation of interfaces. Since the interfaces will have a dif-
ferent visual aspect, depending on their configuration, the future simulator users
will also have a clear notion of what equipment they will be interacting with since
the customization serves to adequate the interface to its equipment, making the
gameplay more intuitive and user friendly.

This model can be improved by adding other properties to define and generate
even more distinct interfaces and adding more value options to the DisplayType
property so that the administrator can have more contact with the generated in-
terfaces, thus having even more customization. Another relevant improvement
would be to create an interface in the game where the administrator could make
all these configurations. Although JSON is an easy-readability format, it’s more
user-friendly to have a configuration interface where it’s possible to make all
these changes. Also, using this configuration interface would make it possible
to change the visual aspect of the interfaces in-game without compiling and run-
ning the game every time there was an alteration to the JSON configuration file,
making the model even more user-friendly.

92

Chapter 7

Evaluation

This chapter presents the details of the evaluations made to the MPCS project, the
results obtained, and the result’s discussion. To evaluate all the progress made,
two evaluation studies were carried out. The first focused more on the usability,
playability, and coordination of the MPCS project, serving as evaluation material
for the MPCS project. The second was more focused on evaluating the game’s
interfaces, serving as evaluation material for this dissertation’s project.

7.1 First Evaluation

The first evaluation served to evaluate the overall performance of the game. We
wanted to test if the study participants could play the game and have a clear
notion of the game’s state, the surrounding environment, and the actions they
could perform. The goal was to check if the gameplay was clear and intuitive,
and if it was possible for the members of the study to coordinate between them
when carrying out assigned tasks.

7.1.1 Study material

The first evaluation consisted of trying the MPCS’s implemented functionalities
with simultaneous users playing the game in the provided server. The study
participants were the tutors who accompanied us while developing the MPCS
project. A script was made for every study participant to follow in the game. Each
script contained data about the in-game participant, such as the name, phone
number, email, and role, and the assigned tasks to complete in the game. During
the test, the development team members noted the time taken to execute each
task from the script and the errors encountered.

At the end of the evaluation, the participants in the study were asked to fill in a
Google form, where each member of each dissertation prepared some questions
relating to their dissertation project and some questions relating to the project as
a whole.

93

Chapter 7

7.1.2 Results

With this evaluation, we found several errors in the MPCS project, such as failures
in some functionalities that can ruin the gaming experience. We discovered that
the server contained some errors that made every action on the system too slow.
In addition, there were some errors in the communication between the compo-
nents and the MOHID, making it difficult to provide enough realism to the game.
However, by correcting these errors, the MPCS project is close to having the first
version.

Concerning this dissertation project, some questions were asked about the usabil-
ity of the interfaces, where the results were generally satisfactory, with room for
improvement in certain aspects, such as some actions could be more easily ac-
cessible, better communication of the status, for example, the office where we are
should appear in the profile, improvements in proportion to make better use of
the screen area, graphic consistency (too many fonts and sizes), some impercep-
tible map representations, some dysfunctional overlays, some buttons too small,
map plan does not take advantage of the useful area available, various elements
of the exercise status could be visible so that the participant feels more updated
about the game’s state.

7.2 Second Evaluation

The second evaluation served to evaluate the game’s interfaces. This evaluation
aimed at testing the overall performance of this dissertation’s project. The goal
was to test the interfaces’ usability, learnability, and effectiveness.

7.2.1 Study material

The ideal environment to conduct the study was for the people being tested to
play the game by joining the server and accessing the game. However, due to
some problems in the game’s version deployed on the server, it wasn’t possible
to conduct the evaluation this way, not even in person. Therefore, the study was
conducted via localhost, where I shared my screen, and the study participants
guided me to do what they wanted. A series of tasks was created for them to
execute, and for each task, the time taken, the tasks’s completeness, and errors
made when doing the task were noted. The errors counted were not system errors
but errors in accomplishing the task, such as clicking on things that didn’t need to
be clicked on to fulfill the task and leaving the path that led to the task’s success.
Each test took about 20 minutes. Before each test, some questions were asked to
frame the participant in a profile.

94

Evaluation

(a) Participants’ age graph (b) Participants’ experience with simulators

(c) Participants’ experience with games
(d) Participant’s knowledge about mar-
itime pollution events

Figure 7.1: Participants profiling graphs

The ideal profile should be future possible users of the simulator, but it was not
possible to do it. By analyzing Figures 7.1a, 7.1b, 7.1c, and 7.1d, we can conclude
that the profile of the study participants was similar. The age is around 23 years
old. They either have none or medium experience with simulators. The experi-
ence with games varied a bit. Finally, in general, they all had little knowledge
about maritime pollution events.

