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Insulin signaling in central nervous system (CNS) has emerged as a novel field of research since decreased brain insulin levels
and/or signaling were associated to impaired learning, memory, and age-related neurodegenerative diseases. Thus, besides its
well-known role in longevity, insulin may constitute a promising therapy against diabetes- and age-related neurodegenerative
disorders. More interestingly, insulin has been also faced as the potential missing link between diabetes and aging in CNS, with
Alzheimer’s disease (AD) considered as the “brain-type diabetes.” In fact, brain insulin has been shown to regulate both peripheral
and central glucose metabolism, neurotransmission, learning, and memory and to be neuroprotective. And a future challenge
will be to unravel the complex interactions between aging and diabetes, which, we believe, will allow the development of efficient
preventive and therapeutic strategies to overcome age-related diseases and to prolong human “healthy” longevity. Herewith, we
aim to integrate the metabolic, neuromodulatory, and neuroprotective roles of insulin in two age-related pathologies: diabetes and
AD, both in terms of intracellular signaling and potential therapeutic approach.

1. Introduction

Almost all cell types are responsive to insulin. However,
liver, muscle, and adipose tissue are the most sensitive to
the hormone [1], rendering it the most important anabolic
hormone identified to date. In vertebrates, this peptide
belongs to a superfamily of structurally related proteins, the
insulin-related family of substances, that includes insulin-
like growth factors-1 (IGF-1) and -2 (IGF-2) and relaxin [2].

Until three decades ago, insulin was considered only as a
peripheral hormone, unable to cross the blood-brain barrier
(BBB) and to affect the central nervous system (CNS) [3–
5]. However, this idea was challenged after the detection of
immunoreactive insulin in dog cerebrospinal fluid (CSF) [6].
Further studies provided clear evidence that insulin occurs
in brain, where it may reach high levels [7, 8], exerting
long-term trophic effects on CNS neurons [2]. Although
the in vivo brain insulin levels remain controversial, they
appear to be 10- to 100-fold higher than in plasma and to
change during brain development, with the highest values

in late fetal and early neonatal rabbit brain (about 80–90
and 195 ng/g, respectively), that decrease in the adult brain
(about 32 ng/g) [7].

Insulin present in adult CNS is primarily derived from
pancreatic β-cells and is transported by CSF into the
brain [3–5, 9, 10]. This insulin crosses BBB mostly via a
carrier-mediated, saturable, regulatable, and temperature-
sensitive active process [4, 5, 9, 10] that is limited by
the barrier system formed by the tight junctions between
endothelial cells [2]. Thus, it is not surprising that an
acute increase in peripheral insulin levels leads to higher
CSF insulin, whilst chronic peripheral hyperinsulinemia (as
occurs in insulin resistance) downregulates insulin receptors
(IR) at BBB, impairing insulin transport into the brain
[11]. Moreover, an increase in circulating insulin has been
shown to rapidly affect brain activity (independently from its
systemic effects), as occurs in healthy individuals submitted
to a hyperinsulinemic-euglycemic clamp [12]. Alternatively,
peripheral insulin can access CNS directly through the area
postrema, a circumventricular region with a “leaky” BBB that
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allows free diffusion of plasma solubles directly into this area
[13, 14].

De novo insulin synthesis in brain has been proposed
as an alternative source of insulin in CNS. This hypothesis
has been supported by the detection of preproinsulin I
and II mRNA in rat fetal brain and cultured neurons and
also by insulin immunoreactivity in neuronal endoplasmic
reticulum, Golgi apparatus, cytoplasm, axon, dendrites, and
synapses [15–21]. Additionally, high levels of insulin in
brain extracts [22], its presence in immature nerve cell
bodies [7, 18], the rapid transport of peripherally injected
insulin into the CSF [12], and the fact that less than 1%
of the hormone crosses the BBB in dogs and rodents [23]
further support the idea that insulin can be synthesized
in brain. However, the unequivocal evidence supporting
this hypothesis is that insulin can be synthesized in cul-
tured rat brain neurons and released upon K+- and Ca2+-
induced membrane depolarization [24]. More specifically,
its synthesis seems to occur in pyramidal neurons (e.g.,
from hippocampus, prefrontal cortex, enthorhinal cortex,
and olfactory bulb), but not in glial cells [25]. Thus, it is
not surprising that insulin is highly enriched in brain cortex,
olfactory bulb, hippocampus, hypothalamus, and amygdala
[26]. Similarly to insulin, insulin-growth factor-1 (IGF-1)
occurs also in rodent and human brain and can cross the BBB
[11, 27, 28].

Taken this together, the next obvious question regards
insulin and IR physiological role(s) in brain. Herewith, we
will first analyse brain IR-mediated signaling pathways and
the pivotal role of insulin in brain (and peripheral) glucose
metabolism, synaptic transmission, memory/learning, and
neuroprotection. Then, we will focus preferentially on the
protective effect of insulin against diabetes and its long-
term complications in CNS, aging/longevity, and age-related
neurodegenerative disorders (especially Alzheimer’s disease
(AD)). Finally, we will briefly discuss the pros and cons of
the potential therapeutic interest of insulin in diabetes- and
age-related neurodegeneration. In fact, from the evidences
presented herein, insulin appears to be a naturally occurring
hormone essential for normal CNS function.

2. Neuronal IR/IGF-1R-Mediated
Signaling Pathways

2.1. Brain IR/IGF-1R Localization. Once in brain, insulin
rapidly binds to IR, which are highly abundant (but
selectively distributed) throughout CNS [15, 20, 26, 29],
especially in olfactory bulb, hypothalamus, cerebral cor-
tex, cerebellum, hippocampus, and striatum [5, 9, 30].
This differential distribution of insulin and IR in brain
suggests that insulin from different sources (peripheral or
local) may reach IR from distinct brain regions to initiate
neuronal signal transduction [31]. Concerning intracellular
localization, IR are highly abundant in neurons (with
high protein expression in cell bodies and synapses) and
less abundant in glia [32–36]. Similarly, IGF-1 receptors
(IGF-1R) were detected throughout neurons and glia [37],
particularly in hippocampus, amygdala, parahippocampal
gyrus, cerebellum, cerebral cortex, and caudate nucleus,

being less abundant in substantia nigra, red nucleus, white
matter, and cerebral peduncles [15].

2.2. Brain IR/IGF-1R Structure and Signaling Pathways. IR
and IGF-1R are tetrameric glycoproteins that belong to the
receptor tyrosine (Tyr) kinase superfamily, composed of two
α (120–135 kDa) and two β (95 kDa) subunits [2, 38–40].
Brain IR subunits differ from peripheral ones by the slightly
lower molecular weight and by the absence of downregula-
tion after exposure to high insulin levels [20, 41, 42]. Besides
IR and IGF-1R, the Tyr kinase superfamily comprises also
human insulin receptor-related protein, Drosophila homolog
of IR and mollusc IR-related protein, suggesting that their
features have been highly conserved throughout evolution
[2]. Interestingly, two different types of IR have been found
in mammalian brain: a “peripheral-” like type (with lower
density in glia cells) and a neuron-specific type (highly
expressed in neurons) [11]. Due to structural and functional
homology, insulin and IGF-1 can bind to (and activate)
both IR and IGF-1R, with insulin binding to the IR with
higher affinity (<1 nM) than IGF-1 (100–500-fold lower
affinity), whereas IGF-1R preferentially binds IGF-1 (<1 nM)
as compared to insulin (100–500-fold lower affinity) [43].
Once bound to α subunits of the neuronal IR or IGF-1R,
insulin (or IGF-1) promotes autophosphorylation of the β
subunit at Tyr residues 1158, 1162, and 1163, triggering
its intrinsic Tyr kinase activity [5, 39, 40, 44–46] and
phosphorylating insulin receptor substrate (IRS) docking
proteins (IRS1-4) at Tyr residues [1]. Then, Src homology-
2 (SH2) domain-containing signaling molecules (namely,
the p85 regulatory subunit of phospatidylinositol 3-kinase
(PI3K)) are recruited and activate the catalytic subunit of
PI3K, as well as the growth factor receptor-bound protein
2 (Grb-2) [5, 40, 44, 46]. As a consequence, two major
signaling pathways can be activated: the PI3K/Akt/glycogen
synthase kinase-3β (GSK-3β) and the Ras/Raf-1/extracellular
signal-regulated kinases (ERK1 and ERK2, ERK1/2) [5, 39,
40, 46].

