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Abstract:  Insulin, besides its glucose lowering effects, is involved in the modulation of 
lifespan, aging and memory and learning processes. As the population ages, 
neurodegenerative disorders become epidemic and a connection between insulin signaling 
dysregulation, cognitive decline and dementia has been established. Mitochondria are 
intracellular organelles that despite playing a critical role in cellular metabolism are also 
one of the major sources of reactive oxygen species. Mitochondrial dysfunction, oxidative 
stress and neuroinflammation, hallmarks of neurodegeneration, can result from impaired 
insulin signaling. Insulin-sensitizing drugs such as the thiazolidinediones are a new class of 
synthetic compounds that potentiate insulin action in the target tissues and act as specific 
agonists of the peroxisome proliferator-activated receptor gamma (PPAR-γ). Recently, 
several PPAR agonists have been proposed as novel and possible therapeutic agents for 
neurodegenerative disorders. Indeed, the literature shows that these agents are able to 
protect against mitochondrial dysfunction, oxidative damage, inflammation and apoptosis. 
This review discusses the role of mitochondria and insulin signaling in normal brain 
function and in neurodegeneration. Furthermore, the potential protective role of insulin and 
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insulin sensitizers in Alzheimer´s, Parkinson´s and Huntington´s diseases and amyotrophic 
lateral sclerosis will be also discussed. 
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1. Introduction  

Insulin is a peptide hormone composed of 51 aminoacids and has a molecular weight of about 6,000 
Da. It is synthesized in the pancreatic β-cells that when stimulated release the hormone by exocytosis 
into islet capillary blood [1]. Insulin will then bind to its receptor (IR) leading to glucose uptake, 
muscle and adipocytes metabolism and inhibition of gluconeogenesis in the liver [2]. Situations that 
impair any of the above mentioned events will ultimately lead to an impaired glucose uptake defined 
as diabetes mellitus. Although diabetes was considered a peripheral disease, it is becoming widely 
accepted that diabetes also affects the central nervous system (CNS) [1]. Insulin signaling is crucial for 
growth and survival [3] and despite studies in lower metazoans showing that reduced insulin signaling 
extends life span [4,5], in mammals things are not so linear because insulin/IR exert opposite effects 
whether they are located in the CNS or the periphery [6]. Indeed, the loss of IR in adipose tissue 
promotes longevity, whereas its loss in the hepatic tissues causes diabetes [7]. Perhaps in conditions of 
systemic insulin/insulin growth factor 1 (IGF-1) signaling reduction the metabolic syndromes (such as 
diabetes) that stem from the liver hide the potential health benefits of reduced insulin/IGF-1 signaling 
in other tissues, such as the brain. Since the identification of insulin and IR in the brain, insulin 
function in the CNS has been under intense debate. Epidemiological and clinical studies suggest a 
connection between diabetes, high insulin levels and cognitive impairment [1]. Recent studies show 
that insulin/IR are involved in brain functions such as learning and memory [8,9], whereas their 
impairment has been linked to the development of age-related neurodegenerative disorders [10–12]. 
Aging is a universal process and the major risk factor for several neurodegenerative disorders 
including Parkinson´s (PD), Huntington´s (HD) and Alzheimer´s (AD) diseases and amyotrophic 
lateral sclerosis (ALS). In the brain, as well as in other organs, aging is associated with mitochondria 
impairment, increased oxidative damage [13], hyperinsulinemia and impaired insulin  
sensitivity [14,15].  

In eukaryotic cells, mitochondria are the main site of energy production, where ATP is produced 
via oxidative metabolism [16]. ATP production by mitochondria involves two major steps: (1) the 
oxidation of reducing equivalents that are produced by enzymatic pathways involved in the 
metabolism of glucose, fatty acids and other substrates and (2) the phosphorylation of ADP to ATP 
(i.e., oxidative phosphorylation) [16]. The alteration of mitochondrial energy metabolism leads to 
reduced ATP production, impaired calcium buffering, and generation of reactive oxygen species 
(ROS). The generation of ROS is increasingly recognized as playing an important role in both aging 
and neurodegenerative disorders where mitochondria are both sources and targets of these reactive 
species [15,17,18].  
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Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that 
belong to the nuclear hormone receptor superfamily [19]. Nuclear receptors bind directly to DNA 
regulating gene expression through transcriptional co-activation [20]. Initially, it was thought that 
PPARs activity was limited to lipid metabolism and glucose homeostasis. However, subsequent 
studies revealed that PPARs are also involved in several biological functions, such as cell proliferation, 
differentiation and apoptosis [21]. PPAR-γ is the best characterized isoform mainly because it 
regulates serum glucose levels and insulin sensitivity, therefore being widely used in the treatment of 
diabetes [22,23]. Since PPAR-γ is also expressed in neurons and astrocytes raised the hypothesis that 
PPAR-γ could be a potential therapeutic target in CNS disorders [20]. Several studies demonstrated 
that PPAR-γ agonists improve disease-related symptomology and pathology in several animal models 
[24] by directly improving mitochondrial function and, ultimately, ATP production [25,26].  

In this review we will discuss the role of mitochondria and insulin signaling in brain physiologic 
and pathologic conditions. The potential protective role of insulin and insulin-sensitizing agents in AD, 
HD and PD and ALS will be also discussed. 

2. Mitochondria and the Brain  

Mitochondria are essential organelles for mammalian cell survival since they are the main 
producers of ATP, an energy molecule crucial for cells functioning. Mitochondria, unlike all the other 
organelles, have their own DNA that encodes components of the oxidative phosphorylation system 
(OXPHOS) [27,28]. However, mitochondria remain dependent on the nucleus for the production of 
several subunits of the respiratory chain complexes and proteins related to transcription, translation, 
replication and repair. The OXPHOS is located in the inner mitochondrial membrane and is composed 
by five respiratory chain complexes, NADH-ubiquinone oxidoreductase (Complex I), succinate-
ubiquinone oxidoreductase (Complex II), ubiquinone-cytochrome c reductase (Complex III), 
cytochrome c oxidase (Complex IV) and ATP synthase (Complex V). There are two electron carriers, 
ubiquinone (coenzyme Q), located in the inner mitochondrial membrane and cytochrome c, located in 
the intermembrane space [29]. Reducing equivalents produced in the Krebs cycle and in the β-
oxidation pass through complexes I to IV and the energy generated by the electron transfer is used to 
pump protons from the mitochondrial matrix into the intermembrane space creating an electrochemical 
proton gradient used to drive complex V to generate ATP [30]. However, this system is not perfect and 
a small proportion of the electrons flowing through complexes I and III react with oxygen forming 
superoxide anion that can be converted into other ROS [27].  

ROS have a dual role in cells, acting as both beneficial or harmful species [31]. In response to 
certain stimuli cells produce low/moderate levels of ROS that have physiological functions intervening 
in several cellular signaling pathways, therefore acting as second messengers [31,32]. Taking into 
account that ROS actions are cell-context dependent, low/moderate levels of ROS have the ability to 
activate (1) IR, mimicking insulin effects in the modulation of metabolism and cell growth [33], (2) 
Akt, inducing the phosphorylation of Hsp27 [34] and (3) mitochondrial enzyme activities [35]. Also, 
treatment of cells with H2O2 leads to the activation of transcription factors such as activator protein-1 
(AP-1) and nuclear factor κB (NF-κB) [36]. In contrast, excessive ROS formation will lead to damage 
of proteins, lipids and nucleic acids. Moreover, situations of increased oxidative stress and 
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mitochondrial calcium overload promote the opening of the permeability transition pore (PTP), a 
situation in which the mitochondrial proton motive force is disrupted. PTP opening will lead to the 
release of pro-apoptotic proteins like cytochrome c, which induce the caspase-mediated apoptosis [31]. 
In order to overcome the oxidative insult, cells possess a variety of enzymatic and non-enzymatic 
antioxidant defenses. However, if an imbalance between antioxidant defenses and ROS formation 
occurs, oxidative damage of cells will happen contributing to the development of neurodegenerative 
diseases [37].  

In 1956 Harman proposed the free radical theory of aging that postulates that free radicals play a 
central role in the aging process [38]. The brain is extremely sensitive to oxidative damage due to its 
high oxygen demand, its high content of oxidisable polyunsaturated fatty acids, the presence of redox-
active metals [18,39] and a low activity of antioxidant enzymes [18,30]. Since oxidative stress 
increases with age and mitochondria are both targets and sources of ROS, there is the assumption that 
mitochondria have a central role in aging and neurodegenerative disorders [40]. The ROS generated by 
the OXPHOS induce mutations in the mtDNA potentiating OXPHOS impairment. Consequently, the 
impaired OXPHOS potentiates ROS production increasing the number of mtDNA mutations [27]. 
Although the majority of the literature supports the free radical (mitochondrial) theory of aging, there 
are some studies that do not confirm this hypothesis. Studies performed with murine embryonic 
fibroblasts from the “mutator mice” that accumulate mtDNA mutations in an age-dependent way show 
that cells and tissues from adult mice did not exhibit increased ROS production neither oxidative 
damage [41] suggesting that oxidative stress is not involved in age-associated mtDNA mutations [27]. 
This is supported by a previous study showing that double-strand breaks in the mtDNA could 
contribute to mtDNA mutations during aging [42]. Others studies using C. elegans, a model often used 
to evaluate the effects of mitochondrial function on longevity [43], demonstrated that mutations in 
complex III of the mitochondrial electron transport chain (ETC) [44] leads to low oxygen 
consumption, decreased sensitivity to ROS and increased life span. Additionally, it was shown that 
lowering the activity of OXPHOS with RNA interference during development extended adult life-span 
[45]. However, and in contrast to insulin/IGF-1 signaling that affects longevity during adulthood, the 
decrease in ETC only extends lifespan when occurring during larval development [7]. Despite the fact 
that neurodegenerative disorders have disparate clinical features, they are characterized by 
mitochondrial dysfunction and oxidative stress [29].  

3. Mitochondria and Neurodegeneration 

AD is a progressive age-dependent neurodegenerative disorder and the most common form of 
dementia, accounting for 50–70% of dementia cases. While less than 5% of AD cases are familial [46] 
and associated with mutations in amyloid β protein precursor (APP) and presenilins 1 and 2 (PS1 and 
PS2), the majority of AD cases are sporadic in origin and involve genetic and environmental factors 
that taken alone are not sufficient to develop the disease [47]. AD is characterized by progressive 
cognitive decline and the presence of Aβ plaques and tau neurofibrillary tangles [15,48]. APP can be 
processed by two pathways, amyloidogenic and non-amyloidogenic, Aβ being generated by the 
abnormal processing of APP through the amyloidogenic pathway [49]. AD is associated with 
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mitochondrial abnormalities, oxidative damage, inflammation and the loss of synaptic function, 
synapses and neurons [49].  

Accumulating evidence suggests mitochondria are important players in the mechanism by which 
Aβ triggers synaptic failure and neurodegeneration [15,18,50–52]. In vivo studies show accumulation 
of Aβ in brain mitochondria of AD patients [53]. Further, in vitro studies show that NT2 neuronal cells 
without mtDNA are not killed by Aβ [54]. Data from our laboratory show that Aβ induces 
mitochondrial dysfunction by potentiating respiratory chain impairment, uncoupling of the OXPHOS, 
decreasing ATP levels and increasing the susceptibility to PTP opening and H2O2 production [55–57]. 
Also, Lustbader and colleagues [58] demonstrated that Aβ binds to the mitochondrial-matrix protein 
Aβ-binding alcohol dehydrogenase (ABAD) (Figure 1) and the blockage of this interaction suppresses 
Aβ-induced apoptosis and free radical generation in neurons. These results suggest that mitochondria 
are key players in the toxicity induced by Aβ. It has been also shown that oxidative damage occurs 
before Aβ deposition [59,60] and that the upregulation of genes related to mitochondrial metabolism 
and apoptosis occurs even earlier and co-localizes with the neurons undergoing oxidative damage [61]. 

Tau protein is involved in the stabilization of microtubules, which is important in the generation 
and maintenance of neurites. In AD, tau accumulation in neurons inhibits APP transport into axons and 
dendrites leading to neuronal degeneration [62]. Transgenic mice overexpressing the P301L mutant 
human tau revealed impaired mitochondrial respiration, modified lipid peroxidation levels and up-
regulation of antioxidant enzymes [63]. However, the mechanisms underlying these effects remain 
unknown. 

Positron emission tomography (PET) studies revealed that AD is associated with brain metabolism 
impairment, which precedes neuropsychological impairment and atrophy [64,65]. It was observed that 
postmortem brain and fibroblasts from AD patients have an impairment of the three key TCA cycle 
enzymes, pyruvate dehydrogenase, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase  
[66–70]. Furthermore, it has been demonstrated that Aβ inhibits cytochrome c oxidase (COX) [71]  
(Figure 1) therefore increasing free-radical generation [72]. Deficient COX activity has been found in 
different brain regions [73,74], platelets [75] and fibroblasts [76] from sporadic AD patients, occurring 
at all stages of the disease, including mild cognitive impairment (MCI) [77]. 

King and Attardi [78] developed a cybrid model, lacking their own mtDNA, in which exogenous 
mtDNA from AD and control patients were introduced. In this way they found that the phenotypic 
differences observed were due to donor mtDNA amplification and not from nuclear or environmental 
factors [78]. Later on, it was demonstrated that sporadic AD cybrids present reduced COX activity, a 
decrease in ATP levels and increased oxidative stress [79] and develop populations of abnormal and 
damaged mitochondria due to increased AD mtDNA replication [80] (Figure 1). In addition, it was 
reported that AD cybrids manifest a decrease in mitochondrial membrane potential, increased 
cytochrome c release and caspase-3 activity when compared to control cybrids [81]. Furthermore, 
those effects were enhanced when exposing AD cybrids to Aβ1-40, suggesting a role for mtDNA in 
mitochondrial dysfunction in AD degeneration [81]. A previous study made in AD, aged and younger 
control subjects demonstrated that the brains of AD and elderly subjects had a lower COX activity and 
a higher aggregate burden of mutations in mtDNA when compared to younger individuals [82]. AD 
has also been linked to mitochondria due to data from epidemiologic, neuropsychological, biomarker, 
and cell studies suggesting that mitochondrial inheritance could also influence AD risk and pathology 
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[83]. For instance, evidence suggest that the European mtDNA haplogroups J and UK protect against 
AD and PD, and are also associated with increased longevity [84]. However, studies show that 
whenever AD patients have a demented parent, it is often the mother [85]. More recently, the 
Framingham Offspring Study demonstrated that non-demented and middle aged individuals whose 
mother suffer from AD have worse neuropsychological test performance than those with an AD-
affected father or no affected parent [86]. Moreover, it was also reported that cybrid cell lines 
containing mtDNA from individuals with mothers suffering from AD possess lower COX activity than 
those containing mtDNA from subjects with fathers suffering from this disease [87]. Despite 
controversial data showing that pathogenic inherited mtDNA do not constitute a major ethological 
factor in sporadic AD [88], the majority of studies support the notion that inheritance could influence 
mitochondrial function and thereby AD risk and pathology. 

De la Monte and Wands [89] examined postmortem brain tissue from AD patients with different 
degrees of severity and found that the severity of AD was related to impairments in mitochondrial gene 
expression, namely in complex IV of the mitochondrial respiratory chain, increased levels of p53 and 
molecular indexes of oxidative stress, such as up-regulation of nitric oxide synthase (NOS) and 
NADPH-oxidase (NOX). However, no differences in the levels of mitochondrial complexes I and II 
mRNA expression were found, suggesting that these components are preserved in AD, even in 
advanced stages of the disease [89]. Increased ROS production could therefore lead to mitochondrial 
dysfunction blocking electron transport, thus decreasing oxygen consumption and ATP generation. 

Previous studies from our laboratory also showed altered levels of mtDNA and COX in neurons 
prior to the formation of neurofibrillary tangles [90], which suggest that mitochondrial abnormalities 
are the earliest cytopathological changes in AD. We also observed an increase in mtDNA and COX in 
the cytoplasm and in vacuoles associated with lipofuscin, considered the site of mitochondrial 
degradation by autophagy [90]. Subsequent studies also demonstrated an increased localization of 
COX and lipoic acid, a sulfur-containing cofactor necessary for the activity of some mitochondrial 
enzyme complexes, in autophagic vacuoles and lipofuscin in the brain of AD cases suggesting altered 
autophagic degradation of mitochondria [91,92]. The increase in mitochondrial degradation products 
that occur in AD vulnerable neurons could be due to an increase in mitochondria turnover by 
autophagy or a reduction of proteolytic turnover leading to mtDNA and mitochondrial protein 
accumulation. Despite these evidences there is still some controversy about COX involvement in the 
induction of oxidative stress in AD. Fukui and colleagues [93] using a COXd/AD mice demonstrated 
that COX deficiency in neurons results in decreased Aβ accumulation and reduced oxidative stress in 
CNS suggesting that COX impairment and oxidative damage in AD could be two independent 
consequences of Aβ intra- and extracellular accumulation. 

