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Abstract: We analyze the effect of the tensor force and other components of the
nucleon-nucleon interaction on the nuclear symmetry energy and its density dependence by
using the Hellmann–Feynman theorem. The analysis is performed within the microscopic
Brueckner–Hartree–Fock approach using the Argonne V18 potential plus a Urbana IX
three-nucleon force. Our results show that the potential part of the nuclear Hamiltonian,
and in particular its tensor component, gives the largest contribution to the symmetry energy.
The decomposition of the symmetry energy into a kinetic part and a potential energy part
provides physical insight on the correlated nature of the system, indicating that pure neutron
matter is less correlated than symmetric nuclear matter.
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1. Introduction

The density dependence of the nuclear symmetry energy, Esym(ρ), is a crucial ingredient of the
nuclear equation of state (EoS) needed to understand many important properties of isospin-rich nuclear
systems such as exotic nuclei, supernovae and neutron stars [1–4]. Experimental information on
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Esym(ρ) below, close to, and above nuclear saturation density, ρ0, can be obtained from a number
of nuclear structure and heavy ion collision observables such as giant and pigmy resonances in
heavy nuclei, n/p and t/3He ratios in nuclear reactions, isospin diffusion and isospin scaling in
nuclear multi-fragmentation, neutron-proton correlation functions at low relative momenta, isospin
diffusion/transport in heavy-ion collisions, neutron-proton differential flow, isobaric analog states, or
π−/π+ andK−/K+ ratios in heavy ion collisions. Accurate measurements of the neutron skin thickness
δR in heavy nuclei, via parity violating experiments or by means of antiprotonic atom data, can also help
to constrain Esym(ρ), since its derivative is strongly correlated with δR. Additional information on
Esym(ρ) can be extracted from the astrophysical observation of compact objects, which opens a window
into both the bulk and the microscopic properties of nuclear matter at extreme isospin asymmetries.
In particular, the characterization of the core-crust transition in neutron stars or the analysis of power-law
correlations, such as the relation between the radius of a neutron star and the equation of state, can put
stringent constraints on Esym(ρ).

Theoretically, Esym(ρ) has been determined using both phenomenological and microscopic
many-body approaches. Phenomenological approaches, either relativistic or non-relativistic, are based
on effective interactions that are frequently built to reproduce the properties of nuclei. Since many
of such interactions are built to describe systems close to the symmetric case, predictions at high
asymmetries should be, however, taken with care. Microscopic approaches start from realistic
nucleon-nucleon (NN) interactions that reproduce the scattering and bound state properties of the free
two-nucleon system and naturally include the isospin dependence. In-medium correlations are then built
using many-body techniques that microscopically account for isospin asymmetry effects such as the
difference in the Pauli blocking factors and self-energies of neutrons and protons in asymmetric matter.

Nevertheless, in spite of the experimental and theoretical efforts (see [1] and references therein)
carried out in the last years and the significant recent progress in studying the properties of
isospin-asymmetric nuclear systems, Esym(ρ) is still uncertain. Its value at saturation, S0, is more or less
well-established (∼30 MeV), and its behavior below saturation is now much better known [5]. However,
for densities above saturation, Esym(ρ) is not yet well constrained, and the predictions from different
models strongly diverge. Why Esym(ρ) is so uncertain is still an open question whose answer is related
to our limited knowledge of the nuclear force, and in particular to its spin and isospin dependence.

In this work we analyze the effect of the tensor force and other components of the NN interaction
on Esym(ρ), and discuss how the isospin dependence of the NN correlations affects it. This analysis
is carried out with the help of the Hellmann–Feynman theorem [6,7] within the framework of the
microscopic Brueckner–Hartree–Fock (BHF) approach [8,9]. This theorem allows the decomposition
of the total energy per particle of both pure neutron matter (PNM) and symmetric nuclear matter
(SNM), and therefore of the nuclear symmetry energy, in the kinetic and potential energy contributions.
We explore the different effects of NN correlations on SNM and PNM and discuss how the isospin
dependence of these correlations affects the density dependence of the nuclear symmetry energy. To such
end we compare the kinetic and potential energy contributions with those of the free Fermi gas and
the so-called correlation energy. We note that a similar analysis was already performed in [10,11].
Consequently, the present work can be considered a short review of these previous publications with
a focus in some different aspects that provide new physical insights into the problem. We would like
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to point out that a more exhaustive and complete study requires the use of other nuclear Hamiltonians
and many-body techniques. Particularly promising would be the use of chiral effective field theory
interactions and Renormalization Group methods (see, e.g., [12–15] for recent developments). However,
this is out of the scope of the present work. Such more exhaustive and complete study will eventually be
considered in the future.

