
RESEARCH ARTICLE

Multiple Manifold Clustering Using Curvature
Constrained Path
Amir Babaeian1*, Alireza Bayestehtashk2, Mojtaba Bandarabadi3

1Department of Mathematics, University of California San Diego, San Diego, California, United States of
America, 2 Department of Computer Science, Oregon Health and Science University, Portland, Oregon,
United States of America, 3Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal

* ababaeian@ucsd.edu

Abstract
The problem of multiple surface clustering is a challenging task, particularly when the sur-

faces intersect. Available methods such as Isomap fail to capture the true shape of the sur-

face near by the intersection and result in incorrect clustering. The Isomap algorithm uses

shortest path between points. The main draw back of the shortest path algorithm is due to

the lack of curvature constrained where causes to have a path between points on different

surfaces. In this paper we tackle this problem by imposing a curvature constraint to the

shortest path algorithm used in Isomap. The algorithm chooses several landmark nodes at

random and then checks whether there is a curvature constrained path between each land-

mark node and every other node in the neighborhood graph. We build a binary feature vec-

tor for each point where each entry represents the connectivity of that point to a particular

landmark. Then the binary feature vectors could be used as a input of conventional cluster-

ing algorithm such as hierarchical clustering. We apply our method to simulated and some

real datasets and show, it performs comparably to the best methods such as K-manifold

and spectral multi-manifold clustering.

Introduction
We consider the problem of clustering points that are sampled in the vicinity of multiple surfaces
embedded in Euclidean space, with a particular interest in the case where these intersect. The goal
is multi-manifold clustering, which amounts to labeling each point according to the surface it
comes from. This stylized problemmay be relevant in a number of applications, such as the
extraction of galaxy clusters [1] and road tracking [2] and target tracking [3–7] after some prepro-
cessing. In motion segmentation [8–10] and in face recognition [11–13], the underlying surfaces
are usually assumed to be affine or, more generally, algebraic. Here we focus on a nonparametric
setting where the main assumption is that the surfaces are smooth—see Fig 1 for an example. This
appears to be necessary to remove ambiguities in the problem of separating intersecting surfaces.

Several approaches have been proposed in this context. Most methods are designed for the
case where the surfaces do not intersect [14–16], while others work only when the surfaces that
intersect have different intrinsic dimension or density [17, 18]. The method of [19] is only able
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to separate intersecting curves. Methods that purposefully aim at resolving intersections are
fewer. Souvenir et al. [20] implement some variant of K-means [21–23] where the centers are
surfaces. Guo et al. [24] propose to minimize a (combinatorial) energy that includes local ori-
entation information, using a tabu search. The state-of-the-art method lies in methods based
on local principal component analysis (PCA). An early proposal was the elaborate multiscale
spectral method of [25], while the clustering routine of [26]—developed in the context of semi-
supervised learning—inspired the works of [27] and [28].

We propose a markedly different approach based on connecting points to landmarks via
curvature-constrained paths. It can be seen as a constrained variant of [29]. Isomap was specifi-
cally designed for dimensionality reduction in the single-manifold setting, and in particular,
cannot handle intersections. It has been used in different applications [30–34]. The curvature
constraint on paths is there to prevent connecting points from one cluster to points from a dif-
ferent, intersecting cluster. The resulting algorithm is implemented as a simple variation of
Dijkstra’s algorithm. Our method is simpler than the previous proposals in the literature and
performs comparably to the best methods, both on simulated and real datasets.

The rest of the paper is organized as follows. In the next section we explain the notion of cur-
vature constrained shortest-path and it’s connection with the curvature constrained shortest-
path. In the algorithm section we present our algorithm for multi-manifold clustering and com-
pare it with three currently applied methods and give a theoretical guarantee for that. In the
numerical experiments section we performed multiple numerical experiments on simulated and
real data. Robustness of method to noise and choice of constraint is discussed as well. In the dis-
cussion section we discuss and outline our future work and development of our algorithm.