PD is the second most common neurodegenerative disorder that begins by causing motor 
dysfunction but ultimately affects the mind and personality [20]. This disease is clinically 
characterized by progressive rigidity, bradykinesia and tremor and pathologically by the degeneration 
of pigmented neurons in the substantia nigra and by the presence of intraneuronal proteinaceous 
cytoplasmic inclusions that immunostain for α-synuclein and ubiquitin, designated Lewy Bodies 
[20,40]. The involvement of mitochondrial dysfunction in PD arose from the finding that 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP), a synthetic opiate, caused Parkinsonism in drug addicted 
individuals [87]. MPTP is metabolized to MPP+ in glial cells and this metabolite inhibits the complex I 
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of the mitochondrial respiratory chain [94]. In addition to MPTP also rotenone, another complex I 
inhibitor, originate a parkinsonian phenotype characterized by oxidative damage and nigral 
degeneration [95,96]. These results support the involvement of mitochondrial dysfunction in PD. 
Similarly, cybrids containing mtDNA from PD patients show reduced complex I activity and an 
increased susceptibility to MPP+ [97,98]. In addition to the defect in mitochondrial complex I, many of 
the genes involved in PD, such as α-synuclein, parkin, DJ-1, PINK-1 [99-101], LRRK-2 [102,103] and 
HTRA2 [104,105] have also a direct or indirect effect in mitochondria function. For instance, although 
there is no direct link of α-synuclein to mitochondria, the addition of MPTP to α-synuclein 
overexpressing mice leads to the formation of large and grossly deformed mitochondria, increase in 
oxidative stress and enhancement of nigral pathology [106]. Similarly, Hsu and colleagues [107] 
reported that the overexpression of α-synuclein impairs mitochondrial function and leads to increased 
oxidative damage. More recently, Devi and co-workers [108] demonstrated that α-synuclein 
accumulates in the mitochondria of striatum and substantia nigra of PD patients inducing oxidative 
stress and impairment of complex I activity (Figure 1). In contrast, α-synuclein null mice are resistant 
to MPTP and malonate actions, thereby implicating mitochondria in α-synuclein mediated toxicity 
[109,110]. Parkin, a protein involved in the degradation of oxidatively damaged proteins, associates 
with the outer mitochondrial membrane protecting mitochondria against swelling and ROS release [17] 
and caspase activation [111] whereas parkin-deficient mice present mitochondrial dysfunction and 
oxidative damage [112]. Parkin was also found in mitochondria from proliferating cells associated 
with mitochondrial transcription factor A (Tfam) therefore enhancing mitochondrial biogenesis [113]. 
Nevertheless, mitochondrial dysfunction and oxidative stress can also affect parkin function by 
exacerbating the occurrence of parkin mutations [114,115]. 

DJ-1 is an integral mitochondrial protein that may have an important role in regulating 
mitochondrial physiology [116], since it participates in the oxidative stress response [117,118] and 
protects against the loss of dopaminergic neurons [119,120]. In agreement, a previous study showed 
that DJ-1 knockout mice have mitochondria more vulnerable to oxidative damage [121]. It was 
reported that the total level of DJ-1 protein is significantly reduced in substantia nigra of sporadic 
cases of PD and DJ-1 complexes are reduced in cortical mitochondria of PD patients [122]. In 
Drosophila, the inhibition of DJ-1 function results in cellular accumulation of ROS, increased 
sensitivity to H2O2, inhibition of catalase and loss of dopaminergic neurons [123]. Furthermore, data 
suggests that mutations in mtDNA may also contribute to PD pathogenesis. Indeed, the level of 
mtDNA mutations appears to increase in pigmented neurons in the substantia nigra of human aged 
brain [124]. As well, the level of mtDNA deletions is significantly increased in COX-deficient 
neurons, thereby suggesting that mtDNA may be responsible for impaired cellular respiration [124]. 
Bender and co-workers [125] reported that in substantia nigra neurons from aged and PD individuals 
there is a high level of mtDNA deletions associated with respiratory chain deficiency contributing to 
neuronal loss (Figure 1). In addition, there are reports of cases where inherited mtDNA mutations lead 
to Parkinsonism. It was found that the Leber´s optic atrophy G11778A mutation was related to L-
DOPA-responsive Parkinsonism [126]. Also the mutations in the nuclear-encoded mtDNA 
polymerase-γ gene have been demonstrated in patients with Parkinsonism [127]. A recent study 
performed in knockout “MitoPark” mice that possess a disrupted Tfam gene in dopaminergic neurons, 
showed that these mice have a reduced mtDNA expression and impaired respiratory chain in 



Pharmaceuticals 2009, 2  
 

257

dopaminergic neurons and a progressive PD phenotype [128]. It was also demonstrated that 
dopaminergic neurons from substantia nigra possess reduced mitochondrial mass and size when 
compared to dopaminergic neurons from non-substantia nigra [129] supporting the idea that the 
selective vulnerability of dopaminergic neurons may be due to mitochondrial dysfunction in PD. 

Figure 1.  Mitochondrial dysfunction in neurodegeneration. In Alzheimer´s disease (AD), 
Aβ accumulates in mitochondria and binds to Aβ-binding alcohol dehydrogenase (ABAD) 
inhibiting complex IV, potentiating reactive oxygen species (ROS) formation and 
decreasing ATP production. AD pathology can also be influenced by mutations in the 
mtDNA, since mtDNA from AD subjects have a higher rate of mutations. In Parkinson´s 
Disease (PD), complex I activity is impaired contributing to the formation of high levels of 
ROS. Many of the genes involved in PD are also associated with mitochondrial 
dysfunction. α-synuclein overexpression potentiates mitochondrial impairment and 
oxidative stress. Parkin associates with the outer mitochondrial membrane (OMM) 
protecting mitochondria against ROS release and caspase activation. DJ-1 is an integral 
protein that participates in the oxidative stress response and protects against the loss of 
dopaminergic neurons. In PD, the level of mtDNA mutations is also associated with 
respiratory chain deficiencies. In Huntington’s disease (HD), mutant huntingtin (htt) 
compromises complex II activity, ATP production and the calcium (Ca2+) buffering 
capacity. htt also affects mitochondrial function through its interaction with p53 in the 
nucleus leading to upregulation of BAX and PUMA, two pro-apoptotic proteins. In 
amyotrophic lateral sclerosis (ALS), mutant Cu/Zn superoxide dismutase (SOD1) that is 
localized in the outer mitochondrial membrane (OMM), intermembrane space (IMM) and 
mitochondrial matrix, impairs mitochondrial respiration and ATP synthesis as well as the 
mitochondrial Ca2+ loading capacity. Mutant SOD1 binds to Bcl-2 on the OMM blocking 
its anti-apoptotic activity. 

 
 
HD is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG 

trinucleotide repeat in the huntingtin gene [130] and is clinically characterized by chorea, psychiatric 
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disturbances and dementia [47]. The pathogenic process in HD seems to involve transcriptional 
deregulation [131] and proteasome dysfunction [132]. In contrast, it was shown that the neuronal 
damage that occurs in a mouse model of the polyglutamine disease SCA7 can occur in the absence of 
ubiquitin-proteasome (UPS) dysfunction [133] and that polyubiquitylated proteins accumulate in R6/2 
mice brain even with a functional UPS system [134]. 

Moreover, there is significant evidence of the involvement of mitochondrial dysfunction in HD 
[47]. Nuclear magnetic resonance spectroscopy (NMR) experiments in symptomatic HD patients 
revealed increased lactate levels in the cortex and basal ganglia [135]. Further, PET studies showed 
impaired glucose metabolism early in the disease [136,137] raising the hypothesis that glycolysis is 
up-regulated in order to compensate for impaired ATP production by OXPHOS. Other studies also 
reported decreased activities of the complexes I, II, III, and IV [138–140] of the respiratory chain in 
human HD brain in which neuronal loss was evident. In addition, in striatal neurons expressing the 
first 171 amino acids of huntingtin with an insertion of 82 glutamines, the overexpression of complex 
II subunits blocked mitochondrial dysfunction and cell death [141]. However, Guidetti and colleagues 
[142] reported that in presymptomatic or grade I HD brain there are no changes in the activities of 
complexes I-IV in the striatum. Similarly, Milakovic and Johnson [130] showed that mutant huntingtin 
indeed compromises mitochondrial respiration and ATP production, but these effects seem not to be 
related with the impairment of the respiratory chain complexes. Previous studies also demonstrated 
that the calcium buffering capacity is altered in lymphoblast mitochondria from HD patients as well as 
in brain mitochondria from transgenic mice expressing full-length mutant huntingtin [143]. Knowing 
that OXPHOS is dependent on mitochondrial calcium concentration [144], it could be speculated that 
compromised respiration in the striatal cells expressing mutant huntingtin could be due to altered 
mitochondrial calcium concentrations [130] (Figure 1). Another hypothesis by which mutant 
huntingtin could affect mitochondrial function is by altering transcription [145]. It is known that 
mutant huntingtin interacts with transcription factors, such as p53 [146] that is involved in 
mitochondrial function and oxidative stress. Bae and co-workers [147] reported that mutant huntingtin 
bound p53 increasing its levels and transcriptional activity leading to upregulation of BAX and 
PUMA, two pro-apoptotic proteins, and mitochondrial membrane depolarization (Figure 1). On the 
other hand, p53 supression or deletion prevented mutant huntingtin-induced mitochondrial 
depolarization, COX deficiency and cytotoxicity [147]. 

ALS is a fatal late onset neurodegenerative disorder characterized by the loss of upper and lower 
motor neurons leading to paralysis [24,148]. Approximately 90% of the cases are sporadic and the 
remaining 10% are familial [40]. However, in both cases mitochondrial and bioenergetic defects are 
widely implicated, being reported situations of abnormal structure, number and localization of 
mitochondria in ALS motor neurons and skeletal muscle [149]. Therefore, there is a strong notion that 
mitochondrial dysfunction may play a critical role in ALS pathology. About 20% of familial cases are 
caused by mutations in Cu/Zn-superoxide dismutase (SOD1) [40]. Although it was previously thought 
that SOD1 was exclusively a cytoplasmic protein, more recent studies demonstrated that this protein is 
also present in mitochondria. Evidence from transgenic mice expressing both wild-type and mutant 
SOD1 have shown that a fraction of cellular SOD1 is present within the intermembrane space of 
mitochondria [150,151] and also within the matrix affecting directly mitochondrial function and 
integrity [152] (Figure 1). Moreover, in SOD1-overexpressing G93A transgenic mice the 
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morphological changes in mitochondria are the first pathological changes followed by decreased 
mitochondrial respiration [150,153]. Mattiazi and colleagues [154] reported that G93A transgenic mice 
at the onset of the disease presented compromised mitochondrial respiration and ATP synthesis that 
was accompanied by oxidative damage to mitochondrial lipids and proteins. In addition, decreased 
mitochondrial calcium loading capacity and respiratory chain complexes activity was also reported in 
mutant SOD1 transgenic mice [155] (Figure 1). Similarly, it was recently reported that an early 
functional consequence of the association of mutant SOD1 with motor neuron mitochondria is reduced 
capacity of the electron transport chain to limit calcium-induced depolarization [156] supporting the 
idea that mutant SOD1 is associated with impaired mitochondrial function. It was recently reported 
that in motor neurons, mutant SOD1 damages fast axonal mitochondrial transport in the anterograde 
direction [157]. Nevertheless, the interaction of mutant SOD1 with mitochondria is unclear. Vande 
Velde and co-workers [158] suggested that mutant SOD1 accumulates and aggregates in the outer 
mitochondrial membrane blocking protein importation to mitochondria. Others also suggest that 
mutant SOD1 binds to Bcl2 on the outer mitochondrial membrane blocking its antiapoptotic activity 
[159] (Figure 1), thereby promoting apoptosis triggered by cytochrome c release from mitochondria 
[160]. These evidences suggest that mitochondrial dysfunction and oxidative stress occur early and 
have a major role in the pathogenesis of neurodegenerative diseases. 

4. Insulin and the Brain 

For a long time it was believed that the brain was unresponsive to insulin but subsequent studies 
brought evidence of neuronal insulin synthesis [161-163], with the highest levels found in olfactory 
bulb, cortex, hippocampus, hypothalamus and amygdala [164]. It was also found that brain insulin and 
IR are independent of peripheral insulin levels [165]. However, the local synthesis of insulin remains 
controversial. 

IR is a heterotetramer composed of two extracellular α subunits that possess a binding-site for 
insulin, and two transmembrane β subunits linked by disulfide bonds. Insulin binding to IR α subunits 
leads to insulin/IR complex internalization and autophosphorylation of the tyrosine residues of the β 
subunits [166,167] creating docking sites for adaptor proteins, namely insulin receptor substrate (IRS) 
1 and 2, which in turn recruit and activate other proteins initiating several signaling cascades [168]. 

The PI3K-PKB/Akt pathway is also activated by the insulin-like growth factor (IGF-1). Insulin and 
IGF-1 are genetically related polypeptides that possess similar tertiary structures and considerable 
aminoacid identity. IGF-1 is synthesized predominantly in the liver but also in the brain and when in 
the circulation and tissues it is often associated to high affinity IGF binding proteins, which prolong 
IGF-1 half-life and modulate its interaction with the IGF-1 receptor (IGF-1R) [172]. IGF-1R is 
homologous to IR and trigger similar intracellular signaling events [173] such as the inhibition of 
GSK-3β regulating tau phosphorylation [174]. The worm insulin/IGF-1 signaling pathway is closely 
identical to that in mammals and is activated when an insulin-like ligand binds to daf-2, the sole worm 
insulin/IGF-1R, leading to a cascade of events that ends with the regulation of longevity and stress 
resistance [7]. Unlike worms that have only one insulin/IGF-1 signaling pathway, mammals also have 
the insulin/IGF-2 signaling pathway. When evaluating the effects of fat mass reduction and alterations 
in insulin/IGF-1 pathway in longevity using a fat-specific insulin receptor knockout (FIRKO) mice it 
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was observed that a reduction in adipose tissue is associated with an increase in longevity probably 
through a reduction in insulin signaling [175]. It has been shown in mammals and worms that the 
decrease in IGF-1R levels leads to an increase in oxidative stress resistance and life span [176]. It has 
been also shown that mutations in an insulin-like signaling pathway in C. elegans influence the 
aggregation and toxicity of polyglutamine that is known to be intensified during aging [177]. Also, the 
decrease in insulin/IGF-1 signaling led to the slowing of aging together with reduced aggregation-
mediated Aβ42 toxicity [178]. Freude and colleagues [179] recently demonstrated that impaired 
insulin/IGF-1 signaling delays Aβ accumulation and prevents premature death in Tg2576 mice, a 
model of AD [177]. Strategies to lengthen lifespan could be useful in the delay of the onset of aging-
related diseases characterized by the appearance of misfolded and aggregation proteins. 

The PI3K-PKB/Akt pathway is also activated by the insulin-like growth factor (IGF-1). Insulin and 
IGF-1 are genetically related polypeptides that possess similar tertiary structures and considerable 
aminoacid identity. IGF-1 is synthesized predominantly in the liver but also in the brain and when in 
the circulation and tissues it is often associated to high affinity IGF binding proteins, which prolong 
IGF-1 half-life and modulate its interaction with the IGF-1 receptor (IGF-1R) [172]. IGF-1R is 
homologous to IR and trigger similar intracellular signaling events [173] such as the inhibition of 
GSK-3β regulating tau phosphorylation [174]. The worm insulin/IGF-1 signaling pathway is closely 
identical to that in mammals and is activated when an insulin-like ligand binds to daf-2, the sole worm 
insulin/IGF-1R, leading to a cascade of events that ends with the regulation of longevity and stress 
resistance [7]. Unlike worms that have only one insulin/IGF-1 signaling pathway, mammals also have 
the insulin/IGF-2 signaling pathway. When evaluating the effects of fat mass reduction and alterations 
in insulin/IGF-1 pathway in longevity using a fat-specific insulin receptor knockout (FIRKO) mice it 
was observed that a reduction in adipose tissue is associated with an increase in longevity probably 
through a reduction in insulin signaling [175]. It has been shown in mammals and worms that the 
decrease in IGF-1R levels leads to an increase in oxidative stress resistance and life span [176]. It has 
been also shown that mutations in an insulin-like signaling pathway in C. elegans influence the 
aggregation and toxicity of polyglutamine that is known to be intensified during aging [177]. Also, the 
decrease in insulin/IGF-1 signaling led to the slowing of aging together with reduced aggregation-
mediated Aβ42 toxicity [178]. Freude and colleagues [179] recently demonstrated that impaired 
insulin/IGF-1 signaling delays Aβ accumulation and prevents premature death in Tg2576 mice, a 
model of AD [177]. Strategies to lengthen lifespan could be useful in the delay of the onset of aging-
related diseases characterized by the appearance of misfolded and aggregation proteins. 

Another major pathway activated downstream of IR is the mitogen-activated protein 
kinase/extracellular signal-regulated kinase (MAPK/ERK1/2) pathway. Briefly, the cytoplasmic 
intermediate protein (shc) binds to IR promoting its phosphorylation. Then it binds to Grb2, which is 
associated with son of sevenless (SOS), a guanylnucleotide exchange factor for GTP-binding protein 
Ras. Binding of Grb2/SOS complex to IR activates Ras that, in turn, recruit Raf leading to MEK 
activation. Activated MEK phosphorylates ERK1/2 on its threonine/tyrosine residues that thereby 
become activated [167]. Accumulating evidence demonstrated that MAPK/ERK1/2 activity is 
involved in memory and learning [180,181] as well as in long term-potentiation (LTP) [182] and long 
term-depression (LTD) [183].  
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Both PI3K-PKB/Akt and ERK1/2 pathways are regulated by insulin and a crosstalk between them 
seems to exist. When PI3K-PKB/Akt is stimulated by insulin it acts antagonistically to Ras/Raf-ERK 
pathway and when PI3K-PKB/Akt is blocked an increase in ERK1/2 phosphorylation occurs [1]. 
Therefore, it is plausible to assume that insulin-mediated crosstalk between PKB/Akt and Raf is an 
alternative way to promote neuronal survival [1]. 

