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SUMMARY

Alterations in ER homeostasis have been implicated
in the pathophysiology of obesity and type-2diabetes
(T2D). Acute ER stress induction in the hypothalamus
produces glucose metabolism perturbations. How-
ever, the neurobiological basis linking hypothalamic
ERstresswith abnormal glucosemetabolism remains
unknown. Here, we report that genetic and induced
models of hypothalamic ER stress are associated
with alterations in systemic glucose homeostasis
due to increased gluconeogenesis (GNG) indepen-
dent of body weight changes. Defective alpha mela-
nocyte-stimulating hormone (a-MSH) production
underlies this metabolic phenotype, as pharmaco-
logical strategies aimed at rescuing hypothalamic
a-MSH content reversed this phenotype at metabolic
and molecular level. Collectively, our results posit
defective a-MSH processing as a fundamental medi-
ator of enhanced GNG in the context of hypothalamic
ER stress and establish a-MSHdeficiency in proopio-
melanocortin (POMC) neurons as a potential contrib-
utor to the pathophysiology of T2D.

INTRODUCTION

Perturbations in ER performance, and the subsequent develop-

ment of ER stress, have been implicated in the pathophysiology

of metabolic disorders such as obesity and type-2 diabetes

(T2D) (Ozcan et al., 2004, 2006). In particular, the hypothalamus

has emerged as a key area of theCNS, causally linking ER stress,

leptin resistance, and overweight (Cakir et al., 2013; Contreras

et al., 2014; Hosoi et al., 2008; Ozcan et al., 2009; Won et al.,

2009; Zhang et al., 2008). We have recently reported that the
cellular responses to ER stress are modulated by Mitofusin 2

(Mfn2) (Muñoz et al., 2013; Schneeberger et al., 2013; Sebastián

et al., 2012), a GTPase-containing mitochondrial protein that

plays a prominent role in establishing mitochondria-ER con-

tacts (de Brito and Scorrano, 2008). Consistently, mice lacking

Mfn2 in hypothalamic proopiomelanocortin (POMC) neurons

(POMCMfn2KO), a subpopulation of anorexigenic neurons crit-

ical for energy and glucose homeostasis regulation (Grayson

et al., 2013; Schneeberger et al., 2014), exhibited an obesogenic

phenotype due to early ER-stress-induced leptin resistance

(Schneeberger et al., 2013).

Albeit the connection between hypothalamic ER stress and

obesity is well established, its potential contribution to the devel-

opment of glucose homeostasis alterations irrespective of body

weight has been scarcely investigated. Pharmacological and

genetic studies indicate that ER stress pathways in the hypo-

thalamus, and in POMC neurons, regulate whole-body glucose

metabolism (Purkayastha et al., 2011; Williams et al., 2014).

However, the precise molecular downstream mediators remain

undefined.

Here, we explored the mechanisms by which hypothalamic

POMCneurons, in the context of ERstress, contribute to systemic

glucosemetabolismdisturbances. To this aim,westudied genetic

and induced mouse models that develop early hypothalamic ER

stress. Our results establish alpha-melanocyte-stimulating hor-

mone (a-MSH), a neuropeptide derived from POMC processing,

as a key mediator of hypothalamic ER-stress-induced hepatic

gluconeogenesis (GNG) independent of obesity.

RESULTS

Deletion of Mfn2 in POMC Neurons Leads to Systemic
Alterations in Glucose Homeostasis Independently of
Obesity Development
Twelve-week-old POMCMfn2KO mice exhibit a dramatic obese

phenotype caused by hyperphagia and reduced thermogenesis.
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Figure 1. Defective Glucose Homeostasis in Weight-Matched POMCMfn2KO Mice Is Not Caused by Pancreatic Defects

(A–C) Fed and fasted glycemia (A), glucose tolerance (B), and insulin sensitivity (C) tests in control (n = 9–10) and POMCMfn2KO (n = 7–9) mice.