Constrained path

Neighborhood graph
Neighborhood graphs play a central role in manifold learning, exploiting the fact that smooth
submanifolds are locally flat. Recall that a neighborhood graph is a graph with vertices the sam-
ple points x1, . . ., xN. We consider two types of neighborhood structure [35]:

Fig 1. Simulated data illustrating the problem of multi-manifold clustering. Left: 3D data. Right: output from our method.

doi:10.1371/journal.pone.0137986.g001
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• ε-ball. xi and xj are connected if kxi − xjk � ε, where k � k denotes the Euclidean norm.

• k-nearest neighbor. xi and xj are connected if xj is among the k-nearest neighbors of xi (in the
Euclidean metric), or vice-versa.

Angle constraint
The central idea in this paper is the use of constrained shortest-path distances in a neighbor-
hood graph. The paths are constrained in order to control their smoothness. The constrained
shortest-path distances are used to estimate geodesic distances reliably, even when the surface
self-intersects, thus allowing us to mimic Isomap. We use the fact that the constrained and
unconstrained shortest-path distances are similar for points belonging to the same submani-
fold, while usually different for points belonging to different submanifolds.

For an ordered triplet of points (x, y, z) in R
D, define its angle as

ffðx; y; zÞ ¼ ffð!xy; !yz Þ ¼ cos �1 hy � x; z � yi
k y � x kk z � y k

� �

2 ½0; p� ð1Þ

We say that a sequence of points (xi1, . . ., xim) is θ-angle constrained if the angles between
successive segments are all bounded by θ, meaning

ffðxit�1
; xit ; xitþ1

Þ � y; 8t ¼ 2; � � � ;m� 1: ð2Þ

Curvature constraint
For an ordered triplet of points (x, y, z) in R

D, we define the curvature as

curv ðx; y; zÞ ¼ ðRðx; y; zÞÞ�1
; if ffðx; y; zÞ < p

2
;

1; otherwise;

8<
: ð3Þ

where∠ stands for the angle and R(x, y, z) is the radius of the circle passing through x, y, z.

Rðx; y; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffik x � y k2 þ k z � y k2 þ 2 k x � y kk z � y k cos ffðx; y; zÞp

sin ffðx; y; zÞ : ð4Þ

with R(x, y, z) =1 if x, y, z are aligned.
Definition. For a curvature κ> 0, we say that a path (xi1, . . ., xim) is κ-constrained if

curv ðxit�1
; xit ; xitþ1

Þ � k; 8t ¼ 2; . . . ;m� 1.

Definition. For every point y in the graph the annulus neighborhood of that point is a set of
points on the graph that are within ε/2 and ε distance of point y.

Fig 2 shows three D-dimensional points x, y, z which form vertices of a triangle such that x
and z belong to the annulus neighborhood of point y. Under above assumption the angle con-
straint∠(x, y, z)< θ where θ< π/2 implies curvature constraint curv ðx; y; zÞ < k where

k ¼ 2sinðyÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2

2
ð1þ cosðyÞÞ

q
.

Our algorithm
To compute these constrained shortest-path distances we use a simple modification of Dijk-
stra’s algorithm. Then input of the algorithm is the KNN graph, angle or curvature constraint
and landmark points. Algorithm compute the constrained shortest path distance between
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every land mark points and all the points in the graph by taking in to the account that if the
path between three consecutive points violate the constraint then that path would be consid-
ered as infinity or actually there is no path. The main difference of our algorithm with Dijk-
stra’s algorithm is that we need to check the constraint during Dijkstra’s process when we
consider the neighboring nodes of our current node. Suppose we are in current node x and y
and z are the only neighbors of x and these two nodes in Dijkstra’s process are not visited yet
and the weight from x to y is less than weight of x to z, But the path from parnts[x], x, y violate
the constraint but parnt[x], x, z does not violate, so in this case we consider parent[x], x, z as

Fig 2. x and z lie in annulus neighborhood of point y.

doi:10.1371/journal.pone.0137986.g002
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the right path. There is no guarantee always there exist such a path, which means in this case
there is no path from that land mark and a given point in the graph. See algorithm 1 below.
When applied to a neighborhood graph with maximum degree Δ, its computational complexity
is O(ΔN logN) per source point.