The specific localization of IR in the cortex and hippocampus is in agreement with evidence 
showing that insulin influences memory and learning [184]. Evidence from studies with rodents 
showed that an acute intracerebroventricular injection or an intrahippocampal administration of insulin 
enhances memory in a passive-avoidance task [185,186]. In addition, acute intravenous insulin 
enhances story recall in AD patients [187] and when given intranasally to humans, insulin is 
transported into hypothalamus and hippocampus without affecting blood glucose or insulin 
concentrations, improving effects of short-term memory functions [188–190]. Since peripheral glucose 
levels are not affected, this effect could only be due to stimulation of brain IRs [191]. Interestingly, 
when rats are trained on a spatial memory task, an increase in IR mRNA in the dentate gyrus and 
hippocampal CA1 field is observed [184]. Thereby, IR expression or function is also influenced by 
learning, supporting the notion that insulin contribute to normal memory function [192]. Insulin/IR 
have been shown to influence synaptic activities in both pre- and postsynaptic sites. At the presynaptic 
site insulin/IR affect catecholamine neurotransmission [193,194] and seem to be involved in 
neurotransmitter clearance through the regulation of synthesis and activity of dopamine, serotonine 
and gamma-aminobutyric (GABA) transporters [195]. Accordingly, it was recently reported that 
insulin has direct electrophysiological effects on central neurons that are highly influenced by GABA-
inputs [196]. At the postsynaptic site, insulin/IR signaling modulates and is modulated by glutamate 
through N-methyl D-aspartate (NMDA) receptors activity [197,198]. In summary, insulin-signaling 
pathways through an intrinsic regulation, coordinates themselves to ensure synaptic plasticity, memory 
and learning processes and neuronal survival. 

5. Insulin Signaling Dysregulation and Neurodegeneration 

Impaired insulin/IR signaling negatively affects several functions of brain cells such as glucose 
homeostasis, energy metabolism and white matter fiber structure and function [199]. 
Neurodegenerative diseases affect a major proportion of the general population and 20% of them are 
associated with diabetes mellitus, increased insulin resistance and obesity, disturbed insulin sensitivity, 
and excessive or impaired insulin secretion [200]. Type 2 diabetes is becoming widely recognized as a 
risk factor for AD development and features like insulin signaling defects, Aβ accumulation and 
hyperphosphorylation of tau protein are possible contributors to this relation [201]. Insulin degrading-
enzyme (IDE) is a metalloprotease enzyme that catalyzes the degradation of insulin following 
internalization of insulin and its receptor [168]. IDE also degrades soluble Aβ thereby regulating its 
extracellular levels by reducing aggregation and plaque formation [168]. AD brains present a reduction 
in IDE levels [202] and in APP mutant mice IDE overexpression reduces plaque pathology [203]. 
However, IDE affinity for insulin is much greater than for Aβ [204]. Accordingly, Ho and collegues 
[205] using an APP transgenic AD animal model demonstrated that insulin resistance caused by high 
fat diet is associated with a decrease in IDE levels, PI3K-Akt activity and an increase in Aβ formation.  
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PKB/Akt is a player in the neuroprotection mediated by insulin signaling. In fact, data show that 
Akt overexpression in PC12 cells protected against Aβ induced cell death [206]. Conversely, 
intracellular Aβ expression inhibited both insulin-induced Akt phosphorylation and activity [207]. 
PKB/Akt signaling also induces the phosphorylation and inhibition of glycogen synthase kinase-3β 
(GSK-3β). GSK-3β is a serine/threonine protein kinase ubiquitously expressed throughout the body 
that possesses as substrate the protein tau [168]. In AD brains GSK-3β expression and activity is 
deregulated [208] and consequently tau phosphorylation is increased [209]. It has been shown that the 
intracerebroventricular (icv) injection of streptozotocin, an experimental model used to mimic sporadic 
AD, leads to defects in the insulin signaling pathways such as reduced PKB/Akt activity and increased 
GSK-3β activity and tau hyperphosphorylation [210,211]. In opposite, in vitro studies demonstrate that 
insulin reduce tau hyperphosphorylation by the inhibition of GSK-3β through the PI3-K pathway 
[212]. Also the presence of the type 4 allele of APOE-ε4 contributes to the predisposition to AD in 
diabetic patients [213]. 

The loss of memory in early AD patients seems to involve synaptic damage caused by small Aβ 
oligomers, also known as Aβ-derived ligands (ADDLs) that have the ability to affect synapse 
composition, structure and abundance [214]. Recently, De Felice and colleagues [215] evaluated 
synapse pathology in mature cultures of hippocampal neurons and observed that before spine loss, 
ADDLs caused major downregulation of plasma membrane IRs through a mechanism sensitive to 
calcium calmodulin-dependent kinase II and casein kinase II inhibition. The authors also observed that 
the loss of IRs, and ADDL-induced oxidative stress and synaptic deterioration was prevented by 
insulin through IR signaling-dependent downregulation of ADDL binding sites rather than ligand 
competition [215]. Therefore, dysfunction of the insulin signaling may be involved in the pathological 
events that occur in AD brains [173]. Indeed, it has been shown that brains with advanced AD present 
major abnormalities in insulin and IR gene expression [216].  

It is estimated that 50-80% of PD cases suffer from impaired glucose tolerance [217]. It has been 
suggested that diabetes accelerates progression of both motor and cognitive symptoms in PD [218]. PD 
patients also present loss of IR immunoreactivity and mRNA in the substantia nigra [219]. Indeed, 
previous data show that insulin production, insulin resistance and glycemic control are affected by 
dopaminergic drugs like bromocriptine, a D2 receptor agonist that was shown to improve insulin 
sensitivity in hamsters [220]. Also, dopamine transporter mRNA and activity in the substantia nigra 
were increased by intracerebroventricular delivery of insulin [221]. In situations of hypoinsulinemia a 
decrease in the amounts of mRNA dopamine transporters in the substantia nigra and dopamine 
concentrations in the mesolimbic cortex was observed [222,223]. Thus, a role for impaired insulin 
control of cellular metabolism in PD could be considered [224]. 

HD patients develop diabetes 7 times more often than control age-matched subjects and the 
decreased insulin secretion seems to be a possible explanation [225,226]. It was recently reported that 
besides the impairment in insulin secretion, HD patients also possess a decrease in insulin sensitivity 
and an increase in insulin resistance [227] suggesting that the progression of the insulin secretion 
defect may be a way to compensate for insulin resistance. Moreover, evidence shows that IGF-1/Akt 
signaling pathway could have a beneficial effect in HD since IGF-1, through the phosphorylation of 
huntingtin by Akt, abolished the huntingtin-mediated toxicity in striatal neurons [228]. Also, 
Yamamoto and colleagues [229] demonstrated that the activation of insulin receptor substrate 2  
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(IRS-2), a scaffolding protein that mediates the signaling cascades of insulin and IGF-1, leads to 
macroautophagy-mediated clearance of the accumulated huntingtin proteins. Moreover, data shows 
that in HD there is a dysregulation of Akt that in the latter stages of the disease is cleaved into an 
inactive form [230]. These observations indicate that the dysregulation of insulin/IGF-1/Akt pathway 
play an important role in HD progression. Altogether, these studies demonstrate that IGF-1 is a major 
player in HD. 

ALS is also characterized by an impairment in glucose tolerance [231]. Evidence shows that insulin 
and/or IGF-1 promote motor neuron survival against glutamate-induced programmed cell death [232] 
whereas inhibitors of downstream IGF-1 signaling pathway lead to an increase in motor neuron death 
[232]. Accordingly, Kaspar and colleagues [233] reported that IGF-1 delay the onset of behavioral 
symptoms and sustains life in SOD1 mutant mice suggesting that IGF-1 signaling pathway has a key 
role in ALS. 

In summary, alterations in the insulin and/or IGF-1 signaling pathways may contribute to the 
development and progression of several neurodegenerative diseases. 

6. Role of Insulin and Insulin-Sensitizers in Neurodegeneration: Mitochondria as Potential 
Therapeutic Targets 

Insulin/IGF-1 signaling pathways is involved in the balance of physiological processes that control 
aging, development, growth, reproduction, metabolism and resistance to oxidative stress [234], 
whereas their inhibition reduces neuronal survival by promoting oxidative stress, mitochondrial 
dysfunction and pro-death signaling cascade activation [235]. Evidence from the literature shows that 
aged rats present a decrease in mitochondrial potential and ATPase activity and increased 
mitochondrial oxidative damage [236]. In contrast, animals treated with IGF-1 presented an improved 
mitochondrial function associated with increased ATP production and reduced free radical generation, 
oxidative damage and apoptosis [236]. Similarly, data from our laboratory demonstrated that insulin 
treatment attenuates diabetes-induced mitochondrial alterations by improving the OXPHOS efficiency 
and protecting against the increase in oxidative stress [237,238]. It was also shown that in the 
reperfused brain, insulin regulates cytochrome c release through PI3K/Akt activation, promoting the 
binding between Bax and Bcl-xl, and preventing Bax translocation to the mitochondria [239]. In vitro 
studies demonstrated that stimulation of different cell types with insulin or IGF-1 leads to Akt 
translocation to mitochondria and GSK-3β phosphorylation [240], supporting a direct action of 
insulin/IGF-1 in mitochondria.  

Evidence from the literature also shows that AD-associated impairments in energy metabolism and 
increased oxidative stress can promote a compensatory increase in PPAR-γ expression, which suggests 
that neuronal viability and function in AD could be improved by the treatment with PPAR-γ agonists 
[89]. Indeed, this topic has been a matter under intense discussion in the last years and several studies 
show a positive role for PPAR-γ agonists in AD. 

PPAR-γ agonists can be broadly divided in two major classes, thiazolidinediones (TZDs) and non-
TZDs [241]. The TZD agonists (also known as glitazones) include the anti-diabetic drugs pioglitazone 
and rosiglitazone that are FDA approved and widely prescribed for type 2 diabetes treatment, and the 
drug troglitazone that was initially approved but latter withdrawn [24,242]. Fatty acid derivatives such 
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as 15 deoxi- ∆12,14 prostaglandin J2 (15d-PGJ2) and nitrosylated unsaturated fatty acids derivatives are 
considered to be potential endogenous ligands of PPAR-γ [243-245]. Evidence shows that in vitro 
PPAR-γ agonists suppress the induction of a proinflammatory response in microglia and the 
consequent production of neurotoxic inflammatory mediators [246-248]. Furthermore, PPAR-γ 
agonists suppress cytokine induced neuronal iNOS expression in vitro, thus preventing NO-mediated 
cell death of neurons [249]. The existence of PPAR-γ in the neurons may suggest a role in the 
regulation of neuronal susceptibility to excitotoxic damage since PPAR-γ activation by ciglitazone and 
by 15d-PGJ2 significantly reduced neuronal death in response to glutamate and NMDA-mediated 
toxicity [250]. There is also evidence that PPARs modulate mitochondrial function [251]. Fuenzalida 
and co-workers [252] reported that rosiglitazone treatment in neuronal cells up-regulates Bcl-2 thereby 
stabilizing mitochondrial potential and protecting against apoptosis. Similar results were obtained by 
Wu and colleagues [253] that demonstrated that rosiglitazone protected cells against oxygen-glucose 
deprivation (OGD)-induced cytotoxicity and apoptosis by suppressing H2O2 production, maintaining 
mitochondrial membrane potential, attenuating cytochrome c release and inhibiting activation of 
caspases 3 and 9. Moreover, OGD caused a significant suppression of Bcl-2 and Bcl-xl proteins levels 
that were restored by rosiglitazone pre-treatment [253]. Pioglitazone, another PPAR-γ agonist, induced 
mitochondrial biogenesis and reduced mitochondrial oxidative stress in a neuron-like cell line [254]. 

TZDs have been proposed as potential neuroprotective therapeutic agents for AD due to its effects 
in regulating insulin sensitivity, Aβ homeostasis, energy metabolism, inflammation and lipid 
metabolism [255-257]. The treatment of 12-month-old Tg2576 mice with pioglitazone decreased the 
soluble forms of Aβ but did not have any effect in Aβ plaque burden or inflammatory markers [258]. 
The authors suggested that those effects were due to the poor penetration of pioglitazone in the brain. 
However, Heneka and colleagues [255] reported that mice treated with a higher dosage of pioglitazone 
presented a significant decrease in microglia and astrocytes reaction, Aβ plaque load and reduced  
β-site of APP cleaving enzyme (BACE1) transcription and expression. Similar results were obtained 
by Sastre and co-workers [259], which suggest that PPAR-γ agonists can affect Aβ homeostasis. 
Recent data also demonstrated that rosiglitazone potentiates the ability of insulin to protect synapses 
against ADDLs-induced IR loss [215]. In vitro studies show that PPAR-γ activation protects rat 
hippocampal neurons against Aβ toxicity [260,261], induces up-regulation of Bcl-2 pathway, protects 
mitochondrial function and prevents neuronal degeneration induced by Aβ exposure and oxidative 
stress [252]. Indeed, rosiglitazone beneficial effects in memory and cognition seem to be mediated by 
the improvement of mitochondrial function [25,242], since it leads to an increase in mitochondria 
number and metabolic efficiency [262]. Therefore, brain mitochondrial biogenesis induced by 
rosiglitazone [263] is possibly due to PGC-1α, a PPAR-γ co-activator, since these co-activators 
regulate mitochondrial function and metabolism [264]. Recently, Qin and colleagues [265] examined 
human postmortem brain samples from AD and age-matched subjects and found that PGC-1α 
expression is negatively correlated with AD-type neuritic plaque pathology and Aβ42 contents.  

A small clinical trial involving 30 patients with mild AD or MCI revealed that 6 months of 
rosiglitazone treatment improve memory and selective attention [266]. A larger clinical trial involving 
500 patients with mild to moderate AD revealed that rosiglitazone treatment resulted in a significant 
improvement in cognition in patients without ε4 allele of the apolipoprotein E (APOE-ε4) gene 
whereas patients with the APOE-ε4 showed no alterations in the cognitive tests [267]. 
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Epidemiological studies show that 7% of PD patients have type 2 diabetes or suffer from insulin 
desensitization [268]. It was reported a significant decrease in IR in the substantia nigra [219,269] and 
reduced insulin-mediated glucose uptake in PD patients [270]. The fact that pioglitazone is used to 
treat type 2 diabetes by regulating insulin sensitivity, may suggest that some of the protective effects of 
this drug in PD may be due to its ability to regulate insulin signaling, glucose metabolism or lactate 
production [271]. The neuroprotective action of PPAR-γ agonists has been demonstrated in in vitro 
and in vivo studies. Pioglitazone proved to be effective in the prevention of dopaminergic cell loss in 
the substantia nigra pars compacta induced by MPTP-induced glial activation [272,273]. Recently, it 
was shown that this neuroprotection is mediated by the blockade of the conversion of MPTP to its 
active toxic metabolite MPP+ via monoamine oxidase-B inhibition (MAO-B) [274]. Pioglitazone is 
also able to protect dopaminergic neurons against lipopolysaccharide (LPS) mediated inflammation 
and consequent dopaminergic degeneration, while improving mitochondrial function and decreasing 
oxidative stress [275,276]. It seems that pioglitazone modulates NF-κB and Jun N-terminal kinase 
(JNK) pathways, which in turn inhibits cyclooxygenase (COX-2) expression [277] and/or inhibits 
iNOS expression and NO production through the regulation of p38 MAPK and PI-3K/Akt pathway 
[278]. It was also reported that rosiglitazone protects human neuroblastoma cells against acetaldehyde, 
an inhibitor of mitochondrial function [279]. This protection was mediated by the induction of 
antioxidant enzymes and increased expression of Bcl-2 and Bax [279]. Recently, the same authors 
demonstrated that rosiglitazone protects SH-SY5Y cells against MPP+-induced cytotoxicity by 
preventing mitochondrial dysfunction and oxidative stress [280]. These results suggest that PPARs 
agonists in addition to its anti-inflammatory properties also provide neuroprotection by regulating 
mitochondrial antioxidant enzymes expression and maintaining the balance between pro-apoptotic and 
anti-apoptotic gene expression. Moreover, PPAR-γ agonists are known to regulate the expression of 
the uncoupling proteins (UCP) [275], mitochondrial proteins that attenuate mitochondrial ROS 
production and limit ROS-induced cellular damage. 

The high prevalence of diabetes in HD patients was first reported in the 70´s [281] and was soon 
confirmed with further studies [225,226]. Studies performed with R6/2 transgenic mice, a model of 
HD, revealed low insulin gene expression in the pancreas of these animals [282] that become diabetic 
at 12 weeks of age [283]. Recently, Quintanilla and colleagues [284] reported that mutant huntingtin-
expressing cells possess significant defects in the PPAR-γ signaling pathway in comparison with cells 
expressing wild-type huntingtin protein. The authors also observed that rosiglitazone pre-treatment 
prevented the loss of mitochondrial potential, mitochondrial calcium deregulation and oxidative stress 
[284]. PGC-1α, being an essential transcriptional co-regulator, is an important mediator in protecting 
neurons against oxidative damage [285]. Evidence shows that PGC-1α is a strong suppressor of ROS 
production and induces the expression of ROS scavenging enzymes [286]. Moreover, it has been 
reported that mutant htt can affect mitochondrial function through the inhibition of PGC-1α expression 
[131,287]. Importantly, two independent epidemiological studies were recently published reporting 
that the PGC-1α gene appears to have modifying effects on the HD pathogenic process [288,289]. It 
has also been shown that resveratrol, an activator of sirtuin Sir2 homolog 1 (SIRT1), modulates the 
SIRT1-PGC-1α pathway having a neuroprotective effect against mutant huntingtin-induced metabolic 
dysfunction [290] supporting the idea that PGC-1α has an important role in HD. Activated SIRT1 
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leads to PGC-1α deacetylation resulting in its activation and consequent repression of glycolysis, 
increase in hepatic glucose output and modulation of mitochondrial function and biogenesis [291]. 

