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A pseudo su(1, 1)-algebra is formulated as a possible deformation of the Cooper pair in
the su(2)-algebraic many-fermion system. With the aid of this algebra, it is possible to describe
the behavior of individual fermions which are generated as the result of interaction with the
external environment. The form presented in this paper is a generalization of a certain sim-
ple case developed recently by the authors. The basic idea follows the su(1, 1) algebra in the
Schwinger boson representation for treating energy transfer between the harmonic oscillator and
the external environment. The Hamiltonian is given following the idea of phase space doubling
in the thermo-field dynamics formalism, and the time-dependent variational method is applied to
this Hamiltonian. Its trial state is constructed in the frame deformed from the BCS-Bogoliubov
approach to superconductivity. Several numerical results are shown.
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1. Introduction

It may be hardly necessary to mention, but the BCS-Bogoliubov approach to superconductivity
has made a central contribution to the study of nuclear structure theory. The orthogonal set in this
approach is determined through two steps. At the first step, the state |φB) given in the following plays
the leading part:

|φB) = 1√
�

exp
(
z S̃+

) |0), (1.1a)

� = (1 + |z|2)2�0 . (1.1b)

Here, �, z, S̃+ and |0) denote the normalization constant, complex parameter, the Cooper pair cre-
ation and the fermion vacuum, respectively. Including S̃− and S̃0, the set (S̃±,0) forms the su(2)
algebra. Clearly, |φB) is the state with zero seniority, but it is not an eigenstate of the fermion-
number operator and plays the role of the quasiparticle vacuum. At the second step, the states with
nonzero seniority are constructed by operating the quasiparticles on |φB) in the appropriate manner.
On the other hand, the Cooper pair can be treated by the conventional technique of the su(2) algebra.
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The orthogonal set in this approach is also determined through two steps. The first is to construct the
minimum weight state |m), which does not contain any Cooper pair:

S̃−|m) = 0. (1.2)

Therefore, |m) is not necessarily the state with zero seniority. The second is to construct the states
orthogonal to |m) by operating on S̃+ in the appropriate manner. The description above tells us that,
for the two approaches, the orthogonal set is constructed in opposite orders. Therefore, without any
argument, it may not be concluded that they are equivalent to each other.

In response to the above-mentioned situation, the authors recently proposed a certain idea [1].
In this idea, the quasiparticle in the framework of the conservation of the fermion number, which
is called the “quasiparticle”, was introduced. Through the medium of this operator, it was shown
that both are equivalent to each other in a certain sense. Further, in the paper following Ref. [1],
the present authors discussed another role of the “quasiparticle”, which leads to the idea of defor-
mation of the Cooper pair [2]. Hereafter, this paper will be referred to as (A). Any state |φ)
with zero seniority, including |φB), obeys the condition (A.13), which is strongly related to the
“quasiparticle”. This condition does not lead to fixing the form of |φ) automatically, so a new
condition additional to the condition (A.13) is required. If the condition (A.17) for |φ), namely
S̃−|φ) = z(�0 − S̃0)|φ), is added, we obtain |φB). In (A), we treated the case of the condition (A.18),

namely S̃−|φ) = z
[
(�0 − S̃0)(�0 + S̃0 + 1)

] 1
2 |φ), in detail. In this case, |φ) is obtained in the form

|φ) = 1√
�

exp
(
zT̃+

) |0), (1.3a)

� =
2�0∑
n=0

(|z|2)n. (1.3b)

Here, T̃+ is an operator factorized in the product of S̃+ and a certain operator. The definition of T̃+
including T̃− and T̃0 is given in the relation (A.36). The commutation relations among T̃±,0, which are
shown in the relation (A.39), suggest that, in spite of considering the su(2)-algebraic many-fermion
model, the set (T̃±,0) resembles the su(1, 1) algebra in behavior. The form (1.3b) is given explicitly
in the relation (A.25).

It is well known that, with the use of two kinds of boson operators, the su(2) and the su(1, 1)
algebra, the generators of which are denoted as Ŝ±,0 and T̂±,0, respectively, can be formulated. They
are called the Schwinger boson representations [3]. For these two algebras, we prepare two boson
spaces: (1) the space constructed under a fixed magnitude of the su(2)-spin, s(= 0, 1/2, 1, . . . , smax),
and (2) the space constructed under a fixed magnitude of the su(1, 1)-spin, t (= 1/2, 1, 3/2, . . . ,∞).
Following the idea of the boson mapping [4], any operator in space (1) can be mapped into space (2).
In space (1), we can find the set (T̂±,0), which obeys

T̂±,0
(mapped)−→ T̂±,0. (1.4)

Naturally, the set (T̂±,0) shows su(1, 1)-like behavior and it is called the pseudo-su(1, 1) algebra by
the present authors [5]. In (A), we presented a concrete expression for (T̃±,0) which corresponds to
(T̂±,0) with t = 1/2. On the other hand, we know that the mixed-mode boson coherent state con-
structed by (T̂±,0) enables us to describe the “damped and amplified harmonic oscillation” in the
frame of the conservative form. Through this description, we can understand the energy transfer
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PTEP 2013, 103D04 Y. Tsue et al.

between the harmonic oscillator and the external environment. Further, by regarding the mixed-mode
boson coherent state as the statistically mixed state, thermal effects in time evolution are described
with some interesting results [5–7]. Therefore, with the aid of the set (T̂±,0), it may also be possi-
ble to describe the boson behavior under consideration. Its examples are found in the pairing and
the Lipkin model in the Holstein–Primakoff-type boson realization [8,9]. The results were shown in
Ref. [5]. A primitive form of the above idea is the phase space doubling introduced in the thermo field
dynamics formalism [10]. However, it is impossible in the framework of the set (T̂±,0) to investigate
the behavior of individual fermions. The form given in (A) may be useful for this problem, but, as
is clear from the form (1.3), the case of the state |φ) with nonzero seniority cannot be treated in the
frame of (A).

This paper aims at two targets. First is to generalize the pseudo-su(1, 1) algebra with zero seniority
to the case with nonzero seniority. Second is to apply the generalized form to a concrete many-
fermion system. The su(2) algebra in the many-fermion model is characterized by s and s0; for a
given s, s0 = −s,−s + 1, . . . , s − 1, s. The su(1, 1) algebra in the Schwinger boson representation
is characterized by t and t0; for a given t , t0 = t, t + 1, . . . ,∞. The pseudo-su(1, 1) algebra in the
Schwinger boson representation, which is abbreviated to Bps-form, is a possible deformation of the
su(1, 1) algebra and, therefore, it should be characterized at least by (t, t0). However, we are now
considering the pseudo-su(1, 1) algebra, which is a possible deformation of the Cooper pair in the
su(2)-algebraic many-fermion model. Hereafter, we will abbreviate it to Fps-form. One of main
problems for the first target is how to import (t, t0) in the Bps-form into the Fps-form characterized
by (s, s0). Following an idea developed in this paper, we have

S̃±,0
(deformed)−→ T̃±,0. (1.5)

Of course, a form generalized from |φ) as shown in the relation (1.3) can be presented. This form also
contains the complex parameter z and the normalization constant �, which is a function of x = |z|2.
Another problem with the first target is how to calculate � for the range 0 ≤ x < ∞. As a possible
application of the Fps-form, we adopt the following scheme: Under the time-dependent variational
method for a given Hamiltonian expressed in terms of (T̃±,0), we investigate the time evolution of
the system. The trial state is |φ), and then our problem is reduced to finding the time dependence of
z. For the above task, we must calculate the expectation values of T̃±,0. Naturally, � appears in the
expectation values. However, � is a complicated polynomial in x and it may be impossible to handle
it in a consolidated fashion for the whole range. If dividing the whole range into the two, 0 ≤ x ≤ γ

and γ ≤ x < ∞, � becomes approximate, but simple for each range, and very accurate. Here, γ
denotes a certain constant.

For the second target, we must prepare a model for the application. The model is a non-interacting
many-fermion system in one single-particle level, which we will call the intrinsic system. The rea-
son we investigate such a simple model comes from the su(1, 1) algebra in the Schwinger boson
representation. As was already mentioned, this algebra helps us to describe the harmonic oscillator
interacting with the external environment. If we follow the thermo-field dynamics formalism, we
prepare a new degree of freedom for an auxiliary harmonic oscillator for the environment, that is,
phase space doubling. Further, as the interaction between both degrees of freedom, the form which
is proportional to (T̂+ − T̂−) is adopted. Our present scheme follows the above. Our problem is
to describe the above-mentioned intrinsic system interacting with the external environment. For this
aim, we introduce an auxiliary many-fermion system and, as the interaction between both systems, we
adopt the form proportional to (T̃+ − T̃−). To the above Hamiltonian, we apply the time-dependent
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variational method. The trial state is of the form generalized from |φ) shown in the relation (1.3)
and the variational parameters are z and z∗ contained in this state. Through the variation, we obtain
certain differential equations for ż and ż∗. By solving them appropriately, including approximation,
we can arrive at a certain type of the time evolution. According to the result, the intrinsic system
shows rather complicated cyclic behavior. One cycle can be represented in terms of a chain of differ-
ent functions for the time: linear, sinh and sin types. This point is essentially different from the result
obtained in the su(1, 1)-algebraic boson model which permits an infinite boson number. This case
does not show any cyclic behavior. The above description may be quite natural, because the present
model is a form of the su(2)-algebraic fermion model in which the Pauli principle works.

In next section, after recapitulating the su(1, 1)-algebraic boson model presented by Schwinger, a
pseudo-su(1, 1) algebra is formulated as a possible deformation of the Schwinger boson representa-
tion, in which the maximum weight state is introduced. In Sect. 3, a possible pseudo-su(1, 1) algebra
as a deformation of the Cooper pair is formulated in the frame of the su(2)-algebraic many-fermion
model. Section 4 is devoted to giving conditions under which the two pseudo-su(1, 1) algebras are
equivalent to each other, mainly by paying attention to the quantum numbers for the orthogonal sets of
both algebras. In Sect. 5, the generalization from |φ) shown in the relation (1.3) is presented. Explicit
expressions of the normalization constant � and the expectation value of the fermion number oper-
ator N are given. Since � and N have complicated forms, approximate expressions are presented
in Sect. 6 in each of the two regions. In Sect. 7, a simple many-fermion model obeying the pseudo-
su(1, 1) algebra is presented for the application of the idea developed in Sects. 2–6. Sections 8, 9,
and 10 are devoted to discussing various properties of �, i.e., N in the approximate forms given in
Sect. 6. In Sect. 11, following the scheme mentioned in Sect. 7, some concrete results are presented
and it is shown that one cycle consists of a chain of the three different functions for the time. Finally,
in Sect. 12, some concluding remarks, including future problems, are given.

2. The su(1, 1) algebra in the Schwinger boson representation and its
deformation – pseudo-su(1, 1) algebra

With the use of two kinds of boson operators (â, â∗) and (b̂, b̂∗), the Schwinger boson representation
of the su(1, 1) algebra can be formulated. This algebra is composed of three operators which are
denoted as T̂±,0. They obey the relations

T̂ ∗
0 = T̂0, T̂ ∗

± = T̂∓, (2.1)

[T̂+, T̂−] = −2T̂0, [T̂0, T̂±] = ±T̂±. (2.2)

The Casimir operator, which is denoted as T̂
2
, and its properties are given by

T̂
2 = T̂ 2

0 − 1

2

(
T̂−T̂+ + T̂+T̂−

)
= T̂0

(
T̂0 ∓ 1

)
− T̂±T̂∓, (2.3)

[T̂±,0, T̂
2
] = 0. (2.4)

The Schwinger boson representation is presented in the form

T̂+ = â∗b̂∗, T̂− = b̂â, T̂0 = 1

2
(â∗â + b̂∗b̂)+ 1

2
. (2.5)
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PTEP 2013, 103D04 Y. Tsue et al.

The eigenstate of T̂
2

and T̂0 with the eigenvalues t (t − 1) and t0, respectively, which is constructed
on the minimum weight state |t〉, is expressed in terms of the following form:

|t, t0〉 =
[

(2t − 1)!

(t0 − t)!(t0 + t − 1)!

] 1
2 (

T̂+
)t0−t |t〉, (〈t, t0|t, t0〉 = 1). (2.6)

Here, t and t0 obey

t = 1/2, 1, 3/2, . . . ,∞, t0 = t, t + 1, t + 2, . . . ,∞. (2.7)

Of course, |t〉 is given in the form

|t〉 =
(√
(2t − 1)!

)−1
(b̂∗)2t−1|0〉, (|t = 1/2〉 = |0〉) . (2.8)

The state |t〉 satisfies the relation

T̂−|t〉 = 0, T̂0|t〉 = t |t〉. (2.9)

Concerning the state |t〉, we must give a small comment. The state (
√
(2t − 1)!)(â∗)2t−1|0〉 also

satisfies the relation (2.9), and it is orthogonal to |t〉. This indicates that we have two types for the
minimum weight states, which should be discriminated by the quantum number additional to t . We
omit this discrimination, and in this paper we will adopt the form (2.8). The above is an outline of
the su(1, 1) algebra in the Schwinger boson representation.

Since we are considering a boson system, no upper limit exists for the values of t and t0. In other
words, the terminal states do not exist, as can be seen in the relation (2.7). As a possible variation,
we will consider the case where the terminal state exists for t0:

t0 = t, t + 1, . . . , tm − 1, tm . (2.10)

The reason for investigating this case will be mentioned in Sect. 3 in relation to the su(2)-algebraic
many-fermion model. In the space specified by the relation (2.10), we introduce three operators
defined as

T̂+ = T̂+

[
tm − T̂0

tm − T̂0 + ε

] 1
2

, T̂− =
[

tm − T̂0

tm − T̂0 + ε

] 1
2

T̂−, T̂0 = T̂0. (2.11)

Here, ε denotes an infinitesimal positive parameter, which plays a role in avoiding the vanishing
denominator. Successive operation of T̂+ gives us the following:

T̂+ ·
(
T̂+
)t0−t |t〉 =

(
T̂+
)t0+1−t |t〉 for t0 = t, t + 1, . . . , tm − 2, tm − 1, (2.12a)

T̂+ ·
(
T̂+
)tm−t |t〉 = 0, (2.12b)

T̂+ ·
(
T̂+
)t0−t |t〉 =

(
T̂+
)t0+1−t |t〉 for t0 = tm + 1, tm + 2, . . . . (2.13)

Therefore, the present boson space spanned by the orthogonal set (2.6) is divided into two subspaces
and we are interested in the subspace governed by the relation (2.12), in which (T̂+)tm−t |t〉 is the
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terminal state. In this subspace, the commutation relations for T̂±,0 are given in the form

[T̂+, T̂−] = −2T̂0 + (tm + t)(tm − t + 1)|t, tm〉〈t, tm |, (2.14)

[T̂0, T̂±] = ±T̂±. (2.15)

We also have the relation

T̂ 2 = T̂ 2
0 − 1

2

(
T̂−T̂+ + T̂+T̂−

)
= t (t − 1)+ 1

2
(tm + t)(tm − t + 1)|t, tm〉〈t, tm |. (2.16)

Again, we note the following relation:(
T̂+
)t0−t |t〉 =

(
T̂+
)t0−t |t〉 for t0 = t, t + 1, . . . , tm − 1, tm . (2.17)

The operation of T̂+ in the present subspace is essentially the same as that of T̂+. We call the set (T̂±,0)
the pseudo-su(1, 1) algebra. It contains the positive parameter tm . For practical purposes, we must
find the condition for fixing the value of tm . The relation (2.12a) suggests that we may be permitted
to call the terminal state the maximum weight state.