2.3. PI3K/Akt Signaling Cascade. After binding of the p85
SH2 domain to the phosphorylated Tyr of active IRS, PI3K
becomes active and p110 inhibition is relieved, allowing
translocation of active PI3K to plasma membrane and
subsequent formation of PI-3, 4, 5-trisphosphate, and PI-
3,4-bisphosphate. Then, these molecules bind to and recruit
downstream signaling proteins containing pleckstrin homol-
ogy domains. Amongst them, the serine (Ser)/threonine
(Thr) kinase Akt can be recruited to the plasma membrane
[30, 40, 46–48] and phosphorylated by protein kinase 3-
phosphoinositide-dependent protein kinase-1 [44, 46, 49].
Once activated, Akt detaches from plasma membrane and
translocates into cytosol and nucleus [46], where it phos-
phorylates target proteins at Ser and Thr residues [4]. These
target proteins include the proapoptotic Bad (inactivated
when phosphorylated at Ser136), caspase-9 (inhibited by
phosphorylation at Ser196), and GSK-3 [4]. Thus, Akt
activation inhibits apoptosis [4].
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Of relevance in this signaling pathway is the GSK-3β,
a Ser/Thr protein kinase that becomes inactive upon Akt-
mediated phosphorylation at the N-terminal Ser9, initi-
ating multiple physiologic effects [39, 50–53]. GSK-3β is
negatively regulated also by PKC and c-AMP-dependent
protein kinase (PKA) (which are also activated by insulin
or IGF-1) [54, 55]. Depending on the cellular context,
GSK-3β can be targeted to different intracellular locations
(e.g., cytosol, mitochondria, or nucleus) to easily access
its substrates [56]: active GSK-3β (Ser9 dephosphorylated)
appears mostly in nuclei, mitochondria, and membrane lipid
rafts (detergent-resistant plasma membrane microdomains
involved in signal transduction), while inactive GSK-3β is
mostly cytosolic [57]. Besides Ser9 dephosphorylation, GSK-
3β can be also activated by phosphorylation at Tyr216,
and, although this mechanism remains unclear, changes
in intracellular Ca2+ or Fyn (a member of the Src Tyr
kinase family) appear to be involved [58, 59]. The inhibi-
tion of GSK3β, occurring after PI3K inhibition, has been
described to prevent apoptosis, while overexpression of a
constitutively active GSK-3β resulted in PC12 cell death
[60–62]. Interestingly, Lin et al. [63] described that mainte-
nance of phospho-GSK-3β levels, after transient activation
of PI3K/Akt signalling, prevented apoptosis induced by
hydrogen peroxide (H2O2) in neural stem cells. Moreover, we
previously showed that insulin prevented neuronal IR/IGF-
1R inactivation upon oxidative stress and, by inhibiting
GSK-3β (via PI-3K/Akt activation), insulin stimulated the
synthesis of proteins involved in neuronal antioxidant
defence, glucose metabolism, and antiapoptotic mechanisms
[64]. Although the mechanisms underlying GSK-3β-induced
apoptosis remain unclear, decreased CREB-mediated expres-
sion of Bcl-2 [65, 66], mitochondrial cytochrome c release
and caspase activation (either via the intrinsic pathway or via
translocation of the apoptosis-inducing factor, AIF) [67–70],
phosphorylation and downregulation of heat shock proteins
(e.g., heat shock factor-1) may be involved [67].

Besides GSK-3β, IGF-1-induced activation of Akt also
phosphorylates and inhibits FoxO3, which is retained in
cytoplasm by the 14-3-3 protein. As a result, nuclear
translocation of FoxO3 is blocked, as well as its subsequent
deleterious targeting of nuclear genes, thus promoting
hippocampal and cerebellar granule neuronal survival [49,
71, 72]. This FoxO3 inhibition was also shown to impair
Bim transcription in cerebellar granular neurons, contribut-
ing to the antiapoptotic effect of IGF-1 [72, 73]. Akt
may also phosphorylate nuclear factor-κB (NF-κB) either
directly [74, 75] or via IKK-induced inhibitory protein of
κB (IκB) phosphorylation at Ser32 (with the concomitant
disintegration of the p65-NF-κB/IκB complex, translocation
of p65-NF-κB into the nucleus, and its heterodimerization
with other NF-κB members for transcriptional regulation)
[76, 77]. Importantly, NF-κB activation has been shown to
increase Cu/Zn -superoxide dismutase (SOD) expression and
MnSOD levels after H2O2 and amyloid beta (Aβ) treatment,
protecting against oxidative stress and apoptosis in PC12
and NT2 cells, respectively [77, 78]. Alternatively, PI-3K/Akt
activation may promote neuronal and glial antioxidant

defences by stimulation of the Nrf-2/antioxidant responsive
element (ARE) [79].

Another target for insulin-induced PI-3K/Akt pathway
is CREB, which, upon phosphorylation at Ser133, enhances
mitochondrial membrane potential (ΔΨm), intracellular ATP
levels, NAD(P)H redox state, and hexokinase activity, that
is, improves adult neuronal glucose metabolism and axonal
outgrowth [80]. Interestingly, this Akt-mediated modulation
of neuronal mitochondrial function and caspase activity
has been correlated with changes in Bcl-2 expression (and
its interaction with Bad) and/or with increased glucose
transporter-1 (GLUT1) expression (and stimulation of gly-
colysis and protection against mitochondrial permeability
transition pore opening and cytochrome c release) [49, 80].
This may, at least partially, constitute an explanation for the
apoptotic cell death that arises from the loss of neurotrophic
support and subsequent depletion of PI3K/Akt signaling
[80].

2.4. SHC/ERK1/2 Signaling Pathway. ERK1/2 forms a par-
allel branch to PI3K signaling. After phosphorylation of
IR, the adapter protein SHC (Src homology-2 domain-
containing) binds to IR and Grb2 is attracted to bind to SHC
via its SH2 domains, thus activating the ERK1/2 signaling
pathway. SH3 domains are other Grb2 domains that interact
with guanine nucleotide exchange son of sevenless (SOS)
protein, stimulating the exchange of GDP for GTP at Ras,
which becomes active and then recruits the Ser/Thr kinase
Raf. Subsequent activation of MEK (or MAP2K, mitogen-
activated protein kinase kinase) leads to phosphorylation
(and activation) of ERK1/2 on Thr and Tyr residues [52, 81–
83], culminating in activation of several transcription factors
that control gene expression (e.g., Ets-like protein-1 (Elk-1)
and c-Myc) [46].

Interestingly, ERK1/2 activation was originally described
to play an antiapoptotic role in neurons via phosphorylation
of Bad at Ser112 [84, 85]. Conversely, others showed the
involvement of active ERK1/2 in synaptic plasticity and cell
death [86–89], especially after oxidative stress [90] and N-
methyl D-aspartate (NMDA) receptor-mediated excitotoxic-
ity [87].

