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ABSTRACT. A Mathematical Program with Linear Complementarity Constraints (MPLCC) is an opti-
mization problem where a continuously differentiable function is minimized on a set defined by linear

constraints and complementarity conditions on pairs of complementary variables. This problem finds many
applications in several areas of science, engineering and economics and is also an important tool for the

solution of some NP-hard structured and nonconvex optimization problems, such as bilevel, bilinear and
nonconvex quadratic programs and the eigenvalue complementarity problem. In this paper some of the most

relevant applications of the MPLCC and formulations of nonconvex optimization problems as MPLCCs are
first presented.

Algorithms for computing a feasible solution, a stationary point and a global minimum for the MPLCC are

next discussed.The most important nonlinear programming methods, complementarity algorithms, enumer-

ative techniques and 0−1 integer programming approaches for the MPLCC are reviewed. Some comments

about the computational performance of these algorithms and a few topics for future research are also in-

cluded in this survey.

Keywords: linear complementarity problems, global optimization, nonlinear programming, integer pro-

gramming.

1 INTRODUCTION

A mathematical problem with linear complementarity constraints (MPLCC) [22, 60, 70, 76]
consists of minimizing a continuously differentiable function on a set defined by a general linear
complementarity problem (GLCP). The standard form of this problem is stated as follows:

Minimize f (x, y) (1)

subject to Ew = q + Mx + N y (2)

x ≥ 0, w ≥ 0 (3)

y ∈ Ky (4)

xT w = 0 (5)
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where E ∈ Rp×n , M ∈ Rp×n, N ∈ Rp×m , and Ky is a polyhedron in Rm . Since the variables
xi and wi are nonnegative, then the constraint (5) is equivalent to n inequalities xiwi = 0,
i = 1, . . . , n. So in each feasible solution of the MPLCC, for each i = 1, . . . , n, at least one
of the variables xi or wi must be equal to zero. These variables are called complementary and
lend the name to the problem. In many applications of the MPLCC, some of the variables xi

are unrestricted in sign and their complementary variables wi are equal to zero. In this paper we
only concentrate on the Standard Form (1)–(5), but most of the ideas and algorithms are easily
extended to the latter mixed form of the MPLCC.

The MPLCC is called a Linear (Quadratic) Programming Problem with Linear Complementarity
Constraints and is denoted by LPLCC (QPLCC) if its objective function f is linear (quadratic).
The MPLCC seems to be introduced in the papers of Ibaraki [43] and Jeroslow [44] and became
very important later as a tool for finding global minima of bilevel programming problems [8,
12, 18, 21, 37, 47]. Many other formulations of nonconvex programs and applications of the
MPLCC have been discussed in the past several years [1, 2, 10, 11, 19, 22, 33, 41, 40, 55, 60,
61, 63, 67, 70, 73, 76, 80, 87]. In this paper we surveyed the most important applications of the
MPLCC and formulations of problems as MPLCCs with special emphasis on bilevel, bilinear
and nonconvex quadratic programming problems and the eigenvalue complementarity problem.

During the past several years, a great interest has emerged on the design and implementation
of efficient algorithms to deal with the MPLCC. Three important issues are related with the
solution of an MPLCC, namely the computation of a feasible solution, a stationary point and
a global minimum. Finding a feasible solution of the MPLCC consists of solving the GLCP
defined by the constraints (2)–(5). This problem is in general NP-hard [54], but it can be solved
efficiently for the most important applications and formulations by special purpose algorithms
or local nonlinear programming methods. In general, an enumerative technique or 0 − 1 Integer
Linear Programming should be used to compute such a feasible solution or to show that the
MPLCC is infeasible.

The MPLCC can be seen as a special Nonlinear Programming Problem (NLP) with linear con-
straints and the nonlinear equality restriction (5). This definition has implied a number of sta-
tionary concepts associated to the MPLCC [30, 38, 60, 70, 72, 76, 83, 89, 90]. Among them,
strongly stationary, M-stationary and B-stationary points [30, 38, 76] are the most important and
are briefly surveyed in this paper. Many algorithms have been developed in the past several years
for computing stationary points of MPLCC [4, 7, 15, 22, 26, 30, 29, 32, 31, 34, 42, 49, 50, 53,
56, 60, 70, 76, 78, 79]. In this paper, we survey the most efficient techniques.

As stated before, any feasible solution (x, y, w) of the MPLCC has to satisfy n complementarity
conditions xiwi = 0, i = 1, . . . , n. Due to the similarity with 0 − 1 integer programming,
branch-and-bound algorithms were the first techniques to be designed for the computation of a
global minimum to the MPLCC [2, 6, 12, 16, 23, 37, 52, 87]. The algorithms exploit a binary tree
that is generated based on the dichotomy that xi = 0 or wi = 0. Lower-bounds are computed in
each node by solving some appropriate relaxed convex program in order to alleviate the search
in the tree. RLT, SDP and cutting-planes [17, 64, 82] have been recommended to the LPLCC for
such a goal and can also be used for the QPLCC [13]. The MPLCC can also be reduced into a
0 − 1 integer program [35, 40, 39, 61, 82] and solved by some appropriate technique.
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A sequential algorithm was introduced in [47] for solving the LPLCC associated to a linear

bilevel program and subsequently improved and applied to other LPLCC formulations [46, 48].
The method computes strongly, M- or B-stationary points of the LPLCC with strictly decreasing
objective function values until terminating with an approximate global minimum that is usually

a global minimum of the LPLCC.

The three different approaches mentioned above are particularly effective for the LPLCC and are
also useful for solving QPLCC and MPLCC with convex objective functions. In this paper, we
discuss the benefits and drawbacks of these techniques.

The organization of this paper is as follows. In Section 2 some applications and reformulations

of optimization problems as MPLCC are surveyed. Section 3 addresses the computation of a
feasible solution to the MPLCC. The definitions of strongly, M- and B-stationary points and
algorithms for computing such points are discussed in Section 4. The most important techniques

for finding global minima of LPLCC and MPLCC are reviewed in Sections 5 to 8. Finally some
conclusions and topics for future research are presented in the last section of the paper.

