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Erythroid hypoplasia (EH) is a rare complication associated with recombinant human erythropoietin (rHuEPO) therapies, due to
development of anti-rHuEPO antibodies; however, the underlying mechanisms remain poorly clarified. Our aim was to manage a
rat model of antibody-mediated EH induced by rHuEPO and study the impact on iron metabolism and erythropoiesis. Wistar
rats treated during 9 weeks with a high rHuEPO dose (200 IU) developed EH, as shown by anemia, reduced erythroblasts,
reticulocytopenia, and plasmatic anti-rHuEPO antibodies. Serum iron was increased and associated with mRNA overexpression
of hepatic hepcidin and other iron regulatory mediators and downregulation of matriptase-2; overexpression of divalent metal
transporter 1 and ferroportin was observed in duodenum and liver. Decreased EPO expression was observed in kidney and liver,
while EPO receptor was overexpressed in liver. Endogenous EPO levels were normal, suggesting that anti-rHuEPO antibodies
blunted EPO function. Our results suggest that anti-rHuEPO antibodies inhibit erythropoiesis causing anemia. This leads to a
serum iron increase, which seems to stimulate hepcidin expression despite no evidence of inflammation, thus suggesting iron as
the key modulator of hepcidin synthesis.These findings might contribute to improving new therapeutic strategies against rHuEPO
resistance and/or development of antibody-mediated EH in patients under rHuEPO therapy.

1. Introduction

Erythropoietin (EPO), a 30.4 kDa glycoprotein, is a key
hormone in the regulation of erythropoiesis, supporting
proliferation, survival, and terminal differentiation of ery-
throid progenitor cells in the bone marrow [1, 2]. These
effects are mediated through the interaction of EPO with its
specific transmembrane receptor—erythropoietin receptor
(EPOR) [3]. Acquired EPO deficiency has been associated
with chronic kidney disease (CKD) and with chronic inflam-
matory diseases. Treatment with recombinant human ery-
thropoietin (rHuEPO) achieves correction of these types of
anemia; however, 5–10% of CKD patients develop resistance
to the erythropoietic stimuli of rHuEPO. Several factors have

been proposed to play a role in the development of this
resistance, but the etiology of the impaired erythropoiesis,
leading to worsening of the anemia or even to pure red
cell aplasia (PRCA), is still unknown [4]. Casadevall et al.
(1996) reported the presence of anti-EPO antibodies in a
patient with transient PRCA, which functionally blocked
the interaction between EPO and EPOR, thus resulting in
impaired erythropoiesis [5]. Hara et al. (2008) also reported
that serum from a patient with PRCA inhibited EPO-
dependent cell proliferation, suggesting that the anemia was
mediated by anti-EPO antibodies [6]. In several other cases,
antibodies have been described in PRCA patients’ sera that
were selectively cytotoxic for marrow erythroid cells or were
directed against EPO [7–9].
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The current therapeutic use of rHuEPO to correct anemia
in CKD patients has been associated with some cases of
PRCA, due to the development of cross-reactive anti-EPO
antibodies [10, 11]. Although this complication is very rare,
the mechanisms underlying the break in immune tolerance
to rHuEPO remain poorly clarified. The development of
PRCA should be suspected in patients who have been under
rHuEPO therapy for more than 3 months and develop a
sudden severe unexplained fall in hemoglobin levels and
reticulocytopenia and a marked decrease in bone marrow
erythroblasts, despite continuing with rHuEPO treatment
[12]. The diagnosis is confirmed by low serum EPO levels
and detection of anti-EPO antibodies [13]. The production
of anti-EPO antibodies and the inhibition of EPO-dependent
erythroid cells are important mechanisms that might lead
to erythroid hypoplasia (EH)/PRCA. The reduction in func-
tional EPO affects the proliferative state of bone marrow
erythroid cells, which will trigger several changes in iron
metabolism, such as in serum iron, transferrin, and ferritin
levels, among others [14–16].

Considering the scarce data in literature about how,
facing a PRCA condition mediated by anti-EPO antibodies,
the depression of marrow erythroid activity affects iron
metabolism, our goal was to assess in male Wistar rats the
effects of this condition on iron metabolism (iron absorption
and iron traffic and storage) as well as on erythropoiesis.
For that purpose, we performed hematological and biochem-
ical studies to evaluate the erythropoietic and iron status
and measured the expression of several mRNA-encoding
erythropoiesis and iron metabolism regulating proteins on
duodenum, liver, and kidney tissues.