3. An su(2)-algebraic many-fermion model – pseudo-su(1, 1) algebra

In Sect. 2, we presented the pseudo-su(1, 1) algebra as a possible deformation of the su(1, 1) algebra.
In this section, we will formulate the pseudo-su(1, 1) algebra in the su(2)-algebraic many-fermion
model, which was promised in (A). First, we will give an outline of the present many-fermion model.
The constituents are confined in 4�0 single-particle states, where�0 denotes integer or half-integer.
Since 4�0 is an even number, all single-particle states are divided into equal parts P and P . There-
fore, as a partner, each single-particle state belonging to P can find a single-particle state in P . We
express the partner of the state α belonging to P as ᾱ, and fermion operators in α and ᾱ are denoted
as (c̃α, c̃∗

α) and (c̃ᾱ, c̃∗
ᾱ), respectively. As the generators S̃±,0, we adopt the following form:

S̃+ =
∑
α

sα c̃∗
α c̃∗
ᾱ, S̃− =

∑
α

sα c̃ᾱ c̃α,

S̃0 = 1

2
Ñ −�0, Ñ =

∑
α

(̃c∗
α c̃α + c̃∗

ᾱ c̃ᾱ). (3.1)

The symbol sα denotes the real number satisfying s2
α = 1. The sum

∑
α (
∑
ᾱ) is carried out in all

single-particle states in P (P), and we have
∑
α 1 = 2�0(

∑
ᾱ 1 = 2�0). The operators S̃±,0 form

the su(2) algebra obeying the relations

S̃∗
0 = S̃0, S̃∗

± = S̃∓, (3.2)

[S̃+, S̃−] = 2S̃0, [S̃0, S̃±] = ±S̃±. (3.3)

The Casimir operator, which is denoted as S̃
2
, and its property are given by

S̃
2 = S̃2

0 + 1

2

(
S̃− S̃+ + S̃+ S̃−

) = S̃0
(
S̃0 ∓ 1

)+ S̃± S̃∓, (3.4)

[S̃±,0, S̃
2
] = 0. (3.5)
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The eigenstate of S̃
2

and S̃0 with the eigenvalues s(s + 1) and s0, respectively, is expressed
in the form

|s, s0) =
[

(s − s0)!

(2s)!(s + s0)!

] 1
2 (

S̃+
)s+s0 |s), ((s, s0|s, s0) = 1) . (3.6)

Here, s and s0 obey

s = 0, 1/2, 1, . . . , �0, s0 = −s, −s + 1, . . . , s − 1, s. (3.7)

The state |s) denotes the minimum weight state satisfying

S̃−|s) = 0, S̃0|s) = −s|s). (3.8)

Since |s) is given in a many-fermion system, it depends on not only s but also the quantum numbers
additional to s, and recently we presented an idea on how to construct |s) in an explicit form [11,12].
Later, we will sketch it. Needless to say, the operator S̃+ (S̃−) plays the role of creation (annihilation)
of the Cooper pair.

As a possible deformation of S̃±,0, i.e., deformation of the Cooper pair, we introduce three operators
in the space spanned by the set (3.6). They are expressed in the form

T̃+ = S̃+
[

s + S̃0 + 2t ′

s − S̃0 + ε

] 1
2

, T̃− =
[

s + S̃0 + 2t ′

s − S̃0 + ε

] 1
2

S̃−, T̃0 = s + S̃0 + t ′. (3.9)

Here, ε denotes an infinitesimal positive parameter. The form (3.9) contains the positive parameter
t ′, and in (A) we considered the case t ′ = 1/2 for s = �0. The commutation relations for T̃±,0 are
given in the form

[T̃+, T̃−] = −2T̃0 + (2s + 2t ′)(2s + 1)|s, s)(s, s|, (3.10)

[T̃0, T̃±] = ±T̃±. (3.11)

The operator T̃ 2
is expressed as

T̃ 2 = T̃ 2
0 − 1

2

(
T̃−T̃+ + T̃+T̃−

)
= t ′(t ′ − 1)+ 1

2
(2s + 2t ′)(2s + 1)|s, s)(s, s|. (3.12)

From the comparison of the relations (3.10)–(3.12) with the relations (2.14)–(2.16), we can under-
stand that the set (T̃±,0) also forms the pseudo-su(1, 1) algebra. Successive operation of T̃+ on the
state |s) gives us

T̃+ · (T̃+
)s+s0 |s) = (T̃+

)s+s0+1 |s) for s0 = −s,−s + s, . . . , s − 1, (3.13a)

T̃+ · (T̃+
)2s |s) = 0. (3.13b)

The relation (3.13b) tells us that (T̃+)2s |s) is the maximum weight state. Further, we have

(
T̃+
)s+s0 |s) =

[
(2t ′ − 1 + s + s0)!

(2t ′ − 1)!

(s − s0)!

(2s)!

] 1
2 (

S̃+
)s+s0 |s). (3.14)

The relation (3.14) suggests that, in order to describe the su(2)-algebraic model, it may be enough
to treat the model in the orthogonal set {(S̃+)s+s0 |s)}. In spite of this fact, we describe it in the
orthogonal set {(T̃+)s+s0 |s)}. The reason will become clear in Sect. 5. It must also be noted that
{(T̃+)s+s0 |s); s0 = −s,−s + 1, . . . , s} corresponds to {(T̂+)t0−t |t〉; t0 = t, t + 1, . . . , tm}, which is
defined in the relation (2.12).
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4. Condition for the equivalence of two pseudo-su(1, 1) algebras

In last two sections, we derived the pseudo-su(1, 1) algebra from two algebraic models: (1) the
su(1, 1) algebra in the Schwinger boson representation, and (2) the su(2) algebra in the many-
fermion system. As was mentioned in Sect. 1, we call these the Bps- and Fps-form, respectively.
Three quantities t , t0, and tm characterize the Bps-form. In these three, t and t0 indicate the quantum
numbers for the su(1, 1) algebra itself and, in particular, t determines the irreducible representation.
The quantity tm is an artificial parameter introduced from the outside for defining the maximum
weight state of the Bps-form. On the other hand, the Fps-form is characterized by four quantities, s,
s0,�0, and t ′. The quantities s and s0 indicate the quantum numbers for the su(2) algebra itself, and s
determines the irreducible representation. The existence of the maximum weight state is guaranteed
by �0. The quantity t ′ is an artificial parameter introduced for constructing the Fps-form.

With this in mind, let us search for the condition which makes Bps- and Fps-form equivalent to
each other. For this aim, we require the following correspondence:

||t, t0〉 ∼ ||s, s0). (4.1)

Here, ||t, t0〉 and ||s, s0) are given as

||t, t0〉 =
(
T̂+
)t0−t |t〉, (t0 = t, t + 1, . . . , tm − 1, tm), (4.2a)

||s, s0) = (T̃+
)s+s0 |s), (s0 = −s,−s + 1, . . . , s − 1, s). (4.2b)

If the correspondence (4.1) is permitted, the number of the states in (4.2a) should be equal to that of
the states in (4.2b):

tm − t + 1 = 2s + 1, i.e., tm − t = 2s. (4.3)

Since ||t, tm〉 corresponds to ||s, s), the relations (2.14) and (3.10) should lead to

(tm + t)(tm − t + 1) = (2s + 2t ′)(2s + 1). (4.4)

Then, with the use of the relation (4.3), we have

t = t ′. (4.5)

The eigenvalues of T̂0 and T̃0 for ||t, t0〉 and ||s, s0) are given by t0 and s + s0 + t ′, respectively, and
they should be equal to each other:

t0 = s + s0 + t ′. (4.6)

The cases s0 = −s and s0 = s correspond to the cases t0 = t and t0 = tm , respectively, and they lead
to tm = 2s + t ′. They are consistent with the relations (4.5) and (4.3).

The above result is summarized as follows:

t = t ′, t0 = s + s0 + t ′, tm = 2s + t ′. (4.7)

We can see that t , t0, and tm which characterize the Bps-form are expressed in terms of the s, s0, and
t ′ characterizing the Fps-form. However, usually, the su(2)-algebraic many-fermion model contains
two quantum numbers apart from�0, which determines the framework of the model. As was already
mentioned, t ′ is introduced as an artificial parameter and t determines the irreducible representation
of the su(1, 1) algebra. Therefore, t ′ may be a function of�0 and s, which determine the framework
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of the irreducible representation of the su(2) algebra. As an example, in this paper we will adopt the
following form:

t ′ = �0 + 1

2
− s (= t), i.e., s + t = �0 + 1

2
. (4.8)

If t = 1/2, s is equal to �0, and we investigated this case in (A). The forms (4.7) and (4.8) give us
the relation

t = t ′ = �0 + 1

2
− s, t0 = �0 + 1

2
+ s0, tm = �0 + 1

2
+ s. (4.9)

The final task of this section is to examine the validity of the relation (4.8). For this examination,
the detailed structure of the state |s) must be investigated in relation to the state |t〉. Concerning
the construction of the minimum weight state for the present su(2)-algebraic model, the present
authors recently presented an idea with the aid of which the minimum weight state can be determined
methodically [11,12]. Following this idea, we will consider the present problem. First, we introduce
the following su(2) generators:

R̃+ =
∑
α

c̃∗
α c̃ᾱ, R̃− =

∑
α

c̃∗
ᾱ c̃α, R̃0 = 1

2

∑
α

(c̃∗
α c̃α − c̃∗

ᾱ c̃ᾱ). (4.10)

The generators R̃±,0 satisfy the relation

[any of R̃±,0, any of S̃±,0] = 0. (4.11)

The relation (4.11) suggests that the minimum weight state exists not only for (S̃±,0) but also (R̃±,0),
denoted by |m0):

S̃−|m0) = 0, R̃−|m0) = 0,

S̃0|m0) = −s|m0), R̃0|m0) = −r |m0). (4.12)

The definitions of S̃−, R̃−, S̃0, and R̃0 give us the following form:

|m0) =

⎧⎪⎪⎨⎪⎪⎩
|0) (r = 0),
2r∏

i=1

c̃∗
ᾱi

|0) (r = 1/2, 1, 3/2, . . . , �0).
(4.13)

It should be noted that |m0) is composed of only the fermion creation operators belonging to P , and
symbolically we express |m0) in the form

|m0) = (c̃∗
P
)2r |0). (4.14)

Here, c̃∗
P

and 2r denote any of the c̃∗
ᾱ and the number of c̃∗

P
, respectively. The operation of S̃0 on

|m0) leads us to

S̃0|m0) =
(

1

2

∑
α

(c̃∗
α c̃α + c̃∗

ᾱ c̃ᾱ)−�0

)
|m0) = −(�0 − r)|m0). (4.15)

If |m0) is adopted as |s), we have

s = �0 − r. (4.16)

We can see that 2r denotes the seniority number. Further, with the use of the raising operator, R̃+, and
a certain scalar operator for the su(2) algebra (R̃±,0), P̃∗, the minimum weight state |m) is obtained
in the form |m) = P̃∗ · (R̃+)r+r0 |m0). The above is our idea as presented in Ref. [2].
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In Sect. 7, we will investigate the present pseudo-su(1, 1) algebra under the idea of phase space
doubling in the thermo-field dynamics formalism. With this aim, it is enough to adopt |m0) as the
minimum weight state for the su(2) algebra (S̃±,0). In other words, if we adopt the form |m) =
P̃∗(R̃+)r+r0 |m0), the present pseudo-su(1, 1) algebra becomes powerless for the idea of the phase
space doubling. Under the above argument, let us consider the correspondence of |t〉 with |s). As for
|s), we adopt the form |r)) = (c̃∗

P
)2r |0)(r = �0 − s):

|t〉 = (b̂∗)2t−1|0〉 ∼ |s) = (c̃∗
P
)2r |0). (4.17)

Of course, the following correspondence may be permitted:

|0〉 ∼ |0). (4.18)

Concerning |t〉 and |s) (= |r))), we have

b̂∗|t〉 = |t + 1/2〉, c̃∗
P
|r)) = |r + 1/2)). (4.19)

Therefore, the following correspondence is obtained:

(b̂∗)ν |0〉 ∼ (c̃∗
P
)ν |0) for ν = 0, 1, 2, . . . . (4.20)

Thus, the relation (4.17) leads us to

2t − 1 = 2r, i.e., 2t − 1 = 2(�0 − s). (4.21)

The above is nothing but the relation (4.8). The operators T̃±,0 can be summarized in the form

T̃+ = S̃+

[
�0 + 1

2 + t + S̃0

�0 + 1
2 − t − S̃0 + ε

] 1
2

, T̃− =
[

�0 + 1
2 + t + S̃0

�0 + 1
2 − t − S̃0 + ε

] 1
2

S̃−,

T̃0 = �0 + 1

2
+ S̃0. (4.22)

Thus, we can finish the task.
We know that the Cooper pair in the BCS-Bogoliubov theory can be described by S̃±, and the set

(S̃±,0) forms the su(2) algebra. On the other hand, T̃± can be regarded as a possible deformation
of the Cooper pair which still belongs to the category of the su(2) algebra. If we notice that the
relation (2.11) represents a possible deformation of the su(1, 1) algebra, our algebra, which we call
the pseudo-su(1, 1) algebra, may be expected to be useful for treating physical problems different
from the superconductivity and its related problem.

