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The subventricular zone (SVZ) contains neural stem cells (NSCs) that generate new
neurons throughout life. Many brain diseases stimulate NSCs proliferation, neuronal
differentiation and homing of these newborns cells into damaged regions. However,
complete cell replacement has never been fully achieved. Hence, the identification of
proneurogenic factors crucial for stem cell-based therapies will have an impact in brain
repair. Histamine, a neurotransmitter and immune mediator, has been recently described
to modulate proliferation and commitment of NSCs. Histamine levels are increased in
the brain parenchyma and at the cerebrospinal fluid (CSF) upon inflammation and brain
injury, thus being able to modulate neurogenesis. Herein, we add new data showing that
in vivo administration of histamine in the lateral ventricles has a potent proneurogenic
effect, increasing the production of new neuroblasts in the SVZ that ultimately reach the
olfactory bulb (OB). This report emphasizes the multidimensional effects of histamine in
the modulation of NSCs dynamics and sheds light into the promising therapeutic role of
histamine for brain regenerative medicine.
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INTRODUCTION
Brain diseases represent a very demanding worldwide health
challenge. Nevertheless, no effective cure exists for the major-
ity of these disorders. The discovery of NSCs in restricted
regions of the adult brain redefined it as a plastic organ.
Thus, the search for new drug candidates that may enhance
stem cells properties and a full knowledge of NSCs biol-
ogy are crucial to fulfil the actual healthcare and scientific
demands.

NSCs reside in two niches of the adult brain: the SVZ lin-
ing the lateral ventricles and the subgranular zone (SGZ) in
the dentate gyrus (DG) of the hippocampus. Newly born neu-
rons generated in the SGZ migrate short distances toward the
granular cell layer, whereas SVZ-derived neuroblasts migrate
long distances through the rostral migratory stream (RMS)
toward the OB (Eiriz et al., 2011). Interestingly, upon brain
injury, some neuroblasts can leave the SVZ/RMS axis to migrate
toward damaged areas and differentiate into the specific neu-
ronal/glial phenotype of the injured region. Therefore, a great
effort has been taken on the design of stem cells-based strate-
gies to promote brain repair (Ruan et al., 2014). For that
purpose it is crucial to identify new factors that can enhance
NSCs capabilities to produce new neurons. Herein, we com-
ment on recent data supporting the role of histamine as a
robust proneurogenic factor in vivo and we also discuss the prof-
its vs. challenges for its usage in stem cell-based brain repair
therapies.

GENERAL ROLE OF HISTAMINE IN THE CENTRAL NERVOUS SYSTEM
Histamine is an amine that has been classically associated with
peripheral inflammatory reactions (Dale and Laidlaw, 1910).
However, new evidences also highlight its function as a neuro-
modulator and neuroinflammatory agent. Four receptors medi-
ate the effects driven by histamine: two postsynaptic (H1R,
H2R), one presynaptic (H3R), and a forth receptor mainly
present in the immune system (H4R). All receptors belong to
the family of rhodopsin-like class A receptors coupled to gua-
nine nucleotide-binding proteins (Brown et al., 2001). Neurons,
microglia and mast cells are the three cellular reservoirs of his-
tamine in the adult brain (Brown et al., 2001; Katoh et al.,
2001). Histaminergic neurons, present in the tuberomammillary
nucleus, project numerous ramifications throughout the entire
adult brain, allowing histamine to be involved in a broad range
of physiological functions, such as sleep-wake control, emotions,
learning and memory (Panula and Nuutinen, 2013). Histamine
is found at nanomolar levels in the healthy brain (Soya et al.,
2008; Croyal et al., 2011; Bourgogne et al., 2012). However, several
brain pathological conditions may be associated with an increased
degranulation of mast cells in the choroid plexus, leading to a mas-
sive release of histamine in the CSF and the consequent increase of
the blood brain barrier (BBB) permeability. Histaminergic neu-
ronal activity (analyzed by positron emission tomography) was
also found to be increased in the lesioned brain parenchyma
(Vizuete et al., 2000; Motoki et al., 2005; Yanai and Tashiro, 2007;
Kallweit et al., 2013). Importantly, histamine has been described
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to be involved in several brain pathologies such as seizures
(Bhowmik et al., 2012), stroke (Fan et al., 2011), multiple sclero-
sis (Ballerini et al., 2013; Krementsov et al., 2013), Parkinson and
Alzheimer’s disease (Shan et al., 2013). Remarkably, histamine
may have a dual role and exert either neuroprotective or neuro-
toxic effects depending on the animal disease model, the recep-
tor/signaling pathway activated and the diversity of histamine and
histamine agonists/antagonists administration protocols. A clin-
ically relevant therapeutic platform should take in account all of
these distinct criteria, to be successful. Regarding neurogenesis,
and although a recent review (Panula et al., 2014) highlights the
role of histamine as a stem cell modulator during brain devel-
opment, very few research studies on the role of histamine as a
proneurogenic factor within the postnatal and adult brain were
reported.

