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A new boson representation of the su(2)-algebra proposed by the present authors for describing
the damped and amplified oscillator is examined in the Lipkin model as one of the simple many-
fermion models. This boson representation is expressed in terms of two kinds of bosons with a
certain positive parameter. In order to describe the case of any fermion number, a third boson is
introduced. Through this examination, it is concluded that this representation is very workable
for the boson realization of the Lipkin model in any fermion number.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Subject Index D50

The study of boson realization for the Lie algebra has a long history. In particular, the boson repre-
sentation of the su(2)-algebra has been applied to simple many-nucleon systems, such as the Lipkin
model, and has played an important role in understanding nuclear collective dynamics. In our last
paper [1] (hereafter referred to as (I)), we proposed a new boson representation of the su(2)-algebra
with an aim of describing a harmonic oscillator interacting with the external environment in the
frame of the thermo field dynamics formalism [6–9,11]. Actually, in (I), by introducing two kinds of
bosons (â, â∗) and (b̂, b̂∗), the su(2)-generators Ŝ±,0 and the operator expressing the magnitude of
the su(2)-spin Ŝ can be expressed in the following form:

Ŝ+ = â∗b̂∗
√

Cm − b̂∗b̂

(√
b̂∗b̂ + 1 + ε

)−1

, Ŝ− =
(
Ŝ+

)∗
,

Ŝ0 = 1
2

(
â∗â + b̂∗b̂

)
− 1

2Cm, (1a)

Ŝ = 1
2

(
â∗â − b̂∗b̂

)
+ 1

2Cm, (1b)

where ε is an infinitesimal parameter that is finally set to 0 when algebraic calculations are carried out.
This parameter guarantees the existence of the inverse operator that was discussed in (I). Here, Cm

denotes a positive parameter and, depending on the model under investigation, its value is appropri-
ately chosen. As was stressed in (I), representation (1) obeys the su(2)-algebra in a certain subspace
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of the whole space constructed by â∗ and b̂∗. On the other hand, as is known well, the Schwinger
boson representation [7] is given in the following form:

ŜSchw
+ = â∗b̂, ŜSchw

− =
(
Ŝ+Schw

)∗
,

ŜSchw
0 = 1

2

(
â∗â − b̂∗b̂

)
, (2a)

ŜSchw = 1
2

(
â∗â + b̂∗b̂

)
. (2b)

Compared with representation (2), the following three points are characteristics of representation (1):
(i) Ŝ± are of the forms deformed from the boson representation of the su(1, 1)-algebra presented by
Schwinger [7], (ii) it contains the parameter Cm , and (iii) except for Cm , the forms of Ŝ0 and Ŝ are
the opposite of those in representation (2). In (I), we discussed how representation (1) is connected
with the many-fermion system in the pairing model (the Cooper pair).

The main purpose of this paper is to demonstrate that representation (1) works quite well for
a many-fermion system with the particle–hole pair correlation. The Lipkin model [8] is a simple
su(2)-algebraic model with the particle–hole pair correlation and it will be shown that our new boson
representation (1) is suitable for the boson realization of the Lipkin model. In fact, it is demonstrated
that our new boson realization is workable to treat the case with any fermion number in addition to a
closed-shell system. Namely, in the usual and conventional cases, the closed-shell system, in which
the lower level in the Lipkin model is occupied and the higher level is vacant, is only treated in the
context of boson realization. However, in our new boson realization, any fermion number can be
considered.

First, we recapitulate the Lipkin model with a certain aspect that has not been investigated explicitly,
namely, the role of operators Ñ and M̃ in (5). The Lipkin model consists of two single-particle levels,
the degeneracies of which are equal to 2� = 2 j + 1 ( j : half-integer).

The Hamiltonian of the Lipkin mode can be expressed as

H̃ =
∑

m

εc̃∗
p, jmc̃p, jm +

∑
m

(−ε)c̃∗
h, jmc̃h, jm

+ χ
∑
mm′

(
c̃∗

p, jm c̃∗
p, jm′ c̃h, jmc̃h, jm′ + c̃∗

h, jm′ c̃∗
h, jm′ c̃p, jm′ c̃p, jm

)
, (3)

where p and h represent the upper and lower single particle levels, respectively. Here, ε (−ε)

represents the single particle energy of the upper (lower) level and χ represents the strength
of the particle–hole interaction. The single-particle states are specified by the quantum numbers
(p, jm) and (h, jm). Here, m = − j , − j + 1, . . . , j − 1, j . The fermion operators are denoted by(

c̃p, jm, c̃∗
p, jm

)
and

(
c̃h, jm, c̃∗

h, jm

)
and, following the conventional treatment, we use the following

particle and hole operators:

c̃p, jm = ãm(particle), (−) j−mc̃h, j−m = b̃∗
m(hole), (4)

where ã∗
m and b̃∗

m represent the particle and hole creation operators, respectively. Hereafter, we denote
the fermion operators by attaching a symbol ˜ (such as c̃ and so on), and boson operators and boson
realization by ,̂ respectively. The total fermion number operator Ñ can be expressed as