Inflammation is intimately associated with the neurodegeneration observed in ALS [292]. 
Therefore, PPAR-γ agonists have emerged as potential therapeutic agents in this neurodegenerative 
disease. Studies with ALS transgenic mice models revealed that pioglitazone treatment extended the 
survival of these mice by preventing a decrease in body weight and the loss of spinal cord motor 
neurons when compared to non-treated mice [293,294]. To what concerns the mitochondrial effects of 
PPARs agonists in ALS there is no data available in the literature but similarly to PD and HD there is 
the assumption that PGC-1α has a promising role in ALS [148]. There is evidence showing impaired 
or altered expression of genes in ALS that could be included in the PGC-1α target genes category 
[294,295]. Therefore, PGC-1α impairment could contribute to mitochondrial dysfunction in this 
disease [148]. In summary, evidence shows that insulin and insulin-sensitizing agents can be useful in 
the treatment of neurodegenerative diseases, mitochondria being one of the key targets. 

7. Conclusions  

All around the world, especially in Western societies, diabetic cases are increasing every day. Hand 
in hand with diabetes is the increase in longevity and age-related neurodegenerative diseases. Insulin 
signaling proceeds through two major pathways, PI3K/Akt and MAPK/ERK1/2 that coordinate to 
ensure neuronal survival and memory and learning processes. In addition to other alterations, the 
impairment of insulin signaling negatively impacts mitochondrial function leading, eventually, to cell 
degeneration and death.  

Development of new and more efficacious therapies for neurodegenerative diseases is a challenging 
task. TZDs that were first described for type 2 diabetes are now viewed as a potential treatment for 
neurodegenerative diseases that share common features such as insulin resistance, inflammation, 
mitochondrial dysfunction and oxidative stress. The recognition that PPAR-γ agonists have relevant 
neuroprotective actions is recent but yet very promising. 

References  

1. Van Der Heide, L.P.; Ramakers, G.M.; Smidt, M.P. Insulin signaling in the central nervous 
system: Learning to survive. Prog. Neurobiol. 2006, 79, 205–221. 

2. White, M.F.; Kahn, C.R. The insulin signaling system. J. Biol. Chem. 1994, 269, 1–4. 
3. Taguchi, A.; White, M.F. Insulin-like signaling, nutrient homeostasis, and life span. Annu. Rev. 

Physiol. 2008, 70, 191–212. 
4. Kenyon, C.; Chang, J.; Gensch, E.; Rudner, A.; Tabtiang, R. A C. elegans mutant that lives twice 

as long as wild type. Nature 1993, 366, 461–464. 
5. Giannakou, M.E.; Goss, M.; Jünger, M.A.; Hafen, E.; Leevers, S.J.; Partridge, L. Long-lived 

drosophila With overexpressed dFOXO in adult fat body. Science 2004, 305, 361. 
6. Rincon, M.; Muzumdar, R.; Atzmon, G.; Barzilai, N. The paradox of the insulin/IGF-1 signaling 

pathway in longevity. Mech. Ageing Dev. 2004, 125, 397–403. 
7. Cohen, E.; Dillin, A. The insulin paradox: Aging, proteotoxicity and neurodegeneration. Nat. 

Rev. Neurosci. 2008, 10, 759–767. 



Pharmaceuticals 2009, 2  
 

267

8. Dou, J.T.; Chen, M.; Dufour, F.; Alkon, D.L.; Zhao, W.Q. Insulin receptor signaling in long-
term memory consolidation following spatial learning. Learn. Mem. 2005, 12, 646–655. 

9. Ding, Q.; Vaynman, S.; Akhavan, M.; Ying, Z.; Gomez-Pinilla, F. Insulin-like growth factor I 
interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate 
aspects of exercise-induced cognitive function. Neuroscience 2006, 140, 823–833. 

10. Craft, S.; Newcomer, J.; Kanne, S.; Dagogo-Jack, S.; Cryer, P.; Sheline, Y.; Luby, J.; Dagogo-
Jack, A.; Alderson A. Memory improvement following induced hyperinsulinemia in Alzheimer's 
disease. Neurobiol. Aging 1996, 17, 123–130. 

11. Gasparini, L.; Xu, H. Potential roles of insulin and IGF-1 in Alzheimer's disease. Trends 
Neurosci. 2003, 26, 404–406. 

12. Watson, G.S.; Craft, S. The role of insulin resistance in the pathogenesis of Alzheimer's disease: 
Implications for treatment. CNS Drugs 2003, 17, 27–45. 

13. Bowling, A.C.; Beal, M.F. Bioenergetic and oxidative stress in neurodegenerative diseases. Life 
Sci. 1995, 56, 1151–1171. 

14. McNay, E.C. The impact of recurrent hypoglycemia on cognitive function in aging. Neurobiol. 
Aging 2005, 26, 76–79. 

15. Moreira, P.I.; Duarte, A.I.; Santos, M.S.; Rego, A.C.; Oliveira, C.R. An integrative view of the 
role of oxidative stress, mitochondria and insulin in Alzheimer's disease. J. Alzheimers Dis. 
2009, 741–761. 

16. Turner, N.; Heilbronn, L.K. Is mitochondrial dysfunction a cause of insulin resistance? Trends 
Endocrinol. Metab. 2008, 19, 324–330. 

17. Beal, M.F. Mitochondria take center stage in aging and neurodegeneration. Ann. Neurol. 2005, 
58, 495–505. 

18. Moreira, P.I.; Santos, M.S.; Oliveira, C.R. Alzheimer's disease: A lesson from mitochondrial 
dysfunction. Antioxid. Redox Signal 2007, 9, 1621–1630. 

19. Chung, J.H; Seo, A.Y.; Chung, S.W.; Kim, M.K.; Leeuwenburgh, C.; Yu, B.P.; Chung, H.Y. 
Molecular mechanism of PPAR in the regulation of age-related inflammation. Ageing Res. Rev. 
2008, 7, 126–136. 

20. Chaturvedi, R.K.; Beal, M.F. PPAR: A therapeutic target in Parkinson's disease. J. Neurochem. 
2008, 106, 506–518 

21. Chinetti, G.; Fruchart, J.C.; Staels, B. Peroxisome proliferator-activated receptors: New targets 
for the pharmacological modulation of macrophage gene expression and function. Curr. Opin. 
Lipidol. 2003, 14, 459–468. 

22. Rangwala, S.M.; Lazar, M.A. Peroxisome proliferator-activated receptor gamma in diabetes and 
metabolism. Trends Pharmacol. Sci .2004, 25, 331–336. 

23. Patsouris, D.; Müller, M.; Kersten, S. Peroxisome proliferator activated receptor ligands for the 
treatment of insulin resistance. Curr. Opin. Investig. Drugs 2004, 5, 1045–1050 

24. Sundararajan, S.; Jiang, Q.; Heneka, M.; Landreth, G. PPARgamma as a therapeutic target in 
central nervous system diseases. Neurochem. Int. 2006, 49, 136–144. 

25. Landreth, G.; Jiang, Q.; Mandrekar, S.; Heneka, M. PPARgamma agonists as therapeutics for the 
treatment of Alzheimer's disease. Neurotherapeutics 2008, 5, 481–489. 



Pharmaceuticals 2009, 2  
 

268

26. Roses, A.D.; Saunders, A.M.; Huang, Y.; Strum, J.; Weisgraber, K.H.; Mahley, R.W. Complex 
disease-associated pharmacogenetics: Drug efficacy, drug safety, and confirmation of a 
pathogenetic hypothesis (Alzheimer's disease). Pharmacogenomics J. 2007, 7, 10–28. 

27. Fukui, H.; Moraes, C.T. The mitochondrial impairment, oxidative stress and neurodegeneration 
connection: Reality or just an attractive hypothesis? Trends Neurosci. 2008, 31, 251–256. 

28. Schapira, A.H. Mitochondrial dysfunction in Parkinson's disease. Cell Death Differ. 2007, 14, 
1261–1266. 

29. Schon, E.A.; Manfredi, G. Neuronal degeneration and mitochondrial dysfunction. J Clin Invest 
2003, 111, 303–312. 

30. Mancuso, M.; Coppede, F.; Migliore, L.; Siciliano, G.; Murri, L. Mitochondrial dysfunction, 
oxidative stress and neurodegeneration. J. Alzheimers Dis. 2006, 10, 59–73. 

31. Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and 
antioxidants in normal physiological functions and human disease. Int J. Biochem. Cell Biol. 
2007, 39, 44–84. 

32. Torres, M. Mitogen-activated protein kinase pathways in redox signaling. Front Biosci. 2003, 8, 
369–391. 

33. Heffetz, D.; Bushkin, I.; Dror, R.; Zick, Y. The insulin mimetic agents H2O2 and vanadate 
stimulate protein tyrosine phosphorylation in intact cells. J. Biol. Chem. 1990, 265, 2896–2902. 

34. Konishi, H.; Matsuzaki, H.; Tanaka, M.; Takemura, Y.; Kuroda, S.; Ono, Y.; Kikkawa, U. 
Activation of protein kinase B (Akt/RAC-protein kinase) by cellular stress and its association 
with heat shock protein Hsp27. FEBS Lett. 1997, 410, 493–498. 

35. Nulton, P.A.C.; Szweda, L.I.  Modulation of mitochondrial function by hydrogen peroxide.  J. 
Biol. Chem. 2001, 276, 23357–23361. 

36. Manna, S.K.; Zhang, H.J.; Yan, T.; Oberley, L.W.; Aggarwal, B.B.  Overexpression of 
manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and 
activation of nuclear transcription factor-kappaB and activated protein-1.  J. Biol. Chem. 1998, 
273, 13245–13254. 

37. Perry, G.; Nunomura, A.; Hirai, K.; Zhu, X.; Perez, M.; Avila, J.; Castellani, R.J.; Atwood, C.S.; 
Aliev, G.; Sayre, L.M.; Takeda, A.; Smith, M.A. Is oxidative damage the fundamental 
pathogenic mechanism of Alzheimer’s and other neurodegenerative diseases? Free Radic. Biol. 
Med. 2002, 33, 1475–1479. 

38. Harman, D. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 1956, 
11, 298–300. 

39. Sayre, L.M.; Perry, G.; Smith, M.A. Oxidative stress and neurotoxicity. Chem. Res. Toxicol. 
2008, 21, 172–188. 

40. Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative 
diseases. Nature 2006, 443, 787–795. 

41. Hiona, A.; Leeuwenburgh, C. The role of mitochondrial DNA mutations in aging and 
sarcopenia: Implications for the mitochondrial vicious cycle theory of aging. Exp. Gerontol. 
2008, 43, 24–33. 



Pharmaceuticals 2009, 2  
 

269

42. Wanrooij, S.; Goffart, S.; Pohjoismäki, J.L.; Yasukawa, T.; Spelbrink, J.N. Expression of 
catalytic mutants of the mtDNA helicase Twinkle and polymerase POLG causes distinct 
replication stalling phenotypes. Nucleic Acids Res. 2007, 35, 3238–3251. 

43. Sedensky, M.M.; Morgan, P.G. Mitochondrial respiration and reactive oxygen species in C. 
elegans. Exp. Gerontol. 2006, 41, 957–967. 

44. Feng, J.; Bussière, F.; Hekimi, S. Mitochondrial electron transport is a key determinant of life 
span in Caenorhabditis elegans. Dev. Cell 2001, 1, 633–644. 

45. Dillin, A.; Hsu, A.L.; Arantes O.N.; Lehrer G.J.; Hsin, H.; Fraser, A.G.; Kamath, R.S.; Ahringer, 
J.; Kenyon, C. Rates of behavior and aging specified by mitochondrial function during 
development. Science 2002, 298, 2398–2401. 

46. Ashford, J.W.; Mortimer, J.A. Non-familial Alzheimer's disease is mainly due to genetic factors. 
J. Alzheimers Dis. 2002, 4, 169–177. 

47. Petrozzi, L.; Ricci, G.; Giglioli, N.J.; Siciliano, G.; Mancuso, M. Mitochondria and 
neurodegeneration. Biosci. Rep. 2007, 27, 87–104. 

48. Chaturvedi, R.K.; Beal, M.F. Mitochondrial approaches for neuroprotection. Ann. NY Acad. Sci. 
2008, 1147, 395–412. 

49. Reddy, P.H.; Beal, M.F. Amyloid beta, mitochondrial dysfunction and synaptic damage: 
Implications for cognitive decline in aging and Alzheimer's disease. Trends Mol. Med. 2008, 14, 
45–53. 

50. Rhein, V.; Eckert, A. Effects of Alzheimer's amyloid-beta and tau protein on mitochondrial 
function—Role of glucose metabolism and insulin signalling. Arch. Physiol. Biochem. 2007, 
113, 131–141. 

51. Moreira, P.I.; Cardoso, S.M.; Santos, M.S.; Oliveira, C.R. The key role of mitochondria in 
Alzheimer's disease. J. Alzheimers. Dis. 2006, 9, 101–10. 

52. Moreira, P.I.; Cardoso, S.M.; Pereira, C.M.; Santos, M.S.; Oliveira, C.R. Mitochondria as a 
Therapeutic Target in Alzheimer's Disease and Diabetes. CNS Neurol. Disord. Drug Targets. 
2009, 8, 492–511. 

53. Fernandez V.P.; Fernandez, A.P.; Castro B.S.; Serrano, J.; Bentura, M.L.; Martinez M.R.; 
Martinez, A.; Rodrigo, J. Intra- and extracellular Abeta and PHF in clinically evaluated cases of 
Alzheimer’s disease. Histol. Histopathol. 2004, 19, 823–844. 

54. Cardoso, S.M.; Santos, S.; Swerdlow, R.H.; Oliveira, C.R. Functional mitochondria are required 
for amyloid beta-mediated neurotoxicity. FASEB J. 2001, 15, 1439–1441. 

55. Moreira, P.I.; Santos, M.S.; Moreno, A.; Oliveira, C.R. Amyloid beta-peptide promotes 
permeability transition pore in brain mitochondria. Biosci. Rep. 2001, 21, 789–800. 

56. Moreira, P.I.; Santos, M.S.; Moreno, A.; Rego, A.C.; Oliveira, C.R. Effect of amyloid beta-
peptide on permeability transition pore: A comparative study. J Neurosci. Res. 2002, 69,  
257–267. 

57. Moreira, P.I.; Santos, M.S.; Moreno, A.M.; Seiça, R.; Oliveira, C.R. Increased vulnerability of 
brain mitochondria in diabetic (Goto-Kakizaki) rats with aging and amyloid-beta exposure. 
Diabetes 2003, 52, 1449–1456. 

58. Lustbader, J.W.; Cirilli, M.; Lin, C.; Xu, H.W.; Takuma, K.; Wang, N.; Caspersen, C.; Chen, X.; 
Pollak, S.; Chaney, M.; Trinchese, F.; Liu, S.; Gunn M.F.; Lue, L.F.; Walker, D.G.; Kuppusamy, 



Pharmaceuticals 2009, 2  
 

270

P.; Zewier, Z.L.; Arancio, O.; Stern, D.; Yan, S.S.; Wu, H. ABAD directly links Abeta to 
mitochondrial toxicity in Alzheimer's disease. Science 2004, 304, 448–452. 

59. Nunomura, A.; Perry, G.; Aliev, G.; Hirai, K.; Takeda, A.; Balraj, E.K.; Jones, P.K.; Ghanbari, 
H.; Wataya, T.; Shimohama, S.; Chiba, S.; Atwood, C.S.; Petersen, R.B.; Smith, M.A. Oxidative 
damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol. 2001, 60,  
759–767. 

60. Praticò, D.; Uryu, K.; Leight, S.; Trojanoswki, J.Q.; Lee, V.M. Increased lipid peroxidation 
precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J. Neurosci. 
2001, 21, 4183–4187. 

61. Reddy, P.H.; McWeeney, S.; Park, B.S.; Manczak, M.; Gutala, R.V.; Partovi, D.; Jung, Y.; Yau, 
V.; Searles, R.; Mori, M.; Quinn, J. Gene expression profiles of transcripts in amyloid precursor 
protein transgenic mice: Up-regulation of mitochondrial metabolism and apoptotic genes is an 
early cellular change in Alzheimer's disease. Hum. Mol. Genet. 2004, 13, 1225–1240. 

62. Stamer, K.; Vogel, R.; Thies, E.; Mandelkow, E.; Mandelkow, E.M. Tau blocks traffic of 
organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J. Cell 
Biol. 2002, 156, 1051–1063. 

63. David, D.C.; Hauptmann, S.; Scherping, I.; Schuessel, K.; Keil, U.; Rizzu, P.; Ravid, R.; Dröse, 
S.; Brandt, U.; Müller, W.E.; Eckert, A.; Götz, J. Proteomic and functional analyses reveal a 
mitochondrial dysfunction in P301L tau transgenic mice. J. Biol. Chem. 2005, 280, 23802–
23814. 