(D and E) Plasma insulin (D) and in vivo GSIS (E) in control (n = 10) and POMCMfn2KO (n = 7) mice.

(F and G) Pancreatic beta/alpha cell mass (F) and representative fluorescence images (G) of pancreatic islets (n = 3/genotype).

(H) Tissue-specific glucose uptake in soleus muscle (Sol), gastrocnemius muscle (Gas), liver (Liv), and epididymal white adipose tissue (eWAT) in control (n = 3)

and POMCMfn2KO (n = 4) mice.

Data are expressed as mean ± SEM. **p < 0.01. NS, not significant. The scale bar represents 50 mm. See also Figure S1.
As expected, these mice showed marked alterations in glucose

homeostasis including hyperglycemia, hyperinsulinemia, glucose

intolerance, and insulin resistance (Schneeberger et al., 2013; Fig-

ures S1A–S1D).

To discriminate whether abnormal glucose homeostasis was a

primary defect or secondary to obesity, we performed subse-

quent studies in 6-week-old POMCMfn2KOmice when no differ-

ences in body weight or adiposity were recorded (Schneeberger

et al., 2013). Weight-matched POMCMfn2KO mice exhibited

fasting hyperglycemia (Figure 1A), glucose intolerance (Fig-

ure 1B), and insulin resistance (Figure 1C). Together, these re-

sults demonstrate defective glucose control in POMCMfn2KO

mice irrespective of body weight.
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Increased Hepatic Glucose Production in Young
Weight-Matched POMCMfn2KO Mice
Pancreatic b-cell dysfunction may cause abnormal glucose ho-

meostasis. However, no alterations in plasma insulin (Figure 1D),

glucose-stimulated insulin secretion (GSIS) (Figure 1E), pancre-

atic islet architecture, and number (control: 46 ± 9 islets/cm2

versus POMCMfn2KO: 60 ± 6 islets/cm2; NS; n = 3/genotype)

or pancreatic a/b-cell mass (Figures 1F and 1G) were observed

in 6-week-old weight-matched POMCMfn2KO mice, indicating

normal pancreatic islet mass and function.

To assess the contribution of individual insulin-sensitive tis-

sues to the development of glucose metabolism perturbations

in POMCMfn2KO mice, we measured in vivo glucose uptake



Figure 2. Enhanced Hepatic GNG in Weight-Matched POMCMfn2KO Mice

(A–D) Pyruvate tolerance test (A) and area under the curve (AUC) (B) and glycerol tolerance test (C) and AUC (D) of control (n = 9–11) and POMCMfn2KO

(n = 5–7) mice.

(E) Heatmap representation of relative gene expression changes in livers from control (n = 3) and POMCMfn2KO (n = 4) mice.

(F) PEPCK activity in liver homogenates from control (n = 9) and POMCMfn2KO (n = 15) mice.

(G) Plasma triglyceride concentration in control (n = 6) and POMCMfn2KO (n = 8) mice.

(H and I) Liver weight (H) and triglyceride content (I) in control (n = 6) and POMCMfn2KO (n = 7) mice.

(J) Expression of key lipid metabolism genes in livers from control and POMCMfn2KO mice (n = 6/genotype). Hprt was used as housekeeping gene.

Data are expressed as mean ± SEM. BW, body weight. *p < 0.05. See also Figure S2 and Tables S1 and S2.
following a glucose load. 2-[3H]deoxyglucose (2DG) uptake in

POMCMfn2KO mice was similar to control counterparts in

all tested tissues, although a non-significant trend to exhibit

higher values in skeletal muscle was observed in mutant mice

(Figure 1H). Nevertheless, this observation could not explain

the impaired glucose homeostasis observed in POMCMfn2KO

mice and it could represent a secondary compensatory

mechanism.
The liver is a major regulator of whole-body glucose homeo-

stasis through hepatic glucose production (HGP). Pyruvate

tolerance test (PTT) and glycerol tolerance tests (GlyTTs)

were used to assess HGP due to the difficulty to perform

hyperinsulinemic-euglycemic clamps at such a young age

(4 weeks). POMCMfn2KO mice displayed significantly higher

blood glucose levels (Figures 2A–2D), suggestive of enhanced

HGP.
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Figure 3. Reduced a-MSH Underlies Hypothalamic ER-Stress-Induced Hepatic GNG in POMCMfn2KO Mice

(A) Immunofluorescence images showing a-MSH staining in the PVN from 6-week-old control and POMCMfn2KO mice and integrated density quantification

(n = 3/genotype). 3V, third ventricle.