Traditionally, insulin signaling through PI3K-dependent
pathway was considered as functionally separated from
ERK- or MAPK-dependent signals, with PI3K controlling
metabolism, while the mitogenic role was related with
ERK1/2 [91]. However, others proposed that some cross-talk
may occur between both signaling pathways, with Raf being
the possible link, at least in glutamate-induced oxidative
stress [82]. This cross-talk may have an anti-apoptotic role
through Bad phosphorylation at Ser136 [92]. Interestingly,
Subramaniam et al. [88] showed that ERK1/2 could be
inhibited by IGF-1 via PI3K-dependent Raf phosphorylation
at Ser259, thus protecting cerebellar granule neurons from
cell death. So this could constitute an alternative pathway
(to PI3K/Akt-induced phosphorylation of Bad, caspases and
FoxO3) to promote neuronal survival [46].

Besides PI3K/Akt and ERK1/2 signaling pathways,
insulin has also been described to protect against neu-
ronal and non-neuronal apoptosis via activation of MAPK
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signaling [93, 94] (namely, p38 MAPK) and suppression
of caspase-3 activity [95]. This was further confirmed by
other studies showing that c-Jun N-terminal kinase (JNK)
downregulation promoted cell survival [96, 97]. Activation
of p38 MAPK by insulin/IGF-1 was also shown to stimulate
glucose transport [98–102] and antioxidant-related genes
in nonneuronal cells submitted to oxidative stress [103].
Surprisingly, little or no effect on MAPK activation occurred
upon insulin/IGF-1 administration in embryonic dorsal root
ganglion or adult sensory neurons [80, 104].

3. Role of Insulin and IGF-1 in the Brain

3.1. Glucose Metabolism. Taken together, we can infer that
the complexity of insulin/IGF-1-mediated IR/IGF-1R sig-
naling pathways may play a crucial role in CNS, including
regulation of brain metabolism [105–108], neuronal growth
and differentiation [16, 105, 109], or neuromodulation [105,
110–112]. Interestingly, tissue (and cellular) dependence on
insulin is such that its restriction under some damaging
conditions results in cell atrophy and apoptotic death [80].

The most well-known insulin effect is the regulation
of peripheral glucose transport and metabolism [2, 113,
114]. However, the precise underlying mechanisms were
unravelled only in the last decade and appear to involve a
major integration of nutritional and hormonal peripheral
signals, mediated by specialized groups of neurons from
the arcuate nucleus of the hypothalamus, the glucosensing
neurons [115]. These neurons respond to peripheral signals
required for the regulation of ingestive behaviour and energy
homeostasis. Besides insulin, such signals also include the
anorexigenic peptides proopiomelanocortin (POMC) and
cocaine- and amphetamine-regulated transcript (CART), as
well as the orexigenic neuropeptide Y (NPY) and agouti-
related peptide (AgRP) [116]. Under supraphysiological
glucose levels, brain insulin signaling activation results in
hyperpolarization of glucosensing neurons, activating K+

ATP
channels and reducing neuronal firing (probably due to
the inactivation of POMC neurons), thus decreasing body
weight [39, 45, 116]. Conversely, impairment of brain insulin
signaling (as occurs in peripheral insulin resistance) activates
JNK, phosphorylating IRS-1 at Ser/Thr and promoting
a feedback inhibition of IR, thus resulting in increased
body weight. This orexigenic effect is mediated by the
activation of arcuate neurons containing NPY, AgRP, and
GABA [39, 45, 117]. Additionally, besides controlling body
weight, hypothalamic insulin also regulates hepatic glucose
production, and, upon impairment of hypothalamic insulin
signaling, the subsequent decrease in hepatic sensitivity to
the circulating insulin stimulates hepatic glucose production
[39, 118, 119]. This suggests that insulin elicits a CNS
(hypothalamus)-liver axis response to regulate hepatic glu-
cose production [118].

Although traditionally brain glucose metabolism was
considered essentially insulin insensitive [120], some evi-
dences led to the hypothesis that insulin may regulate glucose
metabolism only in glia [33, 121, 122]. However, more
recent studies suggested that cerebral glucose metabolism
may be controlled by neuronal insulin/IR signaling pathways

[2, 80, 123, 124]. This hypothesis is supported by the over-
lapping distributions of insulin, IR, and glucose transporters
(GLUTs) isoforms 1 and 4 in selective brain regions (e.g., hip-
pocampus and choroid plexus) [15]. Furthermore, changes
in circulating insulin levels were described to modulate
cerebellar GLUT4 expression [125], and hyperinsulinemia
led to regional changes in glucose utilization in rodent brain
[126]. But the most striking evidence for insulin-mediated
brain glucose metabolism came from Bingham et al. [127],
showing that fasting insulin levels stimulate global glucose
metabolism maximally in human brain cortex, either directly
(as in peripheral tissues) or indirectly (via insulin-stimulated
neuronal activation). These authors also suggested that, if
the recruitment of GLUTs to the plasma membrane and
subsequent increment in glucose uptake was a direct effect
of insulin, this might involve the partially insulin-sensitive
glial GLUT1, since the main neuronal glucose transporter
(GLUT3) is insulin insensitive.

An alternative pathway for insulin to provide energy
for neurons involves inhibition of neuronal norepinephrine
uptake, with subsequent activation of glial β-adrenoreceptors
and glucose extrusion from glial glycogen stores, namely, in
astrocytes [2, 120]. As a result, astrocytic glycogen can be
converted to glucose, which is then transported to the extra-
cellular fluid via insulin-stimulated GLUT1, constituting an
additional energy source for neurons [2, 128].

Taken together, these evidences suggest that any dele-
terious interference in the cross-talk between insulin and
neuronal glucose metabolism may impair ATP synthesis and
culminate in neuronal apoptosis [129]. In this regard, Wu et
al. [130] showed that insulin prevented serumdeprivation-
induced apoptosis in R28 rat retinal neurons, while Koo and
Vaziri [131] hypothesized that insulin could also prevent
oxidation of glucose transporters or stimulate antioxidant
defence mechanisms in type 1 diabetic streptozotocin (STZ)
rats, thus stimulating intracellular metabolism. Additionally,
we reported that insulin-induced IR/IGF-1R activation and
subsequent PI3K/Akt signaling prevented the decrease in
hexokinase-II expression, thus stimulating glycolysis upon
oxidative stress in rat brain cultured neurons [64, 132]. This
further supports the idea that brain is both an insulin- and
glucose-sensitive tissue [133]. Conversely, other studies failed
to show acute effects of insulin on glucose transport into the
brain [134, 135].

3.2. Other Roles for Insulin in Brain: Synaptic Transmis-
sion and Memory/Learning. Some authors hypothesized that
brain insulin may play other roles apart from glucose
metabolism, based on the heterogenous distribution of IR
in brain [15], the poor correlation between IR location and
neuronal energy utilization, the insulin-independent neu-
ronal glucose uptake, the neuromodulatory role of insulin
in invertebrates, its action on neuronal norepinephrine and
serotonin uptake, and its relation to NPY [2]. Among such
roles, brain insulin has been proposed to increase neurite
outgrowth [136, 137] and regeneration of small myelinated
fibers [2, 138], maintain cortical, sympathetic and sensory
neuronal survival during nervous system development [139,
140], stimulate neuronal protein synthesis [2], and improve
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synaptic activity and plasticity, memory formation, and
storage [110], as well as neuroprotection [141–143]. In this
regard, insulin administration has been shown to improve
memory/learning in rats [39] and in healthy humans (after
intranasal administration), without changes in peripheral
glycemia [12, 144]. Systemic insulin infusion also improved
verbal memory and attention [145].