This paper is organized in the following way. In Section 2 we briefly review the BHF approach of
asymmetric nuclear matter. Our results are presented in Section 3. Finally, a summary and our main
conclusions are given in Section 4.

2. The BHF Approach of Asymmetric Nuclear Matter

Assuming charge symmetry for nuclear forces, the energy per particle of asymmetric nuclear matter
can be well approximated as

E(ρ, β) ∼ ESNM(ρ) + Esym(ρ)β2 +O(4) (1)

where β = (ρn − ρp)/(ρn + ρp) is the isospin asymmetry parameter, ESNM(ρ) is the energy per particle
of SNM and

Esym(ρ) ∼ E(ρ, β = 1)− E(ρ, β = 0) ≡ EPNM(ρ)− ESNM(ρ) (2)

i.e., the difference of the energy per particle of PNM and SNM is a good approximation to the nuclear
symmetry energy.

It is common to characterize the density dependence of the energy per particle of SNM around the
saturation density ρ0 in terms of a few bulk parameters by expanding it in a Taylor series around ρ0,

ESNM(ρ) = E0 +
K0

2

(
ρ− ρ0

3ρ0

)2

+
Q0

6

(
ρ− ρ0

3ρ0

)3

+O(4) (3)

The coefficients denote, respectively, the energy per particle, the incompressibility coefficient and the
third derivative of the energy of SNM at saturation,

E0 = ESNM(ρ0) , K0 = 9ρ20
∂2ESNM(ρ)

∂ρ2

∣∣∣
ρ=ρ0
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∂3ESNM(ρ)

∂ρ3

∣∣∣
ρ=ρ0

(4)

Similarly, the behavior of the symmetry energy around saturation can also be characterized in terms
of a few bulk parameters,

Esym(ρ) = S0 + L
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+
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6
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where S0 is the value of the symmetry energy at saturation, and the quantities L, Ksym and Qsym are
related to its slope, curvature and third derivative, respectively at such density,

L = 3ρ0
∂Esym(ρ)

∂ρ

∣∣∣
ρ=ρ0

, Ksym = 9ρ20
∂2Esym(ρ)

∂ρ2

∣∣∣
ρ=ρ0

, Qsym = 27ρ30
∂3Esym(ρ)

∂ρ3

∣∣∣
ρ=ρ0

(6)

The BHF approach is the lowest order of the Brueckner–Bethe–Goldstone many-body theory [8,9].
In this theory, the ground-state energy of nuclear matter is evaluated in terms of the so-called hole-line
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expansion, where the perturbative diagrams are grouped according to the number of independent hole
lines. The expansion is derived by means of the in-medium two-body scattering G matrix, which
describes the effective interaction between two nucleons in the presence of a surrounding medium. It is
obtained by solving the well-known Bethe–Goldstone equation, schematically written as

Gτ1τ2;τ3τ4(ω) = Vτ1τ2;τ3τ4 +
∑
ij

Vτ1τ2;τiτj
Qτiτj

ω − εi − εj + iη
Gτiτj ;τ3τ4(ω) (7)

where τ = n, p indicates the isospin projection of the two nucleons in the initial, intermediate and final
states, V denotes the bare NN interaction, Qτiτj denotes the Pauli operator that allows only intermediate
states compatible with the Pauli principle, and ω, the so-called starting energy, corresponds to the sum
of non-relativistic energies of the interacting nucleons. The single-particle energy ετ of a nucleon with
momentum ~k is given by