2. Material and Methods

2.1. Animals and Experimental Protocol. Male Wistar rats
(Charles River Lab. Inc., Barcelona, Spain), weighing 200–
250 g, weremaintained in an air-conditioned room, subjected
to 12 h dark/light cycles, and given standard laboratory rat
diet (IPM-R20, Letica, Barcelona, Spain)without iron supple-
mentation and free access to tap water. Animal experiments
were conducted according to the European Communities
Council Directives on Animal Care. These procedures were
in accordance with the Association for Pharmacology and
Experimental Therapeutics and were approved by the Insti-
tutional Ethics Committee of the Faculty of Medicine from
the University of Coimbra, approval ID: FMUC/04/13. The
rats were divided into 3 groups (8 rats each): control: treated
with saline solution; 50 IU rHuEPO: a therapeutic dose of
50 IU/Kg bodyweight (bw)/week of epoetin beta (Recormon-
Roche Pharmaceuticals) treatment; 200 IU rHuEPO: treated
with 200 IU/Kg bw/week of rHuEPO, a high dose, usually
used on rHuEPO resistant patients. All the animals have
completed the 9-week protocol (Figure 1).

2.2. Sample Collection and Preparation

2.2.1. Blood. At the beginning of the experiments (𝑇
0
) and
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Figure 1: Experimental protocol.

dose, the rats were subjected to intraperitoneal anesthesia
with a 2mg/kg bwof a 2 : 1 (v : v) 50mg/mLketamine (Ketalar,
Parke-Davis, Lab. Pfizer Lda, Seixal, Portugal) solution in
2.5% chlorpromazine (Largactil, Rhône-Poulenc Rorer, Lab.
Vitória, Amadora, Portugal). Blood samples were immedi-
ately collected by venipuncture, from the jugular vein, into
vacutainer tubes without anticoagulant (to obtain serum)
and with EDTA (to obtain whole blood and plasma) for
hematological and biochemical studies; 3mL blood samples
were collected at 𝑇

0
, 𝑇
1
, and 𝑇

2
to minimize interference

with erythropoiesis mechanism; at the end of protocol (𝑇
3
),

a 10mL sample was collected in order to perform all the
biochemical and hematological assays.

2.2.2. Tissues. At the end of the protocol, blood was col-
lected and, afterwards, the rats were sacrificed by cervical
dislocation; duodenum, liver, and kidneys were immediately
removed, placed in ice-cold Krebs-Henseleit buffer, and
carefully cleaned. A bone marrow aspirate from the femur
was also performed.

2.3. Biochemical and Hematological Assays. Serum creati-
nine and urea concentrations were used as renal function
indexes through automatic validatedmethods and equipment
(Hitachi 717 analyser). Red blood cell (RBC), hematocrit,
and hemoglobin (Hb) concentration were assessed in whole
blood EDTA by using an automatic Coulter Counter (Beck-
man Coulter Inc., CA, USA); reticulocyte (RET) count
was performed by microscopic counting on blood smears
after vital staining with New Methylene Blue (Reticulocyte
Stain, Sigma-Aldrich, St. Louis, MO, USA). Serum levels
of erythropoietin were evaluated by rat specific ELISA kit
(MyBioSource, USA). Serum iron concentration was deter-
mined using a colorimetric method (Iron, Randox Labo-
ratories Ltd., UK), whereas serum ferritin and transferrin
were measured by immunoturbidimetry (Laboratories Ltd.,
UK). Quantification of total bilirubin was performed by a
colorimetric test (diazotized sulfanilic acid reaction, Roche
Diagnostics); circulating levels of glucose and uric acid were
determined by routine automated technology (ABX Diag-
nostics). Serum levels of interleukin-6 (IL-6), interferon-𝛾
(IFN-𝛾), transforming growth factor (TGF-𝛽1), and vascular
endothelial growth factor (VEGF) were measured by rat-
specific Quantikine ELISA kits from R&D Systems (Min-
neapolis, USA). High-sensitive C-reactive protein (hsCRP)



BioMed Research International 3

was determined by using a rat-specific ELISA kit from Alpha
Diagnostics International (San Antonio, USA).