(legend continued on next page)
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In an attempt to determine the hepatic molecular alterations

leading to enhancedGNG, we performed a global transcriptomic

analysis in livers fromyoungweight-matchedPOMCMfn2KOand

control mice (Table S1). To establish relevant dysregulated path-

ways, we conducted associated disease analyses. The most

highly enriched category was ‘‘nutritional and metabolic dis-

eases,’’ with 535 transcripts significantly altered (Figure S2A;

Table S2). A large proportion of these transcripts (62%) belonged

to thesubcategory ‘‘glucosemetabolismdisorders’’ (FigureS2B).

Consistent with enhanced HGP, the expression of key hepatic

gluconeogenic genes such as cAMP responsive element-binding

protein 1 (Creb1), glucose 6-phosphatase (G6pc), and cytosolic

phosphoenolpyruvate carboxykinase (Pck1) was increased in

mutant mice (Figure 2E; Table S2). Overexpression of these

genes was validated by qRT-PCR (Figure S2C). Hepatic phos-

phoenolpyruvate carboxykinase (PEPCK) enzyme activity was

also increased in POMCMfn2KO mice (Figure 2F). No changes

in liver glycogen content were observed (control: 2.85 ±

0.97 mg/mg liver versus POMCMfn2KO: 3.34 ± 0.76 mg/mg liver;

NS; n = 15/genotype). These results suggest that enhancedGNG

is a major contributor to altered glucose homeostasis in weight-

matched POMCMfn2KO mice.

In contrast, hepatic lipidmetabolismwasunperturbed inmutant

mice, as no changes in plasma triglycerides (Figure 2G), liver

weight (Figure 2H), hepatic triglyceride concentration (Figure 2I),

and expression of key enzymes such as acetyl-CoA carboxylase

(Acaca), fatty acid synthase (Fasn), diacylglycerol acyltransferase

2 (Dgat2), stearoyl-coenzyme A desaturase 1 (Scd1), or carnitine

palmitoyltransferase 1 (Cpt1a) were observed (Figure 2J).

Next, we assessed biological parameters of hypothalamic-pi-

tuitary-adrenal axis function. Plasma concentration of epineph-

rine (control: 23.6 ± 1.2 pg/ml versus POMCMfn2KO: 27.1 ±

2.7 pg/ml; NS; n = 5–7/genotype), norepinephrine (control:

235 ± 50 pg/ml versus POMCMfn2KO: 280 ± 47 pg/ml;

NS; n = 5–7/genotype), adenocorticotropic hormone (control:

48.8 ± 7.1 pg/ml versus POMCMfn2KO: 76.3 ± 19.3 pg/ml; NS;

n = 5–7/genotype), and corticosterone (basal control: 48.2 ±

12.3 pg/ml versus basal POMCMfn2KO: 68.3 ± 21.2 pg/ml;

NS; n = 6–9/genotype; stressed control: 447 ± 25 pg/ml versus

stressed POMCMfn2KO: 451 ± 35 pg/ml; NS; n = 6–9/genotype)

was unaltered. Together, these results suggest that neither

defective insulin counter-regulatory hormones nor hypothalam-

ic-pituitary-adrenal axis function mediates the enhanced GNG

observed in POMCMfn2KO mice.