Before asking to do the tasks, it was presented to each study participant some
context about the MPCS project and the marine pollution combat. Then, it was
asked for the participants to do a brief analysis of the fixed interfaces shown in
Figure 6.3 and also the map presented in 6.5, to see if they understood what was
the meaning of each interface, and what they could possibly do with them. In
general, they understood every interface besides the available actions on the right
part of the screen, where there were some doubts about the icons chosen to repre-
sent the speak and notifications actions. After the analysis, we proceeded to start
the execution of the tasks.

The tasks asked to perform were some of the core actions of the simulator that
were completely functional so that the evaluation wasn’t ruined. The following
tasks were asked for the study participant to do:

• "The objective is to consult who are the people that are next to you and send
a message to another user"

• "The objective is for you to enter a facility, and draw a sensible area"

95

Chapter 7

• "The objective is for you to enter the facility’s warehouse, add a consumable
to the inventory and consume it and exit the facility"

• "The objective is to interact with the boom that is next to you and carry it
into a vehicle, and then confirm that is in the vehicle’s inventory"

• "The objective is to enter the vehicle that is next to you and drive it to near
the coast"

• "The objective is to unload the boom from the vehicle to land "

• "The objective is to rest, and then speak to the participants that are next to
you"

Once again, in each task, it was noted the time taken to fulfill the task, the com-
pleteness of the task, and the errors committed when executing the task. At the
end of each task, the participants were asked if they had any doubts about the
actions they were doing to know if they knew what was happening in the game,
and, when necessary, more context was given to inform them about what is pos-
sible to do and also to compare with real-life scenarios to be more clear.

At the end of the execution of the tasks, the participants were asked to answer a
Google form that contained some questions about the evaluation made, so that
we could obtain information about their experience in the game.

7.2.2 Results

The Google forms that the study participants answered consisted of five ques-
tions using a Likert Scale, five questions using a Semantical Scale, and five open-
answer questions.

Task Task’s description

Task 1 "The objective is to consult who are the people that are next to you and send a message
to another user"

Task 2 "The objective is for you to enter a facility, and draw a sensible area"

Task 3 "The objective is for you to enter the facility’s warehouse, add a consumable to the
inventory and consume it and exit the facility"

Task 4 "The objective is to interact with the boom that is next to you and carry it into a vehicle,
and then confirm that is in the vehicle’s inventory"

Task 5 "The objective is to enter the vehicle that is next to you and drive it to near the coast"
Task 6 "The objective is to unload the boom from the vehicle to land "
Task 7 "The objective is to rest, and then speak to the participants that are next to you"

Table 7.1: Tasks’s legend for the evaluation notes

Table 7.1 represents the legend of the tasks performed in the evaluation used in
the annotation of the duration, errors, and completeness.

96

Evaluation

Figure 7.2: Duration taken in each task during the test

As we can see by analyzing Figure 7.2, the average duration of each task takes less
than 30 seconds which is good since the tasks had a few steps do fulfill them. It’s
very clear that tasks number 2 and 5 took a lot of time for the participants to do,
as it was expected since they were the most complex tasks of them all. However,
these durations should be a lot less.

Figure 7.3: Errors counted in the execution of each task

As we can see by analyzing Figure 7.3, the number of errors is really small, which
indicates that the participants in general understood quite well the interfaces.
However, tasks 2 and 5 managed to generate the most errors among the partici-
pants. Also, besides resting and sleeping being a simple task, there were partic-
ipants who didn’t understand which icon represented the speak button, ending
up pressing the notifications button, resulting in an error.

All the tasks were completed, so there was no need to create a graph with the
completeness results.

97

Chapter 7

(a) First Likert Scale Question (b) Second Likert Scale Question

(c) Third Likert Scale Question (d) Fourth Likert Scale Question

(e) Fifth Likert Scale Question

Figure 7.4: Likert Scale Questions

By analyzing the results presented in Figure 7.4, we can conclude that the partici-
pants’ experience was not great, but it wasn’t bad as well. In general, they found
the interfaces to be clear and user-friendly. In terms of the visual aspect of the
interfaces, the results were not good since most of the participants voted 3 or less.
By analyzing these results we can conclude that the results were medium.