ετ (~k) =
h̄2k2

2mτ

+Re[Uτ (~k)] (8)

where the single-particle potential Uτ (~k) represents the mean field “felt” by a nucleon due to its
interaction with the other nucleons of the medium. In the BHF approximationUτ (~k) is calculated through
the “on-shell energy” G-matrix and is given by

Uτ (~k) =
∑
τ ′

∑
|~k′|<kFτ ′

〈~k~k′|Gττ ′;ττ ′(ω = ετ (k) + ετ ′(k
′))|~k~k′〉A (9)

where the sum runs over all neutron and proton occupied states and where the matrix elements are
properly antisymmetrized. Once a self-consistent solution of Equations (7)–(9) is achieved, the energy
per particle can be calculated as

EBHF (ρ, β) =
1

A

∑
τ

∑
|~k|<kFτ

h̄2k2

2mτ

+
1

2A

∑
τ

∑
|~k|<kFτ

Re[Uτ (~k)] (10)

where the first term of the r.h.s. is simply the contribution of the free Fermi gas (FFG), and the second
is the so-called correlation energy, Ecorr. We note that EBHF represents only the sum of two-hole-line
diagrams and includes only the effect of two-body correlations through the G matrix. It has been shown
by Song et al. [16,17] that the contribution to the energy from three-hole-line diagrams (which accounts
for the effect of three-body correlations) is minimized when the so-called continuous prescription [18]
is adopted for the in-medium potential, which is a strong indication of the convergence of the hole-line
expansion. We adopt this prescription in our BHF calculations with the Argonne V18 (Av18) NN
potential [19] supplemented by the Urbana IX three-nucleon force (3NF) [20,21] which, for use in BHF
calculations, was reduced to a two-body density-dependent force by averaging over the coordinates of
the third nucleon in the medium [22–24]. The interested reader is referred to [25] for more details of our BHF
calculation and to [26–28] for an extensive analysis of the use and effects of 3NFs in PNM and SNM.

3. Results

The discussion of our results starts by showing in Table 1 the bulk parameters characterizing
the density dependence of the energy of SNM and the symmetry energy around saturation density.
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Results are shown for calculations with and without 3NF. Note that, in general, the effect of the 3NF
seems to be more important on the isoscalar properties than on the isovector ones. In fact, by looking
at the table it seems that the parameters L, Ksym and Qsym describing the density dependence of the symmetry
energy around saturation are little affected by the effect of 3NF. However, we should notice that the
value of the saturation density is different when 3NFs are considered (ρ0 = 0.187 fm−3) or not
(ρ0 = 0.240 fm−3) in the calculation. Therefore, one has to be careful when comparing the value
of these parameters in the two cases. To clarify the role of 3NF in the isovector properties of the
nuclear equation of state, we show in Figure 1 the energy per particle of PNM (panel a) and SNM
(panel b), as well as the symmetry energy (panel c) and its slope parameter (panel d), defined as
L(ρ) = 3ρ∂Esym(ρ)/∂ρ, as a function of the density. The circles show the results at saturation density.
As expected in the low density regime the role of 3NFs is basically negligible. Overall, for densities
in 0.1–0.3 fm−3, there is a moderate dependence of Esym(ρ) and L(ρ) on the 3NF, even though its
effect on PNM and SNM is not small. This dependence becomes stronger and stronger when increasing
the density. The importance of 3NFs has been recently revised in the context of chiral effective field
theory [29–34]. New fitting protocols of two-nucleon forces seem to indicate that the effect of 3NF
could actually be rather small in PNM. Nevertheless, the relative importance of the two- and three-body
contributions changes with the resolution scale. It is not clear whether such observations, valid for
somewhat soft chiral interactions, still apply when considering a harder interaction like Av18.

Table 1. Bulk parameters characterizing the density dependence of the energy per particle of
SNM and the symmetry energy around the saturation density for our BHF calculation with
and without 3NF. All quantities are in MeV, except ρ0, given in fm−3.