64. Drzezga, A.; Lautenschlager, N.; Siebner, H.; Riemenschneider, M.; Willoch, F.; Minoshima, S.; 
Schwaiger, M.; Kurz, A. Cerebral metabolic changes accompanying conversion of mild 
cognitive impairment into Alzheimer's disease: A PET follow-up study. Eur. J. Nucl. Med. Mol. 
Imaging 2003, 30, 1104–1113. 

65. Alexander, G.E.; Chen, K.; Pietrini, P.; Rapoport, S.I.; Reiman, E.M. Longitudinal PET 
Evaluation of Cerebral Metabolic Decline in Dementia: A Potential Outcome Measure in 
Alzheimer's Disease Treatment Studies. Am. J. Psychiatry 2002, 159, 738–745. 

66. Bubber, P.; Haroutunian, V.; Fisch, G.; Blass, J.P.; Gibson, G.E. Mitochondrial abnormalities in 
Alzheimer brain: Mechanistic implications. Ann. Neurol. 2005, 57, 695–703. 

67. Huang, H.M.; Zhang, H.; Xu, H.; Gibson, G.E. Inhibition of the alpha-ketoglutarate 
dehydrogenase complex alters mitochondrial function and cellular calcium regulation. Biochim. 
Biophys. Acta 2003, 1637, 119–126. 

68. Gibson, G.E.; Haroutunian, V.; Zhang, H.; Park, L.C.; Shi, Q.; Lesser, M.; Mohs, R.C.; Sheu, 
R.K.; Blass, J.P. Mitochondrial damage in Alzheimer's disease varies with apolipoprotein E 
genotype. Ann. Neurol. 2000, 48, 297–303. 

69. Sorbi, S.; Fani, C.; Piacentini, S.; Giannini, E.; Amaducci, L. Energy metabolism in demented 
brain. Prog. Neuropsychopharmacol. Biol. Psychiatry. 1986, 10, 591–597. 

70. Moreira, P.I.; Harris, P.L.; Zhu, X.; Santos, M.S.; Oliveira, C.R.; Smith, M.A.; Perry, G. Lipoic 
acid and N-acetyl cysteine decrease mitochondrial-related oxidative stress in Alzheimer disease 
patient fibroblasts. J. Alzheimers Dis. 2007, 12, 195–206. 

71. Canevari, L.; Clark, J.B.; Bates, T.E. Beta-Amyloid fragment 25-35 selectively decreases 
complex IV activity in isolated mitochondria. FEBS Lett. 1999, 457, 131–134. 



Pharmaceuticals 2009, 2  
 

271

72. Manczak, M.; Anekonda, T.S.; Henson, E.; Park, B.S.; Quinn, J.; Reddy, P.H. Mitochondria are 
a direct site of A beta accumulation in Alzheimer's disease neurons: Implications for free radical 
generation and oxidative damage in disease progression. Hum. Mol. Genet. 2006, 15, 1437–1449. 

73. Cottrell, D.A.; Blakely, E.L.; Johnson, M.A.; Ince, P.G.; Borthwick, G.M.; Turnbull, D.M. 
Cytochrome c oxidase deficient cells accumulate in the hippocampus and choroid plexus with 
age. Neurobiol. Aging 2001, 22, 265–272. 

74. Chandrasekaran, K.; Hatanpää, K.; Rapoport, S.I.; Brady, D.R. Decreased expression of nuclear 
and mitochondrial DNA-encoded genes of oxidative phosphorylation in association neocortex in 
Alzheimer disease. Brain Res. Mol. Brain Res. 1997, 44, 99–104. 

75. Parker, W.D., Jr.; Filley, C.M.; Parks, J.K. Cytochrome oxidase deficiency in Alzheimer's 
disease. Neurology 1990, 40, 1302–1303. 

76. Curti, D.; Rognoni, F.; Gasparini, L.; Cattaneo, A.; Paolillo, M.; Racchi, M.; Zani, L.; Bianchetti, 
A.; Trabucchi, M.; Bergamaschi, S.; Govoni, S. Oxidative metabolism in cultured fibroblasts 
derived from sporadic Alzheimer's disease (AD) patients. Neurosci. Lett. 1997, 236, 13–16. 

77. Valla, J.; Schneider, L.; Niedzielko, T.; Coon, K.D.; Caselli, R.; Sabbagh, M.N.; Ahern, G.L.; 
Baxter, L.; Alexander, G.; Walker, D.G.; Reiman, E.M. Impaired platelet mitochondrial activity 
in Alzheimer's disease and mild cognitive impairment. Mitochondrion 2006, 6, 323–330. 

78. King, M.P.; Attardi, G. Human cells lacking mtDNA: Repopulation with exogenous 
mitochondria by complementation. Science 1989, 246, 500–503. 

79. Swerdlow, R.H.; Parks, J.K.; Cassarino, D.S.; Maguire, D.J.; Maguire, R.S.; Bennett, JP.Jr.; 
Davis, R.E.; Parker, W.D.Jr. Cybrids in Alzheimer's disease: A cellular model of the disease? 
Neurology 1997, 49, 918–925. 

80. Trimmer, P.A.; Keeney, P.M.; Borland, M.K.; Simon, F.A.; Almeida, J.; Swerdlow, R.H.; Parks, 
J.P.; Parker, W.D.Jr.; Bennett, J.P.Jr. Mitochondrial abnormalities in cybrid cell models of 
sporadic Alzheimer's disease worsen with passage in culture. Neurobiol. Dis. 2004, 15, 29–39. 

81. Cardoso, S.M.; Santana, I.; Swerdlow, R.H.; Oliveira, C.R. Mitochondria dysfunction of 
Alzheimer's disease cybrids enhances Abeta toxicity. J. Neurochem. 2004, 89, 1417–1426. 

82. Lin, M.T.; Simon, D.K.; Ahn, C.H.; Kim, L.M.; Beal, M.F. High aggregate burden of somatic 
mtDNA point mutations in aging and Alzheimer's disease brain. Hum. Mol. Genet. 2002, 11, 
133–145 

83. Swerdlow, R.H.; Khan, S.M. The Alzheimer's disease mitochondrial cascade hypothesis: An 
update. Exp. Neurol. 2009, 218, 308–315. 

84. Pyle, A.; Foltynie, T.; Tiangyou, W.; Lambert, C.; Keers, S.M.; Allcock, L.M.; Davison, J.; 
Lewis, S.J.; Perry, R.H.; Barker, R.; Burn, D.J.; Chinnery, P.F. Mitochondrial DNA haplogroup 
cluster UKJT reduces the risk of PD. Ann. Neurol. 2005, 57, 564–567. 

85. Edland, S.D.; Silverman, J.M.; Peskind, E.R.; Tsuang, D.; Wijsman, E.; Morris, J.C. Increased 
risk of dementia in mothers of Alzheimer's disease cases: Evidence for maternal inheritance. 
Neurology 1996, 47, 254–256 

86. Wolf, P.A.; Beiser, A.; Au, R.; Auerbach, S.; DeCarli, C. Neurology 2005, 64, 267–268. 
87. Davis, R.E.; Miller, S.; Herrnstadt, C.; Ghosh, S.S.; Fahy, E.; Shinobu, L.A.; Galasko, D.; Thal, 

L.J.; Beal, M.F.; Howell, N.; Parker, W.D., Jr. Mutations in mitochondrial cytochrome c oxidase 



Pharmaceuticals 2009, 2  
 

272

genes segregate with late-onset Alzheimer disease. Proc. Natl. Acad. Sci. USA 1997, 94, 4526–
4531. 

88. Elson, J.L.; Herrnstadt, C.; Preston, G.; Thal, L.; Morris, C.M.; Edwardson, J.A.; Beal, M.F.; 
Turnbull, D.M.; Howell, N. Does the mitochondrial genome play a role in the etiology of 
Alzheimer's disease? Hum. Genet. 2006, 119, 241–254. 

89. De la Monte, S.M.; Wands, J.R. Molecular indices of oxidative stress and mitochondrial 
dysfunction occur early and often progress with severity of Alzheimer's disease. J. Alzheimers 
Dis. 2006, 9, 167–181. 

90. Hirai, K.; Aliev, G.; Nunomura, A.; Fujioka, H.; Russell, R.L.; Atwood, C.S.; Johnson, A.B.; 
Kress, Y.; Vinters, H.V.; Tabaton, M.; Shimohama, S.; Cash, A.D.; Siedlak, S.L.; Harris, P.L.; 
Jones, P.K.; Petersen, R.B.; Perry, G.; Smith, M.A. Mitochondrial abnormalities in Alzheimer's 
disease. J. Neurosci. 2001, 21, 3017–3023. 

91. Moreira, P.I.; Siedlak, S.L.; Wang, X.; Santos, M.S.; Oliveira, C.R.; Tabaton, M.; Nunomura, A.; 
Szweda, L.I.; Aliev, G.; Smith, M.A.; Zhu, X.; Perry, G. Autophagocytosis of mitochondria is 
prominent in Alzheimer disease. J. Neuropathol. Exp. Neurol. 2007, 66, 525–532. 

92. Moreira, P.I.; Siedlak, S.L.; Wang, X.; Santos, M.S.; Oliveira, C.R.; Tabaton, M.; Nunomura, A.; 
Szweda, L.I.; Aliev, G.; Smith, M.A.; Zhu, X.; Perry, G. Increased autophagic degradation of 
mitochondria in Alzheimer disease. Autophagy 2007, 3, 614–615.  

93. Fukui, H.; Diaz, F.; Garcia, S.; Moraes, C.T. Cytochrome c oxidase deficiency in neurons 
decreases both oxidative stress and amyloid formation in a mouse model of Alzheimer's disease. 
Proc. Natl. Acad. Sci. USA 2007, 104, 14163–14168. 

94. Langston, J.W.; Ballard, P.; Tetrud, J.W.; Irwin, I. Chronic Parkinsonism in humans due to a 
product of meperidine-analog synthesis. Science 1983, 219, 979–980. 

95. Betarbet, R.; Sherer, T.B.; MacKenzie, G.; Garcia, O.M.; Panov, A.V.; Greenamyre, J.T. 
Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat. Neurosci. 
2000, 3, 1301–1306. 

96. Panov, A.; Dikalov, S.; Shalbuyeva, N.; Taylor, G.; Sherer, T.; Greenamyre, J.T. Rotenone 
model of Parkinson disease: Multiple brain mitochondria dysfunctions after short term systemic 
rotenone intoxication. J. Biol. Chem. 2005, 280, 42026–42035. 

97. Gu, M.; Cooper, J.M.; Taanman, J.W.; Schapira, A.H. Mitochondrial DNA transmission of the 
mitochondrial defect in Parkinson's disease. Ann. Neurol. 1998, 44, 177–186. 

98. Esteves, A.R.; Domingues, A.F.; Ferreira, I.L.; Januário, C.; Swerdlow, R.H.; Oliveira, C.R.; 
Cardoso, S.M. Mitochondrial function in Parkinson's disease cybrids containing an nt2 neuron-
like nuclear background. Mitochondrion 2008, 8, 219–228. 

99. Valente, E.M.; Abou S.P.M.; Caputo, V.; Muqit, M.M.; Harvey, K.; Gispert, S.; Ali, Z.; Del, D.; 
Bentivoglio, A.R.; Healy, D.G.; Albanese, A.; Nussbaum, R.; González M.R.; Deller, T.; Salvi, 
S.; Cortelli, P.; Gilks, W.P.; Latchman, D.S.; Harvey, R.J.; Dallapiccola, B.; Auburger, G.; 
Wood, N.W. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 
2004, 304, 1158–1160. 

100. Gautier, C.A.; Kitada, T.; Shen, J. Loss of PINK1 causes mitochondrial functional defects and 
increased sensitivity to oxidative stress. Proc. Natl. Acad. Sci. USA 2008, 105, 11364–11369. 



Pharmaceuticals 2009, 2  
 

273

101. Liu, W.; Vives, B.C.; Acín, P. R.; Yamamoto, A.; Tan, Y.; Li, Y.; Magrané, J.; Stavarache, 
M.A.; Shaffer, S.; Chang, S.; Kaplitt, M.G.; Huang, X.Y.; Beal, M.F.; Manfredi, G.; Li, C. 
PINK1 defect causes mitochondrial dysfunction, proteasomal deficit and alpha-synuclein 
aggregation in cell culture models of Parkinson's disease. PLoS One 2009, 4, 1–14. 

102. Bialecka, M.; Hui, S.; Klodowska, D.G.; Opala, G.; Tan, E.K.; Drozdzik, M. Analysis of LRRK 
2 G 2019 S and I 2020 T mutations in Parkinson's disease. Neurosci. Lett. 2005, 390, 1–3. 

103. Hernandez, D.; Paisan, R.C.; Crawley, A.; Malkani, R.; Werner, J.; Gwinn, H.K.; Dickson, D.; 
Wavrant Devrieze, F.; Hardy, J.; Singleton, A. The dardarin G 2019 S mutation is a common 
cause of Parkinson's disease but not other neurodegenerative diseases. Neurosci. Lett. 2005, 389, 
137–139. 

104. Moisoi, N.; Klupsch, K.; Fedele, V.; East, P.; Sharma, S.; Renton, A.; Plun, F.H.; Edwards, R.E.; 
Teismann, P.; Esposti, M.D.; Morrison, A.D.; Wood, N.W.; Downward, J.; Martins, L.M. 
Mitochondrial dysfunction triggered by loss of HtrA2 results in the activation of a brain-specific 
transcriptional stress response. Cell Death Differ. 2009, 16, 449–464.  

105. Strauss, K.M.; Martins, L.M.; Plun, F.H.; Marx, F.P.; Kautzmann, S.; Berg, D.; Gasser, T.; 
Wszolek, Z.; Müller, T.; Bornemann, A.; Wolburg, H.; Downward, J.; Riess, O.; Schulz, J.B.; 
Krüger, R. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. 
Hum. Mol. Genet. 2005, 14, 2099–2111.  

106. Song, D.D.; Shults, C.W.; Sisk, A.; Rockenstein, E.; Masliah, E. Enhanced substantia nigra 
mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. 
Exp. Neurol. 2004, 186, 158–172. 

107. Hsu, L.J.; Sagara, Y.; Arroyo, A.; Rockenstein, E.; Sisk, A.; Mallory, M.; Wong, J.; Takenouchi, 
T.; Hashimoto, M.; Masliah, E. Alpha-synuclein promotes mitochondrial deficit and oxidative 
stress. Am. J. Pathol. 2000, 157, 401–410. 

108. Devi, L.; Raghavendran, V.; Prabhu, B.M.; Avadhani, N.G.; Anandatheerthavarada, H.K. 
Mitochondrial import and accumulation of alpha-synuclein impair complex I in human 
dopaminergic neuronal cultures and Parkinson disease brain. J. Biol. Chem. 2008, 283,  
9089–9100. 

109. Dauer, W.; Kholodilov, N.; Vila, M.; Trillat, A.C.; Goodchild, R.; Larsen, K.E.; Staal, R.; Tieu, 
K.; Schmitz, Y.; Yuan, C.A.; Rocha, M.; Jackson, L.V.; Hersch, S.; Sulzer, D.; Przedborski, S.; 
Burke, R.; Hen, R. Resistance of alpha-synuclein null mice to the parkinsonian neurotoxin 
MPTP. Proc. Natl. Acad. Sci. USA 2002, 99, 14524–14529. 

110. Klivenyi, P.; Siwek, D.; Gardian, G.; Yang, L.; Starkov, A.; Cleren, C.; Ferrante, R.J.; Kowall, 
N.W.; Abeliovich, A.; Beal, M.F. Mice lacking alpha-synuclein are resistant to mitochondrial 
toxins. Neurobiol. Dis. 2006, 21, 541–548. 

111. Darios, F.; Corti, O.; Lücking, C.B.; Hampe, C.; Muriel, M.P.; Abbas, N.; Gu, W.J.; Hirsch, 
E.C.; Rooney, T.; Ruberg, M.; Brice, A. Parkin prevents mitochondrial swelling and cytochrome 
c release in mitochondria-dependent cell death. Hum. Mol. Genet 2003, 12, 517–526. 

112. Palacino, J.J.; Sagi, D.; Goldberg, M.S.; Krauss, S.; Motz, C.; Wacker, M.; Klose, J.; Shen, J. 
Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J. Biol. Chem. 2004, 
279, 18614–18622. 



Pharmaceuticals 2009, 2  
 

274

113. Kuroda, Y.; Mitsui, T.; Kunishige, M.; Shono, M.; Akaike, M.; Azuma, H.; Matsumoto, T. 
Parkin enhances mitochondrial biogenesis in proliferating cells. Hum. Mol. Genet. 2006, 15, 
883–895. 

114. Chung, K.K.; Dawson, V.L.; Dawson, T.M. New insights into Parkinson's disease. J. Neurol. 
2003, 250, 15–24. 

115. Whitworth, A.J.; Theodore, D.A.; Greene, J.C.; Benes, H.; Wes, P.D.; Pallanck, L.J. Increased 
glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of 
Parkinson's disease. Proc. Natl. Acad. Sci. USA 2005, 102, 8024–8029. 

116. Zhang, L.; Shimoji, M.; Thomas, B.; Moore, D.J.; Yu, S.W.; Marupudi, N.I.; Torp, R.; Torgner, 
I.A.; Ottersen, O.P.; Dawson, T.M.; Dawson, V.L. Mitochondrial localization of the Parkinson's 
disease related protein DJ-1: Implications for pathogenesis. Hum. Mol. Genet. 2005, 14,  
2063–2073. 