2 APPLICATIONS AND FORMULATIONS OF NONCONVEX
OPTIMIZATION PROBLEMS

The MPLCC has found a large number of applications in several areas of science, engineering,
economics and finance. Stackelberg games, market and traffic equilibrium models, contact prob-
lems, telecommunication network models, portfolio selection problems and machine learning

are some examples of important applications of the MPLCC. We recommend [19, 33, 60, 76]
for good descriptions of these applications. The MPLCC has also been very useful as a tool for
solving NP-hard optimization problems. These problems are first reformulated as MPLCCs and

then solved by appropriate MPLCC techniques. Examples of important optimization problems
that should be reformulated as MPLCCs are nonconvex quadratic programming, bilinear pro-
gramming, bilevel programming, linear complementarity problem, eigenvalue complementarity

problem, total least-squares, absolute value programming, optimization with cardinality con-
straints, computation of independent (or clique) number and estimation of the condition number
of a matrix [1, 2, 10, 11, 19, 22, 33, 41, 40, 55, 60, 61, 63, 67, 70, 73, 76, 80, 87]. Next, we

address four of these reformulations.

A bilevel programming problem (BPP) [8, 18, 21] contains a hierarchy between two optimization
problems, where the constraints of the leader’s problem at the first level are defined as part of
a parametric problem considered at a second level and called the follower’s problem. In this

paper we assume that the remaining constraints of the leader’s problem and the constraints of the
follower’s problem are all linear and that the follower’s function is convex and quadratic. Hence
the BPP can be defined as follows:

Minimize f (x, y)

subject to Cx + Dy = r
y ∈ Ky

(6)
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where f is a continuously differentiable function on an open set containing the feasible set of

leader’s problem, Ky ⊆ R
m is a polyhedron in y and x ∈ R

n is the optimal solution of the
parametric quadratic convex program

Minimize cT x + yT Rx + 1
2 xT Qx

subject to Ax + By ≥ b

x ≥ 0

(7)

Note that Q is a symmetric PSD matrix (i.e., xT Qx ≥ 0 for all x ∈ Rn). Replacing the second
level quadratic program by its Karush-Kuhn-Tucker conditions [14], the BPP reduces to the
following MPLCC:

Minimize f (x, y)

subject to c + Qx + RT y = AT u + w

Ax + By − b = v

Cx + Dy = r

x ≥ 0, w ≥ 0, u ≥ 0, v ≥ 0
xT w = uT v = 0
y ∈ Ky

Hence computing a global minimum for the BPP is equivalent to finding a global minimum of
the MPLCC:

Minimize f (x, y) (8)

subject to

[
w

v

]
=

[
c

−b

]
+

[
Q −AT

A 0

][
x
u

]
+

[
RT

B

]
y (9)

[
w

v

]
≥ 0,

[
x

u

]
≥ 0,

[
w

v

]T [
x

u

]
= 0 (10)

Cx + Dy = r (11)

y ∈ Ky (12)

It is important to note that if the follower’s problem (7) contains some equalities or unrestricted

variables, then some variables xi or ui are unrestricted in sign and their complementary variables
wi or vi respectively are equal to zero.

The bilinear programming problem (BLP) has also been quite investigated due to its large number
of applications [2, 55, 77]. It consists of minimizing a bilinear function in the variables xi and yi

on a convex set defined by linear constraints. Therefore it takes the form

Minimize f (x, y) = cT x + dT y + xT H y (13)

subject to Ax + By ≥ b (14)

x ∈ Kx, y ∈ Ky, (15)
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where Kx ⊆ R
n and Ky ⊆ R

m are polyhedra in the x− and y− variables, respectively. If

Kx = {
x ∈ Rn : Cx ≥ g, x ≥ 0

}
then BLP can be stated as follows:

min
y∈K y

dT y + min
x

{
(c + H y)T x : Ax + By ≥ b, Cx ≥ g, x ≥ 0

}
. (16)

The dual program of the inner program above is given by

Maximize (b − By)T u + gT v

subject to AT u + CT z ≤ c + H y

u ≥ 0, z ≥ 0.

(17)

By introducing the slack variables wi , vi and ti of the primal and dual programs (16) and (17)

respectively and applying the complementarity slackness theorem [66], (x , y) is an optimal so-
lution of the BLP (13)–(15) if and only if (x , y) is a global minimum of the MPLCC

Minimize dT y + gT v + bT u − uT By (18)

subject to

⎡
⎢⎣ w

v

t

⎤
⎥⎦ =

⎡
⎢⎣ c

−b

−g

⎤
⎥⎦ +

⎡
⎢⎣ 0 −AT −CT

A 0 0

C 0 0

⎤
⎥⎦

⎡
⎢⎣ x

u

z

⎤
⎥⎦ +

⎡
⎢⎣ H

B

0

⎤
⎥⎦ y (19)

⎡
⎢⎣ w

v

t

⎤
⎥⎦ ≥ 0,

⎡
⎢⎣ x

u

z

⎤
⎥⎦ ≥ 0,

⎡
⎢⎣ w

v

t

⎤
⎥⎦

T ⎡
⎢⎣ x

u

z

⎤
⎥⎦ = 0 (20)

y ∈ Ky (21)

Hence a Bilinear Program is equivalent to a QPLCC. A BLP is called Disjoint if there are no

constraints involving both x− and y− variables (i.e., the inequalities (14) do not exist). In this
case the BLP reduces to an LPLCC of the form

Minimize dT y + gT v (22)

subject to

[
w

t

]
=

[
c

−g

]
+

[
0 −CT

C 0

] [
x
z

]
+

[
H
0

]
y (23)

[
w

t

]
≥ 0,

[
x
z

]
≥ 0,

[
w

t

]T [
x
z

]
= 0 (24)

y ∈ Ky (25)

As for the Bilevel Program, the QPLCC and LPLCC associated with a Bilinear Program may
have some unrestricted variables wi or ti equal to zero when the inner program in (16) contains
some equalities or unrestricted variables.
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Consider a Quadratic Program (QP) of the form

Minimize cT x + 1
2 xT H x

subject to Ax ≥ b

x ≥ 0

(26)

where H in Rn×n is symmetric, A ∈ R
m×n , b ∈ R

m and c ∈ R
n . The Karush-Kuhn-Tucker

(KKT) conditions associated to a stationary point of QP are given by [19, 67]:

c + H x = AT u + v

−b + Ax = v

x ≥ 0, w ≥ 0, u ≥ 0, v ≥ 0
xT w = uT v = 0

(27)

If H is a PSD matrix, then QP is convex and the solution of the Linear Complementarity Problem
(LCP) (27) gives a global minimum for the QP (26) [19, 67]. In general, for any solution of LCP

(27) the objective function is linear in the variables xi and vi , as

cT x + 1

2
xT H x = 1

2
cT x + 1

2
xT (c + H x) = 1

2

(
cT x + bT u

)

Hence the QP (26) is equivalent to the following LPLCC:

Minimize cT x + bT u (28)

subject to

[
w

v

]
=

[
c

−b

]
+

[
H −AT

A 0

] [
x
u

]
(29)

[
x

u

]
≥ 0,

[
w

v

]
≥ 0,

[
x

u

]T [
w

v

]
= 0 (30)

As before, the existence of equalities or unrestricted variables xi in the definition of the QP leads
to some variables xi or ui unrestricted in sign and their complementary wi or vi equal to zero.