5. A possible fermion number non-conserving state in the su(2)-algebraic model

In (A), we investigated the fermion number non-conserving state shown in the form

|φ) = 1√
�

exp
(
zT̃+

) |�0) for t = 1/2, i.e., s = �0. (5.1)

Here, � and z denote the normalization ((φ|φ) = 1) and complex parameter, respectively. The state
(5.1) is an example of the deformation of the BCS-Bogoliubov state. In this section, we will develop
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its generalization to the case t > 1/2, i.e., s < �0:

|φ) = 1√
�

exp
(
zT̃+

) |s). (5.2)

The state (5.2) can be expanded to

|φ) = 1√
�

2s∑
n=0

zn

n!

(
T̃+
)n |s). (5.3)

For the convenience of the treatment, we formulate in the Bps-frame. Then, |φ) corresponds to |φ〉
given as

|φ〉 = 1√
�

tm−t∑
n=0

zn

n!

(
T̂+
)n |t〉, (〈φ|φ〉 = 1). (5.4)

Using relation (4.9), 2s and (tm − t) can be expressed in the relation

2s = tm − t = 2�0 − (2t − 1). (5.5)

The normalization constant � can be expressed as a function of a new variable x (= |z|2) in the form

(i) � = �t (x) =
2�0−(2t−1)∑

n=0

xn

(
2t − 1 + n

2t − 1

)
= 1 + 2t x + · · · , (0 ≤ x < ∞). (5.6)

Here,

(
2t − 1 + n

2t − 1

)
denotes the binomial coefficient, and for deriving the above form the orthogonal

set (2.6) is used. We will treat � in various values of t and, hereafter, � is denoted as �t (x). The
function �t (x) is a polynomial for x , the degree of which is 2�0 − (2t − 1) and all the coefficients
of xn (n = 1, 2, . . . , 2�0 − (2t − 1)) are positive. Therefore, we have another expression:

(ii) �t (x) =
(

2�0

2t − 1

)
x2�0−(2t−1)

2�0−(2t−1)∑
n=0

(
1

x

)n
(

2�0 − n
2t − 1

)(
2�0

2t − 1

)−1

=
(

2�0

2t − 1

)
x2�0−(2t−1)

[
1 + 1

x
·
(

2�0 − (2t − 1)

2�0

)
+ · · ·

]
. (5.7)

Of course, the relations (5.6) and (5.7) are useful in the cases x ∼ 0 and x → ∞, respectively. First,
we will discuss the relation to the su(1, 1)-algebraic model. It is noted that �t (x) can be rewritten in
the form

(iii) �t (x) = 1

(1 − x)2t

[
1 − x2�0+1

2t−1∑
n=0

(
1 − x

x

)n
(

2�0 + 1
n

)]
. (5.8)

For this rewriting, we used the formula

�t (x) = 1

2t − 1

d

dx
�t−1/2(x) for t > 1/2, (5.9)

i.e.,

�t (x) = 1

(2t − 1)!

(
d

dx

)2t−1

�1/2(x) for t ≥ 1/2, (5.10)

�1/2(x) =
2�0∑
n=0

xn = 1 − x2�0+1

1 − x
. (5.11)
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If 2�0 − (2t − 1) → ∞, the expression (5.6) is an infinite series which is convergent for x < 1:

�t (x) = 1

(1 − x)2t
(0 ≤ x < 1). (5.12)

The form (5.12) corresponds to the case of the su(1, 1)-algebraic model, and at x = 1 it diverges.
However, the form (5.6) is a finite series defined in the range 0 ≤ x < ∞ and, of course, at x = 1, it
is finite. This can be shown explicitly in the form

(iv) �t (x) = x2�0−(2t−1)
2�0−(2t−1)∑

n=0

(
1 − x

x

)n
(

2�0 + 1
2t + n

)
. (5.13)

The form (5.13) can be derived from the relation (5.8) through the relation

2t−1∑
n=0

(
1 − x

x

)n
(

2�0 + 1
n

)
= 1

x2�0+1 −
2�0+1∑
n=2t

(
1 − x

x

)n
(

2�0 + 1
n

)
. (5.14)

The relation (5.13) gives us the finite value at x = 1:

�t (x = 1) =
(

2�0 + 1
2t

)
. (5.15)

We have shown four expressions for �t (x). It may be necessary to put each expression to its proper
use. Through the state |φ〉 (or |φ)), we can learn the difference between the su(1, 1)- and the pseudo-
su(1, 1)-algebraic models.

Next, we will consider the expectation value of the fermion number operator Ñ for the state |φ),
which also depends on t and x . With this aim, the following relation is useful:

T̃0 = s + S̃0 + t = Ñ

2
+ 1

2
, i.e., Ñ = 2T̃0 − 1. (5.16)

Then, in the Bps-form, we have the relation

N = 2〈φ|T̂0|φ〉 − 1 = 2〈φ|T̂0|φ〉 − 1 = 2T0 − 1

= 2t − 1 + 2	t (x), (5.17)

	t (x) = x ·
d�t (x)

dx

�t (x)
= t x�t+1/2(x)

�t (x)
. (5.18)

For the four forms of �t (x), 	t (x) can be expressed in the form

(i)′ 	t (x) =

2�0−(2t−1)∑
n=1

nxn

(
2t − 1 + n

2t − 1

)

1 +
2�0−(2t−1)∑

n=1

xn

(
2t − 1 + n

2t − 1

) , (5.19)

12/45

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2013/10/103D

04/1540316 by U
N

IV.C
O

IM
BR

A/FAC
.PSIC

O
LO

G
IA E user on 27 O

ctober 2023



PTEP 2013, 103D04 Y. Tsue et al.

(ii)′ 	t (x) = 2�0 − (2t − 1)

−

2�0−(2t−1)∑
n=1

n

(
1

x

)n
(

2�0 − n
2t − 1

)(
2�0

2t − 1

)−1

1 +
2�0−(2t−1)∑

n=1

(
1

x

)n
(

2�0 − n
2t − 1

)(
2�0

2t − 1

)−1 , (5.20)

(iii)′ 	t (x) =

2t x

1 − x
− ((2�0 + 1)− (2t − 1))x2�0+1

(
1 − x

x

)2t−1
(

2�0 + 1
2t − 1

)

1 − x2�0+1
2t−1∑
n=1

(
1 − x

x

)n
(

2�0 + n
n

) , (5.21)

(iv)′ 	t (x) = 2t

2t + 1
(2�0 − (2t − 1))

×
1 +

2�0−2t∑
n=1

(
1 − x

x

)n
(

2�0 + 1
2t + 1 + n

)(
2�0 + 1
2t + 1

)−1

1 +
2�0−(2t−1)∑

n=1

(
1 − x

x

)n
(

2�0 + 1
2t + n

)(
2�0 + 1

2t

)−1 . (5.22)

The forms (i)′ and (ii)′ are suitable for investigating the cases x ∼ 0 and x → ∞:

	t (x) = 2t (x + · · · ) (x ∼ 0), (5.23a)

	t (x) = (2�0 − (2t − 1))

(
1 − 1

2�0
· 1

x
+ · · ·

)
(x → ∞). (5.23b)

The form (iv)′ is suited to the case x ∼ 1:

	t (x) = 2t

2t + 1
(2�0 − (2t − 1))

(
1 + �0 + 1

(t + 1)(2t + 1)
(x − 1)+ · · ·

)
. (5.24)

The form (iii)′ is related to the su(1, 1)-algebraic model:

	t (x) = 2t x

1 − x
((2�0 + 1)− (2t − 1) → ∞) . (5.25)

The relation (5.17) gives us the expectation value of Ñ , denoted by N . The typical three cases are as
follows:

N = 2t − 1 (x = 0), (5.26a)

N = 2t − 1 + 2

(
2t

2t + 1

)
(2�0 − (2t − 1))

=
(

2t

2t + 1

)
· 4�0 −

(
2t − 1

2t + 1

)
· (2t − 1) (x = 1), (5.26b)

N = 2t − 1 + 2(2�0 − (2t − 1)) = 4�0 − (2t − 1) (x → ∞). (5.26c)

We can see that at t = 1/2, the above result is reduced to that in (A). The relation (4.21) tells us
that the number (2t − 1) indicates the seniority number. Therefore, (2t − 1) fermions belonging to
P cannot contribute to the fermion pair S̃+ (S̃−) and, thus, (2t − 1) single-particle states are not
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Fig. 1. The figure shows N as a function of x with various t for the case �0 = 19/2. The solid, dash-dotted,
dashed, and dotted curves represent the cases t = 1/2, 3, 11/2, and 8, respectively. The thin line represents the
case t = �0 + 1/2 (= 10).

available for the formation of the fermion pair. In this sense, the result (5.26) is quite natural. The
result (5.26) tells us that the case x = 1 corresponds to the intermediate situation between the cases
x = 0 and x → ∞. Figure 1 shows various cases for t in the case�0 = 19/2. In the range 0 ≤ x <∼2,
the slopes are steep; after x ∼ 2, the slopes become gentle. More precisely, as t increases, the point
where the slope becomes gentle approaches x = 0. This feature can be read in the result (5.26).

In the Bps-form framework, the expectation value T+ = (φ|T̃+|φ) is given in the form

T+ = 〈φ|T̂+|φ〉 = 〈φ|T̂+|φ〉

= z∗ · 1

�

2�0−(2t−1)∑
n=0

nxn−1

(
2t − 1 + n

n

)

= z∗ · 1

x
	t (x). (5.27)

It is noted that T+ is expressed in terms of the product of z∗ and the function of x (= |z|2),	t (x)/x .
In order to get a transparent understanding for T+, we introduce a new parameter (y, y∗):

y = z

√
	

x
= z

|z|
√
	, i.e., 	 = y∗y. (5.28)

Then, T+ is expressed as

T+ = y∗
√
	

x
. (5.29)

After lengthy calculation, we have the relation

	

x
= 2t + y∗y − Y, (5.30)

Y =
2t x2�0+1

[(
1 − x

x

)2t
(

2�0 + 1
2t

)
−

2t−1∑
n=1

(
1 − x

x

)n
(

2�0 + n
n

)]

1 − x2�0+1
2t−1∑
n=1

(
1 − x

x

)n
(

2�0 + n
n

) . (5.31)

Then, T± can be expressed as

T+ = y∗ ·
√

2t + y∗y − Y , T− =
√

2t + y∗y − Y · y. (5.32)
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The expectation value N is expressed in the form

N = (2t − 1)+ 2y∗y. (5.33)

With the use of the relation (5.17), T0 is of the form

T0 = t + y∗y. (5.34)

If Y given in the relation (5.31) can be neglected, the set (T±,0) reduces to the classical counterpart of
the set of the su(1, 1) generator T̂±,0, namely, it is the classical counterpart of the Holstein–Primakoff
representation. It should be noted that (y, y∗) is the canonical variable in the boson type. The above
feature of the su(1, 1) algebra was discussed in detail by the present authors with Kuriyama in
Ref. [5].

6. Approximate expression for the expectation value of the fermion number operator

In Sect. 5, we gave the expectation value of Ñ for |φ). The result is too complicated to use for
practical purposes. Therefore, we must find an approximate expression which is fit for this purpose.
As was already mentioned, roughly speaking, in the region where x is sufficiently large, N changes
gently, but in the region x <∼2, especially x <∼1, it changes steeply. Therefore, it may be impossible to
give an approximate expression of N in terms of a well-behaved simple function of x in the whole
range 0 ≤ x < ∞, but, if the range is limited, it may be possible. Judging from the behavior shown
in Fig. 1, it may be natural to divide the whole range into two: (1) 0 ≤ x ≤ γt and (2) γt ≤ x < ∞.
Here, we conjecture that γt is given in the form

γt = 2�0 − (2t − 1)

2�0
= 1 − 2t − 1

2�0
(≤ 1). (6.1)

Later, we will give an interpretation of the relation (6.1). We treat the ranges (1) and (2) separately.
First, we introduce the following function for the approximate expression of �t (x), which is

denoted as �a
t (x):

�t (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
1

1 − αx

) 2t
α (= �

a1
t (x)

)
for range (1)(

2�0

2t − 1

)⎡⎣x2�0

(
1

1 − β
x

) 1
2�0β

⎤⎦2�0−(2t−1)(= �
a2
t (x)

)
for range (2).

(6.2)

Here, α and β are real parameters which will be determined later. For the form (6.2), we have the
following relation:

�
a1
t (x) = 1 + 2t x + · · · (αx < 1), (6.3a)

�
a2
t (x) =

(
2�0

2t − 1

)
x2�0−(2t−1)

(
1 + 2�0 − (2t − 1)

2�0

1

x
+ · · ·

) (
β

x
< 1

)
. (6.3b)

The forms (6.2) are reduced to the forms (5.6) and (5.7) if x ∼ 0 and x → ∞, respectively. From
the above consideration, it may be understandable that �a

t (x) is a possible approximation of �t (x).
The functions (1 − αx) and (1 − β/x) should not have the points which make 1 − αx = 0 and
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Fig. 2. The figure shows N a as a function of x with various t for the case�0 = 19/2. The solid curves represent
N a and, for comparison, the exact N are depicted. It is noted that the horizontal scale is different from that of
Fig. 1.

1 − β/x = 0 in the ranges 0 ≤ x ≤ γt and γt ≤ x < ∞, respectively. These situations are realized
under the condition

α <
1

γt
, β < γt . (6.4)

Through the relation (5.18), we define the approximate form of 	t (x) as follows:

	a
t (x) = x d�a

t (x)
dx

�a
t (x)

=

⎧⎪⎨⎪⎩
2t x

1 − αx
for 0 ≤ x ≤ γt ,

(2�0 − (2t − 1))

(
1 − 1

2�0(x − β)

)
for γt ≤ x < ∞.

(6.5)

We require the condition that the functions (6.5) should connect with each other smoothly
at x = γt :

2tγt

1 − αγt
= (2�0 − (2t − 1))

(
1 − 1

2�0(γt − β)

)
, (6.6a)

2t

(1 − αγt )2
= 2�0 − (2t − 1)

2�0(γt − β)2
. (6.6b)

The condition (6.6) determines α and β in the form

α = 1

γt

(
1 − 1

2�0

√
2t

γt
− 2t

2�0

)
(= αt ), (6.7a)

β = γt

(
1 − 1

2�0

√
2t

γt
− 1

2�0γt

)
(= βt ). (6.7b)

We can see that α and β depend on t , and therefore, hereafter, we express α and β as αt and βt .
Clearly, they satisfy the condition (6.4). The approximate expression of N , N a , is given by

N a = 2t − 1 + 2	a
t (x). (6.8)

Figure 2 shows several concrete cases, together with N shown in the relation (5.17). We can see
that the agreement is rather good. Next, we discuss the typical three cases x = 0, x = 1, and x →
∞. The cases x = 0 and x → ∞ agree with the exact results shown in the relations (5.26a) and
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(5.26c), because these two cases are constructed so as to reproduce the exact results. The case x = 1
is expressed in the form

N a = 2t − 1 + 2

⎛⎜⎜⎜⎝1 − 1

(2t + 1)+
([

2t
(

1 − 2t−1
2�0

)] 1
2 − 1

)
⎞⎟⎟⎟⎠ (2�0 − (2t − 1)). (6.9)

The exact result (5.26b) can be expressed as

N = 2t − 1 + 2

(
1 − 1

2t + 1

)
(2�0 − (2t − 1)). (6.10)

The cases 2t = 1 and 2�0 agree with the exact results, but in the other cases, disagreement with the
exact one is not so much as imagined.