HISTAMINE EFFECTS ON NEURAL STEM CELL CULTURES
It is currently clear that histamine is involved in several brain
functions but just recently its role as a modulator of stem cell biol-
ogy has been revealed. We and others have shown that histamine
transiently increases intracellular free calcium levels ([Ca2+]i)
in SVZ stem/progenitor cells, embryonic stem cells and carci-
noma cells (Tran et al., 2004; Agasse et al., 2008), suggesting
the presence of functional histamine receptors in undifferenti-
ated stem/progenitor cells. Particularly, we found that SVZ cells
express the three types of histamine receptors, H1R, H2R, and
H3R, being H1R the one responsible for the selective increase of
[Ca2+]i in immature cells (Agasse et al., 2008).

Recently, it was shown that histamine has a strong proneu-
rogenic effect in neonatal SVZ (Bernardino et al., 2012) and in
embryonic cortical cell cultures (Molina-Hernández and Velasco,
2008; Rodríguez-Martínez et al., 2012; Molina-Hernández et al.,
2013) via H1R activation. Histamine may trigger increased tran-
scription of FGFR1 and increased cell proliferation culminating
in the differentiation of FOXP2 neuronal cells both in vitro and in
vivo (Rodríguez-Martínez et al., 2012; Molina-Hernández et al.,
2013) (Figure S1A). We also showed that histamine induces an
increase of the expression of Mash1, Dlx2 and Ngn1 proneu-
rogenic genes and ultimately favors the GABAergic neuronal
phenotype. Thus, histamine may be used as an efficient inductor
of neuronal differentiation in vitro prior NSCs transplantation.
In fact, SVZ cells pretreated with poly(lactic-co-glycolic) acid
(PLGA) microparticles that release histamine succeeded to sur-
vive, integrate and differentiate into newly born doublecortin
(DCX)-neurons when transplanted into organotypic hippocam-
pal slice cultures and into the DG or striatum of adult mice
(Bernardino et al., 2012). Altogether, these data showed that his-
tamine may be a key player in the priming of NSCs toward the
neuronal phenotype.

ROLE OF HISTAMINE IN THE ADULT SVZ NEUROGENIC NICHE IN VIVO
Despite the absence of in vivo studies disclosing the role of his-
tamine in the regulation of the SVZ neurogenic niche, in vitro
studies have already shown that SVZ NSCs express functional
H1R receptors that may be involved in neuronal commitment
(Agasse et al., 2008; Bernardino et al., 2012). The relevance of
investigating the effects of histamine on SVZ neurogenesis in vivo