The Eigenvalue Complementarity Problem (EiCP) has been introduced in [80] and used in the
stability analysis of finite dimensional elastic systems with frictional contact [73]. Many practical

algorithms have been developed during the last years for the solution of this problem and some
of its extensions [5, 9, 25, 27, 28, 51, 57, 68, 74, 75, 81, 84]. Given a matrix A ∈ Rn×n and a
Positive Definite (PD) matrix B ∈ Rn×n (i.e., xT Bx > 0 for all x ∈ Rn −{0}), the EiCP consists
of finding a complementary eigenvalue λ ∈ R

1 and an associated eigenvector x ∈ R
n − {0}

satisfying the following conditions

w = λBx − Ax
x ≥ 0, w ≥ 0

xT w = 0

(31)
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Since the problem is homogeneous, the normalization constraint eT x = 1 (e ∈ Rn is a vector of

ones) should be added to the definition of the problem in order to prevent the null vector to be a
solution of EiCP. Let y ∈ Rn be the vector such that

y = λx (32)

i.e.,
(y − λx)T (y − λx) = 0 (33)

Since the left-hand side of (33) is always nonnegative, then the EiCP is equivalent to the MPLCC:

Minimize (y − λx)T (y − λx) = f (λ, x, y) (34)

subject to w = By − Ax (35)

x ≥ 0, w ≥ 0 (36)

eT x = 1 (37)

xT w = 0 (38)

Then (λ, x) is a solution of the EiCP (31) if and only if (λ, x, y, w) is a global minimum of the
MPLCC (34)–(38) with f (λ, x, y) = 0. Note that the EiCP (31) has always a solution [9],

and this implies that the MPLCC (34)–(38) has at least a global minimum with a null objective
function value.

3 FINDING A FEASIBLE SOLUTION

Consider the MPLCC (1)–(5). A Linear Feasible Solution of the MPLCC is a solution (x, y, w)

satisfying all the linear constraints (2)–(4). The Linear Feasible Set K� of an MPLCC consists of
all the linear feasible solutions. An MPLCC is said to be Linear Feasible (Infeasible) if K� �= ∅
(K� = ∅).

As stated before, the complementarity constraint (5) is equivalent to n constraints xiwi = 0,

i = 1, . . . , n. A solution (x, y, w) of the MPLCC is said to be Complementary if these n
conditions hold, i.e., for each i = 1, . . . , n, at least one of the complementary variables xi or
wi is null. A Feasible Solution of the MPLCC is a linear feasible and complementary solution.

The Feasible Set K of an MPLCC consists of all the feasible solutions. An MPLCC is said to be
Feasible (Infeasible) if K �= ∅ (K = ∅). Due to the complementarity constraint (5), K is usually
a nonconvex set. The next example illustrates these definitions:

Minimize f (x1, x2) = x1 + 2y1 (39)

subject to w1 = 2 + x1 − y1 (40)

x1 ≥ 0, w1 ≥ 0, y1 ≥ 0 (41)

x1w1 = 0 (42)

x1 + y1 ≥ 1 (43)
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The linear feasible K� and feasible K sets are represented in Figure 1. The set K� is the dashed

region and K is the union of the segment [1, 2] in the y1–axis with the part of the straight line
y1 = 2 + x1 (w1 = 0) on the right of the y1–axis. It immediately follows that the MPLCC is
feasible (and linear feasible) and its feasible set K is nonconvex. Furthermore there is a unique

global minimum for this MPLCC, which is the point (x1 = 0, y1 = 1).

y1 + x1 = 1

x1

y1 = 2 + x1

K

K�

1

2

y1

Figure 1 – Linear feasible and feasible sets of the example.

Since the feasible set of an MPLCC is nonconvex, then finding a feasible solution should be in
general a difficult task. In fact, such an objective consists of solving a General Linear Com-

plementarity Problem (GLCP). This problem has been investigated in [24, 54, 88] and is an
interesting extension of the well-known Linear Complementarity Problem (LCP). The LCP has
been intensively studied in the past several years [19, 67] and consists of finding a solution of the

following system
w = q + Mx, x ≥ 0, w ≥ 0, xT w = 0 (44)

As discussed in [19, 67] the class of the matrix M plays an important role on the complexity of
the LCP. The classes of Positive Definite (PD) and Positive Semi-Definite (PSD) matrices are

probably the most important ones and are defined as follows:

(i) M ∈ PD ⇐⇒ xT Mx > 0 for all x ∈ Rn − {0};
(ii) M ∈ PSD ⇐⇒ xT Mx ≥ 0 for all x ∈ Rn .

Efficient local algorithms have been proposed for the solution of the LCP for matrices of these
and related classes [19, 67]. These classes are also very relevant for the MPLCC, as the following
theorem holds [54]:

Theorem 1. Consider the MPLCC (1)–(5) and let K� be its linear feasible set, E be the identity

matrix of order n and M be a PSD matrix. Then:
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(i) MPLCC is feasible if and only if it is linear feasible.

(ii) If M ∈ PD and Ky �= ∅, then MPLCC is feasible.

(iii) Any stationary point of

min
{

xT w : (x, y, w) ∈ K�

}
(45)

is a feasible solution of the MPLCC.

To illustrate this theorem, consider the MPLCC (39)–(42). Then E = [1] and M = [1] ∈ PD
and the hypotheses of theorem 1 hold. Now consider the MPLCC (39)–(43). By introducing the
slack variable y2 associated to x1 + y1 ≥ 1, we can write this MPLCC in the following standard

form:

Minimize x1 +2y1

subject to

[
1
0

]
w1 =

[
2

−1

]
+

[
1
1

]
x1 +

[
−1 0

1 −1

] [
y1

y2

]

w1 ≥ 0, x1 ≥ 0, y1 ≥ 0, y2 ≥ 0
x1w1 = 0

(46)

Now the hypotheses of Theorem 1 do not hold and a stationary point of the quadratic program

(45) may not lead to a feasible solution of the MPLCC.