Let us discuss the quantity γt which was introduced in the opening paragraph of this section. First,
for t = 1/2, we note the following relation:

	1/2(x)+	1/2

(
1

x

)
= 2�0. (6.11)

With the use of the formulae (i)′ and (ii)′, we can prove this relation. In (A), we also gave the relation
(6.11). This relation tells us that if 	1/2 for 0 ≤ x ≤ 1 is given, we are able to obtain 	1/2 for 1 ≤
x < ∞, and vice versa. From the above argument, the range 0 ≤ x < ∞ is divided by x = 1: (1) 0 ≤
x ≤ 1 and (2) 1 ≤ x < ∞. In the case 2�0 − (2t − 1) = 0, i.e., t = �0 + 1/2, 	t=�0+1/2 = 0 and
the range 0 ≤ x < ∞ is formally divided by x = 0: (1) x = 0 and (2) 0 ≤ x < ∞. Combining the
above two extreme cases with the behavior of N (= 2t − 1 + 2	) shown in Fig. 1, we conjecture that
the range 0 ≤ x < ∞ is divided by x = γt = (2�0 − (2t − 1))/(2�0): (1) 0 ≤ x ≤ γt and (2) γt ≤
x < ∞. The parameter γt is the ratio of the number of single-particle states in P which can contribute
to the fermion pair formation to the total number of the single-particle states in P . Therefore, if γt

is near to 1, the possibility for fermion pair formation is large, and vice versa. The above is the
interpretation of the conjecture for γt .

In the framework of our approximation, we generalized the relation (6.11), which can be
rewritten as

	1/2(x) = 2�0 −	1/2

(
1

x

)
. (6.12)

If 1 ≤ x < ∞, we have 0 ≤ 1/x ≤ 1, i.e., x · (1/x) = 1. We generalize the relation (6.12) to the case
of arbitrary values of t . If γt ≤ x < ∞, γ 2

t /x obeys the inequality 0 ≤ γ 2
t /x ≤ γt , i.e., x · (γ 2

t /x) =
γ 2

t . Of course, if t = 1/2, we have x · (1/x) = 1. Then the relation (6.5) for 0 ≤ x ≤ γt gives

	
a1
t

(
γ 2

t

x

)
= 2t · γ 2

t
x

1 − αt · γ 2
t
x

, i.e.,
γ 2

t

x
=

	
a1
t

(
γ 2

t
x

)
αt	

a1
t

(
γ 2

t
x

)
+ 2t

. (6.13)

The relation (6.13) leads to

x = γ 2
t

⎛⎜⎝αt + 2t

	
a1
t

(
γ 2

t
x

)
⎞⎟⎠ (γt ≤ x < ∞). (6.14)
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Therefore, the relation (6.5) for γt ≤ x < ∞ can be rewritten as

	
a2
t (x) = 2�0γt

(
1 − 1

2�0(x − βt )

)
= 2�0γt

(
1 − 1

2�0

[
γ 2

t

(
αt + 2t

	
a1
t

(
γ 2

t
x

))−βt

]). (6.15)

With the use of the explicit expressions of αt and βt given in the relation (6.7), we have the following:

	
a2
t (x) = 2�0γt

⎛⎜⎝1 −
	

a1
t

(
γ 2

t
x

)
(1 − 2tγt )	

a1
t

(
γ 2

t
x

)
+ 2t · 2�0

⎞⎟⎠ . (6.16)

If 	a1
t is given, 	a2

t is obtained by the relation (6.16). In the case t = 1/2, 	a2
1/2(x) is expressed as

	
a2
1/2(x) = 2�0 −	

a1
1/2

(
1

x

)
. (6.17)

Also, in the case t = �0 + 1/2, i.e., 2�0 − (2t − 1) = 0, we have

	
a2
t=�0+1/2(x) = 0. (6.18)

In the exact case for t > 1/2, numerically, the relation corresponding to the relation (6.16) may be
presented, but, in analytical form, it may be impossible.

Finally, we will investigate the parameters αt and βt given in the relations (6.7a) and (6.7b),
respectively. Both relations can be rewritten as

αt = 1 − 1

2�0 − (2t − 1)

([
2�0 · 2t

2�0 − (2t − 1)

] 1
2

+ 1

)
, (6.19a)

βt = 1 − 1

2�0

(
2t +

[
2t

2�0
(2�0 − (2t − 1))

] 1
2
)
. (6.19b)

The above expressions tell us

αt < 1, βt < 1. (6.20)

In the su(1, 1)-algebraic model we have αt = 1, which is realized in the case with �0 → ∞ and
finite values of t . However, in our present model,�0 and t are finite and αt should obey the condition
(6.20). We do not know any model related to βt , and thus any comparison is impossible. Since αt is
decreasing for 2t , the maximum value of αt is given as

α1/2 = 1 − 1

�0
, γ1/2 = 1. (6.21)

At the point 2t = 2t0, which will be discussed later, αt vanishes (αt0 = 0). After αt0 = 0, αt can
change to −∞:

α�0 = −2�0

(
γ�0 = 1

2�0

)
, α�0+1/2 → −∞ (γ�0+1/2 = 0). (6.22)

The quantity	a1
t (x) in the range α1/2 > αt > 0 is of the type similar to that of the su(1, 1)-algebraic

model: 	a1
t (x) = 2t x/(1 − |αt |x). At αt0 = 0, 	a1

t (x) = 2t0x and in the range 0 > αt > −∞,
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a1
t (x) = 2t x/(1 + |αt |x). If 2�0 and 2t can change continuously, αt = 0 itself has its own mean-

ing. But, they are integers, and we treat αt = 0 as an auxiliary condition. This leads us to a certain
cubic equation for 2t with one real solution, given as

2t0 = 2�0 + 1

3
− (2�0)

2
3

[(
1

2
(A + B)

) 1
3

−
(

1

2
(A − B)

) 1
3
]
,

A =
[(

1 − 5

54�0

)(
1 + 1

2�0

)] 1
2

, B = 1 + 1

6�0
− 1

54�2
0

. (6.23a)

The expression (6.23a) is approximated in the form

2t0 = 2�0 − (2�0)
2
3 + 1

3
(2�0)

1
3 + 1

3
− 10

81
(2�0)

− 1
3 . (6.23b)

As is conjectured in relation (6.23), 2t0 cannot be expected to be integer. Therefore, two integers
2t+ and 2t− (t+ < t−) which are the nearest to 2t0 must be searched: αt > 0 for 1 ≤ 2t ≤ 2t+ and
αt < 0 for 2t− ≤ 2t ≤ 2�0 + 1. For this searching, the relation (6.23) is useful. For example, in
the case 2�0 = 19, the relations (6.23a) and (6.23b) give us 2t0 ∼ 13.0235 and 13.0562, respec-
tively and, therefore, 2t+ = 13 and 2t− = 14. For these, we have αt+ = 8.5460 × 10−3 (> 0) and
αt− = −0.2764 (< 0). The treatment of βt is rather simple. As is clear from the relation (6.19b), the
maximum value of βt is also given in the case t = 1/2:

β1/2 = 1 − 1

�0
. (6.24)

Then, gradually decreasing, at the point 2t = 2�0 − 2, β�0−1 is given as

β�0−1 = 1

�0

(
1 − 1

2

[
3

(
1 − 1

2�0

)] 1
2
)
(> 0). (6.25)

At the point 2t = 2�0 − 1, β�0−1/2 is given as

β�0−1/2 = − 1

2�0

([
2 − 1

�0

] 1
2

− 1

)
(< 0). (6.26)

At the terminal points 2t = 2�0 and 2�0 + 1, we have

β�0 = β�0+1/2 = − 1

2�0
. (6.27)

We can see that the sign of βt changes between 2t = 2�0 − 2 and 2�0 − 1. The point which satisfies
βt = 0 is given at 2t = 2t0′, shown as

2t0′ = 2�0 −
2�0 − 1 + 2�0

(
5 + 1

�0
+ 1

4�2
0

) 1
2

2(2�0 + 1)
. (6.28)

7. A simple example of a many-fermion model obeying the pseudo-su(1, 1) algebra

In next three sections, we intend to discuss an example of the application of the idea developed so far.
This section will be devoted to presenting a simple many-fermion model aimed at the application.
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As an illustrative example of our idea, first, we give a short summary of the “damped and amplified
oscillator”. The starting Hamiltonian is the simplest, i.e., the harmonic oscillator:

Ĥb = ωb̂∗b̂ (ω; frequency). (7.1)

Here, (b̂, b̂∗) denotes the boson operator. As an auxiliary degree of freedom for the “damping and
amplifying”, new boson (â, â∗) is introduced. The Hamiltonian for (â, â∗) is also the harmonic
oscillator type:

Ĥa = ωâ∗â. (7.2)

Further, as for the interaction between both degrees of freedom, the following form is adopted:

V̂ab = −iγ (â∗b̂∗ − b̂â) (γ ; constant). (7.3)

The idea presented in Ref. [6,7] is to adopt the Hamiltonian

Ĥ = Ĥb − Ĥa + V̂ba. (7.4)

By treating Ĥ appropriately, we can describe the “damped and amplified oscillation” in a conservative
form. It should be noted that, for the Hamiltonian (7.4), the form (Ĥb + Ĥa + V̂ba) is not adopted.
It shows that the Hamiltonian (7.4) is not the energy of the entire system, but the generator for time
evolution. This is a significant feature of this approach. With the use of T̂± defined in the relation
(2.5), Ĥ can be expressed as

Ĥ = 2ω

(
T̂ − 1

2

)
− iγ

(
T̂+ − T̂−

)
. (7.5)

Here, T̂ is defined as

T̂ = −1

2
(â∗â − b̂∗b̂)+ 1

2
, (7.6a)

T̂
2 = T̂

(
T̂ − 1

)
, [T̂±,0, T̂ ] = 0. (7.6b)

By using the mixed-mode coherent states for the su(1, 1) algebra, the present authors, with
Kuriyama, have extensively investigated the Hamiltonian (7.5) and its variations [5].

The above illustrative example teaches us the following: In order to treat the system such as the
“damped and amplified oscillator” in an isolated system, so-called phase space doubling is required.
The idea of phase space doubling occupies the main part of the thermo-field dynamics formalism
[10]. Then, the original intrinsic oscillator expressed in terms of the boson (b̂, b̂∗) and the “external
environment” expressed in terms of the boson (â, â∗) appear. The interaction between both systems
is introduced. We will apply the above consideration to a simple many-fermion system.

We make the following translation into the fermion system:

(b̂, b̂∗) → (c̃ᾱ, c̃∗
ᾱ), (â, â∗) → (c̃α, c̃∗

α), (7.7)

T̂ − 1

2
→ T̃ = −1

2

∑
α

(c̃∗
α c̃α − c̃∗

ᾱ c̃ᾱ) (= −R̃0), T̂± → T̃±, (7.8)

ω (frequency) → ε (single-particle energy). (7.9)

Here, T̃ is introduced in the relation (4.10), and the relation (4.11) suggests the relation [T̃ , T̃±] = 0.
Under the above translation, our Hamiltonian is expressed in the form

H̃ = 2εT̃ − iγ
(
T̃+ − T̃−

)
. (7.10)
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It may be clear that we have the translation

Ĥb → H̃P = εÑP , ÑP =
∑
α

c̃∗
ᾱ c̃ᾱ, Ĥa → H̃P = εÑP , ÑP =

∑
α

c̃∗
α c̃α. (7.11)

The original intrinsic Hamiltonian H̃P may be the simplest in many-fermion systems, and our aim
is to describe this system in the “external environment”. The Hamiltonian (7.10) was set up under
an idea analogous to that in the case (7.5). However, it may be permitted to regard the Hamiltonian
(7.10) as the energy of the entire system. Concerning this point, we will discuss the possibility in
Sect. 11. It may be important to see that the conventional pairing Hamiltonian and the present one
are expressed in terms of the su(2) generators, S̃±,0, but, differently from the former, the latter does
not commute with the total fermion number operator. In this sense, the use of the state (1.1) for the
variational treatment in the pairing Hamiltonian is justified by the symmetry breaking. On the other
hand, the use of the state (5.1) (or (5.2)) may be natural as a possible trial state for the variation
without any comment such as the symmetry breaking.