117. Takahashi, N.K.; Niki, T.; Taira, T.; Iguchi, A.S.M.; Ariga, H. Reduced anti-oxidative stress 
activities of DJ-1 mutants found in Parkinson's disease patients. Biochem. Biophys. Res. 
Commun. 2004, 320, 389–397. 

118. Li, H.M.; Niki, T.; Taira, T.; Iguchi, A.S.M.; Ariga, H. Association of DJ-1 with chaperones and 
enhanced association and colocalization with mitochondrial Hsp70 by oxidative stress. Free 
Radic. Res. 2005, 39, 1091–1099. 

119. Kim, R.H.; Smith, P.D.; Aleyasin, H.; Hayley, S.; Mount, M.P.; Pownall, S.; Wakeham, A.; You, 
T.A.J, Kalia, S.K.; Horne, P.; Westaway, D.; Lozano, A.M.; Anisman, H.; Park, D.S.; Mak, T.W. 
Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine 
(MPTP) and oxidative stress. Proc. Natl. Acad. Sci. USA 2005, 102, 5215–5220. 

120. Inden, M.; Taira, T.; Kitamura, Y.; Yanagida, T.; Tsuchiya, D.; Takata, K.; Yanagisawa, D.; 
Nishimura, K.; Taniguchi, T.; Kiso, Y.; Yoshimoto, K.; Agatsuma, T.; Koide, Y.S.; Iguchi 
A.S.M.; Shimohama, S.; Ariga, H. PARK7 DJ-1 protects against degeneration of nigral 
dopaminergic neurons in Parkinson's disease rat model. Neurobiol. Dis. 2006, 24, 144–158 

121. Andres M.E.; Perier, C.; Zhang, L.; Blanchard, F.B.; Greco, T.M.; Thomas, B.; Ko, H.S.; Sasaki, 
M.; Ischiropoulos, H.; Przedborski, S.; Dawson, T.M.; Dawson, V.L. DJ-1 gene deletion reveals 
that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc. Natl. Acad. Sci. USA 2007, 104, 
14807–14812. 

122. Nural, H.; He, P.; Beach, T.; Sue, L.; Xia, W.; Shen, Y. Dissembled DJ-1 high molecular weight 
complex in cortex mitochondria from Parkinson's disease patients. Mol. Neurodegener. 2009, 4, 
23:1–23:9. 

123. Yang, Y.; Gehrke, S.; Haque, M.E.; Imai, Y.; Kosek, J.; Yang, L.; Beal, M.F.; Nishimura, I.; 
Wakamatsu, K.; Ito, S.; Takahashi, R.; Lu, B. Inactivation of Drosophila DJ-1 leads to 
impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc. 
Natl. Acad. Sci. USA 2005, 102, 13670–13675. 

124. Kraytsberg, Y.; Kudryavtseva, E.; McKee, A.C.; Geula, C.; Kowall, N.W.; Khrapko, K. 
Mitochondrial DNA deletions are abundant and cause functional impairment in aged human 
substantia nigra neurons. Nat. Genet. 2006, 38, 518–520. 

125. Bender, A.; Krishnan, K.J.; Morris, C.M.; Taylor, G.A.; Reeve, A.K.; Perry, R.H.; Jaros, E.; 
Hersheson, J.S.; Betts, J.; Klopstock, T.; Taylor, R.W.; Turnbull, D.M. High levels of 



Pharmaceuticals 2009, 2  
 

275

mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat. 
Genet. 2006, 38, 515–517. 

126. Simon, D.K.; Pulst, S.M.; Sutton, J.P.; Browne, S.E.; Beal, M.F.; Johns, D.R. Familial 
multisystem degeneration with parkinsonism associated with the 11778 mitochondrial DNA 
mutation. Neurology 1999, 53, 1787–1793. 

127. Luoma, P.T.; Eerola, J.; Ahola, S.; Hakonen, A.H.; Hellström, O.; Kivistö, K.T.; Tienari, P.J.; 
Suomalainen, A. Mitochondrial DNA polymerase gamma variants in idiopathic sporadic 
Parkinson disease. Neurology 2007, 69, 1152–1159. 

128. Ekstrand, M.I.; Terzioglu, M.; Galter, D.; Zhu, S.; Hofstetter, C.; Lindqvist, E.; Thams, S.; 
Bergstrand, A.; Hansson, F.S.; Trifunovic, A.; Hoffer, B.; Cullheim, S.; Mohammed, A.H.; 
Olson, L.; Larsson, N.G. Progressive parkinsonism in mice with respiratory-chain-deficient 
dopamine neurons. Proc. Natl. Acad. Sci. USA 2007, 104, 1325–1330. 

129. Liang, C.L.; Wang, T.T.; Luby, P.K.; German, D.C. Mitochondria mass is low in mouse 
substantia nigra dopamine neurons: Implications for Parkinson's disease. Exp. Neurol. 2007, 203, 
370–380.  

130. Milakovic, T.; Johnson, G.V. Mitochondrial respiration and ATP production are significantly 
impaired in striatal cells expressing mutant huntingtin. J. Biol. Chem. 2005, 280, 30773–30782. 

131. Cui, L.; Jeong, H.; Borovecki, F.; Parkhurst, C.N.; Tanese, N.; Krainc, D. Transcriptional 
repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and 
neurodegeneration. Cell 2006, 127, 59–69. 

132. Díaz, H.M.; Hernández, F.; Martín, A.E.; Gómez, R.P.; Morán, M.A.; Castaño, J.G.; Ferrer, I.; 
Avila, J.; Lucas, J.J. Neuronal induction of the immunoproteasome in Huntington's disease. J. 
Neurosci. 2003, 23, 11653–11661. 

133. Bowman, A.B.; Yoo, S.Y.; Dantuma, N.P.; Zoghbi, H.Y. Neuronal dysfunction in a 
polyglutamine disease model occurs in the absence of ubiquitin-proteasome system impairment 
and inversely correlates with the degree of nuclear inclusion formation. Hum. Mol. Genet. 2005, 
14, 679–691. 

134. Maynard, C.J.; Böttcher, C.; Ortega, Z.; Smith, R.; Florea, B.I.; Díaz, H.M.; Brundin, P.; 
Overkleeft, H.S.; Li, J.Y.; Lucas, J.J.; Dantuma, N.P. Accumulation of ubiquitin conjugates in a 
polyglutamine disease model occurs without global ubiquitin/proteasome system impairment. 
Proc. Natl. Acad. Sci. USA 2009, 106, 13986–13991. 

135. Jenkins, B.G.; Koroshetz, W.J.; Beal, M.F.; Rosen, B.R. Evidence for impairment of energy 
metabolism in vivo in Huntington's disease using localized 1H NMR spectroscopy. Neurology 
1993, 43, 2689–2695. 

136. Kuhl, D.E.; Phelps, M.E.; Markham, C.H.; Metter, E.J.; Riege, W.H.; Winter, J. Cerebral 
metabolism and atrophy in Huntington's disease determined by 18FDG and computed 
tomographic scan. Ann. Neurol. 1982, 12, 425–434. 

137. Kuhl, D.E.; Metter, E.J.; Riege, W.H.; Markham, C.H. Patterns of cerebral glucose utilization in 
Parkinson's disease and Huntington's disease. Ann. Neurol. 1984, 15, 119–125 

138. Parker, W.D.Jr.; Boyson, S.J.; Luder, A.S.; Parks, J.K. Evidence for a defect in NADH: 
Ubiquinone oxidoreductase (complex I) in Huntington's disease. Neurology 1990, 40, 1231–
1234. 



Pharmaceuticals 2009, 2  
 

276

139. Gu, M.; Gash, M.T.; Mann, V.M.; Javoy, A.F.; Cooper, J.M; Schapira, A.H. Mitochondrial 
defect in Huntington's disease caudate nucleus. Ann. Neurol. 1996, 39, 385–389. 

140. Browne, S.E.; Bowling, A.C; MacGarvey, U.; Baik, M.J.; Berger, S.C.; Muqit, M.M.; Bird, E.D.; 
Beal, M.F. Oxidative damage and metabolic dysfunction in Huntington's disease: Selective 
vulnerability of the basal ganglia. Ann. Neurol. 1997, 41, 646–653. 

141. Benchoua, A.; Trioulier, Y.; Zala, D.; Gaillard, M.C.; Lefort, N.; Dufour, N.; Saudou, F.; 
Elalouf, J.M.; Hirsch, E.; Hantraye, P.; Déglon, N.; Brouillet, E. Involvement of mitochondrial 
complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin. 
Mol. Biol. Cell 2006, 17, 1652–1663. 

142. Guidetti, P.; Charles, V.; Chen, E.Y.; Reddy, P.H.; Kordower, J.H.; Whetsell, W.O.Jr.; 
Schwarcz, R.; Tagle, D.A. Early degenerative changes in transgenic mice expressing mutant 
huntingtin involve dendritic abnormalities but no impairment of mitochondrial energy 
production. Exp. Neurol. 2001, 169, 340–350. 

143. Panov, A.V.; Gutekunst, C.A.; Leavitt, B.R.; Hayden, M.R.; Burke, J.R.; Strittmatter, W.J.; 
Greenamyre, J.T. Early mitochondrial calcium defects in Huntington's disease are a direct effect 
of polyglutamines. Nat. Neurosci. 2002, 5, 731–736. 

144. Moreno, S.R. Regulation of oxidative phosphorylation in mitochondria by external free Ca2+ 
concentrations. J. Biol. Chem. 1985, 260, 4028–4034. 

145. Luthi, C.R.; Strand, A.D.; Hanson, S.A.; Kooperberg, C.; Schilling, G.; La Spada, A.R.; Merry, 
D.E.; Young, A.B.; Ross, C.A.; Borchelt, D.R.; Olson, J.M. Polyglutamine and transcription: 
Gene expression changes shared by DRPLA and Huntington's disease mouse models reveal 
context-independent effects. Hum. Mol. Genet. 2002, 11, 1927–1937. 

146. Sugars, K.L.; Rubinsztein, D.C.  Transcriptional abnormalities in Huntington disease.  Trends 
Genet. 2003, 19, 233–238. 

147. Bae, B.I.; Xu, H.; Igarashi, S.; Fujimuro, M.; Agrawal, N.; Taya, Y.; Hayward, S.D.; Moran, 
T.H.; Montell, C.; Ross, C.A.; Snyder, S.H.; Sawa, A.  p53 mediates cellular dysfunction and 
behavioral abnormalities in Huntington's disease. Neuron 2005, 47, 29–41. 

148. Kiaei, M. Peroxisome Proliferator-Activated Receptor-gamma in Amyotrophic Lateral Sclerosis 
and Huntington's Disease. PPAR Res. 2008, 2008, 1–8. 

149. Sasaki, S.; Iwata, M.  Impairment of fast axonal transport in the proximal axons of anterior horn 
neurons in amyotrophic lateral sclerosis. Neurology 1996, 47, 535–540. 

150. Higgins, C.M.; Jung, C.; Xu, Z.  ALS-associated mutant SOD1G93A causes mitochondrial 
vacuolation by expansion of the intermembrane space and by involvement of SOD1 aggregation 
and peroxisomes. BMC Neurosci. 2003, 4, 1–14. 

151. Jaarsma, D.; Rognoni, F.; Van, D.W.; Verspaget, H.W.; Haasdijk, E.D.; Holstege, J.C.  CuZn 
superoxide dismutase (SOD1) accumulates in vacuolated mitochondria in transgenic mice 
expressing amyotrophic lateral sclerosis-linked SOD1 mutations. Acta Neuropathol. 2001, 102, 
293–305. 

152. Liu, J.; Lillo, C.; Jonsson, P.A.; Vande, V.C.; Ward, C.M.; Miller, T.M.; Subramaniam, J.R.; 
Rothstein, J.D.; Marklund, S.; Andersen, P.M.; Brännström, T.; Gredal, O.; Wong, P.C.; 
Williams, D.S.; Cleveland, D.W. Toxicity of familial ALS-linked SOD1 mutants from selective 
recruitment to spinal mitochondria. Neuron 2004, 43, 5–17. 



Pharmaceuticals 2009, 2  
 

277

153. Sasaki, S.; Warita, H.; Murakami, T.; Abe, K.; Iwata, M. Ultrastructural study of mitochondria in 
the spinal cord of transgenic mice with a G93A mutant SOD1 gene.  Acta Neuropathol. 2004, 
107, 461–474. 

154. Mattiazzi, M.; D'Aurelio, M.; Gajewski, C.D.; Martushova, K.; Kiaei, M.; Beal, M.F.; Manfredi, 
G.  Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of 
transgenic mice. J. Biol. Chem. 2002, 277, 29626–29633. 

155. Damiano, M.; Starkov, A.A.; Petri, S.; Kipiani, K.; Kiaei, M.; Mattiazzi, M.; Flint, B.M.; 
Manfredi, G. Neural mitochondrial Ca2+ capacity impairment precedes the onset of motor 
symptoms in G93A Cu/Zn-superoxide dismutase mutant mice. J. Neurochem. 2006, 96,  
1349–1361. 

156. Nguyen, K.T.; García C.L.E.; Barrett, J.N.; Barrett, E.F.; David, G.  The Psi(m) depolarization 
that accompanies mitochondrial Ca2+ uptake is greater in mutant SOD1 than in wild-type mouse 
motor terminals. Proc. Natl. Acad. Sci. USA 2009, 106, 2007–2011. 

157. De Vos, K.J.; Chapman, A.L.; Tennant, M.E.; Manser, C.; Tudor, E.L.; Lau, K.F.; Brownlees, J.; 
Ackerley, S.; Shaw, P.J.; McLoughlin, D.M.; Shaw, C.E.; Leigh, P.N.; Miller, C.C.; Grierson, 
A.J. Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to 
reduce axonal mitochondria content. Hum. Mol. Genet. 2007, 16, 2720–2728. 

158. Vande, V.C.; Miller, T.M.; Cashman, N.R.; Cleveland, D.W. Selective association of misfolded 
ALS-linked mutant SOD1 with the cytoplasmic face of mitochondria. Proc. Natl. Acad. Sci. USA 
2008, 105, 4022–4027. 

159. Pasinelli, P.; Belford, M.E.; Lennon, N.; Bacskai, B.J.; Hyman, B.T.; Trotti, D.; Brown, R.H., Jr. 
Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in 
spinal cord mitochondria. Neuron 2004, 43, 19–30. 

160. Takeuchi, H.; Kobayashi, Y.; Ishigaki, S.; Doyu, M.; Sobue, G. Mitochondrial localization of 
mutant superoxide dismutase 1 triggers caspase-dependent cell death in a cellular model of 
familial amyotrophic lateral sclerosis. J Biol Chem 2002, 277, 50966–50972. 

161. Havrankova, J.; Schmechel, D.; Roth, J.; Brownstein, M. Identification of insulin in rat brain. 
Proc. Natl. Acad. Sci. USA 1978, 75, 5737–5741 

162. Devaskar ,S.U.; Giddings, S.J.; Rajakumar, P.A.; Carnaghi, L.R.; Menon, R.K.; Zahm, D.S. 
Insulin gene expression and insulin synthesis in mammalian neuronal cells. J. Biol. Chem. 1994, 
269, 8445–8454. 

163. Schechter, R.; Holtzclaw, L.; Sadiq, F.; Kahn, A.; Devaskar, S. Insulin synthesis by isolated 
rabbit neurons. Endocrinology 1988, 123, 505–513. 

164. Havrankova, J.; Roth, J.; Brownstein, M. Insulin receptors are widely distributed in th central 
nervous system of the rat. Nature 1978, 272, 827–829. 

165. Havrankova, J.; Roth, J.; Brownstein, M.J. Concentrations of insulin and insulin receptors in the 
brain are independent of peripheral insulin levels. Studies of obese and streptozotocin-treated 
rodents. J. Clin. Invest. 1979, 64, 636–642. 

166. Plum, L.; Schubert, M.; Brüning, J.C. The role of insulin receptor signaling in the brain. Trends 
Endocrinol. Metab. 2005, 16, 59–65. 

167. Zhao, W.Q.; Alkon, D.L. Role of insulin and insulin receptor in learning and memory. Mol. Cell 
Endocrinol. 2001, 177, 125–134. 



Pharmaceuticals 2009, 2  
 

278

168. Cole, A.R.; Astell, A.; Green, C.; Sutherland, C. Molecular connexions between dementia and 
diabetes. Neurosci. Biobehav. Rev. 2007, 31, 1046–1063. 

169. Rodgers, E.E.; Theibert, A.B. Functions of PI 3-kinase in development of the nervous system. 
Int. J. Dev. Neurosci. 2002, 20, 187–197. 

170. Gerozissis, K. Brain insulin, energy and glucose homeostasis; genes, environment and metabolic 
pathologies. Eur. J. Pharmacol. 2008, 585, 38–49. 

171. Wine, R.N.; McPherson, C.A.; Harry, G.J. IGF-1 and pAKT Signaling Promote Hippocampal 
CA1 Neuronal Survival Following Injury to Dentate Granule Cells. Neurotox. Res. 2009, 16, 
280–292. 

172. Bondy, C.A.; Cheng, C.M. Signaling by insulin-like growth factor 1 in brain. Eur. J. Pharmacol. 
2004, 490, 25–31. 

173. Gasparini, L.; Netzer, W.J.; Greengard, P.; Xu, H. Does insulin dysfunction play a role in 
Alzheimer's disease? Trends Pharmacol. Sci. 2002, 23, 288–293. 