2.4. Detection of Anti-EPO Antibodies. The detection of anti-
EPO antibodies was carried out by ELISA, according to Urra
et al., 1997, using rHuEPO (Recormon, Roche Pharmaceuti-
cals) as antigen and, as secondary antibody, goat anti-rat IgG
conjugated with horseradish peroxidase (Sigma; 100 ng/mL
for 1 h, at room temperature) [17]. The substrate tetramethyl-
benzidine (TMB) (Sigma) was added and the reaction was
stopped by the addition of sulphuric acid 1.25mol/L. The
optical density at 450 nm (OD450) was determined with an
automatic plate reader.

2.5. Gene Expression Analysis. In order to isolate total RNA,
0.2 g of liver, duodenum, and kidney samples, from each rat,
was immersed in RNA later (Ambion, Austin, USA) upon
collection and stored at 4∘C, for 24 h; afterwards, samples
were frozen at −80∘C. Subsequently, tissue samples weighing
50 ± 10mg were homogenized in a total volume of 1mL
TRI Reagent using a homogenizer, and total RNA was iso-
lated according to manufacturer instructions (Sigma, Sintra,
Portugal). To ensure inactivation of contaminating RNAses,
metal objects and glassware were cleaned with detergent,
immersed in RNAse-free water (0.2% diethyl pyrocarbonate)
for 2 h, and finally heated at 120∘C for 1 h. RNA integrity (RIN,
RNA Integrity Number) was analyzed using 6000 Nano kit,
inAgilent 2100 bioanalyzer (Agilent Technologies,Walbronn,
Germany), and 2100 expert software, followingmanufacturer
instructions. The yield from isolation was from 0.5 to 1.5 𝜇g;
RIN values were 7.8–9.0 and purity (A260/A280) was 1.8–2.0.
The concentrations of the RNA preparations were confirmed
with NanoDrop1000 (ThermoScientific, Wilmington, DE,
USA). Possible contaminating remnants of genomic DNA
were eliminated by treating these preparations with deoxyri-
bonuclease I (amplification grade) prior to RT-qPCR ampli-
fication. Reverse transcription and relative quantification of
gene expression were performed as previously described [18].
Real-time qPCR reactions were performed for the following
genes: EPO, EPOR, transferrin receptor 2 (TfR2), hepcidin
(Hamp), ferroportin (SLC40A1), Hemojuvelin (HJV), trans-
ferrin (TF), hemochromatosis (Hfe), divalent metal trans-
porter 1 (DMT1), transferrin receptor 1 (TfR1), matriptase-
2 (TMPRSS6), and bone morphogenic protein 6 (BMP6),
which were normalized in relation to the expression of beta-
actin (Actb) and 18S ribosomal subunit (18S), as well as to
the mean of the control group. Primer sequences are listed in
Table 1. Results were analyzed with SDS 2.1 software (Applied
Biosystems, Foster City, CA, USA) and relative quantification
was calculated using the 2−ΔΔCt method [19]. In liver tissue, we
studied the EPO, EPOR,TfR2,Hamp, SLC40A1,HJV,TF,Hfe,
BMP6, and TMPRSS6 gene expression; in duodenum tissue
the gene expressions ofDMT1 and SLC40A1were studied, and
in the kidney we evaluated the expression of EPO gene.

2.6. Data Analysis. For statistical analysis, we used the
Statistical Package for Social Sciences (SPSS), version 22.0.
Results are presented as mean ± standard deviation. Multiple

Table 1: List of primer sequences (F: forward; R: reverse).