Algorithm 1 Curvature Constrained Shortest Path Algorithm
Input: neighborhood graph G including weights of all the connected verte-
cies, the landmark xℓ where ℓ = 1, . . ., L, angle or curvature constraint θ.
for ℓ = 1 to L do

ss = ℓ, t = ℓ, m = 0.
For each vertex i of the graph(i = 1, . . ., N): distance[i] = Inf, cost[i] = Inf,

parent[i] = Inf, temporary[i] = 0.
At the beginning for each vertex i of the graph, there is no path from that

vertex to the landmark xℓ, i.e., path[ℓ][i] = [].
for j = 1 to N do
Update distance[i] for each i 2 neighbors(t) by the weight of edge between

the vertex i and t.
for i = 1 to N do

if distance[i]+ m < cost[i] then
if curv(i, t, ss) < κ or t == ss then
Update parent[i] = t and cost[i] = distance[i]+ m.

end if
end if

end for
Compute temporary + cost vector then find the minimum element of these

vector as well as the vertex I with minimum element.
Update m, i.e., m = min(temporary + cost).
if parent[i]* = Inf then

Update path[ℓ][I] by appending vertex I to the end of path[ℓ][parent[I]].
end if
temporary[I] = Inf.
distance[i] = Inf for all i = 1, . . ., N.
Update t = I and choose ss as the parent of t, i.e., ss = parent[t].
Update weights of edge from vertex ss to t and from vertex ss to t by Inf in

order to avoid revisiting vertices. Our graph is a directed graph, so it is
possible to have edges in both directions between two vertices.

end for
end for
Output: Constrained shortest-Path from each vertex i of the graph and each
landmark ℓ.

Multi-Manifold Clustering

Existing methods
The last decade saw a flurry of propositions aiming at clustering data points when the underlying
clusters are not convex, and in particular, in the situation where the points are sampled near low-
dimensional objects. We gave a few references in the Introduction and now want to elaborate on
three of them, [20, 36] and [27], as we will use them as benchmarks in our experiments. Our
choice was dictated by performance, code availability and relevance to our particular setting.

The method of [25] renders impressive results but is hard to tune, having many parameters,
while the method of [28] is very similar to that of [27] and the code was not publicly available
at the moment of writing this paper. The other methods for multi-manifold clustering that we
know of were not designed to resolve intersections of clusters of possibly identical intrinsic
dimensions and sampling densities.
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We chose the subspace clustering method of [36] among a few others methods that perform
well in this context.

K-Manifolds. Souvenir et al. [20] suggest an algorithm that mimics K-means, replacing
centroid points with centroid submanifolds. The method starts like Isomap by building a
neighborhood graph and computing shortest path distances within the graph. After randomly
initializing a K-by-n weight matrixW = (wki), where wki represent the probability that point i
belongs to the kth cluster, it alternates between an M-Step and an E-Step. In the M-Step, for
each k, the points are embedded in R

K using a weighted variant of multidimensional scaling
using the weights (wki : i = 1, . . ., n). In the E-Step, for each k and i, the normal distance of
point xi to the cluster k is estimated as

dki ¼
P

jwkjðdðxi; xjÞ � dkðxi; xjÞÞP
jwkj

;

where d(xi, xj) denotes the shortest path distance in the neighborhood graph and dk(xi, xj)
denotes the Euclidean distance in the kth embedding, between points xi and xj. The weights are
then updated as wki / exp ð�d2

ki=s
2Þ such that ∑k wki = 1 for all i, where σ2 is chosen

automatically.
Spectral Curvature Clustering. Chen et al. [36] proposed a spectral method for subspace

clustering—the setting where the underlying surfaces are affine. We will compare our method
to theirs when the surfaces are affine, and also when the surfaces are curved. The latter is done
as a proof of concept, for it will be very clear that it cannot handle curved surfaces, like any
other method for subspace clustering we know of. The procedure assumes that all subspaces are
of same dimension d, which is a parameter of the method. For each (d+2)-tuple, xi1, . . ., xid+2, it
computes a notion of curvature Ci1, . . ., id+2 which measure how well approximated this (d + 2)-
tuple is by an affine subspace of dimension d. After reducing the tensor C = (Ci1, . . ., id+2 : it = 1,
. . ., N) spectral graph partitioning [15] is applied.