Reduced a-MSH in POMCMfn2KO Mice Underlies
Enhanced GNG
Hypothalamic POMC neurons release a-MSH, a critical neuro-

peptide implicated in energy balance and metabolic control
(B–E) Vehicle (V) or a-MSHwere administered i.c.v. and PTT (B), its AUC (C), expre

(n = 6/group).

(F) Liver immunoblots for CREB and pCREB expression after acute i.c.v. adminis

(G) Densitometric quantification.

(H) Hypothalamic levels of a-MSH after acute central administration of V or TUD

(I and J) PTT (I) and AUC (J) after central administration of V or TUDCA in contro

(K) Expression of hepatic gluconeogenic genes after central administration of V

Data are expressed as mean ± SEM. *p < 0.05; **p < 0.01. The scale bar represe
(Schneeberger et al., 2014). Weight-matched 6-week-old

POMCMfn2KO mice displayed decreased hypothalamic a-MSH

content (Schneeberger et al., 2013) and staining in neuronal

projections to target areas such as the paraventricular nucleus

(PVN) (Figure 3A). To investigate whether augmented GNG re-

sulted from reduced a-MSH production, we assessed the effects

of intracerebroventricular (i.c.v.) administration of this peptide.

Acute i.c.v. a-MSH delivery to POMCMfn2KO mice normalized

GNG(Figures3Band3C).Consistently, expressionof hepaticglu-

coneogenic enzymes Pck1 and G6pc (Figure 3D), as well as

PEPCK activity (Figure 3E), was restored after central a-MSH

administration.

The Effects of a-MSH on HGP in POMCMfn2KOMice Are
Mediated by CREB
Transcriptome analysis identified Creb1 as a differentially ex-

pressed gene in livers from POMCMfn2KO mice (Figures 2E

and S2C). Key gluconeogenic genes, including Pck1 and

G6pc, contain cAMP responsive elements (CRE) (Altarejos and

Montminy, 2011), and thus, we assessed whether Creb1 medi-

ated the effects of hypothalamic a-MSH on GNG. Consistent

with transcriptomic data, liver homogenates from weight-

matched 6-week-old POMCMfn2KO mice showed increased

CREB protein content, which was unchanged after i.c.v.

a-MSH administration (Figures 3F and 3G). CREB activity is

mainly regulated by phosphorylation (Altarejos and Montminy,

2011). Liver phospho-CREB (pCREB) levels in POMCMfn2KO

were also elevated (Figures 3F and 3G). Remarkably, acute

i.c.v. a-MSH was able to normalize pCREB levels to control

values (Figures 3F and 3G). To assess the relevance of these

findings, we investigated the effects of the manipulation of

CREB phosphorylation status using the PKA selective inhibitor

Rp-cAMPS, which effectively inhibits GNG (Dragland-Meserve

et al., 1986). POMCMfn2KO mice treated with Rp-cAMPS dis-

played a normalized PTT, consistent with reduced gluconeo-

genic capacity (Figure S3). Together, these results indicate that

a-MSH deficiency in POMCMfn2KO mice leads to enhanced

gluconeogenic programming mediated by CREB.

ER-Stress-Associated Reduction of a-MSH Is the Cause
of Enhanced HGP in POMCMfn2KO Mice
Decreased a-MSH content, in the context of hypothalamic ER

stress, is normalized after ER stress relief by central chaperone

treatment (Cakir et al., 2013; Schneeberger et al., 2013). Thus,

we evaluated the acute effects of i.c.v. delivery of the chemical

chaperone tauroursodeoxycholic acid (TUDCA) on GNG in

POMCMfn2KOmice. This treatment was able to normalize hypo-

thalamic a-MSH content (Figure 3H) and ameliorated the gluco-

neogenic response to pyruvate in POMCMfn2KO mice (Figures
ssion of hepatic gluconeogenic genes (D), and PEPCK activity (E) were assayed

tration of V or a-MSH (n = 4/group). All samples were run on the same gel.