Gene Primer sequences

EPO F: 5-AGGGTCACGAAGCCATGAAG-3

R: 5-GAT TTC GGC TGT TGC CAG TG-3

EPOR F: 5-GCG ACT TGG ACC CTC TCA TC-3

R: 5-AGT TAC CCT TGT GGG TGG TG-3

Hamp F: 5-GAA GGC AAG ATG GCA CTA AGC-3

R: 5-CAG AGC CGT AGT CTG TCT CG-3

TfR2 F: 5-CAA GCT TCG CCC AGA AGG TA-3

R: 5-CGT GTA AGG GTC CCC AGT TC-3

SLC40A1 F: 5-CAG GCT TAG GGT CTA CTG CG-3

R: 5-CCG AAA GAC CCC AAA GGA CA-3

HJV F: 5-GCC TAC TTC CAA TCC TGC GT-3

R: 5-GGT CAA GAA GAC TCG GGC AT-3

TF F: 5-GGC ATC AGA CTC CAG CAT CA-3

R: 5-GCA GGC CCA TAG GGA TGT T-3

Hfe F: 5-CTG GAT CAG CCT CTC ACT GC-3

R: 5-GTC ACC CAT GGT TCC TCC TG-3

DMT1 F: 5-CAA CTC TAC CCT GGC TGT GG-3

R: 5-GTC ATG GTG GAG CTC TGT CC-3

TfR1 F: 5-GCT CGT GGA GAC TAC TTC CG-3

R: 5-GCC CCA GAA GAT GTG TCG G-3

TMPRSS6 F: 5-CCG AAT ATG AGG TGG ACC CG-3

R: 5-GGT TCA CGT AGC TGT AGC GG-3

BMP6 F: 5-GCT GCC AAC TAT TGT GAC GG-3

R: 5-GGT TTG GGG ACG TAC TCG G-3

18S F: 5-CCA CTA AAG GGC ATC CTG GG-3

R: 5-CAT TGA GAG CAA TGC CAG CC-3

Actb F: 5-GAG ATT ACT GCC CTG GCT CC-3

R: 5-CGG ACT CAT CGT ACT CCT GC-3

comparisons between groups were performed by one-way
ANOVA supplemented with Tukey’s HSD post hoc test.
For single comparisons, we used the Mann-Whitney 𝑈 test.
Significance was accepted for a 𝑃minor than 0.05.

3. Results

The changes in RBC count, Hb concentration, hematocrit,
and the number of reticulocytes for the three groups are
presented in Figure 2. During the 9-week experimental
protocol, the 50 IU rHuEPO group, when compared to
the control group, showed similar values for RBC count,
Hb concentration, hematocrit, and reticulocytes, though a
significant increase in reticulocyte count was observed at 𝑇

2

and 𝑇
3
. Concerning the rats treated with 200 IU rHuEPO, in

the first 3 weeks, we found a significant increase (>30% the
basal value) in hemoglobin levels, RBC count, hematocrit,
and reticulocyte count, as compared to control and 50 IU
rHuEPO groups; after this period, the hemoglobin concen-
tration, hematocrit, and RBC count as well as the number of
reticulocytes decreased, reaching significantly lower values at
𝑇
2
, as compared to 𝑇

1
; this trend towards decreasing values

was maintained till the end of the experiment (9 weeks).
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Figure 2: Erythrocyte data and reticulocyte count during the follow-up period of 9 weeks under rHuEPO treatment. Results are expressed
as mean ± SD. a𝑃 < 0.05 versus control; b𝑃 < 0.05 versus 50 IU rHuEPO; c𝑃 < 0.001 versus control; d𝑃 < 0.001 versus 50 IU rHuEPO;
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At the end of the protocol, serum erythropoietin levels
were similar among the three groups (Table 2). No changes
were observed in glucose, creatinine, urea, uric acid, and
bilirubin levels for both rHuEPO groups along the entire
protocol, when compared to the control. The inflammatory
marker, IL-6, presented a significant decrease in the 200 IU
rHuEPO group when compared with the control and 50 IU
rHuEPO groups; hsCRP, IFN-𝛾, TGF-𝛽1, and VEGF showed
no significant differences between the three studied groups.
Concerning iron metabolism, we found that serum iron was
significantly higher for the 200 IU rHuEPO group, when
compared with the control and 50 IU rHuEPO groups; no
significant differences were found in ferritin and transferrin
serum levels between the three studied groups (Table 2).

Serum samples from all animals were also analyzed for
anti-rHuEPO antibodies at 𝑇

1
, 𝑇
2
, and 𝑇

3
; however, only

at 𝑇
3
we detected the presence of anti-rHuEPO antibodies

in circulation. These were detected in 5 rats under 50 IU
rHuEPO treatment, as well as in 5 rats treated with 200 IU
rHuEPO (62.5% for both groups); the antibody titer was
fourfold higher in the group under 200 IU rHuEPO; the latter
presented a titer of 1 : 16, and the group under the lower
rHuEPO dose presented a titer of 1 : 4. Within each rHuEPO
group, no other significant differences were found between
the rats with or without anti-rHuEPO antibodies.