Our basic idea is to describe the Hamiltonian (7.10) in the framework of the time-dependent
variational method:

δ

∫
(φ|i∂τ − H̃ |φ)dτ = 0. (7.12)

Here, the state |φ) is used for the trial state of the variation. In order to avoid confusion between the
time variable and the quantum number t , we will use τ for the time variable. For the relation (7.12),
the following are useful:

δ

∫
(φ|i∂τ |φ)dτ = i

2

∫ (
δz∗ · ż − δz · ż∗) (∂T+

∂z∗ + ∂T−
∂z

)
dτ, (7.13)

δ

∫
(φ|H̃ |φ)dτ =

∫ (
δz∗ ∂H

∂z∗ + δz
∂H
∂z

)
dτ. (7.14)

Here, T± is given in the relation (5.27) and H is defined as

H = H(z∗, z) = (φ|H̃ |φ). (7.15)

Then, the relations (7.12)–(7.14) give us

iż
1

2

(
∂T+
∂z∗ + ∂T−

∂z

)
= ∂H
∂z∗ , −iż∗ 1

2

(
∂T+
∂z∗ + ∂T−

∂z

)
= ∂H
∂z
. (7.16)

For the relation (7.16), H is adopted in the following form:

H = ε(2t − 1)− iγ (T+ − T−) = ε(2t − 1)− γ · i(z∗ − z)
	t (x)

x
. (7.17)

Under the Hamiltonian (7.17), the relation (7.16) is reduced to the differential equation

ż = −γ
[

1 − z2

x

(
1 − 	t (x)

x	′
t (x)

)]
, ż∗ = −γ

[
1 − z∗2

x

(
1 − 	t (x)

x	′
t (x)

)]
. (7.18)

Here, 	′
t (x) denotes the derivative of 	t (x) with respect to x .
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The relation (7.18) forms our basic framework for describing the time evolution. In order to give
the physical interpretation of the relation (7.18), we examine the case	a1

t (x). In this case, the relation
(7.18) becomes

ż = −γ (1 − αt z
2), ż∗ = −γ (1 − αt z

∗2). (7.19)

If z is expressed as z = u + iv (u, v: real), we have

u̇ = −γ (1 − αt u
2 + αtv

2), v̇ = 2γαt uv. (7.20)

If we eliminate v from the relation (7.20), the following equation is derived:

ü = 4γ 2α2
t u

(
1

αt
− u2

)
+ 6αt uu̇. (7.21)

If the relation (7.21) is interpreted in Newton mechanics, a mass point with mass 1 moves in the one-
dimensional space under the external force 4γ 2α2

t u(1/αt − u2) and the velocity-dependent force
6αt uu̇. The force 4γ 2α2

t u(1/αt − u2) is expressed in terms of the potential energy V (u):

4γ 2α2
t u

(
1

αt
− u2

)
= −dV (u)

du
, V (u) = −4γ 2

(
1

2
αt u

2 − 1

4
α2

t u4
)
. (7.22)

The cases αt > 0 and αt < 0 correspond to double well-like and single well-like potentials, respec-
tively, and the case αt = 0 to no external force. The existence of the velocity-dependent force
suggests that our model enables us to describe the dissipation phenomena in the many-fermion sys-
tem. If we can solve the equation of motion (7.21), u can be determined as a function of τ and the
second expression in (7.20) gives us the following form:

v(τ) = e2γαt
∫ τ u(τ ′)dτ ′

. (7.23)

Here, we omitted the initial condition for u and v. Thus, we are able to obtain u(τ ) and v(τ) and,
then, x is determined as a function of τ :

x(τ ) = u(τ )2 + v(τ)2. (7.24)

The case	a2
t (x) is not so simple as the case	a1

t (x), because, in classical mechanics, we cannot find
any simple example analogous to this case. The above is an outline of our model, which is discussed
in the following sections.

Finally, we give the expectation values of ÑP and ÑP for |φ), NP and NP :

NP = 2t − 1 +	t (x), (7.25a)

NP = 	t (x). (7.25b)

The expectation value of Ñ (= ÑP + ÑP) is given as N = (2t − 1 +	t (x))+	t (x), and it is
nothing but the result (5.17).

8. Various properties of �
a1
t (x) for describing its time dependence

Let us investigate various properties of 	a1
t (x). First, we notice that the present system is of two

dimensions and, therefore, there exist two constants of motion. One is the quantum number t and the
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second, which will be denoted as κ , is given through the relation

i(z∗ − z)
	t (x)

x
= 2κ. (8.1)

This may be self-evident, because H itself, shown in the relation (7.17), is a constant of motion. If z
is expressed in the form z = u + iv, we have

i(z∗ − z) = 2v. (8.2)

The relation (8.1) leads to

v = κ

y
, y = 	t (x)

x
, (x = |z|2 = u2 + v2, y ≥ 0). (8.3)

Inversely, x can be expressed as a function of y:

x = ft (y). (8.4)

Then, u can be given in the form

u = ±
√

x − v2 = ±1

y

(
y2 ft (y)− κ2

) 1
2
. (8.5)

The sign + or − may be chosen appropriately. Later, we will discuss this problem. As is clear in the
above argument, (u, v) and also x are functions of y. Since u2 ≥ 0, the relation (8.5) gives us the
inequality

y2 ft (y) ≥ κ2. (8.6)

The inequality (8.6) suggests that the value of y cannot vary freely. We will apply the above scheme
to the cases 	a1

t (x).
For the case 	t (x)/x = 	

a1
t (x)/x = 2t/(1 − αt x), we have

x = ft (y) = 1

αt

(
1 − 2t

y

)
, i.e., 	

a1
t (x) = 1

αt
(y − 2t). (8.7)

The relation (8.7) is applicable in the range 0 ≤ x ≤ γt . This point will be discussed further in
Sect. 10. Thus, the inequality (8.6) is reduced to

1

αt
· y(y − 2t) ≥ κ2, (8.8)

i.e.,

w =
{

+y(y − 2t) ≥ ρ2, (αt > 0)

−y(y − 2t) ≥ ρ2, (αt < 0)
(8.9)

ρ =
√

|αt |κ. (8.10)
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PTEP 2013, 103D04 Y. Tsue et al.

Fig. 3. The figures show the inequality in (8.9) schematically with �0 = 19/2: (a) t = 5/2, then
αt ≈ 0.766 (> 0); (b) t = 15/2, then αt ≈ −0.710 (< 0).

The behavior of the relation (8.9) is depicted in Fig. 3. In Fig. 3, we can find the following
restriction to y:

y ≥ c+, i.e. y ≥ 1

2
(c+ + c−)+ 1

2
(c+ − c−), (αt > 0) (8.11a)

c− ≤ y ≤ c+, i.e.,
1

2
(c+ + c−)− 1

2
(c+ − c−) ≤ y ≤ 1

2
(c+ + c−)+ 1

2
(c+ − c−)

(αt < 0). (8.11b)

Here, c± denote solutions of the quadratic equations

y2 − 2t y − ρ2 = 0 (αt > 0), (8.12a)

− y2 + 2t y − ρ2 = 0 (αt < 0). (8.12b)

The above equation is obtained by equating both sides of the inequality (8.9). Therefore, with the
use of new variable χ , y can be parametrized in the form

y = 1

2
(c+ + c−)+ 1

2
(c+ − c−) coshχ (αt > 0), (8.13a)

y = 1

2
(c+ + c−)+ 1

2
(c+ − c−) cosχ (αt < 0). (8.13b)

In Sect. 11, we will discriminate between the former (8.13a) and the latter (8.13b) in terms of the
notations y+ and y−. With the use of Eq. (8.13), u and v can be expressed as follows:

u =

⎧⎪⎪⎨⎪⎪⎩
± 1√|αt |

· 1

y

√
(y − c+)(y − c−) = ± 1√|αt |

· 1

y
· 1

2
(c+ − c−)| sinhχ |, (αt > 0)

± 1√|αt |
· 1

y

√
(c+ − y)(y − c−) = ± 1√|αt |

· 1

y
· 1

2
(c+ − c−)| sinχ |, (αt < 0)

(8.14)

v = 1√|αt |
· ρ

y
. (αt �= 0) (8.15)

By substituting Eq. (8.13) into the relation (8.7), x can be expressed in terms of coshχ and cosχ .
Then we can express 	a1

t (x) = 2t x/(1 − αt x) as a function of coshχ and cosχ .
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Since Eq. (8.12) gives us the solutions c± = t ±
√

t2 + ρ2 for αt > 0 and c± = t ±
√

t2 − ρ2 for
αt < 0, the relation (8.13) can be expressed as

y =
{

t +
√

t2 + ρ2 coshχ (αt > 0),

t +
√

t2 − ρ2 cosχ (αt < 0).
(8.16)

Then u and v are obtained in the form

u =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
± 1√|αt |

·
√

t2 + ρ2| sinhχ |
t +
√

t2 + ρ2 coshχ

± 1√|αt |
·
√

t2 − ρ2| sinχ |
t +
√

t2 − ρ2 cosχ

, v =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1√|αt |

· ρ

t +
√

t2 + ρ2 coshχ
(αt > 0),

1√|αt |
· ρ

t +
√

t2 − ρ2 cosχ
(αt < 0).

(8.17)
We can express z as a function of ρ and χ . The quantity x is obtained in the form

x = 1

αt
·
√

t2 + ρ2 coshχ − t√
t2 + ρ2 coshχ + t

(αt > 0), (8.18a)

x = 1

αt
·
√

t2 − ρ2 cosχ − t√
t2 − ρ2 cosχ + t

(αt < 0). (8.18b)

Thus, we have the following form for 	a1
t (x):

	
a1
t (x) = 1

αt
(
√

t2 + ρ2 coshχ − t) (αt > 0), (8.19a)

	
a1
t (x) = 1

αt
(
√

t2 − ρ2 cosχ − t) (αt < 0). (8.19b)

It may be necessary for determining the time dependence of 	a1
t (x) to investigate the behavior of χ

over time.
The starting variables for describing the present model are u and v. As is shown in relations (8.14)

and (8.15), the new variables are ρ and χ . Depending on αt > 0 and αt < 0, the connections to (u, v)
are different from each other. However, ρ is a constant of motion and H can be expressed as

H = ε(2t − 1)− 2γ√|αt |
· ρ, ρ̇ = 0. (8.20)

Therefore, the time dependence of (u, v) is given through y, which is a function of χ . First, we notice
the relation

ẋ = ż∗z + z∗ ż = −2γ (1 − αt x) · u. (8.21)

Here, we used relation (7.19). With the use of the relation (8.21), we have ẏ in the following form:

ẏ = d

dx

(
	

a1
t (x)

x

)
· ẋ = −2γαt y · u, (8.22)

i.e.,

ẏ =

⎧⎪⎨⎪⎩
∓2γ

√
|αt | · 1

2
(c+ − c−)| sinhχ | (αt > 0),

∓2γ
√

|αt | · 1

2
(c+ − c−)| sinχ | (αt < 0).

(8.23)
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On the other hand, the relation (8.13) gives us ẏ in the form

ẏ =

⎧⎪⎨⎪⎩
+1

2
(c+ − c−) sinhχ · χ̇ (αt > 0),

−1

2
(c+ − c−) sinχ · χ̇ (αt < 0).

(8.24)

Combining the relations (8.23) and (8.24), χ̇ is obtained:

χ̇ = ∓2γ
√

|αt | · | sinhχ |
sinhχ

=
{

∓2γ
√|αt | for χ > 0

±2γ
√|αt | for χ < 0

(αt > 0), (8.25a)

χ̇ = ±2γ
√

|αt | · | sinχ |
sinχ

=
{

±2γ
√|αt | for χ > 0

∓2γ
√|αt | for χ < 0

(αt < 0). (8.25b)

Our final aim is to present the time dependence of	a1
t (x), which is also a function of y. The quantity

y contains coshχ or cosχ . As can be seen in the relation (8.25), χ is given in the following two
cases:

(i) χ = χ+ = +2γ
√

|αt | · τ + χ0
+, (8.26a)

(ii) χ = χ− = −2γ
√

|αt | · τ − χ0
−. (8.26b)

Here, ±χ0± denote the initial values of χ± (τ = 0). Then, we have

coshχ+ = cosh(2γ
√

|αt | · τ + χ0
+), coshχ− = cosh(2γ

√
|αt | · τ + χ0

−). (8.27)

If χ0+ = χ0−, case (ii) is nothing but case (i). The case cosχ is also in the same situation as the above.
The above argument suggests that it may be enough to adopt the case (i):

χ̇ = +2γ
√

|αt |, i.e., χ = 2γ
√

|αt | · τ + χ0 (χ0 : constant). (8.28)

The above argument gives us the time dependence of 	a1
t (x). Further, this procedure suggests the

following form for u:

u = 1√|αt |
·
√

t2 + ρ2 sinhχ

t +
√

t2 + ρ2 coshχ
(αt > 0), (8.29a)

u = 1√|αt |
·
√

t2 − ρ2 sinχ

t +
√

t2 − ρ2 cosχ
(αt < 0). (8.29b)

9. Various properties of �
a2
t (x) for describing its time-dependence – general

arguments

The aim of this section is to formulate the case	a2
t (x). In order to make the discussion in parallel to

the case 	a1
t (x), it may be inconvenient for formulating the case 	a2

t (x) to use the variables z, z∗,
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and x used in the case 	a1
t (x). The three variables are denoted by z′, z′∗, and x ′, respectively:

z → z′, z∗ → z′∗, x → x ′, i.e., x ′ = |z′|2. (9.1)

In the new notations for the variables, the relations (7.17) and (7.18) are expressed as

H = ε(2t − 1)− γ · i(z′∗ − z′)
	

a2
t (x

′)
x ′ , (9.2)

ż′ = −γ
[

1 − z′2

x ′

(
1 − 	

a2
t (x

′)
x ′	a2

t
′(x ′)

)]
, ż′∗ = −γ

[
1 − z′∗2

x ′

(
1 − 	

a2
t (x

′)
x ′	a2

t
′(x ′)

)]
. (9.3)

We redefine z, z∗, and x in the following form:

z = γt

z′∗ , z∗ = γt

z′ , x = |z|2 = γ 2
t

x ′ . (9.4)

In the new variables, we have

γt ≤ x ′ < ∞ −→ 0 ≤ x ≤ γt . (9.5)

It may be important to see that the range for x is the same as that in the case 	a1
t (x).

With the use of the new variables, H can be rewritten as

H = ε(2t − 1)− γ · i(z∗ − z)
	

a2
t (

γ 2
t
x )

γt
, (9.6)

	
a2
t

(
γ 2

t
x

)
γt

= 2�0

⎛⎝γ 2
t −

(
βt + 1

2�0

)
x

γ 2
t − βt x

⎞⎠ . (9.7)

The relations (8.1)–(8.3) are reduced to

i(z∗ − z)
	

a2
t

(
γ 2

t
x

)
γt

= 2κ, (9.8)

i(z∗ − z) = 2v, (9.9)

v = κ

y′ , y′ =
	

a2
t

(
γ 2

t
x

)
γt

. (9.10)

The function x = ft (y′) in the present case is given by

x = ft (y
′) = γ 2

t (2�0 − y′)
βt (2�0 − y′)+ 1

. (9.11)

We can treat u in the present case under the same idea as that of the case	a1
t (x). Since u2 = x − v2 ≥

0, we have the following inequality:

γ 2
t

βt
· y′2(y′ − 2�0)

y′ −
(

2�0 + 1
βt

) ≥ κ2, (9.12)
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Fig. 4. The behavior of the relation (9.13) for βt > 0 is depicted. Here, �0 = 19/2 and t = 5/2 are adopted,
which lead to βt = (14 − 15/

√
57)/19 ≈ 0.632 (> 0).

i.e.,

w′ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
+ y′2(y′ − 2�0)

y′ −
(

2�0 + 1
|βt |
) ≥ σ 2 (βt > 0),

− y′2(y′ − 2�0)

y′ −
(

2�0 − 1
|βt |
) ≥ σ 2 (βt < 0),

(9.13)

σ =
√|βt |
γt

κ, σ̇ = 0. (9.14)

The case γt = 0 appears in 2t − 1 = 2�0 and, later, we will consider this case. The behavior of the
relation (9.13) for βt > 0 is depicted in Fig. 4. In Fig. 4, we can find out the relation

d− ≤ y′ ≤ dt , i.e.,
1

2
(d+ + d−)− 1

2
(d+ − d−) ≤ y′ ≤ 1

2
(d+ + d−)+ 1

2
(d+ − d−). (9.15)

Therefore, the same idea as that shown in relation (8.13) for αt < 0 can be adopted:

y′ = 1

2
(d+ + d−)+ 1

2
(d+ − d−) cosψ (βt > 0). (9.16a)

Here,ψ denotes a new parameter and, later, the explicit forms of d±,0 will be shown. In order to treat
the βt < 0, some comments are necessary. As was shown in the relations (6.26) and (6.27), in the
present case βt < 0 appears only in the three cases:

(i) t = �0 − 1

2

⎛⎜⎜⎝β�0−1/2 = − 1

2�0

⎛⎜⎜⎝ 1 − 1
�0[

2 − 1
�0

] 1
2 + 1

⎞⎟⎟⎠ , γ�0−1/2 = 1

�0

⎞⎟⎟⎠ ,
(ii) t = �0

(
β�0 = − 1

2�0
, γ�0 = 1

2�0

)
,

(iii) t = �0 + 1

2

(
β�0+1/2 = − 1

2�0
, γ�0+1/2 = 0

)
.