Spectral Multi-Manifold Clustering. Wang et al. [27] suggest a spectral method using a
dissimilarity that factors in the Euclidean distance and the discrepancy between the local orien-
tation of the data. The surfaces are assumed to be of same dimension d known to the user.
First, a mixture of probabilistic principal component analyzers [37] are fitted to the data,
approximating the point cloud by a union of d-planes. This is used to estimate the tangent sub-
space at each data point. The dissimilarity between two points is then an increasing function of
their Euclidean distance and the principal angles between their respective affine subspaces.
These dissimilarities are fed to the spectral graph partitioning method of [15].

Our algorithm
We consider the following problem of surface clustering. Given a sample x1, . . ., xn 2 R

D sam-
pled from S1 [ � � � [ SK, where for each k, Sk is a smooth, but possibly self-intersecting surface,
label each point according to the surface it belongs to. Our algorithm is quite distinct from all
the other methods for multi-manifold clustering we are aware of, although it starts by building
a q-nearest neighbor graph like many others. The idea is very simple and amounts to clustering
together points that are connected by an angle-constrained path in the neighborhood graph.
Take two surfaces S1 and S2 intersecting at a strictly positive angle. Then for ‘most’ pairs of data
points xi1 2 S1 and xi2 2 S2, a path in the graph going from xi1 to xi2 has at least one large angle
between two successive edges, on the order of the incidence angle between the surfaces; while
for ‘most’ pairs of data points xi1, xi2 2 S1, there is a path with all angles between successive
edges relatively small. To speedup the implementation, we selectM landmarks (withM slightly
larger than K) at random among the data points and only identify what data points are
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connected to what landmark via a κ-constrained path in the graph.M and κ are parameters of
the algorithm. Let ξℓi = 1 if point i and landmark ℓ are connected that way, and ξℓi = 0 if not.
We use ξi: = (ξℓi : ℓ = 1, . . .,M) as feature vectors that we group together and cluster using hier-
archical clustering with complete linkage.

Algorithm 2 Path-Based Clustering (PBC)
Input: data (xi); parameters q, K, M, κ

Build q-nearest neighbor graph
Choose M landmarks are random
for i = 1 to n do

For each landmark x̂ ‘, identify which points xi it is connected to via a κ-
constrained path in the graph, and set ξℓi = 1 if so, and ξℓi = 0 otherwise.
end for
Group and then apply hierarchical clustering to the feature vectors ξ1, . . .,
ξn to find K clusters, where ξi: = (ξℓi : ℓ = 1, . . ., M).

Intersections. We are most interested in the case where the surfaces intersect. Concretely,
given K compact, simply connected submanifolds S1, . . ., SK � R

D of maximum pointwise cur-
vature bounded by κ<1, we consider the noisy mixture distribution

x ¼ sþ z; s �
XK
k¼1

pkmSk
z � mBð0;tÞ; ð5Þ

where μS denotes the uniform distribution over set S.
Definition. We say that two smooth submanifolds S1 and S2 have incidence angle α 2 (0, π/

2) at an intersection point x 2 S1\S2 if the smallest nonzero principal angle between the tan-
gent subspaces of S1 and S2 at x is equal to α.