relies on the fact that both inflammation or brain injury may
elicit choroid plexus mast cells degranulation, increasing the lev-
els of histamine in the CSF and brain parenchyma leading to
increased BBB permeability (Anichtchik et al., 2000; Yoshitake
et al., 2003; Soya et al., 2008; Kanbayashi et al., 2009; Kallweit
et al., 2013). The presence of histamine in the CSF that baths the
SVZ neurogenic niche may affect SVZ GFAP-positive stem cells
(type B cells) and its progeny in vivo by the direct contact of their
cilia with the lumen of the lateral ventricles or by the interaction
of stem/progenitor cells with the monolayer of ependymal cells
(paracrine effect). Interestingly, it was observed that histamine is
part of the adult mouse choroid plexus transcriptome signature
(Marques et al., 2011). Taking into account these considerations,
herein we disclose the role of chronic histamine administration in
the adult SVZ neurogenic niche in vivo. For that, sustained intra-
ventricular infusion of histamine was performed by using mini
osmotic pumps that delivered histamine at the CSF for 21 days.
All experiments were performed in accordance with the European
Community guidelines for the care and use of laboratory animals
(86/609/EEC; 2010/63/EU). Weight matched wild-type C57BL/6
8-10 week old male mice were infused at the right lateral ventricle
(Anterior-posterior: −0.5 mm, Medial-lateral: 0.7 mm, Dorso-
ventral: 3.0 mm) with osmotic mini pumps (Alzet 1004, Charles
River, flow rate: 0.10 µl/h) containing histamine (0.8 mg/Kg,
Sigma-Aldrich) dissolved in artificial cerebrospinal fluid (aCSF:
150 mM NaCl, 3 mM KCl, 1.3 mM CaCl2, 0.8 mM MgCl2, 0.8 mM
Na2HPO4, and 0.2 mM NaH2PO4) or aCSF alone, as vehicle
for 21 days. To ensure stable releasing rates, pumps were incu-
bated before implantation in sterile 0.9% saline at 37◦C for 48 h.
During the first 3 days after surgery, 50 mg/Kg BrdU was admin-
istered intraperitoneally twice a day (Figure 1A). After brain
fixation in 4% PFA and cryopreservation in 30% sucrose, 40 µm
coronal slices were then cut and stained against Ki67, BrdU,
DCX, and NeuN (1:1000 Rabbit polyclonal anti-Ki67—Abcam;
1:1000 Rat monoclonal anti-BrdU—Serotec; 1:1000 Rabbit poly-
clonal anti-DCX—BD Pharmingen; 1:4000 Mouse monoclonal
anti-NeuN—Millipore). Sections were then rinsed and incubated
with the appropriate AlexaFluor-conjugated secondary antibod-
ies, stained for Hoechst-33342 and mounted. Confocal digital
images were obtained on a LSM 510 Meta; Carl Zeiss micro-
scope. The Software used was Axiovision, release 4.6 (Carl Zeiss)
and Image J. Cell counting was performed in confocal images
from five slices at 240 µm intervals, both at the SVZ and OB.
Only counts performed in the contralateral hemispheres (left) are
shown in order to exclude any possible bias induced by inflam-
matory reactions and/or lesion due to the cannulation at the
ipsilateral hemisphere (right).

We found that the intracerebroventricular (i.c.v.) infusion of
histamine in the lateral ventricles for 21 days induced a trend
increase in the number of BrdU retaining cells (BrdU+DCX−) at
the SVZ (Control: 25.8 ± 2.7; Histamine: 34.4 ± 4.7; statistically
not-significant). This increase is statistically significant if we con-
sider the BrdU+DCX+ double positive cells (Control: 4.6 ± 0.4;
Histamine: 10.1 ± 1.9; p < 0.05; Figure S1B and Figures 1B,C).
Accordingly, the number of DCX+ cells increased from 67.6 ± 3.9
in control to 129.1 ± 7.9 in histamine treated mice (p < 0.001,
Figure 1C). No significant differences were found in counts of
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FIGURE 1 | Intracerebroventricular infusion of histamine triggers

neuronal commitment in the SVZ. (A) Design of the 3 weeks
experiment, consisting in 3-day BrdU treatment (twice daily with 12 h
interval) starting at the day after surgery. Animals were sacrificed 3
weeks after surgery. (B) Representative fluorescent confocal digital
images of BrdU (green; upper panel), Ki67 (green; lower panel) and DCX
(red) positive cells observed in the SVZ of control and histamine treated
animals in vivo, 21 days after pump installation. Scale bar = 20 µm.

Arrows highlight double BrdU+DCX+ (upper panel) or Ki67+DCX+ (lower
panel) positive cells. Hoechst staining (blue) labels cell nuclei. (C) From
left to right: bargraphs represent the total DCX+ positive cells, total
BrdU+DCX+ double positive cells and total Ki67+DCX+ double positive
cells in both control and histamine in vivo treated animals, 21 days after
pump installation. Ctrl: Control; Hist: Histamine. Data are expressed as
mean ± SEM (n = 5–7 mice; ∗p < 0.05; ∗∗∗p < 0.001). Statistical analysis
was performed using Student’s unpaired t-test.