CA in control (n = 3–4/group) and POMCMfn2KO (n = 5/group) mice.

l (n = 7/group) and POMCMfn2KO (n = 10/group) mice.

or TUDCA in control (n = 3–4/group) and POMCMfn2KO (n = 5/group) mice.

nts 100 mm. See also Figure S3.
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3I and 3J). Hepatic expression of gluconeogenic genes was also

recovered after TUDCA administration (Figure 3K). Collectively,

our data suggest that augmented GNG in POMCMfn2KO mice

is the consequence of ER-stress-driven reduction of hypotha-

lamic a-MSH levels.

Short-Term HFD Administration Causes ER-Stress-
Mediated Reduction of Hypothalamic a-MSH Content
and Enhanced HGP in the Absence of Obesity
The relevance of hypothalamic a-MSH in the regulation of GNG

was further investigated in a pathophysiological model that reca-

pitulates the effects ofWestern diets upon glucose homeostasis.

To this end, we fedC57Bl/6Jmicewith high-fat diet for 4 consec-

utive days (4d-HFD), a sufficiently brief time interval to avoid

weight gain as a possible confounding factor. Consistent with

previous reports (Lee et al., 2011; Wang et al., 2001; Wiedemann

et al., 2013), short-term HFD feeding caused no significant

changes in body weight (Figure 4A) or plasma leptin levels

(Figure 4B) but induced fasting hyperglycemia (Figure 4C),

hyperinsulinemia (Figure 4D), and impaired pyruvate tolerance

(Figure 4E) when compared to counterparts fed with normal

chow diet (NCD). Consistently, increased expression of liver glu-

coneogenic genes (Figure 4F) and PEPCK activity (Figure 4G)

were observed in 4d-HFD mice.

Themolecular mechanisms underlying these rapid detrimental

effects on glucose homeostasis after short-term HFD feeding

are incompletely understood. We explored whether 4d-HFD

regime was sufficient to enable ER stress in the hypothalamus

of C57Bl/6J mice. We found that 4d-HFD feeding significantly

increased the transcript expression of key ER stress markers,

such as activating transcription factor 4 (Atf4) and 6 (Atf6),

spliced form of X-box-binding protein 1 (Xbp1s), and binding

immunoglobulin protein (BiP/Hspa5), suggesting enhanced hy-

pothalamic ER stress (Figure 4H). Protein expression analysis

of ER stress mediators in the hypothalamus from 4d-HFD mice

also showed a significant increase of PERK phosphorylation

(Figure 4I), which is a major transducer of the ER stress response

in the hypothalamus (Ozcan et al., 2009), and a trend to increase

in other ER stress markers (Figure S4A). Mfn2 expression was

reduced in the hypothalamus of 4d-HFD (Figure 4J). Remark-

ably, the deleterious effects of short-term HFD were associated

with reduced hypothalamic a-MSH content (Figure 4K) and

fiber staining in neuronal projections to the PVN (Figure 4L)

despite unaltered Pomc mRNA (NCD: 100% ± 13% versus

4d-HFD: 97% ± 12%; NS; n = 7/group), POMC protein content

(Figure 4M), or POMC neuron number (NCD: 983 ± 40 versus

4d-HFD: 993 ± 76; NS; n = 3/group). The reduced a-MSH/
Figure 4. Short-Term HFD Causes Enhanced GNG in the Absence of O

(A–G) Effects of NCD or 4d-HFD in C57BL/6J mice on (A) body weight (n = 10/g

(D) plasma insulin (n = 8/group), (E) PTT (n = 10/group), (F) hepatic expression of

(H) Hypothalamic mRNA expression of ER stress markers (n = 12/group).

(I and J) Hypothalamic PERK phosphorylation (n = 6/group; I) and Mfn2 protein l

(K and L) Hypothalamic a-MSH content (n = 6/group; K) and immunofluorescenc

integrated density quantification (n = 3/genotype; L).

(M) Hypothalamic POMC content (n = 6/group).