Interestingly, these results appear to correlate with high
IR expression in hypothalamus and limbic system (hip-
pocampus, pyriform cortex, and amygdala) [12, 15, 115]
and may be associated with the well-known effect of insulin
on synaptic transmission (e.g., monoamines) [15, 146, 147].
At this respect, about 30 years ago, insulin was described
to promote epinephrine and norepinephrine release in
adrenergic terminals [148], inhibit synaptic reuptake of
norepinephrine, modify catecholamine kinetics, and stimu-
late neuronal serotonin uptake [42, 149–152]. More recently,
some authors reported that insulin modulated the expression
of NMDA receptors, increasing neuronal Ca2+ influx and
reinforcing synaptic communication between neurons [153],
and also modulated long-term potentiation, a molecular
model of learning [126, 154]. This was further supported by
insulin-mediated control of cell surface glutamate and GABA
receptor density (via the modulation of receptor targeting to
the membrane and endocytic internalization), thus affecting
synaptic plasticity [31]. Additionally, we showed that insulin
prevented the decrease in GABA and glutamate uptake and
their increased extrasynaptosomal levels in rat synaptosomes
after oxidative stress and/or type 2 diabetes [155, 156].
Apparently, such neuromodulatory role of insulin could arise
from its direct effect on neurotransmitter transport or from
decreased ATP levels and subsequent reversal of the amino
acid transporters [155, 156], thus protecting neurons against
damaging effects of excitotoxicity or oxidative stress.

3.3. The Neuroprotective Role of Insulin. Regarding this issue,
we and others showed that insulin or IGF-1 attenuated both
retinal and brain neuronal apoptosis induced by damaging
conditions (e.g., oxidative stress) [64, 130, 157–162]. Appar-
ently, such neuroprotection could arise from restoration
of IR/IGF-1R signaling-mediated gene transcription (e.g.,
increased hexokinase-II and Bcl-2 and decreased glutathione
peroxidase and caspase-3 expression) [64], thus improving
neuronal glucose metabolism [1, 25, 132, 163, 164] and
antioxidant defences [157] (Figure 1). Others proposed
an alternative antiapoptotic mechanism involving IGF-1-
induced activation of IGF-1R/PI-3K/Akt signaling and sub-
sequent prevention of caspase activation via phosphorylation
of the survival transcription factor CREB (activated), GSK-
3β (proapoptotic), and transcription factor of the Forkhead
box 1 (FoxO1, inactivated) [104, 165]. Insulin-induced
antiapoptotic effect might also arise from neuronal SAPK
inhibition [166]. Surprisingly, Schubert et al. [167] described
that, in NIRKO mice (knocked out for neuronal IR), insulin
treatment was capable to circumvent neuronal apoptosis
in an IR-dependent manner. In contrast, Ryu et al. [160]
failed to show protection by IGF-1 against excitotoxic
or oxidative stress-induced necrosis, despite a decrement
in neuronal apoptosis. Additionally, insulin induced free

radical generation and lipid oxidation (leading to neuronal
necrosis), in a protein-kinase-C (PKC-) dependent process
[160, 168].

Independently of the underlying signaling pathway,
insulin has been increasingly shown to play a neuroprotective
role against several damaging conditions, including oxidative
stress, and to mitigate neuronal apoptotic death [1, 157].
Since some of these injuries may constitute the underlying
mechanisms of brain dysfunction associated with several
pathologies (e.g., diabetes, aging and age-related diseases, as
Alzheimer’s disease (AD)), next, we will discuss the effect of
insulin under such pathologies.

4. Protection by Insulin against Diabetes and
Its Long-Term Complications in CNS

Diabetes mellitus, one of the most common metabolic
disorders, is a major disorder of insulin regulation. Diabetes
has reached epidemic proportions in western countries, and,
according to World Health Organization estimates, it will
affect ∼300 million people worldwide in 2025, rendering
diabetes an important public health concern in 21st century
[169]. This is further aggravated by the increasing prevalence
of diabetes with aging, risk factors associated with modern
lifestyle in developed and under development countries (e.g.,
higher life expectancy, obesity, sedentarism, hypertension,
hyperlipidemia, and genetic factors) [170], and its severe
long-term complications [171] (e.g., cardiovascular disease,
renal failure, retinopathy, stroke, and peripheral and auto-
nomic neuropathy) [84, 172].

A consequence of diabetes, mostly of type 2 diabetes, is
insulin resistance and chronic peripheral hyperinsulinemia,
accompanied by downregulated insulin transport into the
brain and its subsequent deprivation from insulin bene-
ficial effects [173]. Indeed, diabetes-associated disruption
between insulin activity and glucose metabolism results
in decreased cerebral blood flow and oxidative glucose
metabolism [46, 174, 175] (which may also arise from
the impaired blood-brain glucose transport) [176]. This
hypothesis is supported by the downregulation of neuronal
insulin signaling pathways and brain glycolytic enzymes
in uncontrolled diabetes [25, 176] (probably due to the
inhibition of IR phosphorylation) that may culminate in
progressive impairment in learning, memory, and cognition
[25]. However, Seaquist et al. [134] failed to show any effect
of short-term hyperglycemia in glucose transport.

In previous studies, we described that, despite the
apparent protection against oxidative stress in type 2 diabetic
Goto-Kakizaki (GK) rat brain synaptosomes (probably due
to higher plasma and brain vitamin E levels) [177], they
had lower synaptosomal membrane potential and ATP/ADP
levels [155]. These results were (at least partially) explained
by the diabetes-related impairment of brain mitochondrial
electron transfer chain, which might be exacerbated by
aging and/or amyloid β peptide (Aβ) [178], and were
counteracted by the antioxidant coenzyme CoQ10 [179] or
insulin [180]. This reinforces the involvement of oxidative
stress and/or metabolic/mitochondrial dysfunction in long-
term damaging effects of diabetes [178–181].
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Figure 1: Stimulation of PI-3K/Akt signaling pathway after activation of IR/IGF-1R mediates insulin neuroprotection against damaging
conditions. For example, insulin administration under oxidative stress phosphorylates IR and/or IGF-1R, which in turn activate the PI-
3K/Akt signaling pathway, regulating the expression of “candidate” proteins, namely, glutathione peroxidase-1 (GPx-1), hexokinase-II (Hxk-
II), and also the antiapoptotic Bcl-2 and the proapoptotic caspase-3. Thus, oxidative stress, impaired glucose metabolism and, neuronal
apoptosis are counterbalanced. Insulin also interferes with GSK-3β signaling, decreasing its activated form and inhibiting apoptotic neuronal
death under oxidized conditions.

Although the underlying mechanisms of diabetes-
induced mitochondrial dysfunction are not completely
understood, it has been proposed that increased mitochon-
drial nitric oxide synthase (NOS) activity (and subsequent
nitric oxide (NO•) production) may inhibit mitochondrial
complexes III and IV and ATP synthase, either by nitro-
sylation or protein thiol oxidation [182]. This may lead to
impairment of ATP production, decreased ΔΨm, opening of
mitochondrial permeability transition pore (mPTP), and cell
death [182].

Another consequence of diabetes is oxidative stress,
which may arise from several mechanisms related with
chronic hyperglycemia: advanced glycation endproducts
(AGEs) formation, glucose autoxidation, mitochondrial
dysfunction, endoplasmic reticulum stress, and impaired
antioxidant defences [183, 184], culminating in caspase-
dependent neuronal death [171, 183]. Indeed, dorsal root
ganglion neurons from diabetic rats displayed increased
apoptotic markers (e.g., cleaved caspase-3, positive TUNEL
staining [171], and PARP-1 activation [185]). Interestingly,
Li et al. [183] observed that hippocampal CA1 and CA2
neuronal density from type 1 diabetic rats was lower than in
type 2 diabetic animals, whilst specific markers of apoptosis
(e.g., TUNEL staining, Fas and Bax expression, cytosolic AIF,
expression and activity of caspases-3 and -12) and nuclear
labeling of 8-hydroxy-2′-deoxyguanosine (8-OHdG) were
higher, suggesting that oxidative stress could be the link to
apoptotic activity in type 1 diabetes.