Later, we will consider case (iii) separately. Cases (i) and (ii) give us 2�0 − 1/|βt | < 0 and
2�0 − 1/|βt | = 0, respectively. The behavior of the relation (9.13) for βt < 0 is depicted in Fig. 5(a)
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Fig. 5. The behavior of the relation (9.13) for βt < 0 is depicted in the cases (a) 2�0 − 1/|βt | < 0
and (b) 2�0 − 1/|βt | = 0, separately. Here, in (a), �0 = 19/2 and t = 18/2 are adopted which lead
to βt = (1 − 6/

√
19)/19 ≈ −0.0198 (< 0) and 2�0 − 1/|βt | ≈ −31.466 (< 0). In (b), �0 = 19/2 and

t = 19/2 are adopted which lead to βt = −1/19 (< 0) and 2�0 − 1/|βt | = 0.

and (b), separately. We can see that the parametrization of the above case is the same as shown in
relation (9.16a):

y′ = 1

2
(d+ + d−)+ 1

2
(d+ − d−) cosψ (βt < 0). (9.16b)

In Sect. 11, we will discriminate between the former (9.16a) and the latter (9.16b) in terms of the
notations y′+ and y′−.

By equating both sides of the relation (9.13), we derive the following cubic equation:

y′3 − 2�0y′2 − σ 2 y′ + σ 2
(

2�0 + 1

|βt |
)

= 0 (βt > 0), (9.17a)

− y′3 + 2�0y′2 − σ 2 y′ + σ 2
(

2�0 − 1

|βt |
)

= 0 (βt < 0). (9.17b)

Three real solutions of Eq. (9.17) give us d±,0:

d+ = 2

3

(
�0 +

√
4�2

0 + 3σ 2 cos
θ

3

)
,

d− = 2

3

(
�0 −

√
4�2

0 + 3σ 2 cos

(
θ + π

3

))
,

d0 = 2

3

(
�0 −

√
4�2

0 + 3σ 2 cos

(
θ − π

3

))
(βt > 0), (9.18a)

d+ = 2

3

(
�0 +

√
4�2

0 − 3σ 2 cos
θ

3

)
,

d− = 2

3

(
�0 −

√
4�2

0 − 3σ 2 cos

(
θ + π

3

))
,

d0 = 2

3

(
�0 −

√
4�2

0 − 3σ 2 cos

(
θ − π

3

))
(βt < 0). (9.18b)
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Here, θ (0 ≤ θ ≤ π ) denotes a parameter which satisfies

cos θ =
8�3

0 − 9
(

3
2|βt | + 2�0

)
σ 2(√

4�2
0 + 3σ 2

)3 for βt > 0, (9.19a)

cos θ =
8�3

0 − 9
(

3
2|βt | − 2�0

)
σ 2(√

4�2
0 − 3σ 2

)3 for βt < 0, (9.19b)

3

2|βt | − 2�0 > 0 for βt < 0. (9.19c)

The relations (6.26) and (6.27) support the inequality (9.19c). The above three quantities d±,0 satisfy

d+ + d− + d0 = 2�0. (9.20)

With the use of relation (9.18), we have the following expression:

1

2
(d+ + d−) = 1

3

(
2�0 +

√
4�2

0 + 3σ 2 cos

(
π − θ

3

))
,

1

2
(d+ − d−) = 1√

3

√
4�2

0 + 3σ 2 sin

(
π − θ

3

)
(βt > 0), (9.21a)

1

2
(d+ + d−) = 1

3

(
2�0 +

√
4�2

0 − 3σ 2 cos

(
π − θ

3

))
,

1

2
(d+ − d−) = 1√

3

√
4�2

0 − 3σ 2 sin

(
π − θ

3

)
(βt < 0). (9.21b)

By substituting the above result (9.21) into the relation (9.16), we are able to obtain y′ as a function
of cosψ .

With the use of y′, we have the expressions for x ′ and 	a2
t (x

′) in the form

x ′ = γ 2
t

x
= βt + 1

2�0 − y′ , (9.22)

	
a2
t (x

′) = 	
a2
t

(
γ 2

t

x

)
= γt y′. (9.23)

The relation (9.22) is applicable in the range γt ≤ x ′ < ∞; this point will be discussed in Sect. 10.
In the relation (9.16), y′ is given as a function of cosψ . Therefore, if the time dependence of ψ is
determined, we have the time dependence of 	a2

t (x
′). Concerning this point, we can see that in the

case γt = 0, 	a2
t (x

′) vanishes. This is quite natural and the reason is simple: The case γt = 0 gives
us the relation 2t − 1 = 2�0 and the relations (4.21) and (5.17) suggest that this case corresponds
to the maximum seniority number, that is, there does not exist the possibility of the creation of the
Cooper pair.

Let us investigate the time dependence of ψ . The basic idea is the same as that in the case	a1
t (x).

First, we notice that the relation (9.3) can be rewritten as follows:

ż = γ

γt

[
z2 − x

(
1 − 	

a2
t (x

′)
x ′	a2

t
′(x ′)

)]
, ż∗ = γ

γt

[
z∗2 − x

(
1 − 	

a2
t (x

′)
x ′	a2

t
′(x ′)

)]
. (9.24)
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Here, of course, x ′ = γ 2
t /x . Then, we can calculate ẋ :

ẋ = ż∗z + z∗ ż = 2γ · x2

γ 3
t

· 	
a2
t (x

′)
	

a2
t

′(x ′)
· u. (9.25)

Similar to the case of 	a1
t (x), u is obtained in the form

u =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
± γt√|βt |

· 1

y′
√
(d+ − y′)(y′ − d−) ·

(
y′ − d0

(2�0 + 1
|βt |)− y′

) 1
2

(βt > 0),

± γt√|βt |
· 1

y′
√
(d+ − y′)(y′ − d−) ·

(
y′ − d0

y′ − (2�0 − 1
|βt |)

) 1
2

(βt < 0).

(9.26)

Here, it is noted that in the case 2�0 − 1/|βt | = 0, d0 = 0 and it corresponds to the situation shown
in Fig. 5(b). The relations (9.10) and (9.25) lead to the following form for ẏ′:

ẏ′ = −2γ

γt
y′ · u. (9.27)

By substituting the quantity u shown in the relation (9.26), ẏ′ is obtained. On the other hand, the
result (9.16) gives us

ẏ′ = −1

2
(d+ − d−) sinψ · ψ̇. (9.28)

Equating the expressions (9.27) and (9.28) and treating the double sign ± in the same way as in the
case 	a1

t (x), we obtain ψ̇ in the following form:

ψ̇ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2γ√|βt |

(
(�0 − 3

2d0)+ 1
2(d+ − d−) cosψ

1
|βt | + (�0 + 1

2d0)− 1
2(d+ − d−) cosψ

) 1
2

(βt > 0),

2γ√|βt |

(
(�0 − 3

2d0)+ 1
2(d+ − d−) cosψ

1
|βt | − (�0 + 1

2d0)+ 1
2(d+ − d−) cosψ

) 1
2

(βt < 0).

(9.29)

Here, we used the relation (9.20). By solving the differential equation (9.29), we obtain ψ as a
function of τ . But, in spite of simple form, the exact solution may be impossible to obtain in
analytical form except for the following two cases: (1) d+ = d− for βt > 0 and βt < 0, and (2)
�0 − (3/2) · d0 = 1/|βt | − (�0 + d0/2). Case (2) corresponds to Fig. 5(b). Therefore, we must
search for a reasonable approximation for the solution.

10. Various properties of �
a2
t (x) for describing its time-dependence – procedure for

the application

Let us consider a guide to the approximation for the differential equation (9.29). We start in rewriting
this equation:

1

2
J ψ̇2 + V+(ψ) = E+, V+(ψ) = − A+ + B

A+ − cosψ
, E+ = −1 (βt > 0), (10.1a)

1

2
J ψ̇2 + V−(ψ) = E−, V−(ψ) = + A− − B

A− + cosψ
, E− = +1 (βt < 0). (10.1b)

Here, J , A±, and B are defined as

J = |βt |
2γ 2 , A± =

2
|βt | ± (2�0 + d0)

d+ − d−
, B = 2�0 − 3d0

d+ − d−
. (10.2a)
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PTEP 2013, 103D04 Y. Tsue et al.

Fig. 6. The figure shows v±(ψ) as function of ψ in the range −π ≤ ψ ≤ π . The horizontal dotted line
corresponds to E±/(A± ± B) (E± = ∓1).

Using relation (9.20) and Figs. 4 and 5, we can show that A± and B obey the inequality

A± > 1, B > 1, A− > B. (10.2b)

The expression (10.1) can be regarded as the total energy E± with the kinetic energy J ψ̇2/2 and the
potential energy V±(ψ). With the aid of the inequality (10.2b), we can prove the following relation:

V±(ψ) < E± (−1 ≤ cosψ ≤ 1). (10.3)

Therefore, if the angle variable ψ changes continuously in the range −∞ < ψ < ∞, the present
case can be understood in terms of rotational motion with moment of inertia J and periodically
changing angular velocity. However, in the present case, ψ does not change continuously, because
the original variable x ′ changes in the range γt ≤ x ′ < ∞ and the other x in the range 0 ≤ x ≤
γt . The relation (9.22) suggests that for certain angles, denoted as ψc, the variable ψ should obey
the condition

cosψc ≤ cosψ ≤ 1. (10.4)

This means that any result derived from the relation (10.1) in the range −1 ≤ cosψ ≤ cosψc is
meaningless. This range is treated in relation to the variable χ discussed in Sect. 8. In this sense, the
quantity cosψc plays an essential role in our treatment. Including the value of cosψc, the detail will
be considered in Sect. 11. This is illustrated in Fig. 6 for the range −π <∼ψ<∼π . The longitudinal axis
represents v±(ψ) defined as

V±(ψ) = (A± ± B) · v±(ψ), (10.5a)

v±(ψ) = ∓ 1

A± ∓ cosψ
, v±(−ψ) = v±(ψ). (10.5b)

Hereafter, we will treat the angle ψ in the range

− π ≤ ψ ≤ π. (10.6)

Let us present an idea for the approximation of v±(ψ), which will be adopted in this paper. Needless
to say, we seek a possible approximation in the range

− ψc ≤ ψ ≤ ψc, 0 ≤ ψc ≤ π. (10.7)
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Fig. 7. The figure shows v′
±(ψ) as function of ψ in the range 0 ≤ ψ ≤ π .

But, for the time being, forgetting the range (10.7), ψ is treated in the range (10.6). The behavior of
v±(ψ) is illustrated in Fig. 6. In order to understand this behavior more precisely, we take up the first
and the second derivative of v±(ψ) for ψ , v′±(ψ), and v′′±(ψ):

v′
±(ψ) = sinψ

(A± ∓ cosψ)2
, (10.8a)

v′′
±(ψ) = ±cos2 ψ ± A± cosψ − 2

(A± ∓ cosψ)3
. (10.8b)

Since V±(ψ) represents the potential energy, the force F±(ψ) acting on the present system is given
in the form

F±(ψ) = −dV±(ψ)
dψ

= −(A± ± B) · v′
±(ψ). (10.9)

Therefore, we can learn the characteristics of F±(ψ) through v′±(ψ). Since F±(−ψ), i.e., v′±(−ψ) =
−v′±(ψ), it may be enough to investigate v′±(ψ) in the range 0 ≤ ψ ≤ π . Its behavior is shown in
Fig. 7. The angleψd gives us the maximum value of v′±(ψ) and its value is determined by v′′±(ψ) = 0:

cosψd = ±1

2

(√
A2± + 8 − A±

)
. (10.10)

The flectional point of v±(ψ) is given by ψd and we have the following:

(i) v′±(ψ) is increasing in the range ψ < ψd ,
(ii) v′±(ψ) is decreasing in the range ψ > ψd .

The above two cases and the relation F±(−ψ) = F±(ψ) teach us that the force under consideration is
attractive for the point, the center of the force and as |ψ | increases, the strength of the force increases
in case (i) and decreases in case (ii). This indicates that the property of the force is transformed at
ψ = ψd . The above is a distinctive feature of F±(ψ). With this feature in mind, we consider the
approximation of v±(ψ) through v′±(ψ).