(N) PTT and AUC after central administration of vehicle or a-MSH (n = 6 to 7/gen

Data are expressed as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001. The sca
POMC ratio suggests defective POMC processing. However,

no changes in the transcript expression of the main POMC con-

vertases were observed in the hypothalamus of 4d-HFD mice

(Figure S4B). Given that proconvertase (PC) 1/3 and PC2 are

regulated at protein level rather than mRNA level (Cakir et al.,

2013), we conducted immunoblot analysis. Whereas PC1/3

expression was unchanged, PC2 levels were increased in the hy-

pothalami from 4d-HFDmice (Figure S4C), likely as a compensa-

tory mechanism to maintain adequate melanocortin tone.

To demonstrate a causal relationship between defective hypo-

thalamic a-MSH levels and increased GNG, we conducted i.c.v.

a-MSH administration studies. Acute delivery of a-MSH was

able to restore pyruvate tolerance in 4d-HFD mice (Figure 4N).

DISCUSSION

Enhanced hepatic GNG is a major contributor of fasting hyper-

glycemia in T2D patients (DeFronzo et al., 1989; Magnusson

et al., 1992). In addition to the classical hormonal regulatory

mechanisms, the brain has long been recognized as a key regu-

lator of this biological process (Bisschop et al., 2015) and hypo-

thalamic POMC neurons have recently emerged as a relevant

neuronal population implicated in the regulation of HGP (Ber-

glund et al., 2012, 2013; Claret et al., 2011; Shi et al., 2013; Wil-

liams et al., 2014; Xu et al., 2010). Given that acute ER stress

induction in the hypothalamus produces glucose metabolism al-

terations in a body-weight-independent manner (Purkayastha

et al., 2011), we investigated the molecular link between ER

stress in POMC neurons and glucose homeostasis.

Wehave recently reported thatMfn2criticallymodulatescellular

ER stress responses (Muñoz et al., 2013). Consistently, deletion of

Mfn2 leads to ER stress in vitro and in vivo (Ngoh et al., 2012;

Schneeberger et al., 2013; Sebastián et al., 2012). In POMC neu-

rons, Mfn2 deficiency causes an obesogenic phenotype charac-

terized by early hypothalamicER-stress-induced leptin resistance

(Schneeberger et al., 2013). Remarkably, POMCMfn2KO mice

exhibit abnormal glucose homeostasis before the onset of obesity

due to enhanced GNG. Along the same lines, our short-term HFD

model recapitulated the phenotypical outcome of POMCMfn2KO

mice, defined by reduced hypothalamic Mfn2 expression, ER

stress, and enhanced gluconeogenic capacity in the absence of

changes in body weight.

Defective processing and production of a-MSH neuropeptide

has been proposed to constitute the underlying neurobiological

basis of hypothalamic ER stress in obesity (Cakir et al., 2013;

Schneeberger et al., 2013). Similarly, 4 days of HFD administra-

tion also caused a reduction in hypothalamic a-MSH content and
besity due to ER-Stress-Associated Reduction in a-MSH

roup), (B) plasma leptin (n = 8/group), (C) fasting blood glucose (n = 8/group),

gluconeogenic genes, and (G) PEPCK activity (n = 8/group).

evels (n = 6/group; J).

e images showing a-MSH staining in the PVN from NCD or 4d-HFD mice and

otype/treatment).

le bar represents 100 mm.
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fiber staining in the PVN. Even though abnormal a-MSH traf-

ficking to target areas cannot be completely ruled out, the

reduced a-MSH/POMC ratio suggests that defective POMCpro-

cessing is the likeliest cause in both models studied. Our data

also indicate that processing perturbations are the consequence

of intrinsic factors (e.g., POMC protein misfolding) rather than

defective PC expression.

In view of these results, it was reasonable to speculate that

altered a-MSH content was also implicated in the development

of inadequate glucose homeostasis in the context of hypo-

thalamic ER stress. Indeed, our data demonstrate a causative

involvement of a-MSH in the maintenance of systemic glucose

homeostasis, as restoration of hypothalamic a-MSH levels,

either by direct administration of this peptide and/or pharmaco-

logical ER stress relief, normalized HGP in these mouse models.