Calculation ρ0 E0 K0 Q0 Esym L Ksym Qsym

BHF (3NF) 0.187 −15.23 195.5 −280.9 34.3 66.5 −31.3 −112.8
BHF (no 3NF) 0.240 −17.30 213.6 −225.1 35.8 63.1 −27.8 −159.8

In Figure 2 we show the free Fermi gas and correlation energy contributions to the energy per particle
of both PNM (panel a) and SNM (panel b) as well as to the symmetry energy (panel c) and its slope
parameter (panel d) as a function of the density obtained in our BHF calculation with Av18 + 3NF.
The particular values of these contributions at the saturation density of our calculation ρ0 = 0.187 fm−3

are denoted by circles and are reported in Table 2. The symmetry energy is calculated, as mentioned
before, as the difference of the total energy per particle of PNM and SNM. As it is seen in the figure
(see also Figure 4) the FFG energy of PNM is always larger than the corresponding one of SNM and,
therefore, its contribution to the symmetry energy is positive throughout the explored density range and,
in particular, amounts to ∼14.38 MeV at ρ0. The correlation energy, Ecorr, contributes also positively
(∼19.92 MeV at ρ0) to the symmetry energy for all the densities, since it gives smaller attraction in PNM
than in SNM. This contribution is larger than that of the FFG. The addition of both contributions, which
are of the same order at ρ0, provides a symmetry energy of∼34.3 MeV at this density. The contributions
to L can be decomposed similarly. In this case the contribution of the correlation energy is much larger
than that of the FFG, except at very low densities where both contributions are similar.
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Figure 1. (Color on-line) Energy per particle of PNM (a) and SNM (b) as a function of
the density. Density dependence of the symmetry energy (c) and its slope parameter L (d).
The results have been obtained in our BHF calculation with (solid lines) and without (dashed
lines) 3NF. The circles show the result at saturation density.
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Figure 2. (Color on-line) Free Fermi gas and correlation energy contributions to the total
energy per particle of PNM (a) and SNM (b), and to symmetry energy (c) and its slope
parameter (d), as a function of density. Results are shown for our BHF calculation with
Av18 + 3NF. The circles show the result at saturation density.
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Table 2. Free Fermi gas and correlation energy contributions to the total energy per particle
of PNM and SNM at the saturation density ρ0 = 0.187 fm−3 of our BHF calculation with
Av18 + 3NF. The corresponding contributions to the symmetry energy Esym and its slope
parameter L are also shown. All results are given in MeV.

Contribution EPNM ESNM Esym L

EFFG 38.991 24.529 14.462 28.779

Ecorr −19.921 −39.759 19.838 37.721

Total 19.070 −15.230 34.300 66.500

To get a further physical insight on the role of the correlation energy, it is useful to look at its
spin–isospin (S, T ) decomposition, shown in Table 3. As expected, the main contribution is that of
the (1, 0) channel, which is acting only in SNM and has a large attractive contribution. It is precisely in
this channel where the tensor component of the nuclear force is active. Notice that the T = 1 channels
give similar contributions in PNM and SNM and, therefore, the contribution to the symmetry energy is
small. The channel (0, 0) gives a repulsive contribution to the total energy in SNM and since it does
not play any role in PNM, its contribution to the total symmetry energy is negative. Note again that the
tensor force is not acting in this channel.

Table 3. Spin–isospin (S, T ) channel decomposition to the correlation energy of PNM and
SNM at the saturation density ρ0 = 0.187 fm−3 of our BHF calculation with Av18 + 3NF.
The decomposition of correlation energy contribution to the symmetry energy and its slope
parameter is also shown. All results are given in MeV.

(S, T ) EPNM
corr ESNM

corr Esym
corr Lcorr

(0, 0) 0 5.894 −5.894 −23.085
(0, 1) −21.280 −17.923 −3.357 −3.142
(1, 0) 0 −28.363 28.363 51.696

(1, 1) 1.359 0.633 0.726 12.252

Let us further continue this analysis by looking at the contributions of the different partial waves to
Ecorr. Contributions up to J = 8 have been considered. These contributions are shown in Table 4.
Notice that the 1S0 contribution, which is dominated by the central component of the NN potential, has
a similar large contribution to both PNM and SNM and, therefore, its effect on the symmetry energy
is almost negligible. The largest contribution is provided by the 3S1–3D1 channel, which corresponds
to T = 0, active only in SNM. For larger values of the total angular momentum J , the contributions
become smaller and many cancellations take place. In general, one observes that the final energy in
SNM is the result of a large cancellation between EFFG and Ecorr, and that the absolute value of Ecorr
for PNM is significantly smaller than for SNM. These observations point to the well-accepted fact that
neutron matter is less correlated than symmetric matter.
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Table 4. Partial wave decomposition of the correlation energy of PNM and SNM at
the saturation density ρ0 = 0.187 fm−3 of our BHF calculation with Av18 + 3NF.
The decomposition of correlation energy contribution to the symmetry energy and its slope
parameter is also shown. All results are given in MeV.