BrdU+DCX− and BrdU+DCX+ cells between both ipsilateral
and contralateral hemispheres (regarding the same experimen-
tal condition) and, most importantly, both hemispheres showed
the same relative differences between control and histamine

treated animals (data not shown), excluding a putative influ-
ence of inflammation and/or tissue damage in the ipsilateral
hemisphere. These data confirms previous in vitro data identify-
ing histamine as a relevant inductor of neuronal commitment.
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Curiously, some BrdU+DCX+ cells were retained at the SVZ 21
days upon histamine i.c.v. administration. We may hypothesize
that this BrdU+DCX+ cell population at SVZ is derived from
BrdU retaining cells, such as quiescent NSCs (B cells) that pro-
duce intermediate highly proliferating progenitor cells (C cells).
Thus, further studies are also needed to disclose whether this
increase of neuroblasts (A cells, BrdU+DCX+ cells) production
induced by histamine is due to the activation of B cells which con-
tact with CSF through their apical cilia, or by an increase in the
proliferation of C or/and A cells.

Since histamine induced an increase in the number of
BrdU+DCX+ cells at the SVZ, we then performed the Ki67
labeling to disclose if histamine had an effect in neuroblast pro-
liferation. Ki67 is a cell marker associated with G1, G2, S and M
phases of cell cycle. At the SVZ, Ki67 labelling showed a trend
to increase upon histamine treatment (Control: 86.2 ± 24.6;
Histamine: 133.0 ± 19.5; statistically not-significant) that was
significant when looking to Ki67+DCX+ cells only (Control:
29.4 ± 6.8; Histamine: 49.3 ± 5.0; p < 0.05; Figure S1B, and
Figures 1B,C). Interestingly, histamine increased the number of
BrdU+DCX+ and Ki67+DCX+ cells but did not significantly
affected the population of BrdU+DCX− or Ki67+DCX− cells.
Altogether, these data indicate that histamine does not induce
an overall increase of cell proliferation in the SVZ, but instead
may trigger neuronal commitment (as previously showed by
us—Bernardino et al., 2012) and/or induce neuroblast prolifer-
ation as previously reported (Rodríguez-Martínez et al., 2012;
Molina-Hernández et al., 2013).

We also found that SVZ NSCs labelled with BrdU have differ-
entiated into migrating neuroblasts that reached the OB in con-
trol and more densely in histamine treated animals (Figure S1B,
and Figure 2). An increased number of BrdU+DCX+ cells was
found in both the granular cell layer (GCL) and glomerular lay-
ers (GL) of the OB (Control GCL: 60.0 ± 3.5; Histamine GCL:
117.7 ± 7.4, p < 0.001; Control GL: 2.2 ± 0.2; Histamine GL:
5.5 ± 1.0, p < 0.05; Figures 2A,C). A significant increase of the
DCX+ cells was also found in the GCL upon histamine infu-
sion (Control GCL: 583.3 ± 11.5; Histamine GCL: 798.4 ± 33.0,
p < 0.001; Control GL: 86.0 ± 7.1; Histamine GL: 117.3 ± 12.1;
Figure 2B). In accordance with the SVZ data, the total number of
BrdU+DCX− cells was not significantly different between con-
trol and histamine-treated animals in either OB layers (Control
GCL: 286.0 ± 29.0; Histamine GCL: 362.6 ± 34.0; Control GL
22.5 ± 5.4; Histamine GL: 33.4 ± 5.3; statistically not-significant).
Moreover, Ki67 labeling was almost inexistent at the OB (data not
shown). These data may suggest that histamine is not interfer-
ing with the overall OB cell proliferation, but, instead, it increases
the number of neuroblasts that reach the OB and, therefore, the
final population of newly-generated OB neurons (Figure S1B).
Additionally, some BrdU+ cells found at GL and GCL of control
and histamine-treated animals generated NeuN-mature neurons
(Figure 2D).