Theorem 1 provides a first procedure for finding a feasible solution of the MPLCC. In fact, under
the hypotheses of theorem 1, the computation of a stationary point of the quadratic program (45)
either shows that the MPLCC is infeasible or it gives a feasible solution of the MPLCC. This

stationary point can be computed by an efficient local nonlinear programming algorithm. An
active set method [36, 69] such as the one implemented in MINOS [65], an interior-point method
[24, 88] or a DC algorithm [58] should be recommended for this task.

It is important to add at this stage that for most of the MPLCCs associated with applications

and formulations of optimization problems discussed in Section 2, finding a feasible solution
is not a difficult task. For instance, bilevel programs with no linear constraints (11) in the first
level and bilinear programs lead to MPLCCs satisfying the hypotheses of theorem 1. On the

other hand, the KKT conditions of a stationary point of the QP (26) give feasible solutions of the
corresponding MPLCC (28)–(30). Finally, consider the problem introduced in [73] of computing
a positive eigenvalue λ for the EiCP (31). Hence the vector y introduced in (32) is nonnegative

and
xT w = 0 ⇐⇒ yT w = 0

Therefore the MPLCC (34)–(38) is equivalent to

Minimize (y − λx)T (y − λx)

subject to w = By − Ax
y ≥ 0, w ≥ 0
eT x = 1, x ≥ 0

yT w = 0

(47)
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Hence the MPLCC (47) satisfies the hypotheses of theorem 1 (note that y plays the role of x and

conversely).

For a general MPLCC, global optimization techniques are required for computing a feasible
solution or showing that the MPLCC is infeasible. Since the constraint set of the QP (45) is K�

and the objective function of this program is nonnegative on K�, then the following result holds:

Theorem 2.

(i) MPLCC (1)–(5) is linear infeasible if and only if QP (45) is infeasible.

(ii) (x , y, w) is a feasible solution of MPLCC (1)–(5) if and only if (x , y, w) is a global mini-
mum of QP (45) and xT w = 0.

It follows from this theorem that the MPLCC (1)–(5) is infeasible if and only if the QP (45) is
infeasible or it has a positive global optimal value. An enumerative algorithm has been proposed
for finding a global minimum of the QP (45). This method [3, 45, 52] exploits the binary tree
displayed in Figure 2, that is constructed based on the definition of complementary variables xi

and wi .

1

2 3

4 5

· · · ··· · · · ···
· · · ···

xi1
= 0 wi1

= 0

xi2
= 0 wi2

= 0

Figure 2 – Branching on enumerative method.

In each node of the tree the algorithm computes a stationary point of the following Quadratic
Program (QP):

Minimize xT w

subject to Ew = q + Mx + N y
xi = 0, i ∈ Fx

w j = 0, j ∈ Fw

x ≥ 0, w ≥ 0
y ∈ Ky,

(48)

where Fx and Fw are the sets defined by the fixed x− and w− variables in the path of the tree
from the root to this node. Now, either the program (48) is infeasible and the node is pruned, or
a stationary point (x, y, w) can be computed by a local optimization algorithm. Two cases may
occur:

(i) If xT w = 0, then (x , y, w) is a feasible solution of the MPLCC (1)–(5).

(ii) xT w > 0 and two nodes have to be generated for a pair of complementary variables
(xi , wi) such that xi > 0 and wi > 0.
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A good implementation of an enumerative algorithm requires some heuristic rules for selecting

the pair of complementary variables and for choosing a node from the set of open nodes of
the tree to be investigated next. These issues are discussed in [45]. Furthermore, the stationary
points of the quadratic programs of the form (48) can be computed by using an active-set method

[36, 69], such as MINOS [65].

The enumerative algorithm looks for a stationary point of the complementarity gap function
having a zero objective function value in order to find a feasible solution of an MPLCC. This
stopping criterion of the null value of the objective function of QP (45) alleviates very much the

search in the tree and makes the algorithm to terminate in general with a small number of nodes.
If an MPLCC is linear feasible and infeasible, then an extensive search needs to be typically
performed in the tree before the algorithm terminates. Hence the algorithm is particularly suitable

for finding a feasible solution but is almost impractical when dealing with an infeasible MPLCC
that is linear feasible.

Absolute value programming (AVP) has also been shown to be an interesting approach for solv-
ing the LCP [62] and can be useful for computing a feasible solution of the MPLCC (1)–(5) or

showing that this problem is infeasible. Let E = In be the identity matrix of order n. As dis-
cussed in [62], by scaling the square matrix M if necessary, In − M is nonsingular and the GLCP
(2)–(5) can be reduced to the following system:

(In + M)(In − M)−1z − |z| = −((In + M)(In − M)−1 + In)(q + N y) (49)

x = (In − M)−1(z + q + N y) (50)

w = q + Mx + N y (51)

y ∈ Ky (52)

where |z| = [|zi |] ∈ R
n . It immediately follows from (50) and (51) that w = x − z in any

solution of the system. According to [62], let s ∈ Rn and t ∈ Rn be two additional vectors and
consider the following concave program (CP):

Minimize ρeT (t − |z|) + eT s = f (s, t, x, y, z)
subject to (In − M)x = z + q + N y

−s ≤ 2x − z − t ≤ s

−t ≤ z ≤ t
y ∈ Ky

(53)

where ρ is a positive real number (may be equal to one) and e ∈ Rn is a vector of ones. Since

the objective function is nonnegative on the feasible set of CP (53), the following result holds:

Theorem 3. (s, t, x, y, z) is a global minimum of CP (53) with f (s, t, x, y, z) = 0 if and only if
(x , y, w) is a feasible solution of MPLCC (1)–(5), where w = x − z.

It is interesting to note that the CP (53) is a DC program and can be solved by a DC algorithm
[59]. Alternatively, a sequential linear programming (SLP) algorithm introduced in [62] can be
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applied to find a stationary point of CP (53). The main drawback of this approach is that there is

no theoretical guarantee that these methods find a global minimum of the CP. However, numerical
experiments reported in [62] indicate that the SLP algorithm is, in general, able to terminate
successfully with a solution of the LCP. Hence, this approach appears to be interesting to exploit

in the future for computing a feasible solution of an MPLCC.