Partial Wave EPNM
corr ESNM

corr Esym
corr Lcorr

1S0 −14.330 −14.407 0.077 11.229
3S1 0 −24.865 24.865 35.521
1P1 0 5.193 −5.193 −20.201
3P0 −4.522 −3.713 −0.809 0.224
3P1 18.459 12.002 6.457 27.702
3P2 −13.550 −8.102 −5.448 −17.784
1D2 −5.850 −3.154 −2.696 −10.888
3D1 0 1.036 −1.036 −3.894
3D2 0 −3.795 3.795 15.844
3D3 0 −0.522 0.522 3.305
1F3 0 0.699 −0.699 −3.394
3F2 −0.651 −0.221 −0.430 −1.515
3F3 2.022 0.826 1.196 5.026
3F4 −0.743 −0.183 −0.560 −3.006
1G4 −0.810 −0.247 −0.563 3.029
3G3 0 0.002 −0.002 0.425
3G4 0 −0.213 0.213 0.449
3G5 0 −0.053 0.053 0.617
1H5 0 0.029 −0.029 0.122
3H4 0.034 0.040 −0.007 0.224
3H5 0.226 −0.33 0.258 0.949
3H6 0.044 0.035 0.010 0.136

Rest up to J = 8 −0.220 0.219 −0.439 −6.399

By using different phase shift equivalent NN potentials, it has been shown that the total binding energy
of the deuteron is the result of a strong cancellation between the kinetic and the potential energy [35,36].
However, this observation should be taken with care when using softer modern low-momentum or chiral
NN interactions, since in this case this cancellation may be not so strong. The large kinetic energy, in
the deuteron case, is a consequence of the NN correlations existing in the 3S1–3D1 channel. In that
sense we would like to study the decomposition of the total energy of the infinite system in the kinetic
and potential energy. Due to NN correlations, the kinetic energy will be larger than the FFG energy.
Therefore, the difference between the kinetic energy of a correlated nuclear system and that of a FFG
can be used to quantify the effect of NN correlations.

Unfortunately, the BHF approach does not give direct access to the separate contributions of the
kinetic and potentials energies because it does not provide the correlated many-body wave function, |Ψ〉.
However, it has been shown [37–40] that the Hellmann–Feynman theorem [6,7] can be used to estimate
the ground-state expectation values of both contributions from the derivative of the total energy with
respect to a properly introduced parameter. Writing the nuclear matter Hamiltonian as H = T + V , and
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defining a λ-dependent Hamiltonian H(λ) = T + λV , the expectation value of the potential energy is
given as

〈V 〉 ≡ 〈Ψ|V |Ψ〉
〈Ψ|Ψ〉

=

(
dE

dλ

)
(λ=1)

(11)

Then, the kinetic energy contribution 〈T 〉 can be simply obtained by subtracting 〈V 〉 from the total
energy E.

In Figure 3 we show the kinetic and potential energy contributions to the energy per particle of both
PNM (panel a) and SNM (panel b) as well as to the symmetry energy (panel c) and its slope parameter
(panel d) as a function of the density obtained by applying the Hellmann–Feynman theorem, as explained
above, to our BHF calculation with Av18 + 3NF. The values of all these contributions at saturation
density are denoted by circles and reported in Table 5.
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Figure 3. (Color on-line) Kinetic 〈T 〉 and potential 〈V 〉 energy contributions to the total
energy per particle of PNM (a) and SNM (b) and to symmetry energy (c) and its slope
parameter (d) as a function of density. Results are shown for our BHF calculation with
Av18 + 3NF. The circles show the results at saturation density.