In order to obtain the idea, first, we must introduce the angle ψc into the above argument. In the
case v′+(ψ), we have two possibilities, which are illustrated in Fig. 8. As is clear from the relation
(10.7), the force F+(ψ) has its meaning for the solid curve OC. Our idea may be the simplest and it is
summarized as follows: (a) In the case (a), the curves OD and DC are replaced with the straight lines
OD and DC. (b) In the case (b), the curve OC is replaced with the straight line OC. The above scheme
is also applicable to the case v′−(ψ). It should be noted that the above approximation preserves the
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Fig. 8. The figure shows v′
±(ψ) as function of ψ in the range 0 ≤ ψ ≤ π . The solid curves and dot-dashed

curves represent the exact results. The thin lines represent the approximate ones. (a) The parameters are
taken as κ = −15/2, t = 5/2, and �0 = 19/2. Here, αt ≈ 0.7656 (> 0) and βt ≈ 0.6323 (> 0) are derived.
Also, A+ ≈ 1.3564, ψc ≈ 1.7123, and ψd ≈ 0.4729 are obtained. (b) The parameters are taken as κ = −1,
t = 18/2, and �0 = 19/2. In this parameter set, αt ≈ −6.0384 (< 0) and βt ≈ −0.0198 (< 0) are derived.
Here, A− ≈ 4.9493, ψc ≈ 1.4877, and ψd ≈ 1.9558 are obtained.

distinctive feature of F±(ψ) already mentioned, and the values of v′±(ψ) at ψ = 0, ψd , and ψc.
By adopting the symbol va±(ψ) for the approximate form of v±(ψ), the above idea is formulated as
follows:

(a) va
±

′(ψ) = −wcd
± · (ψ − ψc)+ v′

±(ψ
c)

(
wcd

± = −v
′±(ψc)− v′±(ψd)

ψc − ψd

)
(DC), (10.11a)

va
±

′(ψ) = wd
± · ψ

(
wd

± = v′±(ψd)

ψd

)
(OD), (10.11b)

(b) va
±

′(ψ) = wc
± · ψ

(
wc

± = v′±(ψc)

ψc

)
(OC). (10.12)

Naturally, the relations (10.11) and (10.12) give us

va
±

′(0) = v′
±(0), va

±
′(ψd) = v′

±(ψ
d), va

±
′(ψc) = v′

±(ψ
c). (10.13)

By integrating the relations (10.11) and (10.12), we are able to obtain the approximate
form of v±(ψ), va±(ψ).

For the integration, we require the condition

va
±(ψ

c) = v±(ψc). (10.14)

As was already mentioned, the angle ψc plays the role of the doorway to the range treated by χ .
Therefore, for obtaining va±(ψ), consideration of the behavior of v±(ψ) at ψ = ±ψc and the neigh-
boring region should be prior to any other region. The above consideration suggests the condition
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Fig. 9. The figure shows v±(ψ) as function of ψ in the range 0 ≤ ψ ≤ π . The solid and dot-dashed curves
represent the exact results. The thin curves represent the approximate ones. The parameters are the same ones
used in Fig. 8.

(10.14). By integrating (10.11a) under the condition (10.14), we have the following expression
for va±(ψ):

va
±(ψ) = −1

2
wcd

± · (ψ − ψc)2 + v′
±(ψ

c) · (ψ − ψc)+ v±(ψc) (DC). (10.15a)

If we require that, at ψ = ψd , the value of va±(ψ) from the side OD agrees with that from the side
DC for the relation of (10.11b), we obtain the expression

va
±(ψ) = 1

2
wd

± · (ψ2 − ψd 2)− 1

2
(v′

±(ψ
c)+ v′

±(ψ
d)) · (ψc − ψd)+ v±(ψc) (OD). (10.15b)

The above requirement may be acceptable, because the present system conserves the energy. For case
(b), the condition (10.12) gives us the following expression:

va
±(ψ) = 1

2
wc

±(ψ
2 − ψc2)+ v±(ψc) (OC). (10.16)

By replacing ψ with −ψ , we have expressions in the range −ψc ≤ ψ ≤ 0. Thus, we have obtained
the approximate expressions of v±(ψ) in our scheme. It should be noted that, owing to the approxima-
tion, we are forced to have va±(0) �= v±(0), and va±(ψd) �= v±(ψd). In Fig. 9, the solid and dot-dashed
curves represent the exact v±(ψ). Under the idea formulated by (10.11)–(10.13), the approximate
va±(ψ) are obtained and are shown by thin curves. Figure 9 shows that the va±(ψ) represent a good
approximation for the exact result in the range −ψc ≤ ψ ≤ ψc under consideration.

Finally, we will sketch the approximate solution of ψ as a function of τ . The relation (10.1) leads
us to the following approximate expression for ψ̇ :

ψ̇ =
[

2

J (E± − (A± ± B)va
±(ψ))

] 1
2

. (10.17)
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For va±(ψ), the relations (10.15) and (10.16) must be used. As can be seen in the forms (10.15) and
(10.16), the potential energy is expressed as a quadratic function of ψ . For the coefficients of ψ2, we
have the inequalities

wcd
± > 0, wd

± > 0, wc
± > 0. (10.18)

Therefore, ψ can be simply expressed in the form

ψ(τ) = ψh(τ ) = Ah sinh(ωhτ + αh)+ Bh (CD), (10.19a)

ψ(τ) = ψn(τ ) = An sin(ωnτ + αn)+ Bn (OD), (OC). (10.19b)

Then, our problem is reduced to determining the coefficients (Ah, ωh, αh,Bh) and (An, ωn, αn,Bn).
In next section, some examples will be given.

11. Discussion

One of the aims of this paper is to describe a simple many-fermion model obeying the pseudo-
su(1, 1) algebra in terms of the time-dependent variational method. In this description, the function
	t (x) plays a central role. For its original form, we adopted an approximate form which consists of
two parts:	a1

t (x) for 0 ≤ x ≤ γt and	a2
t (x

′) for γt ≤ x ′ < ∞. Treating both parts independently in
Sects. 8 and 9, we derived various features induced by these two functions. Therefore, it is inevitable
to investigate the connection between the results derived from the two forms. To this end, it may be
convenient to discuss the connection under four categories, although they are correlated with one
another.

The first is related to constants of motion. We have already mentioned that t is one of them, i.e.,
common to the two parts. The others are ρ in the range 0 ≤ x ≤ γt and σ in the range γt ≤ x ′ < ∞,
shown in the relations (8.10) and (9.14), respectively. They are not independent of each other. By
eliminating κ in both relations, we have

σ = 1

γt

√
|βt |
|αt | · ρ, i.e., σ 2 = 1

γ 2
t

· |βt |
|αt | · ρ2. (11.1a)

As is clear from Figs. 3(b), 4 and 5, ρ2 and σ 2 have maximum values. On the other hand, Fig. 3(a)
shows that in this case, formally, ρ2 is permitted to become ∞. However, relation (11.1) teaches us
that, in this case, the maximum value also exists, because σ 2 has a maximum value. For example, in
the case βt > 0, the maximum value of σ 2, (σ 2)max, is given by

(σ 2)max = d2
m(dm − 2�0)

dm −
(

2�0 + 1
βt

) , dm = 2�0

(
1 − 2

3 + √
9 + 16�0|βt |

)
. (11.1b)

Here, dm denotes the value of y′ which makes w′ in the relation (9.13) the maximum.
The ranges covered by x and x ′ are 0 ≤ x ≤ γt and γt ≤ x ′ < ∞, respectively. The second category

is related to these ranges. Relations (8.7) and (9.22) lead to the following inequalities:

0 ≤ 1

αt

(
1 − 2t

y

)
≤ γt , (11.2a)

γt ≤ βt + 1

2�0 − y′ < ∞. (11.2b)
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The inequality (11.2a) gives us

2t ≤ y+ ≤ 2�0

(
1 − 1

1 + √
2tγt

)
, (11.3)

2�0

(
1 − 1

1 + √
2tγt

)
≤ y− ≤ 2t. (11.4)

Also, the inequality (11.2b) gives us

2�0

(
1 − 1

1 + √
2tγt

)
≤ y′

± ≤ 2t. (11.5)

For the derivation of the inequalities (11.4) and (11.5), we used the relation (6.7). It should be noted
that although y+ contains coshχ , it should be finite.

At the point x = x ′ = γt , y connects to y′. As was shown in the relations (8.13) and (9.16), y
and y′ consist of y± and y′±, respectively. Therefore, it is necessary to investigate, for example, if
y+ can connect to y′ or not. The third category is concerned with the above. Formally, we can find
four combinations between y and y′: (y+, y′+), (y+, y′−), (y−, y′+), and (y−, y′−). The relations from
(6.19) to (6.28) with their interpretations lead us to the following three cases:

(i) if
1

2
≤ t < t0, 0 < αt ≤ βt , (in the case t = 1/2, αt = βt ) (11.6a)

(ii) if t0 < t < t0′, αt < 0 < βt , (11.6b)

(iii) if t0′ < t ≤ �0 + 1

2
, αt < βt < 0. (11.6c)

If the relation αt < βt is noticed, the above three cases may be understandable. The cases (i), (ii),
and (iii) correspond to the combinations (y+, y′+), (y−, y′+), and (y−, y′−), respectively. Therefore,
y+ cannot connect with y′−.

For the above three combinations, we show the maximum values of the squares of the constants
of motion κ2 introduced in the relation (8.1). The conditions c+ − c− = 0 and d+ − d− = 0 give us
the maximum values κ(i)2m (i = 1, 2, 3, 4) for the cases (1), (2), (3), and (4) related to Figs. 3(a), 3(b),
4, and 5, respectively. With the use of these conditions, we obtain the following results:

(1) κ(1)m
2 → ∞ (y+; Fig. 3(a)), (11.7a)

(2) κ(2)m
2 = t2

|αt | (y−; Fig. 3(b)), (11.7b)

(3) κ(3)m
2 = γ 2

t

|βt | · 16�3
0

9(4�0 + 3
|βt |)

(y′
+; Fig. 4), (11.7c)

(4) κ(4)m
2 = γ 2

t

|βt | · 4�2
0

3
(y′

−; Fig. 5). (11.7d)

For the combination (y+, y′+), we choose the smaller value of κ2
m , i.e., κ(3)2m . For the combination

(y−, y′+) and (y−, y′−), we choose the smaller values of κ2
m for each case; min{κ(2)2m , κ

(3)2
m } and

min{κ(2)2m , κ
(4)2
m }, respectively.

37/45

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2013/10/103D

04/1540316 by U
N

IV.C
O

IM
BR

A/FAC
.PSIC

O
LO

G
IA E user on 27 O

ctober 2023



PTEP 2013, 103D04 Y. Tsue et al.

Fig. 10. The path of the evolution is illustrated in the case of �0 = 19/2 and t = 5/2.

The fourth category is related to giving the explicit expression of the connection. First, let us notice
again that 	a1

t (x) and 	a2
t (x

′) should connect with each other smoothly at x = x ′ = γt :

	
a1
t (γt ) = 	

a2
t (γt ), 	

a1
t

′(γt ) = 	
a2
t

′(γt ). (11.8)

The explicit expression of the relation (11.8) is presented in the relation (6.6). The first relation (11.8)
and the definition of y and y′ in (8.3) and (9.10) lead to

(y)t = (y′)t (= yt ). (11.9)

Here, (y)t and (y′)t denote the values of y and y′ at the point x = x ′ = γt , respectively, and, with
the use of the relation (6.7), yt is given by

yt = 2�0

(
1 − 1

1 + √
2tγt

)
. (11.10)

The above is the connection between the results derived from the two forms.
Our final task is to investigate the time evolution of 	t in the approximate form, 	a

t . The path of
the evolution is illustrated in Fig. 10. The lines SC and CT correspond to 	a1

t = (y − 2t)/αt and
	

a2
t = γt y′, respectively. Here, y and y′ are given in the relations (8.13) and (9.16), respectively.

They depend on two constants of motion, t and κ . It is noted that 	a
t has minimum and maximum

values which correspond to y = c+ and y′ = d+, respectively. At the point C,	a
t changes from	

a1
t

to 	a2
t , i.e., from y to y′, and vice versa. The dependence of 	a

t on the time τ may be periodic. One
cycle consists of four paths (S→C, C→T, T→C, C→S), which is shown in Fig. 10.

With the use of the relation (11.9) with (8.13) and (9.16), we have the following relations:

coshχc = yt − 1
2(c+ + c−)

1
2(c+ − c−)

(αt > 0), cosχc = yt − 1
2(c+ + c−)

1
2(c+ − c−)

(αt < 0), (11.11)

cosψc = yt − 1
2(d+ + d−)

1
2(d+ − d−)

(βt > 0, βt < 0). (11.12)

Here, χc and ψc denote the values of χ and ψ at the point C, respectively. It can be seen that if χc

and ψc are positive, −χc and −ψc also satisfy the relations (11.11) and (11.12), respectively. The
angle ψc is nothing but that introduced in Sect. 10. On the other hand, χ and ψ are equal to 0 at the
point S and the point T, respectively. The above consideration permits us to choose χ andψ including
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Fig. 11. The values of χ and ψ on each point are shown.

the signs of χc and ψc in the form shown in Fig. 11. For the cycle (S→C→T→C′(=C)→S), it may
be enough to regard χ̇ and ψ̇ as positive, χ̇ > 0 and ψ̇ > 0, at any position except the point S with
χ̇ = 0 and the point T with ψ̇ = 0. It is easily verified by sinhχ = sinχ = sinψ = 0 forχ = ψ = 0.
The time derivatives χ̇ and ψ̇ are given in the relations (8.28) and (10.17), respectively. We already
mentioned that there are three cases for the combinations at the point C: (y+, y′+), (y+, y′−), and
(y−, y′−). If applying this rule to the present cycle, we obtain the following three cases:

(i) αt > 0 (S → C) , βt > 0 (C → T → C′(= C)) , αt > 0 (C′ → S) ,

(ii) αt > 0 (S → C) , βt < 0 (C → T → C′(= C)) , αt > 0 (C′ → S) ,

(iii) αt < 0 (S → C) , βt < 0 (C → T → C′(= C)) , αt < 0 (C′ → S) .

We take up the case where the cycle starts from the point S, that is, the initial condition is given
by χ0 = 0 at τ 0 = 0. Here, χ0 and τ 0 appear in the relation (8.28). In order to demonstrate our
idea, we present several results derived in case (i) with ψc > ψd . In this case, there exists the flec-
tional point D specified by ψ = ±ψd between C and T, and also between T and C′. Then, the path
(C→T→C′(=C)) is decomposed into three: C→D, D→T, and T→D′(=D). We discriminate between
D and D′ by the condition (ψD = −ψd , ψD′ = ψd ). General solutions of the paths (S→C, C′ →S),
(C→D, D′ →C′) and (D→T, T→D′) are given by the relations (8.28), (10.19a), and (10.19b),
respectively. The parameters (ωh,Ah) and (ωn,An) contained in the relation (10.19) are obtained in
the form

ωh =
(

A+ + B

J · wcd
+

) 1
2

, (11.13a)

Ah =
⎡⎣ 2

wcd+

(
E+

A+ + B
− v+(ψc)

)
−
(
v′+(ψc)

wcd+

)2
⎤⎦

1
2

, (11.13b)
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ωn =
(

A+ + B

J · wd
+

) 1
2

, (11.14a)

An =
[

2

wd+

(
E+

A+ + B
− v+(ψc)

)
+ ψd 2 + 1

wd+

(
v′
+(ψ

c)+ v′
+(ψ

d)
) (
ψc − ψd

)] 1
2

. (11.14b)

Here, we used the relation (10.11) or (10.1a) with V+(ψ) = (A+ + B)va+(ψ). The other parameters
(αh,Bh) and (αn,Bn) can be determined through the conditions governing each path.