174. Hong, M.; Lee, V.M. Insulin and insulin-like growth factor-1 regulate tau phosphorylation in 
cultured human neurons. J. Biol. Chem. 1997, 272, 19547–19553. 

175. Blüher, M.; Kahn, B.B.; Kahn, C.R. Extended longevity in mice lacking the insulin receptor in 
adipose tissue. Science 2003, 299, 572–574. 

176. Holzenberger, M.; Dupont, J.; Ducos, B.; Leneuve, P.; Géloën, A.; Even, P.C.; Cervera, P.; Le, 
B.Y. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 2003, 
421, 182–187. 

177. Morley, J.F.; Brignull, H.R.; Weyers, J.J.; Morimoto, R.I. The threshold for polyglutamine-
expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in 
Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2002, 99, 10417–10422. 

178. Cohen, E.; Bieschke, J.; Perciavalle, R.M.; Kelly, J.W.; Dillin, A. Opposing activities protect 
against age onset proteotoxicity. Science 2006, 313, 1604–1610. 

179. Freude, S.; Hettich, M.M.; Schumann, C.; Stöhr, O.; Koch, L.; Köhler, C.; Udelhoven, M.; 
Leeser, U.; Müller, M.; Kubota, N.; Kadowaki, T.; Krone, W.; Schröder, H.; Brüning, J.C.; 
Schubert ,M. Neuronal IGF-1 resistance reduces Abeta accumulation and protects against 
premature death in a model of Alzheimer's disease. FASEB J. 2009, 23, 3315–3324. 

180. Selcher, J.C.; Atkins, C.M.; Trzaskos, J.M.; Paylor, R.; Sweatt, J.D. A necessity for MAP kinase 
activation in mammalian spatial learning. Learn. Mem. 1999, 6, 478–490. 

181. Atkins, C.M.; Selcher, J.C.; Petraitis, J.J.; Trzaskos, J.M.; Sweatt, J.D. The MAPK cascade is 
required for mammalian associative learning. Nat. Neurosci. 1998, 1, 602–609. 

182. Toyoda, H.; Zhao, M.G.; Xu, H.; Wu, L.J.; Ren, M.; Zhuo, M. Requirement of extracellular 
signal-regulated kinase/mitogen-activated protein kinase for long-term potentiation in adult 
mouse anterior cingulate cortex. Mol. Pain 2007, 3, 1–15. 

183. Ito, I.A.; Kakegawa, W.; Yuzaki, M. ERK1/2 but not p38 MAP kinase is essential for the long-
term depression in mouse cerebellar slices. Eur. J. Neurosci. 2006, 24, 1617–1622. 

184. Zhao, W.; Chen, H.; Xu, H.; Moore, E.; Meiri, N.; Quon, M.J.; Alkon, D.L. Brain insulin 
receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, 
and signaling molecules in the hippocampus of water maze trained rats. J. Biol. Chem. 1999, 
274, 34893–34902. 



Pharmaceuticals 2009, 2  
 

279

185. Park, C.R.; Seeley, R.J.; Craft, S.; Woods, S.C. Intracerebroventricular insulin enhances memory 
in a passive-avoidance task. Physiol. Behav. 2000, 68, 509–514. 

186. Babri, S.; Badie, H.G.; Khamenei, S.; Seyedlar, M.O. Intrahippocampal insulin improves 
memory in a passive-avoidance task in male wistar rats. Brain Cogn. 2007, 64, 86–91. 

187. Craft, S.; Asthana, S.; Newcomer, J.W.; Wilkinson, C.W.; Matos, I.T.; Baker, L.D.; Cherrier, M.; 
Lofgreen, C.; Latendresse, S.; Petrova, A.; Plymate, S.; Raskind, M.; Grimwood, K.; Veith, R.C. 
Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. 
Arch. Gen. Psychiatry 1999, 56, 1135–1140. 

188. Fehm, H.L.; Perras, B.; Smolnik, R.; Kern, W.; Born, J. Manipulating neuropeptidergic pathways 
in humans: A novel approach to neuropharmacology? Eur. J. Pharmacol. 2000, 405, 43–54. 

189. Benedict, C.; Hallschmid, M.; Hatke, A.; Schultes, B.; Fehm, H.L.; Born, J.; Kern, W. Intranasal 
insulin improves memory in humans. Psychoneuroendocrinology 2004, 29, 1326–1334. 

190. Benedict, C.; Hallschmid, M.; Schultes, B.; Born, J.; Kern, W. Intranasal insulin to improve 
memory function in humans. Neuroendocrinology 2007, 86, 136–142. 

191. Nelson, T.J.; Sun, M.K.; Hongpaisan, J.; Alkon, D.L. Insulin, PKC signaling pathways and 
synaptic remodeling during memory storage and neuronal repair. Eur. J. Pharmacol. 2008, 585, 
76–87. 

192. Craft, S.; Watson, G.S.  Insulin and neurodegenerative disease: Shared and specific mechanisms. 
Lancet Neurol. 2004, 3, 169–178. 

193. Raizada, M.K.; Shemer, J.; Judkins, J.H.; Clarke, D.W.; Masters, B.A.; LeRoith, D. Insulin 
receptors in the brain: Structural and physiological characterization. Neurochem. Res. 1988, 13, 
297–303. 

194. Wilcox, B.J.; Matsumoto, A.M.; Dorsa, D.M.; Baskin, D.G. Reduction of insulin binding in the 
arcuate nucleus of the rat hypothalamus after 6-hydroxydopamine treatment. Brain Res. 1989, 
500, 149–155. 

195. Figlewicz, D.P.; Patterson, T.A.; Zavosh, A.; Brot, M.D.; Roitman, M.; Szot, P. Neurotransmitter 
transporters: Target for endocrine regulation. Horm. Metab. Res. 1999, 31, 335–339. 

196. Kovacs, P.; Hajnal, A. In vivo electrophysiological effects of insulin in the rat brain. 
Neuropeptides 2009, 43, 283–293. 

197. Joseph, A.; Antony, S.; Paulose, C.S. Increased glutamate receptor gene expression in the 
cerebral cortex of insulin induced hypoglycemic and streptozotocin-induced diabetic rats. 
Neuroscience 2008, 156, 298–304. 

198. Zheng, W.H.; Quirion, R. Glutamate acting on N-methyl-D-aspartate receptors attenuates 
insulin-like growth factor-1 receptor tyrosine phosphorylation and its survival signaling 
properties in rat hippocampal neurons. J. Biol. Chem. 2009, 284, 855–861. 

199. De la Monte, S.M. Insulin resistance and Alzheimer's disease. BMB Rep. 2009, 42, 475–481. 
200. Ristow, M.  Neurodegenerative disorders associated with diabetes mellitus.  J. Mol. Med. 2004, 

82, 510–529. 
201. Cole, G.M.; Frautschy, S.A. The role of insulin and neurotrophic factor signaling in brain aging 

and Alzheimer's Disease. Exp. Gerontol. 2007, 42, 10–21. 
202. Cook, D.G.; Leverenz, J.B.; McMillan, P.J.; Kulstad, J.J.; Ericksen, S.; Roth, R.A.; Schellenberg, 

G.D.; Jin, L.W.; Kovacina, K.S.; Craft, S.  Reduced hippocampal insulin-degrading enzyme in 



Pharmaceuticals 2009, 2  
 

280

late-onset Alzheimer's disease is associated with the apolipoprotein E-epsilon4 allele.  Am. J. 
Pathol. 2003, 162, 313–319. 

203. Leissring, M.A.; Farris, W.; Chang, A.Y.; Walsh, D.M.; Wu, X.; Sun, X.; Frosch, M.P.; Selkoe, 
D.J. Enhanced proteolysis of beta amyloid in APP transgenic mice prevents plaque formation, 
secondary pathology, and premature death. Neuron 2003, 40, 1087–1093. 

204. Qiu, W.Q.; Ye, Z.; Kholodenko, D.; Seubert, P.; Selkoe, D.J. Degradation of amyloid beta-
protein by a metalloprotease secreted by microglia and other neural and non-neural cells. J. Biol. 
Chem. 1997, 272, 6641–6646. 

205. Ho, L.; Qin, W.; Pompl, P.N.; Xiang, Z.; Wang, J.; Zhao, Z.; Peng, Y.; Cambareri, G.; Rocher, 
A.; Mobbs, C.V.; Hof, P.R.; Pasinetti, G.M. Diet-induced insulin resistance promotes 
amyloidosis in a transgenic mouse model of Alzheimer's disease. FASEB J. 2004, 18, 902–904. 

206. Martín, D.; Salinas, M.; López, V.R.; Serrano, E.; Recuero, M.; Cuadrado, A. Effect of the 
Alzheimer amyloid fragment Abeta(25-35) on Akt/PKB kinase and survival of PC12 cells. J. 
Neurochem. 2001, 78, 1000–1008. 

207. Lee, H.K.; Kumar, P.; Fu, Q.; Rosen, K.M.; Querfurth, H.W. The insulin/Akt signaling pathway 
is targeted by intracellular beta-amyloid. Mol. Biol. Cell 2009, 20, 1533–1544. 

208. Leroy, K.; Boutajangout, A.; Authelet, M.; Woodgett, J.R.; Anderton, B.H.; Brion, J.P. The 
active form of glycogen synthase kinase-3beta is associated with granulovacuolar degeneration 
in neurons in Alzheimer's disease. Acta Neuropathol. 2002, 103, 91–99. 

209. Lucas, J.J.; Hernández, F.; Gómez, R.P.; Morán, M.A.; Hen, R.; Avila, J. Decreased nuclear 
beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional 
transgenic mice. EMBO J. 2001, 20, 27–39. 

210. Salkovic, P.M.; Tribl, F.; Schmidt, M.; Hoyer, S.; Riederer, P. Alzheimer-like changes in protein 
kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to 
the insulin signalling pathway. J. Neurochem. 2006, 96, 1005–1015. 

211. Grünblatt, E.; Salkovic, P.M.; Osmanovic, J.; Riederer, P.; Hoyer, S. Brain insulin system 
dysfunction in streptozotocin intracerebroventricularly treated rats generates 
hyperphosphorylated tau protein. J. Neurochem. 2007, 101, 757–770. 

212. Hong, M.; Lee, V.M. Insulin and insulin-like growth factor-1 regulate tau phosphorylation in 
cultured human neurons. J. Biol. Chem. 1997, 272, 19547–19553. 

213. Peila, R.; Rodriguez, B.L.; Launer, L.J. Honolulu-Asia Aging Study. Type 2 diabetes, APOE 
gene, and the risk for dementia and related pathologies: The Honolulu-Asia Aging Study. 
Diabetes 2002, 51, 1256–1262. 

214. Haass, C., Selkoe, D.J. Soluble protein oligomers in neurodegeneration: Lessons from the 
Alzheimer's amyloid beta-peptide. Nat. Rev. Mol. Cell Biol. 2007, 8, 101–112. 

215. De Felice, F.G.; Vieira, M.N.; Bomfim, T.R.; Decker, H.; Velasco, P.T.; Lambert, M.P.; Viola, 
K.L.; Zhao, W.Q.; Ferreira, S.T.; Klein, W.L. Protection of synapses against Alzheimer’s-linked 
toxins: Insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc. Natl. Acad. 
Sci. USA 2009, 106, 1971–1976. 

216. Steen, E.; Terry, B.M.; Rivera, E.J.; Cannon, J.L.; Neely, T.R.; Tavares, R.; Xu, X.J.; Wands, 
J.R.; De la M.S.M. Impaired insulin and insulin-like growth factor expression and signaling 
mechanisms in Alzheimer's disease—Is this type 3 diabetes? J. Alzheimers Dis. 2005, 7, 63–80. 



Pharmaceuticals 2009, 2  
 

281

217. Sandyk, R. The relationship between diabetes mellitus and Parkinson's disease. Int. J. Neurosci. 
1993, 69, 125–130. 

218. Schwab, R.S. Progression and prognosis in Parkinson's disease. J. Nerv. Ment. Dis. 1960, 130, 
556–566. 

219. Moroo, I.; Yamada,T.; Makino,H.; Tooyama, I.; McGeer, P.L.; McGeer, E.G.; Hirayama, K. 
Loss of insulin receptor immunoreactivity from the substantia nigra pars compacta neurons in 
Parkinson's disease. Acta Neuropathol. 1994, 87, 343–348. 

220. Luo, S.; Liang, Y.; Cincotta, A.H. Intracerebroventricular administration of bromocriptine 
ameliorates the insulin-resistant/glucose-intolerant state in hamsters. Neuroendocrinology 1999, 
69, 160–166. 

221. Figlewicz, D.P.; Szot, P.; Chavez, M.; Woods, S.C.; Veith, R.C. Intraventricular insulin increases 
dopamine transporter mRNA in rat VTA/substantia nigra. Brain Res. 1994, 644, 331–334. 

222. Figlewicz, D.P.; Brot, M.D.; McCall, A.L.; Szot, P. Diabetes causes differential changes in CNS 
noradrenergic and dopaminergic neurons in the rat: A molecular study. Brain Res. 1996, 736, 
54–60. 

223. Murzi, E.; Contreras, Q.; Teneud, L.; Valecillos, B.; Parada, M.A.; De Parada, M.P.; Hernandez, 
L. Diabetes decreases limbic extracellular dopamine in rats. Neurosci. Lett. 1996, 202, 141–144. 

224. Park, C.R. Cognitive effects of insulin in the central nervous system. Neurosci. Biobehav. Rev. 
2001, 25, 311–323. 

225. Farrer, L.A. Diabetes mellitus in Huntington disease. Clin. Genet. 1985, 27, 62–67. 
226. Podolsky, S.; Leopold, N.A. Abnormal glucose tolerance and arginine tolerance tests in 

Huntington's disease. Gerontology 1977, 23, 55–63. 
227. Lalić, N.M.; Marić, J.; Svetel, M.; Jotić, A.; Stefanova, E.; Lalić, K.; Dragasević, N.; Milicić, T.; 

Lukić, L.; Kostić, V.S. Glucose homeostasis in Huntington disease: Abnormalities in insulin 
sensitivity and early-phase insulin secretion. Arch. Neurol. 2008, 65, 476–480. 

228. Humbert, S.; Bryson, E.A.; Cordelières, F.P.; Connors, N.C.; Datta, S.R.; Finkbeiner, S.; 
Greenberg, M.E.; Saudou, F. The IGF-1/Akt pathway is neuroprotective in Huntington's disease 
and involves Huntingtin phosphorylation by Akt. Dev. Cell. 2002, 2, 831–837. 

229. Yamamoto, A.; Cremona, M.L.; Rothman, J.E. Autophagy-mediated clearance of huntingtin 
aggregates triggered by the insulin-signaling pathway. J. Cell Biol. 2006, 172, 719–731. 

230. Colin, E.; Régulier, E.; Perrin, V.; Dürr, A.; Brice, A.; Aebischer, P.; Déglon, N.; Humbert, S.; 
Saudou, F. Akt is altered in an animal model of Huntington's disease and in patients. Eur. J. 
Neurosci. 2005, 21, 1478–1488. 

231. Pradat, P.F.; Bruneteau, G.; Gordon, P.H.; Dupuis, L.; Bonnefont, R.D.; Simon, D.; Salachas, F.; 
Corcia, P.; Frochot, V.; Lacorte, J.M.; Jardel, C.; Coussieu, C.; Forestier, N.L.; Lacomblez, L.; 
Loeffler, J.P.; Meininger, V. Impaired glucose tolerance in patients with amyotrophic lateral 
sclerosis. Amyotroph. Lateral. Scler. 2009, 1–6. 

232. Vincent, A.M.; Mobley, B.C.; Hiller, A.; Feldman, E.L. IGF-I prevents glutamate-induced motor 
neuron programmed cell death. Neurobiol. Dis. 2004, 16, 407–416. 

233. Kaspar, B.K.; Lladó, J.; Sherkat, N.; Rothstein, J.D.; Gage, F.H. Retrograde viral delivery of 
IGF-1 prolongs survival in a mouse ALS model. Science. 2003, 301, 839–842. 



Pharmaceuticals 2009, 2  
 

282

234. Papaconstantinou, J. Insulin/IGF-1 and ROS signaling pathway cross-talk in aging and longevity 
determination. Mol. Cell Endocrinol. 2009, 299, 89–100. 

235. De la M.S.M.; Wands, J.R. Review of insulin and insulin-like growth factor expression, 
signaling, and malfunction in the central nervous system: Relevance to Alzheimer's disease. J. 
Alzheimers Dis. 2005, 7, 45–61. 

236. Puche, J.E.; García F.M.; Muntané, J.; Rioja, J.; González, B.S.; Castilla, C.I. Low doses of 
insulin-like growth factor-I induce mitochondrial protection in aging rats. Endocrinology 2008, 
149, 2620–2627. 

237. Moreira, P.I.; Santos, M.S.; Sena, C.; Seiça, R.; Oliveira, C.R.  Insulin protects against amyloid 
beta-peptide toxicity in brain mitochondria of diabetic rats. Neurobiol. Dis. 2005, 18, 628–637. 

238. Moreira, P.I.; Rolo, A.P.; Sena, C.; Seiça, R.; Oliveira, C.R.; Santos, M.S. Insulin attenuates 
diabetes-related mitochondrial alterations: A comparative study. Med. Chem. 2006, 2, 299–308. 

239. Sanderson, T.H.; Kumar, R.; Sullivan, J.M.; Krause, G.S. Insulin blocks cytochrome c release in 
the reperfused brain through PI3-K signaling and by promoting Bax/Bcl-XL binding. J. 
Neurochem. 2008, 106, 1248–1258. 