Table 5. Kinetic, 〈T 〉, and potential, 〈V 〉, energy contributions to the total energy per particle
of PNM and SNM at the saturation density ρ0 = 0.187 fm−3 of our BHF calculation with
Av18 + 3NF. The corresponding contributions to the symmetry energy Esym and its slope
parameter L are also shown. All results are given in MeV.

Contribution EPNM ESNM Esym L

〈T 〉 53.321 54.294 −0.973 14.896

〈V 〉 −34.251 −69.524 35.273 51.604

Total 19.070 −15.230 34.300 66.500
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As in the case of the deuteron, both the total energy of PNM and that of SNM are the result of a
strong cancellation between the kinetic and potential energies. It is worth noticing that the kinetic energy
contribution to Esym is very small in the whole density range, being slightly negative for ρ ≤ 0.2 fm−3.
This is in contrast to the results for the FFG (see Figure 2 and Table 2). The increase of the kinetic energy
with respect to the FFG energy is probably due to the strong isospin dependence of the short-range NN
correlations (SRC) induced by the tensor force. This observation has been also recently pointed out
by Xu and Li [41] and Hen et al. [42] using a phenomenological model for the nucleon momentum
distribution n(k), and by Carbone et al. [43] using the self-consistent Green’s function approach with
the Av18 and the CDBONN [44] potentials. To illustrate this point, we show in Figure 4 the kinetic
energy of uncorrelated (i.e., FFG energy) and correlated PNM and SNM as a function of density.
Results at saturation density are also shown in this case by the circles. It can be seen that the increase of
the kinetic energy of SNM due to SRC is always much larger than that of PNM. This is an indication that,
at the same fixed density, SNM is always more correlated than PNM. Note also that the kinetic energy of
both correlated systems is of similar order and that their strong cancellation gives the almost negligible
contribution to the kinetic part of Esym noticed before. It is also worth mentioning that the kinetic
contribution to L is smaller than the corresponding one of the FFG in the full density range. Clearly, the
major contribution to both the symmetry energy and its slope parameter is due to the potential energy
part. Note that at saturation density (see Table 5) this contribution is practically equal to the total value
of the symmetry energy at saturation, and it represents ∼78% of L.
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Figure 4. (Color on-line) Kinetic energy per particle of uncorrelated (i.e., FFG)
and correlated PNM and SNM as a function of density. The circles show the result at
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Symmetry 2015, 7 25

The spin–isospin (S, T ) channel decomposition of the potential energy of PNM and SNM at
saturation, as well as of its contribution to Esym and L, is also illustrative. This is reported in Table 6.
As in the case of the correlation energy, the largest contribution to the potential part of bothEsym and L is
provided by the (S = 1, T = 0) channel, for which the tensor is active. Interestingly, the S = 0 channels
have a smaller and similar negative contribution to Esym and also a moderate negative contribution to L.
However, the origin of these contributions is qualitatively different. While the channel (S = 0, T = 0)

does not contribute to PNM and gives a small repulsive contribution to SNM, the contribution of the
channel (S = 0, T = 1) to Esym is the result of a strong cancellation of large attractive contributions of
this channel in both PNM and SNM. Analogous conclusions can be obtained from Table 7, where the
partial wave decomposition of the potential energy is reported. Note that similar arguments have been
already pointed out by other authors [41–43,45–57].

Table 6. Spin–isospin (S, T ) channel decomposition to the potential energy of PNM and
SNM at the saturation density ρ0 = 0.187 fm−3 of our BHF calculation with Av18 + 3NF.
The decomposition of potential energy contribution to the symmetry energy and its slope
parameter is also shown. All results are given in MeV.