We assume that, for any pair of underlying surfaces Sk and Sℓ, the minimum incidence angle
between them at any point along their intersection is at least α> 0. The compactness of the
surfaces imply the existence of a function ω(ε)! 0 with ε! 0 such that, for any ε> 0, if dist
(x, Sk) _ dist (x, Sℓ)� ε, then dist (x, Sk \ Sℓ)� ω (ε). Otherwise, there is C> 0 such that, for
allm	 1, there is xt satisfying dist (xt, Sk) _ dist (xt, Sℓ)� 1/m and dist (xt, Sk \ Sℓ)	 C. By the
fact that (xt) is bounded (since Sk and Sℓ are), there is a subsequence that converges to some x,
which is necessarily in both Sk and Sℓ since these sets are closed. At the same time, dist (x, Sk \
Sℓ)	 C by continuity of the distance function, which is a contradiction. In fact, the assumption
on the incidence angle implies that ω(ε)� Cε for some C> 0 not depending on ε—but this is
much longer to prove.

Landmarks. A key ingredient to the success of the procedure is that there is at least one
landmark chosen from each cluster that is far away from any other cluster. That said, we work
with the stronger condition that all chosen landmarks are more than ε away from the other
clusters, which leads to simplifications latter on in the discussion.

Theorem 1 p
Mðεþ 2tÞ ! 1, the probability that all M landmarks are away from the other
clusters by at least ε converges to 1.

Proof. The probability of selecting a point from Eq (5) with s 2 Sk away from any other clus-
ter by at least ε is pkðεÞ :¼ pkð1� mSk

ðS‘ 6¼kS
ε
‘ÞÞ, where Sε denotes the points in R

D within dis-

tance ε of S. Then the probability that allM landmarks are away from the other clusters by at
least ε is equal to

p
Mðεþ 2tÞ :¼ ð
X
k

pkðεþ 2tÞÞM ð6Þ

where we used the triangle inequality. By dominated convergence, when ε, τ! 0, pk(ε + 2τ)!
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πk(1 - μSk ([ℓ6¼k Sℓ)) = πk, implying p
Mðεþ 2tÞ ! 1, if we assume that μSk(Sℓ) = 0 when ℓ 6¼ k,
which is a very mild assumption we make hereafter.

Numerical Expriments

Synthetic Data
In our experiments we use annulus neighborhood of points to build our graph. The constraint
is angle constraint which is easier to tune. The synthetic datasets we generated are similar to
those appearing in the literature. We have applied our method in 8 synthetic data including:
Three Planes(TP), Two Spirals (TS1), Five Segments(FS), Dollar-Sign and Plane and Roll
(DPR), Roll and Plane(RP), Cone and Plane(CP), Two Spheres(TS2), Rose Curve and Circle
(RC). Fig 3 shows the performance of our algorithm on eight synthetic data set. The miscluster-
ing rates for our method, and the other three methods, are presented in Table 1, where we see
that our method achieves a performance at least comparable to the best of the other three
methods on each dataset. To compute the accuracy of clustering we remove a few ambiguous
points close by intersection. Spectral Curvature Clustering (SCC) works well on linear mani-
folds (as expected) while it fails when there is curvature (Fig 4a). K-Manifolds fails in the more
complicated examples (Fig 4c and 4d). We found that this algorithm is very slow since it has to
compute the shortest path between all the points, so that we could not apply it to some of the
largest datasets. We mention that it assumes that clusters intersect, and otherwise does not

Fig 3. Result of our method on 8 synthetic datasets.

doi:10.1371/journal.pone.0137986.g003

Table 1. Clustering accuracy on synthetic data.