Finding a feasible solution of the MPLCC (1)–(5) or showing that this problem is infeasible can
also be done by using 0 −1 Linear Integer Programming. Consider the GLCP (2)–(5) and let Ky

be written in the standard form:

Ky = {
y ∈ Rm : Ay = b, y ≥ 0

}
(54)

where A ∈ Rt×m and b ∈ Rt . If there is y ∈ Ky such that N y = −q , then (x = 0, y, w = 0) is a
feasible solution of the MPLCC (1)–(5). Otherwise, consider the following 0 − 1 Linear Integer

Program:
LIP: Maximize α

subject to Eγ = qα + Mu + Nv

Av = bα

0 ≤ α ≤ 1
0 ≤ γ ≤ z
0 ≤ u ≤ e − z

zi ∈ {0, 1}, i = 1, . . . , n

(55)

where e ∈ Rn is a vector of ones. Then the following result holds [41]:

Theorem 4.

(i) LIP (55) is feasible.

(ii) If {
y ∈ Ky : N y = −q

} = ∅
then LIP (55) has a feasible solution (γ , α, u, v, z) with α > 0 if and only if

w = γ

α
, x = u

α
, y = v

α

is a feasible solution of MPLCC (1)–(5).

It follows from this theorem that MPLCC is infeasible if and only if LIP (55) has a global maxi-

mum (γ , α, u, v, z) with α = 0. Note that this theorem confirms that finding a feasible solution
for an MPLCC is easier than showing that such a problem is infeasible. In fact, computing a
feasible solution of LIP (55) with α > 0 is sufficient to find a feasible solution of MPLCC, while

a certificate of infeasibility requires the computation of a global maximum of LIP (55). The ex-
istence of very efficient codes for 0 − 1 Linear Integer Programming makes this approach quite
useful in practice.
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4 FINDING A STATIONARY POINT

If (x , y, w) is a global minimum of MPLCC (1)–(5) then [41] it satisfies

∇ f (x , y, w)T d ≥ 0 (56)

for all feasible directions d = [dx , d y, dw], where ∇ f (z) represents the gradient of f at z =
(x , y, w) and dx ∈ Rn , d y ∈ Rm and dw ∈ Rn contain the components of d associated to x , y
and w respectively. In this case the vector z is said to be a Stationary Point of f on the feasible

set K of the MPLCC (1)–(5).

As in nonlinear programming [14, 69], it is important to derive KKT-type characterizations of
stationary points for the design of local algorithms that deal with the MPLCC. To introduce these
conditions, consider the MPLCC (1)–(5) and let Ky be the polyhedron given by (54). For any

feasible solution z = (x, y, w) of the MPLCC (1)–(5), the following sets may be considered

Ix = {i : xi = 0} (57)

Iw = {i : wi = 0} (58)

It follows from the definition of a complementary solution that Ix ∪ Iw = {1, . . . , n}. A feasible
solution z = (x, y, w) is said to be Nondegenerate (Degenerate) if and only if Ix ∩ Iw = ∅ (Ix ∩
Iw �= ∅). Hence, for any degenerate feasible solution there exists at least a pair of complementary
variables (xi , wi) such that xi = 0 and wi = 0. On the other hand, any nondegenerate solution
z = (x , y, w) satisfies

∀ i ∈ Ix : wi > 0, ∀ i ∈ Iw : xi > 0 (59)

If z = (x , y, w) is a nondegenerate stationary point of f on K , then it is a stationary point of the
following nonlinear program with linear constraints

NLP: Minimize f (x, y) (60)

subject to Ew − Mx − N y = q (61)

Ay = b (62)

y ≥ 0 (63)

xi ≥ 0, i ∈ Iw (64)

xi = 0, i ∈ Ix (65)

wi = 0, i ∈ Iw (66)

wi ≥ 0, i ∈ Ix (67)

Due to (59), the constraints (64) and (67) are inactive at z = (x, y, w) and z satisfies the follow-

ing KKT conditions [69]

0 = E T λ + α (68)

∇x f (x, y) = −MT λ + β (69)
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∇y f (x , y) = −N T λ + AT ν + γ (70)

αiwi = 0, i = 1, . . . , n (71)

βi x i = 0, i = 1, . . . , n (72)

γ ≥ 0, γ T y = 0 (73)

where ∇x f (x , y) and ∇y f (x , y) are vectors with the components of the gradient of f at z cor-

responding to the x− and y− variables respectively, and λ ∈ Rp, α ∈ Rn , β ∈ R
n , γ ∈ Rm ,

ν ∈ Rt are the Lagrange multipliers associated to the constraints (61), (66)–(67), (64)–(65), (63)
and (62) respectively.

Consider now the case of a degenerate stationary point z = (x , y, w). A first characterization of

such a point can be obtained from the definition of nonlinear programs NLP(L) for all the subsets
L of Ix ∩ Iw. This leads to the concept of B-Stationary Point (BSP) [30] as a vector z = (x , y, w)

that is a stationary point of all the NLP(L) of the form

NLP(L) : Minimize f (x, y)

subject to (61) − (63)

xi = 0, wi ≥ 0, i ∈ (Ix ∩ Iw) ∪ L (74)

wi = 0, xi ≥ 0, i ∈ (Iw ∩ I x) ∪ L (75)

where L ⊆ Ix ∩ Iw and

Iw = {1, . . . , n} − Iw

I x = {1, . . . , n} − Ix

L = (Ix ∩ Iw) − L .

Hence any global minimum of MPLCC (1)–(5) is a B-stationary point of f on K [30, 76, 83].
However, a certificate for B-stationarity may be quite demanding for a degenerate feasible solu-
tion when its associated set Ix ∩ Iw has a relatively large number of elements [30]. The concepts

of Strongly Stationary Point (SSP) and M-Stationary Point (MSP) have been introduced in the
literature [30, 38, 76, 83] and are more accessible for embedding with an algorithm. Their defi-
nitions are as follows:

(i) z = (x , y, w) is a SSP of f on K if it satisfies the conditions (68)–(73) with

αi ≥ 0, βi ≥ 0, for all i ∈ Ix ∩ Iw (76)

(ii) z = (x , y, w) is an MSP of f on K if it satisfies the conditions (68)–(73) with

(αi > 0 and βi > 0) or αiβi = 0, for all i ∈ Ix ∩ Iw (77)

Note that any global minimum of MPLCC (1)–(5) is an MSP of f on K [38], but it may be not
a SSP [83]. Furthermore any SSP is an MSP [38] and a BSP [30]. Finally, for a nondegenerate
feasible solution z = (x , y, w), SSP, MSP and BSP are the same thing, as Ix ∩ Iw = ∅.
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JOAQUIM JÚDICE 573

The algebraic characterization of SSP and MSP and the ability to compute an initial feasible

solution of an MPLCC enable the design of a complementarity active-set (CASET) algorithm
for solving the MPLCC. The algorithm was initially proposed in [78] and subsequently im-
proved, implemented and tested in [53]. Feasibility (i.e., linear feasibility and complementarity)

are maintained throughout the process and the algorithm terminates with a SSP or an MSP under
reasonable hypotheses.