(S, T ) 〈V 〉PNM 〈V 〉SNM Esym
〈V 〉 L〈V 〉

(0, 0) 0 5.600 −5.600 −21.457
(0, 1) −29.889 −23.064 −6.825 −17.950
(1, 0) 0 −49.836 49.836 90.561

(1, 1) −4.3621 −2.224 −2.138 0.450

Finally, we analyze the role played by the different terms of the nuclear force, particularly the one of
the tensor force, in the determination of Esym and L. To such end, we apply the Hellmann–Feynman
theorem to the separate components of the Av18 and the Urbana IX 3NF. The Av18 potential has
18 components of the form vp(rij)O

p
ij with

Op=1,18
ij = 1, ~τi · ~τj, ~σi · ~σj, (~σi · ~σj)(~τi · ~τj), Sij, Sij(~τi · ~τj), ~L · ~S, ~L · ~S(~τi · ~τj), L2,

L2(~τi · ~τj), L2(~σi · ~σj), L2(~σi · ~σj)(~τi · ~τj), (~L · ~S)2, (~L · ~S)2(~τi · ~τj),
Tij, (~σi · ~σj)Tij, SijTij, (τzi + τzj) (12)

being Sij the usual tensor operator; ~L the relative orbital angular momentum; ~S the total spin of the
nucleon pair; and Tij = 3τziτzj −~τi ·~τj the isotensor operator. Note that the last four operators break the
charge independence of the nuclear interaction.

As we said above, the Urbana IX three-body force is reduced to an effective density-dependent
two-body force when used in the BHF approach. For simplicity, in the following we refer to it as
the reduced Urbana force. This force is made of three components of the type up(rij, ρ)Op

ij where

Op=1,3
ij = 1, (~σi · ~σj)(~τi · ~τj), Sij(~τi · ~τj) (13)

introducing additional central, στ and tensor terms (see, e.g., [24] for details).
The separate contributions of the various components of the Av18 potential and the reduced Urbana

force to the energy per particle of PNM and SNM, and to the symmetry energy and its slope parameter



Symmetry 2015, 7 26

at the saturation density, are given in Table 8. The contribution from the tensor component to Esym

and L (contributions 〈VSij〉 and 〈VSij(~τi·~τj)〉 from the Av18 potential, and 〈USij(~τi·~τj)〉 from the reduced
Urbana force) is 36.056 MeV and 69.968 MeV, respectively. These results clearly confirm that the tensor
force gives the largest contribution to both Esym and L. The contributions from the other components
either are negligible, as for instance the contribution from the charge symmetry breaking terms (〈VTij〉,
〈V(~σi·~σj)Tij〉, 〈VSijTij〉 and 〈V(τzi+τzj )〉), or almost cancel out.

Table 7. Partial wave decomposition of the potential energy of PNM and SNM at
the saturation density ρ0 = 0.187 fm−3 of our BHF calculation with Av18 + 3NF.
The decomposition of potential energy contribution to the symmetry energy and its slope
parameter is also shown. All results are given in MeV.

Partial Wave 〈V 〉PNM 〈V 〉SNM Esym
〈V 〉 L〈V 〉

1S0 −23.070 −19.660 −3.410 −3.459
3S1 0 −45.810 45.810 71.855
1P1 0 4.904 −4.904 −18.601
3P0 −5.321 −4.029 −1.292 −1.898
3P1 16.110 10.720 5.390 21.949
3P2 −16.000 −9.334 −6.666 −21.168
1D2 −5.956 −3.201 −2.755 −11.033
3D1 0 0.981 −0.981 −3.739
3D2 0 −3.982 3.982 16.601
3D3 0 −0.798 0.798 4.895
1F3 0 0.694 −0.694 −3.348
3F2 −0.695 −0.229 −0.466 −1.799
3F3 2.000 0.821 1.179 4.883
3F4 −0.796 −0.194 −0.602 −3.239
1G4 −0.812 −0.247 −0.565 −3.036
3G3 0 −0.001 0.001 0.441
3G4 0 −0.213 0.213 0.449
3G5 0 −0.057 0.057 0.650
1H5 0 0.029 −0.029 0.107
3H4 0.033 0.040 −0.007 0.232
3H5 0.225 −0.033 0.258 0.968
3H6 0.043 0.034 0.009 0.144

Rest up to J = 8 −0.012 0.041 −0.161 −0.250



Symmetry 2015, 7 27

Table 8. Contributions of the various components of the Av18 potential (denoted as 〈Vi〉) and
the reduced Urbana force (denoted as 〈Ui〉) to the energy per particle of PNM and SNM and
to the symmetry energy and its slope parameter at the saturation density ρ0 = 0.187 fm−3.
Units are given in MeV.