DATA SET K-MANIFOLDS SCC SMMC PBC-ANGLE-ANNULUS PBC-CURVATURE

TP 97.1% 97.8% 99.5% 99.6% 99.6%

TS1 95.2% 54.8% 99.7% 99.2% 99.1%

FS 59.1% 94.9% 99.6% 98.1% 98.0%

DPR 50.2% - 99.6% 99.7% 99.5%

RP 56.5% - 97.6% 96.7% 96.9%

CP - - 99.6% 97.9% 98.1%

TS2 - - 96.7% 98.6% 98.4%

RCC 62.9% - 64.8% 99.8% 99.7%

doi:10.1371/journal.pone.0137986.t001
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work properly. Our method and Spectral Multi-Manifolds Clustering (SMMC) perform com-
parably on most datasets, but SMMC fails in the Rose Curve and Circle example (Fig 4b). Since
the path from self-intersecting rose is very smooth at the intersection SMMC cannot capture
the correct manifold. The local geometric information of the sampled data can not be used to
construct a suitable affinity matrix. Pairwise affinity between two local tangent spaces at the
intersection is very similar. For more detail please look at Fig 3 in SMMC paper. Our method
can take care of very smooth self-intersecting manifolds or multiple manifolds at the intersec-
tion with a choice of an appropriate constraint. We note that K-Manifold, SCC and SMMC all
require that all surfaces are of same dimension, which is a parameter of these methods, while
our method does not need knowledge of the intrinsic dimensions of the surfaces and can oper-
ate even when these are different.

Clustering of 2D Image Data
In this section we apply our method on the COIL-20 dataset (Fig 5) which includes 1440 gray-
scale images of 20 objects. Each object contains 72 images taken by a camera at different angles.
The original resolution of each image is 128 × 128. We first projected the dataset onto the top
10 principal components, then apply our path-based clustering algorithm. We tested our
method on the three very similar objects 3, 6 and 19. The algorithm is 99% accurate (misclusters
only 2 images out of 216) bringing a significant improvement over the state-of-the-art result of
70% reported in [27]. Lastly, we evaluated our method on the whole dataset obtaining an 83.6%
accuracy, improving on the 70.7% accuracy reported in [27]. (Here we used the top 20 principal
components.) Since in this case we have 20 different classes, we increased the number of land-
marks to 100 to make sure we sampled that at least a few landmarks from each class.

Clustering of Human Motion Sequences
In computer vision clustering of human motion sequences into different class of activities per-
formed by a subject is referred to temporal segmentation. In this section we test our algorithm

Fig 4. Examples where the other methods fail. (a) SCC, (b) SMMC, (c, d) K-Manifolds.

doi:10.1371/journal.pone.0137986.g004

Fig 5. The 20 objects from the COIL-20 database. This figure is similar but not identical to the original image, and is therefore for illustrative purposes only.

doi:10.1371/journal.pone.0137986.g005
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on a sequence of video frames including different activities performed by a subject. We choose 4
mixed actions from subject 86, trial number 9 of the CMUMoCap dataset. This is the data set
used by [20].? The data consists in a temporal sequence of 62-dimensional representation of the
human body via markers inR3. One motion sequence of 4794 frames and corresponding result
of path-based multi-manifold clustering are given in Fig 6. Four activities are labeled from 1 to 4.
We do not label the frames where the subject switches from one action to another because of the
uncertainty about the true activity. In experimental results we used the same data set as K-Mani-
fold used in their paper. You can refer to their paper for more details. In this data SCC fails since
it is suitable for linear surfaces with the intersection, it wont work for nonlinear manifolds.

Segmentation of Video Sequences
In this section we consider the problem of partitioning a video sequence into different scenes.
We consider the same video sequence used in [36, 38]. The video is an interview from Fox
News containing 135 image frames of size 294 × 413. Firstly we change each RGB image frame
to the gray scale intensity image, then resize it to an 74 × 104 image. After concatenating all
pixels of each image and putting into a vector of size 7696, we construct a matrix of size
135 × 7696 where each row represents a frame of the original video sequence. Applying our
algorithm on this matrix we get a perfect clustering (100%). We repeated the experiment, this
time projecting the data onto the top 10 principal components as done in [36, 38], obtaining a
matrix of size 135 × 10. We still get a 100% accuracy, for an even wider range of parameters.