Besides brain glucose metabolism and oxidative stress,
diabetes may also impair neurotransmission. Indeed, glu-
tamate affinity for AMPA, but not NMDA receptors, was
shown to be decreased in type 1 diabetic STZ rats [172].
Others reported an increase in taurine and GABA transport
in diabetic rat retina and retinal pigment epithelium [111]
and that hyperglycemia impaired glutamate release upon
ischemia/reperfusion in both nondiabetic [186] and diabetic
animals [187, 188]. In this regard, we also showed that GABA
levels were decreased in STZ-diabetic synaptosomes com-
pared to control synaptosomes [189] and that insulin could
modulate rat brain synaptosomal GABA and/or glutamate
transport under oxidation and/or type 2 diabetes [155, 156].

As an antidiabetes therapy, insulin has been the best
studied and more efficient pharmacological compound
mainly used in the treatment of type 1 diabetes. Nevertheless,
it has been also increasingly used in the treatment of type 2
diabetes noncontrolled by diet, exercise or, oral antidiabetic
agents, and its use has been shown to decrease microvascular
complications and mortality [190, 191]. In this perspective,
it has been increasingly suggested that all diabetic patients
could be insulin treated, independently of disease progres-
sion [191]. In terms of subcellular effects of insulin on
diabetes, Guyot et al. [186] reported that the insulin-induced
increase in extraneuronal glutamate in type 1 diabetic STZ
rats submitted to ischemia could arise from stimulation
of astrocytic glucose uptake (instead of neuronal glucose
uptake) with subsequent decrement in neuronal glucose
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metabolism and in the energy available for neurotransmitter
uptake. This effect on neurotransmission was even more
pronounced in STZ rats given a high dose of insulin, resulting
in a prolonged release of aspartate, glutamate, taurine, and
GABA [186]. Noteworthy, the extracellular increase in GABA
as well as in the number of GABAA receptors upon insulin
treatment might protect against the cytotoxic effects of
released excitatory amino acids. Importantly, the damaging
effects of diabetes on neurotransmission may be potentiated
by impairment of Ca2+ uptake to the endoplasmic reticulum
and/or mitochondria, further exacerbating neuronal excito-
toxicity [172].

From the abovementioned, it seems that only diabetes-
related hyperglycemia account for the long-term damage
and that, by normalizing blood glucose levels, insulin might
protect against those injuries. Nevertheless, it has been
also increasingly demonstrated that recurrent hypoglycemic
episodes (the most common side-effect of insulin therapy)
may adversely affect diabetic CNS [84, 172], resulting in
motor incapacity, seizures, or cognitive damage, mainly in
aged patients [192]. At this respect, it has been shown
that recurrent hypoglycemia affected the endogenous lev-
els of metabolites indirectly linked with brain glucose
metabolism (e.g., glutamate, leading to excitotoxicity), accel-
erated lipolysis (increasing the formation of highly oxidizable
polyunsatured fatty acids), impaired protein synthesis, ion
homeostasis, and mitochondrial function, culminating in
neuronal dysfunction [120, 193]. In a recent study, our
group showed that, although insulin was able to protect
type 1 diabetic STZ rats (either exposed or not to Aβ)
against brain oxidative stress and mitochondrial dysfunction
[180, 194], this was not the case in STZ rat brain after
an acute hypoglycemia episode [28]. This suggested that
poor glycemic control might damage brain areas involved
in learning and memory [28], thus limiting the analysis of
insulin and hyperglycemia roles in diabetic brain [11]. Under
this perspective, it is not surprising that brain requires robust
neuroendocrine counterregulatory mechanisms to maintain
blood glucose within a narrow, nondeleterious range.

As described before, diabetes has been widely associ-
ated with slowly progressive end-organ damage in brain
[27, 195], resulting in diabetic neuropathy and/or mild
to moderately impaired cognitive function, both in type
1 and type 2 diabetic patients [11]. However, clinically
relevant deficits mostly occur in elderly type 2 diabetic
patients, probably due to a complex interaction between
diabetes and the normal brain aging [11]. Although the
molecular mechanisms underlying such long-term effects of
diabetes in CNS remain unclear, it has been hypothesized the
involvement of AGEs formation, aldose reductase activity,
oxidative stress, activation of protein kinase C, and increased
hexosamine pathway flux [91, 171, 193, 196, 197]. In a very
recent study, Soeda et al. [198] described an increase in
insulin signaling upon neuronal mutation of SH2-containing
inositol 5′-phosphatase 2 (SHIP2, a negative regulator of
phosphatidylinositol 3, 4, 5-trisphosphate-mediated signals)
and that SHIP2 levels were also increased in type 2 diabetes
db/db mice brain. Surprisingly, SHIP2 inhibition ameliorated
hippocampal synaptic plasticity and memory formation.

Conversely, when SHIP2 was overexpressed in mice, Akt-
mediated IR/IGF-1R signaling was impaired, the neuro-
protection by insulin/IGF-1 was attenuated, and increased
neuronal apoptosis and impaired memory were also reported
[198].

Interestingly, insulin treatment has been described to
prevent biochemical and pathological indices of peripheral
sensory neuropathy in animal models of type 1 diabetes at
doses that did not impact on hyperglycemia [80], suggesting
that insulin therapy might not only ameliorate peripheral
diabetic complications but might also improve brain func-
tion in diabetic patients [199–201]. Furthermore, this points
to the existence of a link between insulin, cognitive decline
and dementia, and type 2 diabetes [27, 195].

5. Insulin in Aging and Longevity

Aging can be defined as a time-dependent loss of fitness that
begins after the organism attains its maximum reproductive
competence [202], that is, an increased susceptibility to stress
[203] that culminates in an increased incidence of chronic
diseases and an exponential increase in the chance of dying
[202]. Although the molecular mechanisms underlying
aging remain controversial, Harman proposed, in 1968, that
oxidized macromolecules accumulate with age, decreasing
cell function and shortening lifespan—the Free Radical
Theory of Aging [204]. If this was as simple as Harman
proposed, antioxidant therapy would prevent aging-related
damage to tissues. However, nutritional and genetic studies
aiming to increase lifespan by boosting antioxidant defences
were mostly unsuccessful [205]. Indeed, supplementation
with vitamins E or C was not able to reduce mortality in
several clinical trials [206, 207]. Moreover, studies involving
overexpression of antioxidant enzymes (e.g., superoxide
dismutase and/or catalase) in mice failed to increase lifespan,
despite the decrease in oxidized macromolecules [208]. Con-
versely, overexpression of the peroxidase and redox-active
thioredoxin 1 [209] and mitochondrial-targeted catalase
[210] were shown to prolong mouse lifespan.

A parallel antiaging paradigm has been increasingly
proposed, in which the effect of genetic changes or caloric
restriction in insulin signaling pathway might slow the rate
of living, thus decreasing metabolism and oxidative stress
[211–214]. This hypothesis has been supported by studies
showing that caloric or dietary restriction inhibited insulin
signaling cascades that regulate glucose intake, prolonging
rodent longevity [215]. However, this does not explain why
the decrease in ROS levels occurs, despite the increased
metabolic rate observed under such conditions [216].

More recently, it has been suggested that epigenetic
factors modulated by aging (e.g., histone deacetylase fam-
ily, namely, sirtuins, histone acetylases and DNA methyl-
transferases) impose a metabolic (redox) shift towards an
increased reliance on glycolysis (instead of mitochondrial
metabolism), probably mediated by age- and sedentarism-
related insulin resistance (conditions that require lower
metabolic demands). Accordingly, oxidized Kelch-like ECH-
associated protein 1 (Keap-1) may block NF-E2-related
factor (Nrf) release to signal mitochondrial biogenesis, thus
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decreasing mitochondrial synthesis and forcing cells to rely
mostly on glycolysis [205]. As a consequence, aged tissue
becomes increasingly unable to cope with energy demands or
stress, initiating a catastrophic cycle of oxidized membrane
receptors, signaling molecules, transcription factors and
epigenetic transcriptional regulators, culminating in cell
death and organ failure [205]. Although the mechanisms
remain unknown, it is also believed that, in this age-related
oxidized environment, IR/IGF-1R may be constitutively
oxidized (by free radicals and/or AGEs, which are also
increased in aging [217]). This process may be due to the
failure of oxidized protein tyrosine phosphatase-1b (PTP1b)
to reactivate the receptor, thus limiting subsequent insulin
signaling progression and impairing translocation of glucose
transporters into the membrane. As a consequence, glucose
levels may rise, and, although insulin production may also
be stimulated, it may have no effect—the well-known insulin
resistance condition that occurs in type 2 diabetes and aging
[1, 205]. Insulin resistance further potentiates the formation
of AGEs, creating a damaging vicious cycle on aging brain
[218].