98

Evaluation

(a) First Semantical Scale Question (b) Second Semantical Scale Question

(c) Third Semantical Scale Question (d) Fourth Semantical Scale Question

(e) Fifth Semantical Scale Question

Figure 7.5: Semantical Scale Questions

By analyzing the results presented in Figure 7.5 most people found the interfaces
to be simple and intuitive which is good, but nothing too impressive, and once
again the visual aspect of the interfaces was not the best. However there was a
diversity of opinions among the participants, making these results medium as
well.

The open-answer questions were the following:

• "What specific aspects of the user interface design contributed to or de-
tracted from your overall experience with the simulator?"

• "Were there any challenges or difficulties you encountered while navigating
and using the user interface?"

• "How do you think the user interface could be further improved to enhance
the overall usability and user experience?"

• "Did the user interface effectively support your understanding of the simu-
lator’s functionalities and objectives? Please explain."

• "Please provide any additional comments or suggestions related to the user
interface design that you believe would be valuable for improving the sim-
ulator’s usability and user experience."

99

Chapter 7

The answers to the first question were good. The participants in general didn’t
have any serious complaints to make. They complimented the main interfaces
which they found intuitive and supplied enough information. The most common
complaints were about the font, color, and organization of the interfaces. Also,
the icons that represented the available actions received some complaints about
not being the most suitable.

The answers to the second question were also good. The only problem the partic-
ipants complained about was when drawing the sensible area and when driving.
They didn’t find the methods to execute these actions the most suitable ones.

The answers to the third question provided some relevant information to update
the game’s interfaces. The advice consisted of having the interfaces in only one
language which is an important failure of the interfaces, that was not noticed. The
participants mentioned, once again, the need to update the visual aspect of the
interfaces to a more appealing one, to improve the experience. They mentioned
once again the better assignment of icons to the corresponding actions. They
mentioned that there should be popups with help information so that the usabil-
ity can be further improved. Finally, they continued to criticize the lack of consis-
tency between font size and component size throughout the game. There was in-
teresting advice about keeping the close lists of participants and equipment fixed,
instead of closeable, and the inventory, instead of being a list, would be a button,
that opened a pop-up that shows icons referring to equipment/consumables that
the in-game participant brings with him.

The answers to the fourth question were really good. Besides the critics made
about the overall experience, the participants were able to learn easily how the
game works. They mentioned that the first touch with the game was a bit over-
whelming, however, once they got adapted, the gameplay was smooth and intu-
itive.

The answers to the fifth question consisted generally of arranging the visual as-
pect of the interfaces into a more modern and appealing one. Then, they sug-
gested changing the action to move from a double-click on the map to a drag or
only one click since it makes more sense.

To summarize, this evaluation was critical, providing vital information about a
first contact with the game. With this evaluation, it was possible to notice prob-
lems the development team members did not notice because we had already
adapted to the game. In general, the participants did well in experiencing the
game despite not having experience in this environment. They managed to fulfill
almost every task in an acceptable duration without committing that many errors
per task. Only the tasks of drawing a sensible area generated some confusion
since they hadn’t any notion of what a sensible area could be, which generated
some hesitation in drawing them. The action to move, had big durations through-
out every participant because they took some time to find that it was a double
click in the map to move. After knowing, they admitted that it made sense, but
without prior knowledge, they found it hard to find the trigger. The results were
satisfactory in general since they found almost every interface user-friendly and
intuitive So we can conclude that, in general, the functionalities and the corre-

100

Evaluation

sponding interfaces were well-designed and implemented, with still room to im-
prove some visual aspects of the interfaces.

The suggestions from the study participants are well-taken and important, so
they will probably be part of a future game update

101

Chapter 8

Conclusion

To conclude, having a wide variety of User Interface (UI)s in the MPCS creates
a severe problem: the difficulty of manually developing the UIs that represent
every interaction with the user, generating a considerable development effort.

To solve this problem, there was a need to research Automatic User Interface
Generation Methods (AUIGM), to verify if user interfaces can be automatically
created, significantly reducing the development effort.

The objectives for this dissertation’s project were accomplished since we man-
aged to implement a model of generating the interfaces in an abstract way using
templates, which spared a lot of development time. While developing the game
we came across the problem of lack of customization of the interfaces to be gen-
erated. So we developed and proposed a model capable of automatically gener-
ating the interfaces and also solving the problems of the model implemented in
the MPCS project.