Discussion

Robustness to Noise
We note that all the other methods we know of for multi-manifold clustering do not perform
well unless the noise level is quite small. As it appears in our method when we increase the

Fig 6. Result of human activity segmentation using Path-Based Clustering. There are 4 activities:
walking (1), looking (2), sitting (3) and standing (4). Top: a sample of the sequence. Middle: ground truth.
Bottom: output of our algorithm.

doi:10.1371/journal.pone.0137986.g006
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amount of noise the possibility of connecting points from different surface with curvature con-
strained path increases. Fig 7 shows the error rate for two intersecting curves with addition of
standard uniform noise, as it can be illustrated, when we increase the noise, notion of two dif-
ferent surface or manifold would be ambiguous where we can say all the points belong to one
manifold. All other three methods fail to capture the correct manifold with even small noise
where our method still perform well with 20% noise. See Fig 8 for an example with a substantial
amount of noise, where SMMC fails while PBC succeeds.

Fig 7. Effect of noise on performance of our algorithm on two intersecting curves shown in Fig 8.

doi:10.1371/journal.pone.0137986.g007

Fig 8. Example of noisy data. (a) output of SMMC. (b) output of PBC.

doi:10.1371/journal.pone.0137986.g008

Multiple Manifold Clustering

PLOS ONE | DOI:10.1371/journal.pone.0137986 September 16, 2015 11 / 15



The choice of constraint
One of the main challenges of our algorithm is the choice of the angle constraint with annulus
graph, since we deal with multiple manifolds with intersection. The large angle constraint
causes the points from different manifolds to be connected using constrained shortest-path.
This ultimately leads to multiple manifolds being clustered as one class. We also considered
implementing the small constraint, however, this constraint does not allow us to accurately
capture the structure of the manifold. Fig 9 shows two intersecting spheres and the distribution
of maximum angle in an unconstrained shortest-path between all the points and a given land-
mark. The distributions of maximum angle for the points within the same sphere as landmark
belongs to (blue) is separable from the distributions of maximum angle for the points within
the sphere that landmark does not belong to (red). This illustration guides us to the idea that
with the small amount of labeled points we are able to find the appropriate angle constraint. In
another experiment we started with an angle constraint of 50° and used 1% of the points in
each cluster as labeled data. We then compared the performance of our algorithm on the
labeled data. In order to find the optimum angle constraint we increased or decreased our
angle constraint by a certain factor. We initially begin with dividing our angle constraint by a
factor of 2, until the error ceases to decrease. In the case that the error increases, we increase
the angle constraint by a factor of 4/3. In most cases we were able to find the optimal angle con-
straint within 5 iterations. As it can be understood from Fig 9 the distribution of the maximum
angle of the points within a class follows a flat distribution. By having a small number of labeled
points we are able to capture the distribution of the maximum angle for the rest of the points in
that class.

Computational Complexity
The algorithm is quite fast. Building a symmetric q-nearest neighbor graph using cover trees
[39] takes order O(qN logN), where the implicit constant depends exponentially on the intrin-
sic dimensions of the surfaces and linearly on the ambient dimension D. The angle-constrained
pathfinder routine is a simple variant of Dijkstra’s algorithm, whose implementation by

Fig 9. (a) two intersecting Sphere. (b) the distribution of maximum angle in unconstrained shortest-paths between points and a given landmark.

doi:10.1371/journal.pone.0137986.g009
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Fibonacci heaps runs in O(qN logN). Hence, calling this routine once for each landmark costs
O(qMN logN). Grouping the feature vectors O(FMN) and then clustering them by complete
linkage costs O(F2 logF), where F is the (data-dependent) number of distinct feature vectors ξi,
often of the order of K in our experiments.

Relation to Landmark-Isomap
As [14] argued that Local Linear Embedding [40] could be readily used for clustering non-
intersecting manifolds, in a sense, we show that a constrained version of Landmark-Isomap
[41] can be used to cluster possibly intersecting manifolds

Conclusion
In this paper we proposed a new method to cluster multiple manifolds with the intersection
which works based on shortest constrained path. We applied our method to synthetic and
some real datasets and demonstrated that it performs comparably to the best methods such as
K-manifold and spectral multi-manifold clustering. We are currently experimenting with vari-
ants—some based on other constraints—that would lead to path-based clustering algorithms
that perform at least as well in practice as algorithm 1, and are consistent in the large-sample
limit.
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