240. Bijur, G.N.; Jope, R.S. Rapid accumulation of Akt in mitochondria following 
phosphatidylinositol 3-kinase activation. J. Neurochem. 2003, 87, 1427–1435. 

241. Feinstein, D.L. Therapeutic potential of peroxisome proliferator-activated receptor agonists for 
neurological disease. Diabetes Technol. Ther. 2003, 5, 67–73. 

242. Correia, S.; Carvalho, C.; Santos, M.S.; Seiça, R.; Oliveira, C.R.; Moreira, P.I. Mechanisms of 
action of metformin in type 2 diabetes and associated complications: An overview. Mini Rev. 
Med. Chem. 2008, 8, 1343–1354. 

243. Forman, B.M.; Tontonoz, P.; Chen, J.; Brun, R.P.; Spiegelman, B.M.; Evans, R.M. 15-Deoxy-
delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. 
Cell 1995, 83, 803–812. 

244. Kliewer, S.A.; Lenhard, J.M.; Willson, T.M.; Patel, I.; Morris, D.C.; Lehmann, J.M. A 
prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and 
promotes adipocyte differentiation. Cell 1995, 83, 813–819. 

245. Baker, P.R.; Lin, Y.; Schopfer, F.J.; Woodcock, S.R.; Groeger, A.L.; Batthyany, C.; Sweeney, 
S.; Long, M.H.; Iles, K.E.; Baker, L.M.; Branchaud, B.P.; Chen, Y.E.; Freeman, B.A. Fatty acid 
transduction of nitric oxide signaling: Multiple nitrated unsaturated fatty acid derivatives exist in 
human blood and urine and serve as endogenous peroxisome proliferator-activated receptor 
ligands. J. Biol. Chem. 2005, 280, 42464–42475. 

246. Combs, C.K.; Johnson, D.E.; Karlo, J.C.; Cannady, S.B.; Landreth, G.E. Inflammatory 
mechanisms in Alzheimer's disease: Inhibition of beta-amyloid-stimulated proinflammatory 
responses and neurotoxicity by PPARgamma agonists. J. Neurosci. 2000, 20, 558–567. 

247. Storer, P.D.; Xu, J.; Chavis, J.; Drew, P.D. Peroxisome proliferator-activated receptor-gamma 
agonists inhibit the activation of microglia and astrocytes: Implications for multiple sclerosis. J. 
Neuroimmunol. 2005, 161, 113–122. 

248. Xu, J.; Storer, P.D.; Chavis, J.A.; Racke, M.K.; Drew, P.D. Agonists for the peroxisome 
proliferator-activated receptor-alpha and the retinoid X receptor inhibit inflammatory responses 
of microglia. J. Neurosci. Res. 2005, 81, 403–411. 



Pharmaceuticals 2009, 2  
 

283

249. Heneka, M.T.; Feinstein, D.L.; Galea, E.; Gleichmann, M.; Wüllner, U.; Klockgether, T. 
Peroxisome proliferator-activated receptor gamma agonists protect cerebellar granule cells from 
cytokine-induced apoptotic cell death by inhibition of inducible nitric oxide synthase. J. 
Neuroimmunol. 1999, 100, 156–168. 

250. Zhao, X.; Ou, Z.; Grotta, J.C.; Waxham, N.; Aronowski, J. Peroxisome-proliferator-activated 
receptor-gamma (PPARγ) activation protects neurons from NMDA excitotoxicity. Brain 
Research 2006, 1073/1074, 460–469. 

251. Wang, Y.L.; Frauwirth, K.A.; Rangwala, S.M.; Lazar, M.A.; Thompson, C.B. Thiazolidinedione 
Activation of Peroxisome Proliferator-activated Receptor γ Can Enhance Mitochondrial Potential 
and Promote Cell Survival. J. Biol.Chem. 2002, 277, 31781–31788. 

252. Fuenzalida, K.; Quintanilla, R.; Ramos, P.; Piderit, D., Fuentealba, R.A.; Martinez, G.; Inestrosa, 
N.C.; Bronfman, M. Peroxisome Proliferator-activated Receptor γ Up-regulates the Bcl-2 Anti-
apoptotic Protein in Neurons and Induces Mitochondrial Stabilization and Protection against 
Oxidative Stress and Apoptosis. J. Biol.Chem. 2007, 282, 37006–37015.  

253. Wu, J.S.; Lin, T.N.; Wu, K.K. Rosiglitazone and PPAR-gamma overexpression protect 
mitochondrial membrane potential and prevent apoptosis by upregulating anti-apoptotic Bcl-2 
family proteins. J. Cell Physiol. 2009, 220, 58–71. 

254. Ghosh, S.; Patel, N.; Rahn, D.; McAllister, J.; Sadeghi, S.; Horwitz, G.; Berry, D.; Wang, K.X.; 
Swerdlow, R.H. The Thiazolidinedione Pioglitazone Alters Mitochondrial Function in Human 
Neuron-Like Cells. Mol. Pharmacol. 2007, 71, 1695–1702. 

255. Heneka, M.T.; Sastre, M.; Dumitrescu, O.L.; Hanke, A.; Dewachter, I.; Kuiperi, C.; O'Banion, 
K.; Klockgether, T.; Van Leuven, F.; Landreth, G.E. Acute treatment with the PPARgamma 
agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in 
APPV717I transgenic mice. Brain 2005, 128, 1442–1453.  

256. Bernardo, A.; Minghetti, L. PPAR-gamma agonists as regulators of microglial activation and 
brain inflammation. Curr. Pharm. Des. 2006, 12, 93–109. 

257. Heneka, M.T.; Landreth, G.E. PPARs in the brain. Biochim. Biophys. Acta 2007, 1771,  
1031–1045. 

258. Yan, Q.; Zhang, J.; Liu, H.; Babu, K.S.; Vassar, R.; Biere, A.L.; Citron, M.; Landreth, G. Anti-
inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of 
Alzheimer's disease. J. Neurosci. 2003, 23, 7504–7509. 

259. Sastre, M.; Dewachter, I.; Landreth, G.E.; Willson, T.M.; Klockgether, T.; van Leuven, F.; 
Heneka, M.T. Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated 
receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein 
through regulation of beta-secretase. J. Neurosci. 2003, 23, 9796–9804. 

260. Inestrosa, N.C.; Godoy, J.A.; Quintanilla, R.A.; Koenig, C.S.; Bronfman, M. Peroxisome 
proliferator-activated receptor gamma is expressed in hippocampal neurons and its activation 
prevents beta-amyloid neurodegeneration: Role of Wnt signaling. Exp. Cell Res. 2005, 304,  
91–104. 

261. Combs, C.K.; Johnson, D.E.; Karlo, J.C.; Cannady, S.B.; Landreth, G.E. Inflammatory 
mechanisms in Alzheimer's disease: Inhibition of beta-amyloid-stimulated proinflammatory 
responses and neurotoxicity by PPARgamma agonists. J. Neurosci. 2000, 20, 558–567. 



Pharmaceuticals 2009, 2  
 

284

262. Kummer, M.P.; Heneka, M.T. PPARs in Alzheimer’s Disease. PPAR Res. 2008, 2008, 1–8. 
263. Strum, J.C.; Shehee, R.; Virley, D.; Richardson, J.; Mattie, M.; Selley, P.; Ghosh, S.; Nock, C.; 

Saunders, A.; Roses, A. Rosiglitazone induces mitochondrial biogenesis in mouse brain. J. 
Alzheimers Dis. 2007, 11, 45–51. 

264. Handschin, C.; Spiegelman, B.M. Peroxisome proliferator-activated receptor gamma coactivator 
1 coactivators, energy homeostasis, and metabolism. Endocr. Rev. 2006, 27, 728–735. 

265. Qin, W.; Haroutunian, V.; Katsel, P.; Cardozo, C.P.; Ho, L.; Buxbaum, J.D.; Pasinetti, G.M. 
PGC-1alpha expression decreases in the Alzheimer disease brain as a function of dementia. Arch. 
Neurol. 2009, 66, 352–361. 

266. Watson, G.S.; Cholerton, B.A.; Reger, M.A.; Baker, L.D.; Plymate, S.R.; Asthana, S.; Fishel, 
M.A.; Kulstad, J.J.; Green, P.S.; Cook, D.G.; Kahn, S.E.; Keeling, M.L.; Craft, S. Preserved 
cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment 
during treatment with rosiglitazone: A preliminary study. Am. J. Geriatr. Psychiatry 2005, 13, 
950–958.  

267. Risner, M.E.; Saunders, A.M.; Altman, J.F.; Ormandy, G.C.; Craft, S.; Foley, I.M.; Zvartau, 
H.M.E.; Hosford, D.A.; Roses, A.D.; Rosiglitazone in Alzheimer's Disease Study Group. 
Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer's 
disease. Pharmacogenomics J. 2006, 6, 246–254. 

268. Chalmanov, V.; Vurbanova, M. Diabetes mellitus in parkinsonism patients. Vutr. Boles. 1987, 
26, 68–73. 

269. Takahashi, M.; Yamada, T.; Tooyama, I.; Moroo, I.; Kimura, H.; Yamamoto, T.; Okada, H. 
Insulin receptor mRNA in the substantia nigra in Parkinson's disease. Neurosci. Lett. 1996, 204, 
201–204. 

270. Mattson, M.P.; Pedersen, W.A.; Duan, W.; Culmsee, C.; Camandola, S. Cellular and molecular 
mechanisms underlying perturbed energy metabolism and neuronal degeneration in Alzheimer's 
and Parkinson's diseases. Ann. N. Y. Acad. Sci. 1999, 893, 154–175. 

271. Hunter, R.L.; Bing, G. Agonism of Peroxisome Proliferator Receptor–Gamma may have 
Therapeutic Potential for Neuroinflammation and Parkinson’s Disease. Current 
Neuropharmacology 2007, 5, 35–46. 

272. Breidert, T.; Callebert, J.; Heneka, M.T.; Landreth, G.; Launay, J.M.; Hirsch, E.C. Protective 
action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse 
model of Parkinson's disease. J. Neurochem. 2002, 82, 615–624. 

273. Dehmer, T.; Heneka, M.T.; Sastre, M.; Dichgans, J.; Schulz, J.B. Protection by pioglitazone in 
the MPTP model of Parkinson's disease correlates with I kappa B alpha induction and block of 
NF kappa B and iNOS activation. J. Neurochem. 2004, 88, 494–501. 

274. Quinn, L.P.; Crook, B.; Hows, M.E.; Vidgeon, H.M.; Chapman, H.; Upton, N.; Medhurst, A.D.; 
Virley, D.J. The PPARgamma agonist pioglitazone is effective in the MPTP mouse model of 
Parkinson's disease through inhibition of monoamine oxidase B. Br. J. Pharmacol. 2008, 154, 
226–233. 

275. Hunter, R.L.; Dragicevic, N.; Seifert, K.; Choi, D.Y.; Liu, M.; Kim, H.C.; Cass, W.A.; Sullivan, 
P.G.; Bing, G. Inflammation induces mitochondrial dysfunction and dopaminergic 
neurodegeneration in the nigrostriatal system. J. Neurochem. 2007, 100, 1375–1386. 



Pharmaceuticals 2009, 2  
 

285

276. Hunter, R.L.; Choi, D.Y.; Ross, S.A.; Bing, G. Protective properties afforded by pioglitazone 
against intrastriatal LPS in Sprague-Dawley rats. Neurosci. Lett. 2008, 432, 198–201.  

277. Xing B; Liu M; Bing G. Neuroprotection with pioglitazone against LPS insult on dopaminergic 
neurons may be associated with its inhibition of NF-kappaB and JNK activation and suppression 
of COX-2 activity. J. Neuroimmunol. 2007, 192, 89–98. 

278. Xing B; Xin T; Hunter R.L; Bing G. Pioglitazone inhibition of lipopolysaccharide-induced nitric 
oxide synthase is associated with altered activity of p38 MAP kinase and PI3K/Akt. J. 
Neuroinflammation 2008, 5, 1–11.  

279. Jung, T.W.; Lee, J.Y.; Shim, W.S.; Kang, E.S.; Kim, S.K.; Ahn, C.W.; Lee, H.C.; Cha, B.S. 
Rosiglitazone protects human neuroblastoma SH-SY5Y cells against acetaldehyde-induced 
cytotoxicity. Biochem. Biophys. Res. Commun. 2006, 340, 221–227. 

280. Jung, T.W.; Lee, J.Y.; Shim, W.S.; Kang, E.S.; Kim, S.K.; Ahn, C.W.; Lee, H.C.; Cha, B.S. 
Rosiglitazone protects human neuroblastoma SH-SY5Y cells against MPP+ induced cytotoxicity 
via inhibition of mitochondrial dysfunction and ROS production. J. Neurol. Sci. 2007, 253,  
53–60.  

281. Podolsky, S.; Leopold, N.A.; Sax, D.S. Increased frequency of diabetes mellitus in patients with 
Huntington's chorea. Lancet 1972, 1, 1356–1358. 

282. Hurlbert, M.S.; Zhou, W.; Wasmeier, C.; Kaddis, F.G.; Hutton, J.C.; Freed, C.R. Mice transgenic 
for an expanded CAG repeat in the Huntington’s disease gene develop diabetes. Diabetes 1999, 
48, 649–651. 

283. Andreassen, O.A.; Dedeoglu, A.; Stanojevic, V.; Hughes, D.B.; Browne, S.E.; Leech, C.A.; 
Ferrante, R.J.; Habener, J.F.; Beal, M.F.; Thomas, M.K. Huntington's disease of the endocrine 
pancreas: Insulin deficiency and diabetes mellitus due to impaired insulin gene expression. 
Neurobiol. Dis. 2002, 11, 410–424. 

284. Quintanilla, R.A.; Jin, Y.N.; Fuenzalida, K.; Bronfman, M.; Johnson, G.V.  Rosiglitazone 
treatment prevents mitochondrial dysfunction in mutant huntingtin-expressing cells: Possible role 
of peroxisome proliferator-activated receptor-gamma (PPARgamma) in the pathogenesis of 
Huntington disease. J. Biol. Chem. 2008, 283, 25628–25637. 

285. McGill, J.K.; Beal, M.F.  PGC, lalpha, a new therapeutic target in Huntington's disease?  Cell 
2006, 127, 465–468. 

286. St-Pierre, J.; Drori, S.; Uldry, M.; Silvaggi, J.M.; Rhee, J.; Jäger, S.; Handschin, C.; Zheng, K.; 
Lin, J.; Yang, W.; Simon, D.K.; Bachoo, R.; Spiegelman, B.M.  Suppression of reactive oxygen 
species and neurodegeneration by the PGC-1 transcriptional coactivators.  Cell 2006, 127,  
397–408. 

287. Weydt, P.; Pineda, V.V.; Torrence, A.E.; Libby, R.T.; Satterfield, T.F.; Lazarowski, E.R.; 
Gilbert, M.L.; Morton, G.J.; Bammler, T.K.; Strand, A.D.; Cui, L.; Beyer, R.P.; Easley, C.N.; 
Smith, A.C.; Krainc, D.; Luquet, S.; Sweet, I.R.; Schwartz, M.W.; La Spada, A.R. 
Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-
1alpha in Huntington’s disease neurodegeneration. Cell Metab 2006, 4, 349–362. 

288. Weydt, P.; Soyal, S.M.; Gellera, C.; Didonato, S.; Weidinger, C.; Oberkofler, H.; 
Landwehrmeyer, G.B.; Patsch, W.  The gene coding for PGC-1alpha modifies age at onset in 
Huntington's Disease. Mol. Neurodegener. 2009, 4, 3:1–3:6. 



Pharmaceuticals 2009, 2  
 

286

289. Taherzadeh, F.E.; Saft, C.; Andrich, J.; Wieczorek, S.; Arning, L.  PGC-1alpha as modifier of 
onset age in Huntington disease. Mol. Neurodegener. 2009, 4, 1–4. 

290. Parker, J.A.; Arango, M.; Abderrahmane, S.; Lambert, E.; Tourette, C.; Catoire, H.; Ne´ri, C. 
Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. 
Nat. Genet. 2005, 37, 349–350. 

291. Michan, S.; Sinclair, D. Sirtuins in mammals: Insights into their biological function. Biochem. J. 
2007, 404, 1–13. 

292. Heneka, M.T.; Landreth, G.E., Hüll, M. Drug insight: Effects mediated by peroxisome 
proliferator-activated receptor-gamma in CNS disorders. Nat. Clin. Pract. Neurol. 2007, 3,  
496–504. 

293. Schütz, B.; Reimann, J.; Dumitrescu, O.L.; Kappes, H.K.; Landreth, G.E.; Schürmann, B.; 
Zimmer, A.; Heneka, M.T. The oral antidiabetic pioglitazone protects from neurodegeneration 
and amyotrophic lateral sclerosis-like symptoms in superoxide dismutase-G93A transgenic mice. 
J. Neurosci. 2005, 25, 7805–7812. 

294. Kiaei, M.; Kipiani, K.; Chen, J.; Calingasan, N.Y.; Beal, M.F. Peroxisome proliferator-activated 
receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral 
sclerosis. Exp. Neurol. 2005, 191, 331–336. 

295. Pasinelli, P.; Brown, R.H. Molecular biology of amyotrophic lateral sclerosis: Insights from 
genetics. Nat. Rev. Neurosci. 2006, 7, 710–723. 

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. 
This article is an open-access article distributed under the terms and conditions of the Creative 
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 