After conducting the user studies, we collected important information about the
problems of the MPCS project and this dissertation’s project. The evaluation was
very important since we could have a first glance at the user experience, so we
could find flaws in the overall game. After analyzing the results we concluded
that this dissertation’s project was a success with room to improve a few aspects,
so that we can better meet the needs of the client and make the game experience
more enjoyable.

For future work, there is still work to do so we can get a first version of the MPCS
project, such as adding some functionalities not implemented yet, as well as fix-
ing existing errors. In relation to this dissertation’s project, the proposed model of
generating interfaces using templates, has some improvements to make, such as
the visual aspect of the interfaces. The model of automatically generating inter-
faces using a JSON configuration file can improve a lot by adding new properties
and new options for customization to make the experience better. Also, an in-
terface to configure the interfaces to be generated must be created to make the
experience even more user-friendly. Finally, this model could be proposed to the
client to be implemented to generate every interface in the game and therefore
extend its capabilities.

103

References

[1] Sampaio Rui, Carrasqueira Manuel, and Daniel José. Marine pollution con-
trol simulator- functional requirements, 9 2022.

[2] Hallvard Trætteberg. Model-based user interface design, 5 2002.

[3] Krzysztof Gajos. Models in model-based user interface design. 3 2005.

[4] Nathalie Souchon and Jean Vanderdonckt. A review of xml-compliant user
interface description languages. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), 2844:377–391, 2003.

[5] Jeffrey Nichols, Brad A Myers, Michael Higgins, Joseph Hughes, Thomas K
Harris, Roni Rosenfeld, and Mathilde Pignol. Generating remote control
interfaces for complex appliances. 2002.

[6] Marco Winckler and Philippe Palanque. Models as representations for sup-
porting the development of e-procedures. Usablity in Government Systems
User Experience Design for Citizens and Public Servants, pages 301–315, 2012.

[7] Nikola Mitrovic, Carlos Bobed, and Eduardo Mena. A review of user inter-
face description languages for mobile applications. 10 2016.

[8] Krzysztof Gajos and Daniel S Weld. Supple: Automatically generating user
interfaces. 2004.

[9] Shankar R Ponnekanti, Brian Lee, Armando Fox, Pat Hanrahan, and Terry
Winograd. Icrafter : A service framework for ubiquitous computing envi-
ronments. 2001.

[10] Giulio Mori, Fabio Paternò, and Carmen Santoro. Tool support for designing
nomadic applications. page 141, 2003.

[11] Simon Mayer, Andreas Tschofen, Anind K. Dey, and Friedemann Mattern.
User interfaces for smart things - a generative approach with semantic in-
teraction descriptions. ACM Transactions on Computer-Human Interaction, 21,
2014.

[12] Scrum guide. https://scrumguides.org/scrum-guide.html. Accessed: 2023-
01-05.

[13] Linda Rising and Norman S. Janoff. Scrum software development process
for small teams. IEEE Software, 17:26–32, 7 2000.

105

Chapter 8

[14] Why spring. https://spring.io/why-spring. Accessed: 2023-08-14.

[15] Html advantages. https://www.geeksforgeeks.org/advantages-and-
disadvanatges-of-html/. Accessed: 2023-08-14.

106

	Introduction
	Motivation
	Scope
	Objectives
	Document structure

	Background
	Execution
	Simulator

	State of The Art
	Concepts
	User Interface
	User Interface Models
	User Interface Description Languages
	Automatic User Interface Generation

	User Interface Description Languages
	Automatic UI Generation Approaches
	The Personal Universal Controller Approach
	SUPPLE: Automatically Generating User Interfaces
	ICrafter: A Service Framework for Ubiquitous Computing Environments
	Tool Support for Designing Nomadic Applications
	User Interfaces for Smart Things – A Generative Approach With Semantic Interaction Descriptions

	Evaluation

	Methodology and Work Plan
	Methodology
	Work Plan
	Risk Plan

	Design
	Interface Design
	Mockups

	System Architecture and Interface Generation
	System Architecture
	Interface Generation

	UI generation Model using a JSON configuration file
	Mockups
	Architecture

	Development
	Infrastructure
	Choice of Technologies
	Server deployment
	Client-Server communication channels

	Development process
	Sprint 1
	Sprint 2
	Sprint 3
	Sprint 4

	UI Generation- Pratical Examples
	Templates
	Automatic UI Generation Proposal

	Evaluation
	First Evaluation
	Study material
	Results

	Second Evaluation
	Study material
	Results

	Conclusion