Ñ =
∑

m

(
c̃∗

p, jmc̃p, jm + c̃∗
h, jmc̃h, jm

)
=

∑
m

(
ã∗

mãm − b̃∗
mb̃m

)
+ 2�. (5a)
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Further, we define the operator M̃ in the form

M̃ =
∑

m

(
c̃∗

p, jm c̃p, jm − c̃∗
h, jm c̃h, jm

)
+ 2� =

∑
m

(
ã∗

mãm + b̃∗
mb̃m

)
. (5b)

The operator M̃ indicates the addition of the particle and hole number operators. In contrast, the
operator Ñ is related to the subtraction of the hole number operator from the particle one. The dif-
ference of signs, + or −, in M̃ and Ñ makes representation (1) workable for the boson realization of
the Lipkin model. With the use of these operators, we define the operators:

S̃+ =
∑

m

c̃∗
p, jm c̃h, jm =

∑
m

ã∗
m(−) j−mb̃∗

−m, S̃− = (S̃+
)∗

,

S̃0 = 1

2

∑
m

(
c̃∗

p, jm c̃p, jm − c̃∗
h, jmc̃h, jm

)
= 1

2

∑
m

(
ã∗

mãm + b̃∗
mb̃m

)
− � = 1

2
M̃ − �. (6a)

For S̃±,0, we have the relations[
Ñ , S̃±,0

] = 0, (6b)[
M̃, S̃±

] = ±2S̃±,
[
M̃, S̃0

] = 0, M̃ = 2S̃0 + 2�. (6c)

The operators S̃±,0 obey the su(2)-algebra:[S̃+, S̃−
] = 2S̃0,

[S̃0, S̃±
] = ±S̃±, (7a)[

S̃±,0, S̃
2
]

= 0,

(
S̃2 = S̃2

0 + 1

2

(S̃−S̃+ + S̃+S̃−
))

. (7b)

Here, S̃2
denotes the Casimir operator. Based on the above discussion, the Lipkin model Hamiltonian

(3) is recast into

H̃ = εS̃0 − χ
(
S̃2

+ + S̃2
−
)

, (8)

in which this model is governed by the su(2)-algebra.
It may be important to see that, in the pairing model with one single-particle level, relation (6b)

does not exist. The reason is simple: in the pairing model, we have S̃0 = (
Ñ − �

)
/2. Here, 2�

denotes the degeneracy of the single-particle level. The Lipkin model has been mainly investigated
in a certain case appearing under the condition N (total fermion number) = 2� from the reason
schematically induced by the particle–hole pair correlation. However, if intending to give complete
description of the Lipkin model as an example of the su(2)-algebraic model, it may be necessary
to treat all cases including N �= 2�, which requires a new idea. After careful treatment of all the
cases, including both the non-closed-shell case and the N �= 2� case, we will be able to understand
why the conventional treatment developed in the extensive previous work on boson realization for
the closed-shell system is available and workable.

In connection with S̃±,0, we can define other new-type operators, which we call the auxiliary
su(2)-algebra:

�̃+ =
∑

m

c̃∗
p, jmc̃∗

h, jm =
∑

m

ã∗
m(−) j−mb̃−m, �̃− = (

�̃+
)∗

,

�̃0 = 1

2
Ñ − � = 1

2

∑
m

(
ã∗

mãm − b̃∗
mb̃m

)
. (9)
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They obey [
�̃+, �̃−

] = 2�̃0,
[
�̃0, �̃±

] = ±�̃±, (10a)[
�̃±,0, �̃

2
]

= 0,

(
�̃

2 = �̃2
0 + 1

2

(
�̃−�̃+ + �̃+�̃−

))
. (10b)

The important relation is as follows:[
any of �̃±,0, any of S̃±,0

] = 0. (11)

Relation (11) tells us that the above two algebras are independent of each other. Further, it may be
interesting to see that the role of �̃0 is the same as that of S̃0, for which �̃+ and �̃− are the raising
and lowering operators, respectively. As has been repeatedly mentioned, conventionally, the Lipkin
model has been investigated in the case of the closed-shell system in which the level h is completely
occupied by the fermions (N = 2�). However, the auxiliary su(2)-algebra enables us to treat the
following two cases (A) and (B): (A) N = 2�, but with the level p being partially occupied by the
fermion c̃∗

p, jm , and (B) N �= 2�, i.e., the non-closed-shell system.