Bone marrow examination of rats treated with 200 IU
rHuEPO showed a proportion of red-cell precursors signif-
icantly lower than those without rHuEPO treatment. The
myeloid : erythroid ratio was 2.1 : 1 for the control group,
while for the 200 IU rHuEPO group the ratio was 6.8 : 1; the
50 IU rHuEPO group presented a myeloid : erythroid ratio
similar to that found for the control (2.5 : 1).

Major changes were observed in the gene expression
of iron regulatory proteins and in erythropoietic regulatory
proteins in liver tissue (Figure 3), particularly in the 200 IU
rHuEPO group. Indeed, the 50 IU rHuEPO group showed
significant overexpression of HJV and SLC40A1 genes, as
compared to control, while the 200 IU rHuEPO group pre-
sented significant overexpression of Hamp, Hfe, HJV, EPOR,
SLC40A1, Tf, TfR2, and BMP6 genes, as compared to control
and 50 IU rHuEPO group. EPO gene was significantly down-
regulated in both groups, and TMPRSS6 gene expression
was significantly downregulated only in the 200 IU rHuEPO
group, as compared to the control and 50 IU rHuEPO
groups.

The evaluation of the expression of DMT1 and SLC40A1
genes in duodenum showed that only the 200 IU rHuEPO
group presented a significant upregulation for both genes
(Figure 4), as compared to the control. Furthermore, as
observed in liver, the expression of EPO in kidney tissue
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Table 2: Hematological and biochemical data at the end of protocol (9 weeks).

Parameters Groups
Control 50 IU rHuEPO 200 IU rHuEPO

EPO (mIU/mL) 1.87 ± 0.25 1.65 ± 0.23 1.80 ± 0.21
Iron (𝜇g/dL) 183.63 ± 41.58 188.63 ± 35.27 255.14 ± 112.28a,b

Ferritin (ng/dL) 165.13 ± 19.19 168.50 ± 42.95 162.57 ± 39.81
Transferrin (mg/mL) 97.75 ± 8.68 99.38 ± 6.59 96.14 ± 9.68
Glucose (mg/dL) 160.88 ± 29.04 174.62 ± 20.21 187.71 ± 37.43
Creatinine (mg/dL) 0.40 ± 0.05 0.37 ± 0.03 0.35 ± 0.06
Urea (mg/dL) 45.10 ± 1.92 45.05 ± 3.56 42.74 ± 5.10
Uric acid (mg/dL) 0.94 ± 0.46 0.70 ± 0.13 1.03 ± 0.52
Bilirubin (ng/mL) 0.043 ± 0.016 0.054 ± 0.013 0.064 ± 0.014
IL-6 (pg/mL) 138.10 ± 5.34 139.98 ± 6.12 130.16 ± 5.06a,b

hsCRP (𝜇g/mL) 229.31 ± 24.55 237.49 ± 28.92 249.46 ± 33.49
IFN-𝛾 (pg/mL) 24.44 ± 23.07 21.45 ± 6.80 20.82 ± 10.13
TGF-𝛽1 (ng/mL) 80.21 ± 4.99 80.03 ± 17.22 78.10 ± 5.55
VEGF (pg/mL) 5.36 ± 4.26 5.84 ± 3.85 6.04 ± 3.25
Results are expressed as mean ± SD. a𝑃 < 0.05 versus control; b𝑃 < 0.05 versus 50 IU rHuEPO. IL-6: interleukin-6; hsCRP: high-sensitive C-reactive protein;
IFN-𝛾: interferon-𝛾; TGF-𝛽: transforming growth factor beta1; VEGF: vascular endothelial growth factor.

presented a trend towards downregulation in both rHuEPO
groups, when compared to the control (Figure 5).

4. Discussion

Antibody-mediated EH/PRCA is a rare pathological com-
plication associated with the use of recombinant human
erythropoietins and development of anti-EPO antibodies.
However, the use of EPO biosimilars has increased the
number of cases in the last years [11, 20, 21]. Clinically, that
condition not only abrogates the effect of the rHuEPO, but
may also neutralize endogenous EPO, leading to severe EH
and transfusion-dependent anemia.