Age-associated changes in IR signaling may also arise
from increased cholesterol levels and decreased membrane
fluidity (impairing lateral movements of lipid rafts) or
from modification of IR internalization, reexpression, or
degradation by the proteasome [1]. Noteworthy, aging has
also been associated with a decrease in brain IR number
and binding capacity, namely, in hippocampus, cortex, and
choroid plexus [31, 219, 220].

Undissociated from aging is the longevity, which can
be defined as the property of approaching the species-
specific maximum lifespan, that is, the oldest observed age
of death in the species [202]. Rather than environmental
conditions, longevity depends mostly on genetics [202].
Increasing evidence points towards the idea that decreased
insulin signaling pathway may promote longevity in several
species, including yeast, worms, Drosophila, mice, and man
[212, 221–225]. A hypothesis further supported by increased
adiponectin and peroxisome proliferator-activated receptor
γ-2 (PPARγ-2) gene (two well-known insulin sensitizers) in
centenarians and long-lived men, whose type 2 diabetes inci-
dence was also dramatically decreased [226]. Additionally,
single mutation of daf-2 (an IR/IGF-1R homolog) resulted
in an increase in lifespan, via the nuclear translocation
of the FoxO family transcription factor DAF-16 [227]. In
this regard, evidences suggested that 14-3-3 molecules may
complex with sirtuin 2 (Sir2) upon stress, activating nuclear
FoxO/DAF-16, while the inactive FoxO/DAF-16 remained
in cytoplasm upon normal insulin signaling [228]. Null
mutations in Drosophila genes that encode IR or IRS
homologues were shown to extend lifespan of female fruit
flies [202]. Similarly, overexpression of IRS-1 in mice was
shown to decrease lifespan [223], and overexpression of
IRS-1, 2, 3, or 4 in adipose cells was shown to stimulate
GLUT4 translocation independently from insulin [229].
Accordingly, mice lacking IRS-2 had extended lifespan [222].
Surprisingly, IR overexpression in mammary epithelial cells
resulted in a tumorigenic phenotype [230], suggesting that
its continuous activation upon age-related oxidative stress

might not be beneficial. Recent studies suggest that reversible
control of cGMP via phosphodiesterase regulation might
modulate insulin production and, thus, could constitute a
key regulatory messenger of lifespan extension [227].

Studies in centenarian people and caloric restriction in
rodents and nonhuman primates suggested that prerequi-
sites for longevity include (besides the above-mentioned
increased insulin sensitivity and subsequent normal IR
signal transduction) decreased fasting glucose and oxidative
stress [1, 231]. In line with this, decreased mitochondrial
function has been suggested to, in some circumstances,
increase lifespan [232]. This idea is supported by studies
in the clk-1 mutant worms, showing reduced respiratory,
developmental and behavioural rates, but longer lifespan.
Such phenomena may be related with the fact that CLK-1 is
essential for ubiquinone synthesis, an important component
of the mitochondrial electron respiratory chain [232]. Sim-
ilar results have been described in Drosophila mutants with
lower expression of electron transfer chain components in
adult neurons [233] and in a mouse model with decreased
activity of cytochrome c oxidase complex [234].

In this regard, type 2 diabetes appears to be, at least
partially, a model for premature aging. This idea has
been further confirmed by a decrease of cellular replicative
senescence in diabetic subjects [1]. Thus, one of the main
challenges for the next decades will be to unravel the
complex interactions between aging and diabetes that result
in insulin resistance, allowing the development of more
efficient preventive and therapeutic strategies to overcome
age-related diseases (e.g., Alzheimer’s disease (AD)).

Taken together, if (1) aging is frequently related with
sedentarism and (2) the organism does not require extra
demands for energy, then it can survive longer on the lower
energy levels resulting from glycolysis. This can occur by
downregulating the mitochondrial electron transport chain
components and the activities of several redox-sensitive
transcription factors, enzymes, transporters, and signaling
proteins (e.g., IR), as has been widely described [205]. How-
ever, the challenge becomes when the aged organism faces a
stress condition.

6. Insulin in an Age-Related Neurodegenerative
Disorder: Alzheimer’s Disease

AD is a complex and common neurodegenerative disease
that afflicted 26.6 million people worldwide in 2006, a num-
ber that can quadruplicate by 2050 [235]. Clinically, this dis-
ease has an insidious onset, typically beginning with a subtle
decline in memory that progresses to global deterioration in
cognitive and adaptive function [11]. Neuropathologically, is
characterized by the presence of extracellular senile plaques
(SP), intracellular neurofibrillary tangles (NFT), and loss
of basal forebrain cholinergic neurons that innervate the
hippocampus and cortex [236]. While NFTs are formed
from paired helical filaments composed of neurofilaments
and hyperphosphorylated tau protein, SP arises mostly after
deposition of amyloid β (Aβ; a 39–43 amino acid peptide
derived from the proteolytic cleavage of a larger amyloid β
precursor protein (AβPP) by the β- and γ-secretases) [237].
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The most common resulting fragments are either 40 or 42
amino acids in length (Aβ1−40 and Aβ1−42) [11]. Although
the initiating factor(s) for AD remain unclear, some authors
suggested that they might involve intracellular (rather than
extracellular) accumulation of Aβ [39], leading to neurite
dystrophy and degeneration, postsynaptic protein loss, and
eventual death of neocortical, hippocampal, and subcortical
neurons [39, 44, 179]. Importantly, Aβ accumulation is
also a common process in normal aged human, but its
massive deposition in AD [238] may result from either
an overproduction of AβPP, impaired AβPP proteolytic
processing, and/or mutations in the genes encoding for AβPP
or presenilins [179].

Only 5% (or less) of all AD cases have an early
onset, autosomal dominant familial origin, probably due to
missense mutations in presenilin (PS) genes 1 or 2 in chro-
mosomes 14 and 1, or in the AβPP gene in chromosome 21
[239]. Additionally, allelic abnormalities of the apolipopro-
tein E (APOE) gene on chromosome 19 are related with early
onset and increased severity of inherited and sporadic AD
[239]. On the contrary, most of AD cases (95% or more) are
sporadic in origin, aging being the main risk factor [11, 232].
Although sporadic AD is faced as a “disease” of aging, this
does not necessarily imply that aging per se is a disease, and
we must bear in mind that the boundaries between late-
onset AD and “normal” aging are not absolute. This may
be due to (1) increasing evidences from epidemiological,
immunohistochemical, and molecular genetics studies sug-
gesting a heterogenous etiology for AD [240] and (2) the
fact that an unquestionable AD diagnosis is only possible
after the patient’s death, through post mortem morphological
and histological brain analysis [179]. Indeed, a decline in
neuropsychologic test performance, brain atrophy, neuronal
loss, and plaque/tangle deposition also occur with aging in
the absence of dementia [241]. Therefore, it is reasonable
to consider the causal molecular events for sporadic AD
within the aging spectrum, rather than distinct disease
phenomena.