In fact, histamine is responsible for the priming of NSCs at
the SVZ toward the neuronal phenotype, which ultimately will
reach the OB. The SVZ-derived progenitor cells are committed
to the GCL and GL of the OB, where they differentiate mainly
into GABAergic (Bédard and Parent, 2004; De Marchis et al.,

FIGURE 2 | Olfactory bulb integration of newly differentiated

neuroblasts upon histamine long-term treatment. Bargraphs represent
the total BrdU+DCX+ cells (A) and total DCX+ positive cells (B) counted in
the granular cell layer (GCL) and in the glomerular layer (GL). Ctrl, Control;
Hist, Histamine. Data are expressed as mean ± SEM (n = 5–7 mice;
∗p < 0.05; ∗∗∗p < 0.001). Statistical analysis was performed using Student’s
unpaired t-test. Representative fluorescent confocal digital images of BrdU
(green) and DCX (red; C) or NeuN (red; D) positive cells observed in the
granule cell layer (GCL) and glomerular layer (GL) of control and histamine
treated animals in vivo, 21 days after pump installation. White arrows point
to double positive BrdU+DCX+ (C) or BrdU+NeuN+ (D) cells. Hoechst
staining (blue) labels cell nuclei. Scale bars = 30 µm.

2004) but also glutamatergic (Brill et al., 2009) and dopamin-
ergic interneurons (Saino-Saito et al., 2004). Although we do
not know the neuronal phenotypes generated by DCX+ neu-
roblasts found in the OB, we do know that, as expected, the
majority of them differentiate into SVZ-derived cells located at
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the GCL instead of the GL, a structure that mostly contains
GABAergic interneurons. Accordingly, we found that histamine
induces GABAergic neuronal differentiation in murine SVZ stem
cell cultures (Bernardino et al., 2012). Furthermore, the morphol-
ogy and disposition of DCX+ cells in the GCL and GL of the OB
suggest that they are indeed young granule and periglomerular
cells (Merkle et al., 2007).

Taken together, our data reveals that histamine is a crucial
modulator of neuronal differentiation at the SVZ-OB neurogenic
axis. However, we may anticipate some obstacles in using his-
tamine to boost intrinsic regenerative properties of endogenous
NSCs. Histamine was also shown to modulate the growth and
specification of several cancer types, including gliomas. Increased
activity of histidine decarboxylase (HDC), the enzyme involved
in histamine synthesis, was found at the surrounding extracellular
space of several cancer types, which is suggestive that it may be a
crucial factor involved in tumorigenesis. Experiments performed
in malignant cell lines and experimental tumors in vivo suggest
that histamine modulates diverse biological responses related to
tumor growth, such as proliferation, survival, and modulation of
inflammation and angiogenesis (Eiriz et al., 2014). We could pos-
tulate that histamine have the ability to deregulate NSCs dynamics
favouring proliferation and boosting the appearance of cancer
stem cells especially nearby the neurogenic niches. However, some
contradictory reports showed that histamine does not modulate
cancer cell proliferation and instead induce their differentiation.
Previously, we have shown that histamine does not support pro-
liferation of SVZ stem/progenitor cells in vitro (Bernardino et al.,
2012). Herein, we showed that the i.c.v. administration of his-
tamine does not induce a significant increase in the total number
of BrdU+DCX- or Ki67+DCX- cells at the SVZ, suggesting that,
at least after 21 days, histamine does not induce a cancer-like
profile of SVZ NSCs cells in vivo.

Another limiting factor responsible for the intrinsic diffi-
culties of endogenous brain repair therapies relies on exacer-
bated inflammatory reactions occurring upon brain lesion that
may create a hostile environment for the survival of neural
stem/progenitors and neuroblasts. Microglia cells are the main
cellular players involved in the innate immune response against
brain injury or infection. Microglia phenotypes vary among neu-
rogenic and non-neurogenic regions (Goings et al., 2006) and
it may modulate SVZ neurogenesis (Shigemoto-Mogami et al.,
2014). In this sense, we recently showed that histamine per se
stimulates microglia motility and interleukin-1 beta release via
H4R activation (Ferreira et al., 2012). But, on the other side,
in an inflammatory context, histamine inhibited LPS-stimulated
microglia activation via the same receptor. This dual role of his-
tamine mediating microglial inflammatory responses highlights
the need for further studies on the immunomodulatory effects of
histamine within neurogenic niches. Increased levels of histamine
found upon injury or inflammation can influence the over-
all cellular micro-environment, including mast cells, ependyma,
neurons and microglia, favouring (or not) the survival, prolif-
eration, and differentiation of new cells. This may depend on
histamine levels and its distinct actions on different cellular pop-
ulations present at SVZ-OB neurogenic niches vs. lesioned brain
regions.