We can construct the boson representation of the su(2)-algebra
(
�̂±,0

)
, which satisfies

[
any of �̂±,0, any of Ŝ±,0

]
= 0. (12)

On the basis of the idea of the Holstein–Primakoff representation [9,10], we can set up the form

�̂+ = ĉ∗
√(

−â∗â + b̂∗b̂
)

− ĉ∗ĉ, �̂− =
(
�̂+

)∗
,

�̂0 = ĉ∗ĉ − 1
2

(
−â∗â + b̂∗b̂

)
. (13a)

Here, (ĉ, ĉ∗) denotes the third boson operator adding to
(
â, â∗) and

(
b̂, b̂∗

)
appearing in (1). It may

be important to see that the magnitude of the su(2)-spin �̂ can be expressed in the form

�̂ = 1
2

(
−â∗â + b̂∗b̂

)
= −Ŝ + 1

2Cm . (13b)

Let (Ŝ±,0) and (�̂±,0) be the counterparts of (S̃±,0) and (�̃±,0), respectively:

Ŝ±,0 ∼ S̃±,0, �̂±,0 ∼ �̃±,0. (14)

First, we investigate the properties of the fermion and boson vacuums, |0) and |0〉, respectively:

ãm |0) = b̃m |0) = 0 for m = − j, − j + 1, . . . , j − 1, j, (15a)

â|0〉 = b̂|0〉 = ĉ|0〉 = 0. (15b)

The states |0) and |0〉 satisfy the relations

S̃−|0) = 0, S̃0|0) = −�|0), �̃−|0) = �̃0|0) = 0, (16a)

Ŝ−|0〉 = 0, Ŝ0|0〉 = −1

2
Cm |0〉, �̂−|0〉 = �̂0|0〉 = 0. (16b)

Clearly, the vacuums |0) and |0〉 are the minimum weight states of
(S̃±,0, �̃±,0

)
and

(
Ŝ±,0, �̂±,0

)
,

respectively. Under the above consideration, it may be permitted to postulate that |0〉 should
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correspond to |0):

|0〉 ∼ |0). (17)

Then, it is natural to regard Cm as 2�:

Cm = 2�. (18)

Further, let us assume the total fermion number operator in the boson space, N̂ , corresponding to (9)
in the following form:

N̂ = 2�̂0 + 2� = â∗â − b̂∗b̂ + 2ĉ∗ĉ + 2�. (19a)

Through the relation (19a), we can treat cases (A) and (B), which have already been mentioned.
The operator M̂ , the counterpart of M̃ in the boson space, may be permitted to set up from (6a) as

M̂ = 2Ŝ0 + 2� = â∗â + b̂∗b̂. (19b)

Later, in (25), it will be shown that the operator M̂ plays the role of “seniority operator”. We can
now obtain the orthogonal set of the Lipkin model in the boson realization in each fermion number.

The minimum weight state of the su(2)-algebra
(
Ŝ±,0

)
can be expressed in the form

|λ, λ0〉 =
(
�̂+

)λ+λ0
(

b̂∗
)2λ |0〉,

Ŝ−|λ, λ0〉 = 0, Ŝ0|λ, λ0〉 = −s|λ, λ0〉. (s = � − λ) (20)

The relation s = � − λ is supported by relation (13b). Since the set (�̂±,0) also forms the
su(2)-algebra, the state |λ, λ0〉 satisfies

�̂|λ, λ0〉 = λ|λ, λ0〉, �̂0|λ, λ0〉 = λ0|λ, λ0〉. (21)

Therefore, we have the condition

− λ ≤ λ0 ≤ λ. (22)

If we notice the relations s = � − λ and N = 2λ0 + 2�, which come from relations (13b) and (19a),
respectively, relation (22) gives the following inequality with respect to s:

0 ≤ s ≤ � −
∣∣∣∣� − N

2

∣∣∣∣ . (23a)

Explicitly, relation (23a) can be written as follows:

if N = 0, 2, . . . , 2� − 2, s = N/2, N/2 − 1, . . . , 1, 0,

if N = 2�, s = �, � − 1, . . . , 1, 0

if N = 2� + 2, 2� + 4, . . . , 4�, s = 2� − N/2, 2� − N/2 − 1, . . . , 1, 0,

if N = 1, 3, . . . , 2� − 1, s = N/2, N/2 − 1, . . . , 3/2, 1/2,

if N = 2� + 1, 2� + 3, . . . , 4� − 1, s = 2� − N/2, 2� − N/2 − 1, . . . , 3/2, 1/2. (23b)