In this work we developed an animal model of antibody-
mediated EH, by long-term treatment with a high dose of
rHuEPO (200 IU/Kg bw/week during 9 weeks) inWistar rats.
In order to confirm that we were in fact in the presence of
an animal model of this hematological disorder, we assessed
the parameters typically used as diagnostic criteria for
EH/PRCA, which include normocytic anemia with sudden
onset, normocellular bone marrow with a selective reduc-
tion in red blood cell precursors beyond proerythroblasts,
reticulocytopenia, normal or slightly decreased leucocyte
counts, and increased serum iron [22]. We found that the
group treated with 200 IU/Kg bw/week of rHuEPO along 9
weeks fits all these criteria and the majority (65%) of the
rats presented detectable anti-rHuEPO antibodies, suggest-
ing that we achieved an antibody-mediated EH. The group
under 50 IU/Kg bw/week rHuEPO treatment presented only
slight changes, as compared to control; however most of
the rats (65%) presented anti-rHuEPO antibodies at a lower
titer (four times less), suggesting that a longer experimental
protocol could also lead to the changes associated with EH.

Indeed, Casadevall (2005) reported that the detection of
anti-erythropoietin antibodies in circulation is not immedi-
ately associated with PRCA [23]. Moreover, no significant

changes were observed in hsCRP, IL-6, and IFN-𝛾, for
both rHuEPO treated groups, showing that no inflamma-
tory changes could interfere with erythropoiesis and iron
metabolism.

Our data suggest that the development of EH was due
to the antibodies directed to rHuEPO that inhibited the
erythropoietic stimuli of both rHuEPO and endogenous
EPO. Indeed, in spite of the normal endogenous EPO levels
that were similar to those of the control group, the 200 IU
rHuEPO group developed anemia, suggesting that the anti-
rHuEPO antibodies also neutralized the action of endoge-
nous EPO. It has been described that the presence of rHuEPO
in circulation may increase severalfold the expression of
EPOR [4]. Actually, we found an overexpression of EPOR
in the liver of the 200 IU rHuEPO group. The decreased
EPO expression observed in kidney and liver tissues, for
both rHuEPO groups, seems to be in accordance with a
physiological response to the increased circulating levels of
rHuEPO, used in the treatment. However, we should not
exclude the hypothesis raised by Piron et al. (2001), that
this anemia could be due to an inappropriate erythropoietic
stimulation or to intrinsic failure of erythroid cells to respond
to that stimulus [24].

Anemia usually triggers erythropoiesis by increasing
EPO production through the hypoxia-inducible factor (HIF)
pathway, by mobilizing iron from the iron storage pool
and by increasing iron absorption, in order to face the
increased iron needs for erythropoiesis [25]. Considering
that, in antibody-mediated EH, the erythropoietic stimuli
fail, due to the inhibition of rHuEPO by anti-rHuEPO
antibodies, the serum iron should increase, as its absorption
andmobilizationwould be triggered by the anemic condition,
and hepcidin should be repressed to favour iron absorption
and mobilization. Actually, we found a significant increase
in serum iron in the 200 IU rHuEPO group. It is known
that increasing serum iron induces hepcidin synthesis by
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Figure 3: RelativemRNA expression of erythropoietin and iron regulatory proteins in the liver, at the end of the protocol (9 weeks). 18S rRNA
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a complex pathway. Indeed, hepcidin, encoded by the Hamp
gene, is believed to play a key regulatory role in iron
absorption. It controls plasma iron concentration and tissue
distribution of iron by inhibiting intestinal iron absorption,
iron recycling by macrophages, and iron mobilization from

stores [26]. Hepcidin acts by inhibiting cellular iron efflux in
hepatocytes, enterocytes, and macrophages, through binding
to ferroportin, inducing its degradation [27]. Hepatic Hamp
expression is regulated by a cohort of proteins, including
Hfe, TfR2,HJV, BMP6,matriptase-2, and transferrin [28–30].
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Figure 5: Relative mRNA expression of erythropoietin in the
kidney, at the end of the protocol (9 weeks). 18S rRNA was used as
reference gene. Results are expressed as mean ± SD.