The beneficial effects of the pharmacological treatment are likely

mediated through direct actions on POMC neurons, although we

cannot exclude potential effects on other hypothalamic areas

due to the delivery route used.

The precise mechanisms by which hypothalamic a-MSH con-

trols hepatic GNG are still incompletely understood, although a

key mediator appears to be the modulation of CREB activity in

the liver. CREB is considered a master positive regulator of glu-

coneogenic gene expression (Altarejos and Montminy, 2011;

Erion et al., 2009; Herzig et al., 2001, 2003). However, conditional

genetic ablation of Creb1 in adult hepatocytes did not cause al-

terations in glucose metabolism or expression of gluconeogenic

genes (Lee et al., 2014). This suggests functional redundancy,

and thus we cannot exclude modulatory effects of a-MSH on

other proteins that bind to CREs.

Extensive evidence indicates that the hypothalamus, and

particularly the melanocortin system, regulates HGP through

multisynaptic connections to autonomic centers (Bisschop

et al., 2015). Recent studies have used genetic deletion and re-

expression strategies to delineate the role of melanocortin

signaling in sympathetic and parasympathetic preganglionic

neurons (Berglund et al., 2014; Rossi et al., 2011). Reactivation

of melanocortin 4 receptors (MCR4s), which bind a-MSH, in all

cholinergic neurons attenuated hyperglycemia and hyperinsuli-

nemia, whereas its selective re-expression in brainstem neurons

was sufficient to improve hyperinsulinemia (Rossi et al., 2011).

This suggests that MC4R signaling in cholinergic preganglionic

sympathetic neuronsmediates HGP suppression. This is consis-

tent with our data demonstrating that reducedmelanocortin tone

in POMCMfn2KO or short-term HFD-fed mice is associated with

increased GNG. The importance of the sympathetic outflow on

the hypothalamic regulation of HGP is further supported by other

studies (Purkayastha et al., 2011; van den Hoek et al., 2008). In

this sense, preliminary results showed that prazosin (an alpha-1

adrenergic receptor blocker) was able to reverse enhanced HGP

in POMCMfn2KO mice (M.S., A.G.G.-V., and M.C., unpublished

data). Thus, it is tempting to speculate that a-MSH actions are

mediated by sympathetic innervation, although the precise

mechanisms by which POMC neurons propagate this signal

remain unknown.

In summary, here we demonstrate that pathophysiological sit-

uations associated with hypothalamic ER stress cause systemic

glucose homeostasis perturbations, named enhanced GNG, in
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the absence of obesity. We provide evidence that deficient

a-MSH output, which is exclusively released by POMC neurons,

is a critical mediator of hypothalamic ER-stress-induced GNG.

These results provide further understanding of the central

mechanisms involved in HGP regulation and establish a-MSH

processing defects in POMC neurons as a potential contributor

to the pathophysiology of T2D.

EXPERIMENTAL PROCEDURES

Mice and Diets

C57BL/6J mice were purchased from Harlan Europe. The generation of

POMCMfn2KO mice has been previously reported (Schneeberger et al.,

2013). Mice were maintained on a 12:12 hr light-dark cycle with free access

to water and NCD (Harlan Research Laboratories) or HFD (45% kcal fat;

Research Diets) for 4 days (starting at 6 weeks of age). POMCMfn2KO male

mice were studied at 5 to 6 weeks of age or otherwise stated. In vivo studies

were performed with approval of the University of Barcelona Ethics Commit-

tee, complying with current Spanish and European legislation.