Relation (23) teaches us the typical examples: if N = 0, N = 2�, and N = 4�, we have the
results s = 0, 0 ≤ s ≤ �, and s = 0, respectively. Using state (20), we obtain the state with (s, s0)
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in the form(
Ŝ+

)s+s0 |λ, λ0〉 =
(
Ŝ+

)s+s0
(
�̂+

)λ+λ0
(b̂∗)2λ|0〉 =

(
Ŝ+

)s+s0
(
�̂+

) N
2 −s (

b̂∗
)2(�−s) |0〉

= (
â∗)s+s0

(
b̂∗

)2�−s+s0 (
ĉ∗) N

2 −s |0〉 = �, N ; s, s0〉. (24)

Here, |λ, λ0〉 satisfies

M̂ |λ, λ0〉 = 2λ|λ, λ0〉 = 2(� − s)|λ, λ0〉. (25)

Since Ŝ−|λ, λ0〉 = 0, the eigenvalue of M̂ , 2λ, indicates the particle and hole number that cannot
be reduced to Ŝ0 and, in some sense, it corresponds to the seniority number in the pairing model.
The normalization constant is here omitted in states (20) and (24). Of course, s obeys condition (23).
Except for the factor (ĉ∗)N/2−s , state (24) is identical to state (7.38) in (I) for the pairing model. In
the case s = �, i.e., λ = 0, for N = 2�, state (24) does not depend on ĉ∗. This case corresponds to
the conventional one, i.e., the case of the closed-shell system. Therefore, the use of the boson

(
ĉ, ĉ∗)

enables us to describe the cases s �= � for N = 2� and N �= 2�.
The fact that one can describe both the cases N = 2� and N �= 2� is supported by the following

relation:

Ŝ±|�, N ; s, s0〉 =
√

(s ∓ s0)(s ± s0 + 1)|�, N ; s, s0 ± 1〉, (26a)

Ŝ0|�, N ; s, s0〉 = s0|�, N ; s, s0〉, (26b)

N̂ |�, N ; s, s0〉 = N |�, N ; s, s0〉. (26c)

Here, |�, N ; s, s0〉 is normalized. Since we are considering the su(2)-algebra, relations (26a)
and (26b) are natural results. Relations (26b) and (26c) give us

N̂p|�, N ; s, s0〉 =
(

N

2
+ s0

)
|�, N ; s, s0〉, N̂h|�, N ; s, s0〉 =

(
N

2
− s0

)
|�, N ; s, s0〉. (27)

Here, N̂p and N̂h denote the counterparts of the fermion number operators in the levels p and h,
respectively. If N = 2� and s0 = −s = −� (λ = 0), the level h is completely occupied by the
fermions and the level p is vacant. The conventional treatment starts in this case for the counterpart
of the fermion Hamiltonian:

Ĥ = ε Ŝ0 − χ
(

Ŝ2
+ + Ŝ2

−
)

. (28)

Clearly, N and s are constants of motion.
Hereafter, let us introduce �c in order to discriminate � in our present treatment from that in the

conventional one. We adopt the symbol �c for the latter. Needless to say, the case (N = 2�c, s = �c)

is treated conventionally. Let the result in the case (N = 2�c, s = �c) have been obtained. Noticing
s = � − λ, N = 2(� + λ0) and λ0 = −λ, −λ + 1, . . . , λ − 1, λ, we introduce � in the form

� = �c + λ. (29a)

Relation (29a) tells us that we are considering the case s = �c. Then, we have

N = 2�c, 2(�c + 1), . . . , 2(�c + 2λ − 1), 2(�c + 2λ). (29b)

Relation (29) suggests to us that, if the value of λ is appropriately chosen, the case (�, N , s = �c)

obeying relation (29) is reduced to the conventional result for the Hamiltonian (28) in the case
(� = �c, N = 2�c, s = �c). In relation (29b), we can find the case (2� = N = 2(�c + λ),
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s = �c �= �). This case corresponds to the closed-shell system, although s �= �. In the conventional
treatment, s should be equal to �. If the idea presented in this paper is acceptable, the conventional
case for the Lipkin model plays a basic role and is a special case. Further, the method developed in
this paper is suitable for any case shown in relation (29) and the obtained results are available. This
is one of the most important conclusions in our present method.

In this paper, we have investigated a possible boson realization of the Lipkin model, a simple many-
fermion model, on the basis of the new boson representation (1). The orthogonal set is specified by
�, N , s, and s0 without considering the behavior of individual fermions. With the use of the algebra(S̃±,0

)
and the auxiliary algebra

(
�̃±,0

)
, we can give the orthogonal set in the fermion space, in

which the behavior of individual fermions is taken into account explicitly. A method to treat the
individual fermions may be obtained by appropriate modification of the method given by the present
authors, in which the pairing model was discussed [11,12].
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