Although the exact pathophysiologic mechanisms under-
lying signal transduction abnormalities and neurodegener-
ation in AD brain remain unknown, oxidative stress and
metabolic dysfunction appear to be involved [68, 242, 243].
Indeed, Aβ was shown to directly induce overproduction of
reactive oxygen and nitrogen species and neurotoxicity [244].
This was further exacerbated by Aβ-associated decreased
plasma antioxidant defences (e.g., uric acid, glutathione,
catalase, superoxide dismutase, glutathione peroxidise, and,
reductase), as described by several authors [245–248]. Addi-
tionally, antioxidant supplementation (e.g., vitamin E plus
vitamin C, and donezepil, an acetylcholinesterase inhibitor,
plus vitamin E) was shown to have beneficial effects in
AD [249, 250]. Similarly, vitamin E, idebenone, uric acid,
or glutathione prevented Aβ neurotoxicity in human and
rat cortical and hippocampal neurons and delayed disease
progression in AD patients [251]. Moreover, an induction
of apolipoprotein D expression (a protein that appears to
function as lipid antioxidant and to extend lifespan in
Drosophila) has been suggested to constitute an age-related
stress-resistance mechanism in AD brains [232].

Taken together, these data unequivocally demonstrate
the involvement of oxidative stress in AD and suggest a
potential therapeutic role for antioxidant supplementation
[245, 252]. However, others studies failed to show any
protection induced by antioxidant treatment in AD [249,
253]. Although indirectly, the involvement of oxidative
stress in AD pathophysiology was further reinforced by the
observation of AD neuropil enrichment in AGEs and redox
active metal ions (e.g., zinc, iron), particularly in SP, and
NFT [179, 251] (as detected in brain cortex, hippocampus,
and basal nucleus of Meynert from AD patients) [254]. To
further increase the complexity on this subject, oxidative
stress in AD may also arise from mitochondrial dysfunction,
involving decreased activity of mitochondrial complex IV
and decreased ATP/ADP, as revised by Moreira et al. [11]. In
fact, evidences widely implicate metabolic defects in AD, the
lower brain metabolic rate being one of the best-documented
abnormalities that occurs early in the pathology [255]. This
may involve impaired glucose uptake and metabolism and
also a slightly decreased cerebral metabolic rate of oxygen
(at the beginning of AD) [256, 257], preceding any evidence
for functional impairment by neuropsychological testing or
brain atrophy neuroimaging [258]. Thus, it is believed that
impaired AD brain metabolism may be a cause, rather than
a consequence, of neurodegeneration [259].

Although the underlying causes of reduced metabolism
in AD are not completely understood, it has been reported
that atrophy of cerebral vasculature (the major metabolic
exchange surface of brain), a decrement in brain glucose
transport activity, or even impaired insulin signaling might
play a crucial role [11]. Indeed, Liu et al. [260] proposed
that GLUT1 and GLUT3 could be downregulated in AD, thus
impairing brain glucose uptake/metabolism. Additionally,
several studies (including ours) showed that levels or activity
of enzymes from intermediary metabolism (e.g., aconitase,
glutamine synthetase, creatine kinase, pyruvate dehydroge-
nase, and α-ketoglutarate dehydrogenase) were decreased
in AD brains and cells exposed to Aβ [261–264]. More
specifically, Bubber et al. [265] observed that changes in
tricarboxylic acid cycle enzymes’ activities (mainly of the
pyruvate dehydrogenase complex) correlated with the clin-
ical state, suggesting a coordinated mitochondrial alteration
in AD.

One of the most common changes in electron trans-
port chain underlying mitochondrial dysfunction in AD is
decreased cytochrome oxidase activity, described in such
distinct AD human tissues as platelets [266, 267] and
post mortem brain tissue [268, 269]. Furthermore, studies
with cybrid cells demonstrated that AD platelet deficits in
cytochrome oxidase could be transferred to cells depleted
of mitochondrial DNA (mtDNA) (Rho0 cells), suggesting
that mtDNA-associated mitochondrial dysfunction might
play a role in AD neurodegeneration [266, 270, 271]. Valla
and collaborators [272] also reported significant declines in
complexes III and IV in AD lymphocyte mitochondria and
a significant decline in complex IV in mild cognitive impair-
ment lymphocyte mitochondria, suggesting that mitochon-
drial abnormalities could be present at the earliest symp-
tomatic stages of the disease. Finally, enhanced mitochondria
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degradation was described in AD, leaving behind lysosomal
detritus containing non-functional mitochondrial compo-
nents [261, 273].

Noteworthy, among dementia-type disorders, AD has
been increasingly associated with type 2 diabetes [27, 274,
275]. Indeed, two epidemiological studies (the Honolulu-
Asia Aging Study, and the Rotterdam and Mayo studies)
reported that type 2 diabetes increases the risk for AD,
dependently on vascular dementia [175, 276, 277]. Fur-
thermore, both pathologies share several common aspects,
including aging-related processes, degeneration, high choles-
terol levels, peripheral and CNS insulin resistance, dys-
functional IR and IR-mediated signaling, and decreased
glucose transport and metabolism, despite the higher
nonmetabolized glucose levels in cerebral blood [2, 5,
25, 27, 175, 256, 259, 275]. This led to the hypothe-
sis that type-2-diabetes-mediated recurrent hyperinsuline-
mia/hypoglycemia episodes culminate in long-term changes
in brain vasculature, neurodegeneration, and cognitive
impairment, facilitating AD onset [30, 126, 275]. The
existence of a correlation between the severity of neuritic
plaques, NFT and cerebral amyloid angiopathy, and the
presence of type 2 diabetes and apolipoprotein ε4 (APOε4)
allele further supports this hypothesis [25, 27, 278]. On
the other hand, AD patients exhibited a higher risk for
developing type 2 diabetes [279], and this led to the idea
that brain IR signaling might be the missing link between
brain neuronal loss and pancreatic β-cell loss in both diseases
[27, 279].

More interestingly, a recent proposal refers that AD
can be an “insulin-resistant brain state” [11], or even a
“type 3 diabetes” [12, 280–283]. This can be supported
by the reports on age- and AD-related decrease in insulin
mRNA and protein levels [11, 282, 283], IR or IGF-1R
expression [11, 40, 219, 284], IRS-1 and IRS-2 levels [11],
markers of Tyr kinase activity (namely, active IRS-1, PI3K,
and ERK1/2) [40, 175], or a reduced association of Shc
with Grb2 [30]. Additionally, soluble Aβ oligomers were
shown to interfere with IR function, probably due to a
loss of these receptors at dendrites and their increased
expression in the cell soma [285], despite no changes in
absolute hippocampal neuronal IR levels [286]. Accordingly,
Moloney et al. [40] suggested that damaged IR-associated
neurotrophic and metabolic brain functions in AD neurons
might arise after persistent and pathological hyperactivation
of the Akt-mTOR-S6K signaling pathway, increasing IRS-1
phosphorylation at Ser312 or 616, culminating in IRS-1/2
degradation.

Concerning increased fasting plasma insulin, decreased
CSF insulin levels, and/or decreased CSF/plasma insulin ratio
in AD patients [11, 175], they are suggestive of insulin clear-
ance impairment, which may elevate plasma Aβ levels [27,
274], due to the role of insulin in modulation of amyloid pro-
cessing both in vivo and in vitro. In fact, brain insulin/IGF-
1/Akt-mediated phosphorylation/inactivation of GSK-3β
inhibited Aβ production [274, 287] and its abnormal
intracellular accumulation, probably by increasing its extra-
cellular secretion and by accelerating its trafficking from
Golgi and trans-Golgi network to the plasma membrane [39,

40]. However, under insulin resistance conditions, despite
the chronic peripheral hyperinsulinemia, downregulation
of brain insulin synthesis and/or transport decreased brain
insulin levels [218] and its subsequent signaling cascades,
culminating in increased Aβ levels, as in Tg2576 AD
transgenic mice [288]. More recently, Freude et al. [289]
reported that IRS-2 deficiency in this mouse model of AD
decreased both AβPP cleavage and Aβ levels in brain. Similar
results were obtained upon selective neuronal disruption of
IGF-1R in Tg2576 mice [289]. Alternatively, insulin/IGF-1
prevented Aβ accumulation by promoting its transport into
CNS via Aβ-binding carrier proteins (e.g., transthyretin and
albumin) [27, 200, 238, 290–292], or by insulin interfering
with extracellular proteolytic Aβ degradation via insulin-
degrading enzyme (IDE). This metalloprotease, that also
catabolizes insulin and IGF-1, can be competitively inhibited
by insulin resistance [30, 46, 126, 200, 218, 238, 278],
impairing Aβ degradation, increasing its neurotoxicity and
promoting AD [11, 46, 278]. Noteworthy, since brain IR
does not desensitize, IDE may also constitute a negative
feedback loop to control insulin action [31, 46], that is,
PI3K/Akt activation by insulin may upregulate IDE, which
may stop subsequent signaling and promote Aβ clearance in
hippocampal neurons [31].