Consider now the case where the objective function is linear, i.e.,

f (x, y) = cT x + dT y (78)

for given vectors c ∈ Rn and d ∈ Rm . This leads to the so-called Linear Programming Problem
with Linear Complementarity Constraints (LPLCC). As in linear programming, if an LPLCC has

a global optimal solution then there is at least a global minimum that is a Basic Feasible Solution
(BFS) of the linear feasible set K�. It is then possible to design a modified version of the well-
known simplex method which solves the LPLCC by only using BFS of its linear feasible set K�.

This algorithm is known as the Basis Restricted Simplex (BRS) method [20, 71] and its steps are
presented below.

BRS METHOD

• Let z = (x , y, w) be a BFS,

L x = {i : x i = 0 and xi nonbasic} ⊆ Ix

Lw = {i : wi = 0 and wi nonbasic} ⊆ Iw

L y = {i : yi = 0 and yi nonbasic}
and α, β, γ be the dual variables associated to w ≥ 0, x ≥ 0, y ≥ 0, respectively.

• If αi ≥ 0, βi ≥ 0, for all i ∈ L x ∩ Lw and γi ≥ 0, for all i ∈ L y , then z = (x , y, w) is an
MSP and terminate.

• Let r be an index of a nonbasic variable zr that does not satisfy the previous conditions.

• Change the nonbasic variable zr with a basic variable zt updating the sets of basic and

nonbasic variables, as in simplex method, to obtain a new BFS z̃.

• Repeat with z̃ instead of z.

It follows from the description of the steps of the BRS method that the algorithm is a simple ex-
tension of the simplex method which uses a modified rule for the choice of the nonbasic variables

for the purpose of maintaining complementarity (i.e. feasibility of LPLCC) during the whole
procedure. The algorithm is guaranteed to terminate with an MSP provided an usual anti-cycle
rule [66] is used. Note that the CASET algorithm reduces to this BRS method when BFS of the

linear feasible set are used in each iteration of the former method. Finally an extension of the
BRS method has been recently proposed in [30], which guarantees in theory the termination in a
BSP.
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The CASET and BRS algorithms were implemented using MINOS environment [53, 65]. Com-

putational experience reported in [53] shows that the CASET and BRS algorithms are quite
efficient in practice for computing a SSP or an MSP. Computing a BSP for an LPLCC is usually
more demanding but the extension of the BRS algorithm for dealing with this case also performs

very well and seems to outperform other alternative local techniques, such as penalty, regular-
ization, smoothing, nonsmooth, interior-point and SQP approaches that have been designed for
mathematical programs with linear and nonlinear complementarity constraints and can also be

applied to the MPLCC [30].

5 FINDING A GLOBAL MINIMUM

A feasible solution z = (x , y, w) ∈ K of the MPLCC (1)–(5) is a Global Minimum of f on K if

f (x , y, w) ≤ f (x, y, w), for all (x, y, w) ∈ K (79)

There are some special instances of the MPLCC where such objective is relatively easy to be
fulfilled. Next, we discuss two of these cases.

Consider an MPLCC whose feasible set is defined by the constraints (2)–(5) with E = In the
identity matrix of order n and M a PSD matrix, i.e., MPLCC satisfies the hypotheses of Theo-

rem 1. Furthermore assume that the objective function only depends on the y− variables, i.e.

f (x, y) = g(y) (80)

and is convex on the polyhedron Ky. Consider the Relaxed Convex Program

RCP: Minimize g(y)

subject to w = q + Mx + N y
x ≥ 0, w ≥ 0

y ∈ Ky

(81)

Hence:

(i) If RCP is infeasible, then MPLCC (1)–(5) is linear infeasible.

(ii) Let z = (x, y, w) be an optimal solution of RCP (81). If xT w = 0, then z is a global
minimum of MPLCC (1)–(5) with f given by (80). Otherwise [19] the LCP

w = (q + N y) + Mx, x ≥ 0, w ≥ 0, xT w = 0 (82)

has a solution (x̃ , w̃) and (x̃ , y, w̃) is a global minimum of MPLCC (1)–(5) with f given
by (80).

(iii) If RCP (81) is unbounded, then the MPLCC is unbounded.
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Note that, if M ∈ PD, then RCP (81) can be replaced by the simpler convex program

Minimize
{

g(y) : y ∈ Ky
}

(83)

as LCP (82) has always a solution for each y [19].

Another interesting case that often appears in applications of the MPLCC is when the global
optimal value is known, i.e., f (x , y, w) = � in (79) where � is a real number. Hence the MPLCC
has a global minimum if and only if the program

NLP: Minimize
{

f (x, y) − � + xT w : (x, y, w) ∈ K�

}
(84)

has a global minimum with an optimal value equal to zero. Finding a global minimum of (84) can
be done efficiently by an enumerative method similar to the one described in Section 3 for finding
a feasible solution of an MPLCC. An interesting example of such an approach is the enumera-

tive algorithm discussed in [27] for computing a solution of the Eigenvalue Complementarity
Problem (31).

Apart from these and other similar instances, finding a global minimum of an MPLCC is a quite
difficult task. In the next section we discuss the most important approaches for this goal, namely

a sequential algorithm, branch-and-bound methods and 0 − 1 Integer Programming.

6 A SEQUENTIAL ALGORITHM FOR LPLCC

This algorithm was introduced in [47] for solving the Linear Bilevel Programming Problem by
exploiting its reduction to an LPLCC and was subsequently expanded to deal with a general

LPLCC [46, 48]. In the initial iteration of the sequential algorithm, a stationary point (SSP, MSP
or BSP) is computed by using the techniques discussed in Sections 3 and 4. In each iteration, a
stationary point is at hand and the algorithm proceeds as follows:

(i) In a Feasibility Phase, a feasible solution z̃ = (x̃ , ỹ, w̃) of the LPLCC with an objective
function given by (78) is computed such that

cT x̃ + dT ỹ < cT x + dT y (85)

or a certificate is given showing that such a solution does not exist.

(ii) If z̃ is computed in the Feasibility Phase, then an Optimization Phase is applied where a
new stationary point is computed by CASET or BRS methods with z̃ as the initial point.