Component 〈V 〉PNM 〈V 〉SNM Esym
〈V 〉 L〈V 〉

〈V1〉 −31.212 −32.710 1.498 −5.580
〈V~τi·~τj 〉 −4.957 3.997 −8.954 −20.383
〈V~σi·~σj

〉 −0.319 −0.382 0.063 2.392

〈V(~σi·~σj)(~τi·~τj)〉 −5.724 −11.388 5.664 2.521

〈VSij
〉 −0.792 1.912 −2.704 −4.998

〈VSij(~τi·~τj)〉 −4.989 −37.592 32.603 47.095

〈V~L·~S〉 −7.538 −1.754 −5.784 −12.251
〈V~L·~S(~τi·~τj)〉 −2.671 −6.539 3.868 3.969

〈VL2〉 11.850 13.610 −1.760 1.521

〈VL2(~τi·~τj)〉 −2.788 0.270 −3.058 −14.262
〈VL2(~σi·~σj)〉 1.265 1.383 −0.118 1.405

〈VL2(~σi·~σj)(~τi·~τj)〉 0.051 0.008 0.043 −0.341
〈V(~L·~S)2〉 4.194 5.682 −1.488 −0.327

〈V(~L·~S)2(~τi·~τj)〉 5.169 −6.190 11.359 31.368

〈VTij
〉 0.003 0.039 −0.036 −0.022

〈V(~σi·~σj)Tij
〉 −0.017 −0.106 0.089 0.042

〈VSijTij 〉 0.004 0.079 −0.075 −0.124
〈V(τzi+τzj )

〉 −0.084 −0.001 −0.083 −0.331
〈U1〉 2.985 3.251 −0.266 −0.630

〈U(~σi·~σj)(~τi·~τj)〉 2.254 3.999 −1.745 −7.228
〈USij(~τi·~τj)〉 −0.935 −7.092 6.157 27.768

4. Summary and Conclusions

In this work we have analyzed the effect of the tensor force and other components of the
nucleon-nucleon (NN) interaction on the nuclear symmetry energy and its slope parameter for a wide
range of densities. We have also discussed the role of the isospin dependence of the NN correlations on
both quantities. This analysis has been carried out with the help of the Hellmann–Feynman theorem
within the framework of the microscopic Brueckner–Hartree–Fock (BHF) approach using the Av18
potential plus an effective density-dependent two-body force deduced from the Urbana IX three-body
force. The theorem allowed the decomposition of the total energy per particle of PNM and SNM into
their kinetic and potential energy contributions. Our results showed that the potential part of the nuclear
Hamiltonian gives the main contribution to both Esym and L. The kinetic contribution to Esym is very
small throughout the explored density range, being even slightly negative for ρ ≤ 0.2 fm−3. We have
explored the different effects of NN correlations on SNM and PNM and discussed how the isospin
dependence of these correlations affects the density dependence of the nuclear symmetry energy. To
such end, we have compared the kinetic and potential energy contributions to the energy per particle of
PNM and SNM and to Esym(ρ) and L(ρ) with those of the free Fermi gas and the correlation energy. We
found that PNM is less correlated than SNM, in agreement with recent results [41–43]. Finally, we have
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performed a partial wave and a spin–isospin channel decomposition of the potential part of Esym and
L, showing that the major contribution to them is given by the spin-triplet (S = 1) and isospin-singlet
(T = 0) channel. As we have explicitly shown, this is due to the dominant effect of the tensor force,
which gives the largest contribution to both Esym and L. In conclusion, our results confirm the critical
role of the tensor force in the determination of the symmetry energy and its density dependence. We
would like to finish by noticing that at present there are no experimental or theoretical constraints
to control the role of the tensor forces beyond the saturation density, although there are indications,
based on large Nc QCD arguments (see, e.g., [58–60]), that tensor forces could undergo non-trivial
modifications at densities not too far above saturation density, due to either the topology changes in the
nucleon structure or the emergence of strongly interacting quark degrees of freedom. Consequently, the
reader should take our results above saturation density with care.
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