Recently, Kallweit et al. (2013) have shown that histamine is
increased in the CSF of multiple sclerosis patients. In this line,
and although we do not show a clear lack of effect of histamine
in other neural cell types, such as oligodendrocytes or astrocytes,
we have previously shown that histamine did not change NG2 or
GFAP expression within the SVZ in vitro (Bernardino et al., 2012).
Still, more detailed analysis of the effects induced by histamine at
the neurogenic niche in vivo needs to be accomplished for further
therapeutically relevant conclusions.

Upon brain injury, normal cellular dynamics is disturbed
and NSCs are de-routed from their quiescent undifferentiated
state to an active proliferative state so that new NSCs differenti-
ate into neuroblasts that migrate to the damaged area (Kaneko
and Sawamoto, 2009; Grade et al., 2013). Brain repair thera-
pies involving the administration of proneurogenic factors (e.g.,
histamine) to boost endogenous mobilization of these neuronal
precursors is less aggressive than the transplantation of NSCs,
but requires a full control of the external booster in order to
achieve a fine-tune of the endogenous resources. Alternatively, the
transplantation of exogenous stem cells, or stem cell-based proge-
nies at various stages of maturation (e.g., neuroblasts), to replace
lost neurons, also raise several limitations, including the possible
death of transplanted cells, low number of cells typically avail-
able for therapy, inadequate cell differentiation, erroneous cell
integration into the host circuitry, immune rejection and variabil-
ity in the functional outcome of the transplanted cells. Therefore,
it is imperative to take in consideration these limitations (endoge-
nous sources vs. exogenous transplantation) to find new effective
platforms aiming the repair of damaged brain regions.

Neurogenesis occurring at the SVZ is well documented in
rodents, and has also been demonstrated in primates and
humans. However, both the cellular organization and the phys-
iologic mechanisms involved on NSCs biology are distinct among
these species. The SVZ NSCs found in the human brain younger
than 18 months of age actively produce neurons which fate is
the OB and the prefrontal cortex (Sanai et al., 2011). However,
despite several controversies, a recent report showed that during
adulthood human SVZ-derived NSCs lose the ability to migrate
toward the OB and, instead, are found in the striatum (Ernst
et al., 2014). Importantly, SVZ stem cells extracted from the adult
human brain retain the capacities to produce neurons in vitro,
suggesting that neurogenesis in the SVZ may be boosted under
proper stimulation. In fact, several reports showed an increase of
striatal neurogenesis in postmortem brains of Huntington disease
and stroke patients (Curtis et al., 2003; Macas et al., 2006; Martí-
Fàbregas et al., 2010). With our experimental protocol we showed
that histamine increased the generation of newly-born neurons
at the SVZ that ultimately migrate toward the OB. Thus, differ-
ences between human and mouse SVZ niches should be taken
in consideration before extrapolating the proneurogenic effect of
histamine found in mouse SVZ-OB axis to the potential appli-
cation in human brain repair strategies. Further studies should
disclose whether histamine may also boost neurogenesis under
a pathologic condition, such as ischemia, eventually inducing
the migration of SVZ-neuroblasts toward the lesioned striatum.
Thus, in spite of the potential bottlenecks in triggering an efficient
endogenous brain repair, we may asset that histamine efficiently
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prime NSCs toward the neuronal phenotype, a phenomenon that
may support its application in future brain regenerative medicine
therapies.
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Figure S1 | Integrative scheme of the effects driven by histamine in

stem/progenitor cells both in vitro and in vivo. (A) Histamine has been

reported to modulate both neuronal differentiation and cell proliferation in

diverse types of stem/progenitor cells cultures. Red cells: neurons; Yellow

cells: progenitor cells; Blue cell: stem cell. (B) Our in vivo results showed

that histamine increases the number of neuroblasts at the SVZ that reach

the OB.
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