The algorithm requires an update rule for guaranteeing that the condition (85) holds. In practice,
this is done by using a real number λ defined by

λ = cT x + dT y − γ |cT x + dT y| (86)

where γ is a given positive and small real number. The Feasibility Phase searches a feasible
solution z = (x , y, w) of the LPLCC defined by the constraints (2)–(5) together with the cut

cT x + dT y ≤ λ (87)
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The problem of finding a feasible solution of this augmented LPLCC is NP-hard [54]. Hence

the enumerative method or the 0 − 1 integer programming approach discussed in Section 3
should be used to either compute such a feasible solution or show that the augmented LPLCC is
infeasible. In this latter case the last stationary point z = (x , y, w) computed by the sequential

algorithm is an ε-approximate global minimum of the LPLCC, with

ε = γ |cT x + dT y| (88)

As discussed in Section 3, giving a certificate of optimality (i.e., showing that the augmented
LPLCC is infeasible) is much more difficult than finding a feasible solution of LPLCC satisfying

(87). Computational experience with this sequential algorithm shows that the algorithm is in gen-
eral efficient to compute an ε-global minimum that is usually a global minimum of the LPLCC.
Furthermore, in general the algorithm faces difficulties in providing a certificate of optimality.

The design of a more efficient procedure to provide a certificate of global optimality has been the

subject of intense research. An interesting approach is to design an underestimating optimization
problem whose global minimum is relatively easy to compute and yields a positive lower bound
for the program defined by (45) and (87). Then the augmented LPLCC is declared infeasible.

In particular SDP [16] and RLT [82] techniques may be useful in this extent. Despite promising
results in some cases, much research has to be done to assure the general efficiency of these
techniques in practice.

7 BRANCH-AND-BOUND ALGORITHMS

Consider again the MPLCC (1)–(5). Similar to the enumerative method, a branch-and-bound
algorithm for the LPLCC exploits a binary tree of the form presented in Figure 2, which is
constructed based on the dichotomy that xi = 0 or wi = 0 for the pairs of complementary

variables. The simplest technique of this type has been introduced by Bard and Moore in [12]
for finding a global minimum of a linear bilevel program by exploiting its LPLCC formulation.
This method can be applied to an MPLCC with a convex function without any modification. For

each node k of the binary tree generated by the branch-and-bound algorithm, a lower bound for
the optimal value of the MPLCC is computed by solving the so-called relaxed convex program
RCP(k) that is obtained from the MPLCC (1)–(5) by omitting the complementarity constraint

(5) and adding some equalities zi = 0, where zi is an xi− or wi− variable that was fixed along
the branches on the path from the root to the current node k. For instance, the RCP(5) associated
with node 5 of the binary tree of Figure 2 takes the following form:

Minimize f (x, y)

subject to Ew − Mx − N y = q

x ≥ 0, w ≥ 0
y ∈ Ky

xi1 = 0, wi2 = 0

(89)
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If the optimal solution (x , y, w) obtained for this RCP(k) satisfies the complementarity condition

(5), then f (x , y) is an upper-bound for the global optimal value of the MPLCC. The tree is then
pruned at the node k and a new open node is investigated. If (x , y, w) is not a complementary
solution, then there must exist at least an index i such that xi > 0 and wi > 0. A branching is

then performed from the current node k and two nodes (k+1) and (k+2) are generated such that
respectively restrict xi = 0 and wi = 0. Termination of the algorithm occurs when there is no
open node whose lower bound is smaller than the best upper bound computed by the algorithm.

In this case the solution (x̃ , ỹ, w̃) associated with this upper bound is a global minimum for the
MPLCC.

The branch-and-bound algorithm should include good heuristics rules for choosing the open
node and the pair of complementary variables for branching. The algorithm terminates in a finite

number of iterations (nodes) with a global minimum or with a certificate that the MPLCC is either
infeasible or unbounded. Computational experience reported in [2, 6, 23, 46, 47, 48] indicates
that the algorithm is not very efficient for dealing with MPLCC, as the number of nodes tends to

greatly increase with the number n of pairs of complementary variables.

During the past several years, a number of methodologies have been recommended by many
authors to improve the Bard and Moore branch-and-bound algorithm when the objective func-
tion is linear (LPLCC) [2, 6, 16, 23, 37, 87]. These improvements have been concerned with

the quality of the lower bounds and upper bounds and the branching procedure. Cutting planes
[2, 6, 64, 87], RLT [82] and SDP [16, 17] have been used for computing better lower bounds
than the ones given by the relaxed linear programs. On the other hand, some ideas of combina-
torial optimization have been employed to design more efficient branching strategies that lead

to better upper bounds for the branch-and-bound method [2, 6, 23, 37]. Computational experi-
ments reported in [2, 6, 16, 23, 37, 87] clearly indicate that these techniques portend significant
improvements for the efficiency of branch-and-bound methods in general.

Another improvement of the Bard and Moore algorithm has been proposed in [52] for an LPLCC
satisfying the hypotheses of Theorem 1. Contrary to the Bard and Moore method, this so-called
complementarity branch-and-bound (CBB) algorithm uses feasible solutions of the LPLCC
throughout the process. Therefore, the CASET or BRS algorithms can be applied at each node

with a significant improvement on the quality of the upper bounds. Disjunctive cuts are recom-
mended to find lower bounds for the LPLCC. Computational experience reported in [52] indi-
cates that the CBB algorithm outperforms Bard and Moore method in general, and appears to

be a promising approach for the computation of a global minimum for the LPLCC and even for
QPLCC and MPLCC with convex objective functions.

8 INTEGER PROGRAMMING

Consider the MPLCC (1)–(5), where f is convex on Ky given by (54). If K is the feasible set of
the MPLCC, let θ be a positive real number such that

max
(x,y,w)∈K

xi ≤ θ, max
(x,y,w)∈K

wi ≤ θ (90)
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If this number θ exists, then each complementarity constraint xiwi = 0 can be replaced by

xi ≤ θzi

wi ≤ θ(1 − zi)

zi ∈ {0, 1}
(91)

By applying this transformation to each one of the constraints xiwi = 0, i = 1, . . . , n, the
MPLCC reduces to the following mixed-integer program (MIP)

Minimize f (x, y)

subject to Ew = q + Mx + N y

Ay = b
x ≤ θz
w ≤ θ(e − z)

x ≥ 0, w ≥ 0, y ≥ 0
zi ∈ {0, 1}, i = 1, . . . , n

(92)

Therefore a global minimum for the MPLCC can be found by computing a global minimum to

this MIP [85, 86]. It is important to add that such an equivalence also provides a certificate of
infeasibility and unboundedness for the MPLCC from those pertaining to the MIP. This approach
has been used by some authors for finding a global minimum of the LPLCC [35]. Note that the
integer programming approach for solving the MPLCC is much more interesting in this last

case, as MIP is a linear integer program and there exist very efficient codes for dealing with this
optimization problem.