Let τC , τ D , τ T , τ D′
, τC ′

and τ S denote the arrival, i.e., departure times at the points C, D, T, D′,
C′, and S, respectively, after the cycle starts from S at the time τ 0 = 0. Then these times obey the
following condition:

(1) χ(0) = 0, χ(τC ) = χc, (2) ψh(τ
C ) = −ψc, ψh(τ

D) = −ψd ,

(3) ψn(τ
D) = −ψd , ψn(τ

T ) = 0, (4) ψn(τ
T ) = 0, ψn(τ

D′
) = ψd ,

(5) ψh(τ
D′
) = ψd , ψh(τ

C ′
) = ψc, (6) χ(τC ′

) = −χc, χ(τ S) = 0.
(11.15)

Under the condition (11.15), we can determine (αh,Bh) and (αn,Bn), and χ(τ) and ψ(τ) for each
path are given in the following form:

(1) S → C ; χ(τ) = 2γ
√

|αt | · τ (0 ≤ τ ≤ τC ), (11.16a)

(2) C → D ; ψ(τ) = Ah sinh

[
ωh(τ − τC )+ sinh−1

(
v′+(ψc)

Ahw
cd+

)]
− v′+(ψc)

wcd+
− ψc

(τC ≤ τ ≤ τ D), (11.16b)

(3) D → T ; ψ(τ) = An sin

[
ωn(τ − τ D)− sin−1

(
ψd

An

)]
(τ D ≤ τ ≤ τ T ), (11.16c)

(4) T → D′ ; ψ(τ) = An sin
[
ωn(τ − τ T )

]
(τ T ≤ τ ≤ τ D′

), (11.16d)

(5) D′ → C′ ; ψ(τ) = Ah sinh

[
ωh(τ − τ D′

)− sinh−1

(
1

Ah

(
ψc − ψd + v′+(ψc)

wcd+

))]

+
(
ψc − ψd + v′+(ψc)

wcd+

)
+ ψd (τ D′ ≤ τ ≤ τC ′

), (11.16e)

(6) C′ → S ; χ(τ) = 2γ
√

|αt | · (τ − τC ′
)− χc (τC ′ ≤ τ ≤ τ S). (11.16f)

In connection with the relations (7.21) and (7.22), it was suggested that our model enables us to
describe the dissipation phenomena in the many-fermion system. The paths (1) and (6) correspond
to this suggestion. It indicates that this dissipation cannot be observed at any time. The condition
(11.15) also gives us the time intervals for the paths:

τ S − τC ′ = τC = χc

2γ
√|αt |

, (11.17a)

τC ′ − τ D′ = τ D − τC

= 1

ωh

{
sinh−1

[
1

Ah

(
ψc − ψd + v′+(ψc)

wcd+

)]
− sinh−1

(
v′+(ψc)

Ahw
cd+

)}
, (11.17b)
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Fig. 12. The behavior of χ(τ) and ψ(τ) in one cycle. Here, the same parameters as those used in Fig. 8(a) are
adopted.

τ D′ − τ T = τ T − τ D

= 1

ωn
sin−1

(
ψd

An

)
. (11.17c)

The results (11.17a)–(11.17c) give us τC , etc. For example, we have

τ S = 2τ T , (11.18a)

τ T = χc

2γ
√|αt |

+ 1

ωh

{
sinh−1

[
1

Ah

(
ψc − ψd + v′+(ψc)

wcd+

)]
− sinh−1

(
v′+(ψc)

Ahw
cd+

)}

+ 1

ωn
sin−1

(
ψd

An

)
. (11.18b)

The time τ S is nothing but the period of the cycle. Figure 12 illustrates how χ(τ) and ψ(τ) behave
in one cycle. Here, in the regions of τ ≤ τC and τ ≥ τC ′

, χ(τ) is shown and is a linear function with
respect to time τ . In the region of τC ≤ τ ≤ τC ′

, ψ(τ) is used, and from τC to τ T , ψ(τ) is changed
from a sinh-type to a sin-type function, and vice versa from τ T to τC ′

. Our main interest is concerned
with the energy of the intrinsic system expressed in the form

Eb ≡ (φ|H̃P |φ) = εNP . (11.19)

Here, H̃P and NP are given in the relations (7.11) and (7.25), respectively, and, therefore, it may
be enough for the understanding of Eb to consider NP (ε = 1). In Fig. 13, the result is shown as a
function of τ under the approximation developed in Sects. 8–10 with the same parameters as those
used in Fig. 8(a). In the region of τ ≤ τC and τ ≥ τC ′

, x ≤ γt is satisfied where 	a1
t (x) is used as

the approximation of 	t (x). In the region of τC ≤ τ ≤ τC ′
, 	a2

t (x) is used in the approximation
of 	t (x). It is seen that, in one cycle, the energy flows into the intrinsic system from the external
environment from time 0 to τ T and vice versa from τ T to τ S .

We will discuss some problems related to the result shown in Fig. 13. The energy Eb shows periodic
behavior for time τ . Such behavior cannot be expected in the su(1, 1)-algebraic model, in which,
following the cosh-type change, Eb increases or decreases. Since our model belongs to the su(2)-
algebraic model, the periodic behavior appears. In Fig. 13, we can see that the minimum and the
maximum values exist in Eb. We consider these two values for the case (αt > 0, βt > 0) in a rather
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Fig. 13. The approximate energy of the intrinsic system, 〈H̃P〉 = εNP , is shown as a function of time τ under
the same parameter set as those used in Fig. 8(a).

general form. The relation (8.13a) teaches us that if χ = 0, y becomes the minimum, i.e., ymin = c+.
Then, with the aid of expression (8.7), we have

(
	

a1
t
)

min = 1

αt
(ymin − 2t) = 1

αt
(c+ − 2t) = ρ2

αt
· 1

t +
√

t2 + ρ2
. (11.20)

On the other hand, the relation (9.16a) gives us the maximum value of y′, if ψ = 0, i.e., y′
max = d+.

Then, the relation (9.23) gives us (
	

a2
t
)

max = γt y′
max = γt d+. (11.21)

Of course, d+ is a solution of the cubic equation (9.17a) and we use a possible approximate solution:

d+ = 2�0

⎛⎜⎜⎝1 − σ 2

2�0|βt | · 2

4�2
0 − σ 2 +

[
(4�2

0 − σ 2)2 − 4σ 2(2�0+dm)
|βt |

] 1
2

⎞⎟⎟⎠ . (11.22)

Here, dm is given in the relation (11.1b). In the cases σ 2 = 0 and (σ 2)max, the solution (11.22) is
exact. With the aid of the relation (7.25a), (Eb)min and (Eb)max are expressed as follows:

(Eb)min = 2t − 1 + ρ2

αt
· 1

t +
√

t2 + ρ2
, (11.23a)

(Eb)max = 2�0 − σ 2

|βt | · 2γt

4�2
0 − σ 2 +

[
(4�2

0 − σ 2)2 − 4σ 2(2�0+dm)
|βt |

] 1
2

. (11.23b)

In the case ρ2 = 0, (Eb)min = 2t − 1 and, as ρ2 increases, (Eb)min increases. Conversely, in the case
σ 2 = 0, (Eb)max = 2�0 and, as σ 2 increases, (Eb)max decreases. For the case (2�0 = 19, 2t =
5, 2κ = −15), we have (Eb)min = 9.9072 and (Eb)max = 18.7569, which is very near to (Eb)max =
18.7562 calculated under the exact solution of the cubic equation (9.17a). This result may support
the validity of the approximate form (11.22).

Next, on the basis of the above argument, we investigate the trial state (5.3) which leads us
to (Eb)min and (Eb)max. In the ranges 0 ≤ x ≤ γt and γt ≤ x ′ < ∞, the state (5.3) contains the
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parameters z (x = |z|2) and z′ (x ′ = |z′|2), respectively. Here, the relation (9.1) should be noted. In
the range 0 ≤ x ≤ γt , we note the relation (8.18a) and, then, the value of x at χ = 0 is the minimum:

xmin = 1

αt
·
√

t2 + ρ2 − t√
t2 + ρ2 + t

(= xmin(ρ
2)). (11.24)

The function xmin(ρ
2) is increasing for ρ2 with xmin(ρ

2 = 0) = 0, i.e., z = 0. Therefore, the state |φ)
corresponding to z = 0 is the minimum weight state (4.13), |m0), which contains (2t − 1) fermions
only in P (NP = 2t − 1, NP = 0). In the range γt ≤ x ′ < ∞, we note the relation (9.22) and the
value of x ′ at ψ = 0 is the maximum:

x ′
max = |βt | + 1

2�0 − y′
max

= |βt | + 1

2�0 − d+

= |βt |
σ 2

⎛⎝4�2
0 +

[
(4�2

0 − σ 2)2 − 4σ 2(2�0 + dm)

|βt |
] 1

2

⎞⎠ (= x ′
max(σ

2)). (11.25)

Here, we used the approximate expression (11.22) for d+. The function x ′
max(σ

2) is decreasing
for σ 2 with x ′

max(σ
2 = 0) → ∞, i.e., z′ → ∞. Therefore, the state |φ) corresponding to z′ → ∞

is
(
T̃+
)2�0−(2t−1) |m0) (2s = 2�0 − (2t − 1)) which contains the maximum number of fermions

permitted by the seniority coupling scheme (NP = 2�0, NP = 2�0 − (2t − 1)). From the above
argument, it may be clear that as κ2 increases from κ2 = 0, ρ2 and σ 2 also increase from ρ2 = σ 2 = 0
and (Eb)min and (Eb)max become larger than (2t − 1) and smaller than 2�0, respectively. If, at τ = 0,
the cycle starts at the point S with (Eb)min, it passes the critical points C and D and at τ = τ T arrives
at T. Although the points C and D are introduced under the approximation adopted in this paper, they
play an essential role for treating the present model in a well-known simple mathematical form.

The above is a basic part which our simple many-fermion model produces under the pseudo-
su(1, 1) algebra.

12. Concluding remarks

In this section, we will give some remarks on the Hamiltonian (7.10). This Hamiltonian was set
up under the correspondences (7.7)–(7.9). The original boson Hamiltonian (7.5) is a generator for
time evolution and does not represent the energy of the entire system. It aims at the description
of the “damped and amplified harmonic oscillator”. By regarding the mixed-mode boson coherent
state as a statistically mixed state, we can describe the harmonic oscillator at finite temperature,
which will be shown in the relation (12.6). In this sense, the above-mentioned description provides
us a possible entrance to the problems related to finite temperature. The Hamiltonian (7.10) can be
regarded as the fermion version of the harmonic oscillator in the su(1, 1) algebra in the Schwinger
boson representation. Nevertheless, it may be possible to treat the Hamiltonian (7.10) as the energy
of the entire system, as was already mentioned in Sect. 7. In order to confirm this conjecture, we
reexamine the correspondences (7.7)–(7.9).

Let us start with the relation (7.9). The frequency ω is positive, but the single-particle energy ε is
not always positive. Therefore, instead of the relation (7.11), it is permissible to set up the following
form:

H̃P = ε
∑
α

c̃∗
ᾱ c̃ᾱ, H̃P = ε

∑
α

c̃∗
α c̃α, H̃P + H̃P = 2εT̃ . (12.1)

The form (12.1) suggests that the system under consideration is nothing but a many-fermion system
in two single-particle levels, P and P , with the level distance 2|ε|. If the relation (12.1) is admitted,
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H̃ represents the energy of the entire system. From this point of view, the state |φ) is not the sta-
tistically mixed state, but the trial state of the time-dependent variation for H̃ as the energy of the
entire system. Therefore, the results obtained in this paper present the information provided by |φ)
as a statistically pure state.

Next, we reexamine the correspondence (7.7) and (7.8). First, we notice the following: If the vac-
uum changes appropriately, the fermion creation operator becomes the annihilation operator, that
is, if |0)) = c̃∗|0) (c̃|0) = 0), c̃∗|0)) = 0. In the case of the boson operator, we cannot find such a
situation. If we note the above fact, the following correspondence may be also permitted:

(b̂, b̂∗) → (sα c̃∗
ᾱ, sα c̃ᾱ), (â, â∗) → (c̃α, c̃∗

α). (12.2)

Then, for (T̂ − 1/2), we have

T̂ − 1

2
→ ◦

T = −1

2

∑
α

(c̃∗
α c̃α − sα c̃ᾱsα c̃∗

ᾱ)

= −1

2

∑
α

(c̃∗
α c̃α + c̃∗

ᾱ c̃ᾱ)+�0. (12.3)

The correspondence (12.2) suggests that the set (S̃±,0) is replaced with the set (R̃±,0). Then, another
type of pseudo-su(1, 1) algebra can be defined in the form

◦
T + = R̃+

(
�0 + 1

2 + t + R̃0

�0 + 1
2 − t − R̃0 + ε

) 1
2

,
◦
T − =

(
�0 + 1

2 + t + R̃0

�0 + 1
2 − t − R̃0 + ε

) 1
2

R̃−,

◦
T 0 = �0 + 1

2
+ R̃0. (12.4)

The Hamiltonian in this case is expressed as
◦

H= 2ε
◦
T −iγ

( ◦
T + − ◦

T −
)
. (12.5)

It may be clear that the above does not correspond to the deformation of the Cooper pair. It corre-
sponds to the deformation of the density-type fermion pair. The Hamiltonian (12.5) is applicable to
the case where the single-particle energy of the level P is equal to that of P .

Finally, we must mention two problems to be solved in the near future. By regarding the mixed-
mode boson coherent state as the statistically mixed state, the expectation value of Ĥb = ωb̂∗b̂ is
given by

〈Ĥb〉 ∼ ω · (2t − 1)+ ω · 1

eωβ − 1
(β = (kB T )−1). (12.6)

The first and second terms represent the energy at the low temperature limit and the energy coming
from the thermal fluctuation in the Bose distribution, respectively [5–7]. One of the future problems
is to investigate the thermal effect such as is shown in the relation (12.6) by regarding the state |φ) as
the statistically mixed state for H̃P = ε

∑
α c̃∗

ᾱ c̃ᾱ . In this case, our concern is to examine if the Fermi
distribution appears or not. The second problem is related to the Hamiltonians H̃P and H̃P . They are
on a level with Ĥb and Ĥa . In Ref. [5], we can find some examples extended from Ĥb and Ĥa . The
future task is to also investigate the cases extended from H̃P and H̃P . The above two are our future
problems to be solved.
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