Insulin and IGF-1 were also described to modulate both
physiological and abnormal neuronal tau protein phos-
phorylation, in a process involving Akt, GSK-3β, ERK1/2,
and Cdk-5 [12, 25, 27, 30, 39, 40, 44]. Similarly, Sui et
al. [57] observed that GSK-3β inhibition blocked specific
phosphorylation of tau protein in PC12 cells. Moreover, in
diabetic animals treated with insulin, a complete prevention
of tau protein hyperphosphorylation was reported, probably
resulting from reestablishment of brain insulin signaling
[293]. This is further supported by the age-related tau
protein hyperphosphorylation and CNS accumulation in
both transgenic NIRKO mice (mice lacking brain/neuronal
IR) [59] and IRS-2-deficient mice (in which brain IR
is dysregulated) [294]. Interestingly, hyperinsulinemia in
NIRKO mice [12, 167] and insulin treatment in human
NT2 neurons [295] were described to decrease tau protein
phosphorylation. Conversely, several authors described that
in human SH-SY5Y neuroblastoma cells [59, 296] and rat
primary cortical neurons [297], insulin exposure increased
hyperphosphorylated tau protein levels, which was not
transported into axons, thus accumulating and aggregating
into NFTs in neuronal perikarya, and thereby promoting
oxidative stress, apoptotic or necrotic death, and mitochon-
drial dysfunction associated with AD [30].

7. Is There a Therapeutic Window for
Insulin against Diabetes- and Age-Related
Neurodegeneration?

From all the above-mentioned evidences, we believe that a
valuable therapeutic window for insulin against diabetes-
and age-related neurodegenerative disorders (e.g., AD)
may exist. Under these conditions, an inadequate trophic
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support to brain may occur due to lower insulin/IGF-1
levels and/or damaged IR/IGF-1R-mediated signaling, affect-
ing gene transcription and culminating in neurodegenera-
tion/death, cognitive dysfunction, and, ultimately, in long-
term complications (in case of diabetes) and/or in AD (and
other dementia) [46]. Thus, those symptoms should be
alleviated upon increased insulin levels, accomplished by
exogenous insulin plus glucose administration (to maintain
euglycemia, avoiding the deleterious effects of hypoglycemia
on memory and cognition) [30, 164, 175]. Interestingly,
intranasal insulin administration has been increasingly con-
sidered as a potential peripheral therapy, with the advantage
of penetrating the CNS within minutes (without affecting
plasma glucose or insulin levels) [298]. This can occur
via extracellular bulk flow transport along olfactory and
trigeminal perivascular channels, but also through more tra-
ditional axonal transport pathways, culminating in memory
improvement [39, 144, 298–300]. In this regard, a very recent
clinical trial from Craft et al. [301] showed that treatment
of AD or mildly cognitively impaired adults with intranasal
insulin stabilized or improved cognition and cerebral glucose
metabolism. Similarly, direct intracerebroventricular insulin
administration was shown to improve memory performance
(without changes in blood insulin or glucose concentra-
tions), but this approach poses some questions concerning
its human applicability [175]. Although the use of stem cells
to deliver insulin or IGF-1 into brain has been considered
as a hypothetical beneficial therapy (by increasing neuronal
survival and decreasing oxidative stress in the CNS), safety
and efficacy issues must first be improved [30].

However, chronically high insulin levels in brain can be
deleterious [46], due to (1) desensitization of PI3K pathway
and inadequate responses to other trophic factors, (2) poten-
tiation of NMDA receptors and resultant excitotoxicity, and/
or (3) competition with Aβ for IDE, increasing extracellular
Aβ accumulation (meaning that excessive insulin must be
removed to alleviate the competitive blockade of IDE)
[44, 46]. A therapeutical alternative could be the use of
antidiabetic insulin sensitizers (e.g., thiazolidinediones) that,
under hyperinsulinemia, would decrease insulin availability
to the brain without affecting glycemia [46]. Unfortunately,
clinical trials showed that rosiglitazone, a thiazolidine-
dione, decreased cognitive performance in AD patients
[302, 303]. Other therapeutical approaches could be (1)
the small molecule insulin mimetic demethylasterriquinone
B1 (DAQB1) that does not competitively inhibit IDE and
modulates IR [304], (2) the delivery of insulin antibodies, or
(3) insulin-inhibiting peptides into the brain [46]. Increased
CNS IDE levels (via gene therapy or IDE infusion) would
be also of therapeutical interest but is less practical. Given
that activated PI3K/Akt inhibits GSK-3β and subsequent Aβ
production and tau protein hyperphosphorylation (as well as
increased Aβ clearance via stimulation of transthyretin and
IDE), another strategy could be the improvement of insulin
signaling [44, 46, 218]. In line with this, the use of GSK-3β
inhibitors could be attractive, but it might also impair several
vital physiological targets of this kinase or have no impact on
other critical components of the neurodegenerative cascade
[30, 218].

8. Conclusion

In the last three decades, brain insulin signaling has faced a
novel and increased interest in neuroscience research, either
in its signaling pathways and/or as a promising therapy
against diabetes and age-related neurodegenerative disorders
(e.g., AD). From the first studies recognizing the abundance
of insulin and IR in brain to its potential involvement
in numerous neurodegenerative diseases associated with
diabetes (particularly type 2 diabetes) and aging mediated
less than 20 years. Indeed, in 1999, Halter described that
elderly people have impaired insulin sensitivity, which might
account for by the slight age-related increase in fasting
glucose levels and the delay in return to normal glucose levels
after an oral glucose tolerance test. However, more than 10
years later, the elucidation on whether the origin of this
insulin resistant state relies on aging per se or on external,
lifestyle factors remains a matter of debate. In this regard,
one of the main challenges for the next decades will be to
unravel the complex interactions between aging and diabetes
that underlie insulin resistance, allowing the development
of more efficient preventive and therapeutic strategies to
overcome age-related neurodegenerative diseases.

Concerning AD, a recent hypothesis points towards the
idea that AD is the “brain-type diabetes.” This is supported
by decreased number or binding capacity of brain IR in
both AD patients and mouse models, increased risk for
type 2 diabetes in AD patients (and vice versa), and the
accumulation of hyperphosphorylated tau in the CNS of
IRS-2-disrupted mice, a model of type 2 diabetes. Thus,
restoring insulin levels and/or its receptor-mediated signal-
ing cascades (without affecting blood glucose levels) consti-
tute a potentially interesting therapeutic strategy against AD,
due to the inhibition of Aβ production (and its increased
clearance) and tau protein hyperphosphorylation, two well-
known hallmarks of the pathology.

More recent studies focused on the importance of
insulin/IR signaling in increased longevity. However, the
results remain highly controversial.

In summary, in CNS, rather than just an “acquired” peri-
pheral hormone, insulin appears to be a naturally occurring
peptide of the outmost importance.
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