An obvious drawback of this approach lies on the need of using a large positive constant θ that
may not even exist. In practice, a large value for θ is chosen (usually θ = 1000), but this can

prevent the computation of a global minimum of the MPLCC. An idea for avoiding the use of
a large constant has been introduced for the LPLCC in [39] and has subsequently been applied
to the special case of the LPLCC associated with nonconvex quadratic programs [40]. The MIP

(92) is considered as a multiparametric linear program LP(θ, z) on the parameters θ and z. Given
any values of θ and z, the dual DLP(θ, z) of this linear program does not depend on the values of
θ and z. By recognizing this fact and using a minimax integer programming formulation of MIP

(92), a Benders decomposition technique has been designed in [39] that uses extreme points and
unbounded rays of the dual constraint set. This algorithm has been shown to converge in a finite
number of iterations into a global minimum of the LPLCC or to give a certificate of infeasibility

or unboundedness [40, 39]. Simple (or disjunctive) cuts and a recovery procedure for obtaining a
feasible solution of the LPLCC from a linear feasible solution are recommended in a preprocess-
ing phase to enhance the efficiency of the algorithm [39]. Computational experiments reported

in [40, 39] indicate that the method is in general efficient in practice. Furthermore, the prepro-
cessing phase has a very important impact on the computational performance of the algorithm.
The possible use of the sequential algorithm discussed in Section 6 in the preprocessing phase
seems to be an interesting topic for future research.
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9 CONCLUSIONS

In this paper, we have reviewed a number of applications and formulations of important opti-
mization problems as mathematical programs with linear complementarity constraints (MPLCC).

Algorithms for finding a feasible solution for the MPLCC were discussed. Active-set, interior-
point and DC methods and absolute value programming seem to work well for special cases,
but not in general. An enumerative method that incorporates a local quadratic solver can effi-

ciently find such a solution in general. Linear Integer Programming can also be useful for such
a goal. A complementarity active set method is recommended for finding a strongly stationary,
an M-stationary or a B-stationary point for the MPLCC. The algorithm reduces to a Basis Re-

stricted Simplex method for the LPLCC if only Basic Feasible Solutions of the Linear Feasible
Set are employed. Computing a global minimum of an LPLCC is a much more difficult task that
can be done by using a sequential algorithm or by branch-and-bound methods applied directly

to the LPLCC or to an equivalent linear integer program. These two latter approaches can also
be useful for dealing with QPLCC and MPLCC with convex objective functions. Despite the
promising numerical performance of these techniques for computing a feasible solution, a sta-
tionary point, and a global minimum for the MPLCC, much research has to be done on finding

better methodologies and more efficient certificates of optimality.

Another important topic for future research is the development of more efficient techniques for
the solution of some of the optimization problems that can be formulated as MPLCCs. The
Eigenvalue Complementarity Problem and Optimization with Cardinality Constraints are two

important examples of these problems that have received much attention recently and should
continue to be investigated in the near future.
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[75] QUEIROZ M, JÚDICE J & HUMES C. 2003. The symmetric eigenvalue complementarity problem.

Mathematics of Computation, 73: 1849–1863.

[76] RALPH D. 2007. Nonlinear programming advances in mathematical programming with complemen-

tarity constraints. Royal Society.

[77] SHERALI HD & ADAMS WP. 1999. A Reformulation-Linearization Technique for Solving Discrete

and Continuous Nonconvex Problems. Kluwer Academic Press, Dordrecht.

[78] SCHOLTES S. 1999. Active set methods for inverse complementarity problems. Technical report,
Judge Institute of Management Research.

Pesquisa Operacional, Vol. 34(3), 2014



“main” — 2014/10/24 — 13:48 — page 584 — #26

584 OPTIMIZATION WITH LINEAR COMPLEMENTARITY CONSTRAINTS

[79] SCHOLTES S. 2000. Convergence properties of a regularization scheme for mathematical programs

with complementarity constraints. SIAM Journal on Optimization, 11: 918–936.

[80] SEEGER A. 1999. Eigenvalue analysis of equilibrium processes defined by linear complementarity

conditions. Linear Algebra and its Applications, 292: 1–14.

[81] SEEGER A. 2011. Quadratic eigenvalue problems under conic constraints. SIAM Journal of Mathe-

matical Analysis and Applications, 32: 700–721.

[82] SHERALI HD, KRISHNAMURTHY RS & AL-KHAYYAL FA. 1998. Enumeration approach for linear

complementarity problems based on a reformulation-linearization technique. Journal of Optimization

Theory and Applications, 99: 481–507.

[83] SCHEEL H & SCHOLTES S. 2000. Mathematical programs with complementarity constraints: Sta-
tionarity, optimality and sensitivity. Mathematics of Operations Research, 25: 1–22.

[84] SEEGER A & TORKI M. 2003. On eigenvalues induced by a cone constraint. Linear Algebra and its

Applications, 372: 181–206.

[85] SAHINIDIS NV & TAWARLANI M. 2005. BARON 7.2.5: Global Optimization of Mixed-Integer

Nonlinear Programs. User’s Manual.

[86] TAWARLANI M & SAHINIDIS NV. 2004. Global optimization of mixed-integer nonlinear programs:
a theoretical and computational study. Mathematical Programming, 99: 563–591.

[87] VANDEMBUSSCHE D & NEMHAUSER G. 2005. A branch-and-cut algorithm for nonconvexquadratic

programs with box constraints. Mathematical Programming, Series A, 102: 559–575.

[88] YE Y. 1993. A fully polynomial-time approximation algorithm for computing a stationary point of

the general linear complementarity problem. Mathematics of Operations Research, 18: 334–345.

[89] YE JJ. 1999. Optimality conditions for optimization problems with complementarity constraints.
SIAM Journal on Optimization, 9: 374–387.

[90] YE JJ. 2005. Necessary and sufficient optimality conditions for mathematical programs with equilib-

rium constraints. Journal of Mathematical Analysis and Applications, 307: 350–369.

Pesquisa Operacional, Vol. 34(3), 2014