Studies in both human and animal models indicate that Hfe
and TfR2 are mild inducers of hepcidin expression [28], as
compared to HJV and Tmprss6, which are robust modifiers
of hepcidin expression [31–33]. TfR2 has been hypothesized
to act as a sensor for iron levels in the body because of

its largely hepatocyte-specific expression and its ability to
mediate cellular iron transport [34]. AlthoughTfR2 is aminor
contributor to the uptake of transferrin-bound iron by the
liver, experiments with mice have shown that its major role
is to modulate the signalling pathway that controls Hamp
induction [34]. Hfe has also been implicated in the iron
signalling complex that modulates hepcidin transcription by
sensing changes in iron levels [35]. Increasing expression of
HJV enhances Hamp expression by interacting with BMPs
[36] possibly as a coreceptor. Matriptase-2 has been shown
to negatively regulate Hamp gene and, therefore, to decrease
hepcidin expression and promote iron uptake [37]. It is highly
expressed in the liver and participates in a transmembrane
signaling pathway triggered by iron deficiency and suppresses
hepcidin expression by cleaving membrane-bound hemoju-
velin (mHJV) to increase iron absorption [38].

In the liver, diferric transferrin competes with TfR for
binding to Hfe, and, when iron is increased, more Hfe is
available to bind to TfR2; this complex, TfR2-Hfe, promotes
HJV binding to BMP6, increasing hepcidin synthesis [34, 36].
Indeed, we found that increased serum iron in the 200 IU
rHuEPO group was associated with an overexpression of Tf,
TfR2, BMP6, Hfe, andHJV in the liver and, accordingly, with
an overexpression of Hamp. Moreover, a downregulation in
matriptase mRNA was observed in the liver that might fur-
ther contribute to the overexpression of hepcidin (Figure 6).
In accordance with the overexpression of hepcidin, a reduc-
tion in serum iron would be expected, due to the degradation
of ferroportin by hepcidin, instead of the increase that we
found. It is known that regulation of iron absorption is
mediated by signals reflecting oxygen tension in enterocytes,
intracellular iron levels, and systemic iron needs. Enterocyte
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Figure 6: Model proposed for erythropoiesis and iron metabolism in erythroid antibody-mediated hypoplasia. Anti-rHuEPO antibodies
inhibit both rHuEPO and endogenous EPO leading to anemia that is further aggravated by increased iron that favours hepcidin expression.

oxygen tension regulates iron absorption through its effects
on the transcription of HIFs and subsequent changes in
transcription ofDMT1 [39]. Iron exits the enterocyte through
the efflux transporter ferroportin 1 (FPN), the only member
of the SLC40 family of transporters and the first reported
protein thatmediates the exit of iron from cells [40]. Actually,

we found an overexpression of DMT1 and ferroportin in
the duodenum and liver from the 200 IU rHuEPO group, in
response to the anemic state. However, as the overexpression
of hepcidin compromises iron absorption and mobilization,
the observed increase in serum ironmight result mainly from
the decreased use of iron for the inhibited erythropoiesis.
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Hypoxia, EPO, as well as twisted gastrulation protein 1
(TWSG1) and growth differentiation factor 15 (GDF15) [41],
both produced by erythroblasts, is known to downregulate
hepcidin synthesis. Considering the inhibition of erythro-
poiesis through the anti-rHuEPO antibodies, the production
of TWSG1 and GDF15 might be reduced and, therefore, migh
be unable to downregulate hepcidin synthesis. We also found
that rHuEPO treatment did not alter renal function and
glucose levels and was not associated with an inflammatory
process, when compared to the control.

Considering the four functionally hepcidin regulatory
pathways described [42–45], erythropoiesis, iron status, oxy-
gen tension, and inflammation, we found that, in our model,
erythropoiesis was blunted leading to anemia, iron was
increased, and therewas no inflammation. It seems, therefore,
that the increased iron concentration is the key modulator
of hepcidin synthesis in this type of erythroid hypoplasia. In
fact, it has been recently reported that the reduction of serum
iron by iron chelation therapy promoted an improvement in
erythropoiesis in PRCA, though themechanismwhereby this
is achieved is still unclear [46].

In conclusion, our data suggest that, in the case
of erythroid antibody-mediated hypoplasia/PRCA induced
by a high rHuEPO dose (200 IU), as erythropoiesis is
blunted through anti-rHuEPO antibodies, iron concentra-
tion becomes the key modulator for hepcidin synthesis,
which will, probably, contribute to further aggravation of
the anemia. These findings might be important to improve
new therapeutic strategies against rHuEPO resistance and/or
development of antibody-mediated EH/PRCA in patients
under rHuEPO therapy.
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