Physiological Measurements

Blood samples were collected via tail vein or trunk bleeds using a capillary

collection system (Sarstedt). Blood glucose was measured using a Glucome-

ter (Arkray). GTT (D-glucose; 2 g/kg), GSIS (D-glucose; 3 g/kg), PTT (sodium

pyruvate; 1 g/kg), and GlyTT (glycerol; 1 g/kg) were performed on overnight

fasted mice. Insulin sensitivity tests (0.4 IU/kg) were performed on 6 hr food-

deprived mice. All compounds were i.p. injected and blood glucose deter-

mined at the indicated time points. Plasma hormones were measured by

commercially available ELISA kits in overnight fasted mice: insulin (Crystal-

chem); leptin (Crystalchem); epinephrine and norepinephrine (Labor Diagnos-

tika Nord); adrenocorticotropic hormone (Abnova); and corticosterone

(Immuno Diagnostic Systems). Plasma triglycerides were measured using

quantitative enzymatic determination TAG kit (Sigma-Aldrich).

Hypothalamic POMC, a-MSH Content, and Immunohistochemistry

Mice were transcardially perfused with 4%paraformaldehyde, overnight fixed,

cryoprotected in 30% sucrose, and frozen. Brains were cut into 25-mm-thick

slices using a sliding microtome. Hypothalamic slices were extensively

washed in KPBS buffer and blocked in 2% donkey serum in KPBS plus

0.4% Triton X-100. Sections were incubated with a-MSH antibody

(1:20,000; Chemicon) or POMC antibody (1:1,000; Phoenix Pharmaceuticals)

in blocking buffer for 48 hr at 4�C. After washing with KPBS, slices were incu-

bated with the appropriate Alexa 488 antibody (1:400; Molecular Probes).

Imaging was performed using a Leica DMI 6000B microscope. a-MSH inte-

grated density after image skeletonization was calculated using ImageJ soft-

ware. POMC neurons were counted in equivalent ARC sections (bregma

�1.46 to �1.94). For a-MSH content, hypothalami were sonicated in 500 ml

of 0.1 N HCl solution. Lysates were centrifuged and supernatants used for

the quantification of a-MSH by ELISA (Phoenix Pharmaceuticals). Protein con-

centration was determined by Bradford.

qRT-PCR

Hypothalami and livers were harvested and immediately frozen in liquid

nitrogen. mRNA was isolated using Trizol. Retrotranscription and qRT-PCR

was performed as previously described (Claret et al., 2011). Transcript

levels were measured using the ABI Prism 7900 HT system (Applied

Biosystems). Proprietary Taqman Gene Expression assay FAM/TAMRA

primers used (Applied Biosystems) were Acaca (Mm01304277_m1),

Atf4 (Mm00515324_m1), Atf6 (Mm01295317_m1), Cpe (Mm00516341_m1),

Cpt1a (Mm00550438_m1), Creb1 (Mm00501607_m1), Ddit3 (Mm00492097_

m1), Dgat2 (Mm00499536_m1), Fasn (Mm00662319_m1), G6pc

(Mm00839363_m1), Hprt (Mm00446968_m1), Hspa5 (Mm00517691_m1),

Pck1 (Mm00440636_m1), Pcsk1 (Mm00479023_m1), Pcsk2 (Mm00500981_

m1), Prcp (Mm00804502_m1), Scd1 (Mm01197142_m1), and Xbp1s

(Mm03464496_m1).



Western Blot Analysis

Protein lysates were prepared from pulverized whole-liver samples or medio-

basal hypothalamic microdissections in RIPA buffer (Sigma-Aldrich) supple-

mented with protease and phosphatase inhibitors. Cleared supernatants

were resolved on pre-cast gradient 4%–12% SDS-PAGE gels (Bio-Rad),

transferred onto PVDF membranes (Millipore), and probed with the following

primary antibodies: phospho CREB (Ser133; 1:1,000; Cell Signaling Technol-

ogy); CREB (1:1,000; Cell Signal); Mfn2 (1:1,000; Abcam); phospho PERK

(1:1,000; Cell Signaling); PERK (1:1,000; Cell Signal); XBP1 (1:1,000; Abcam);

p-eiF2a (1:1,000; Cell Signal); ATF4 (1:1,000; Aviva Systems Biology), ATF6

(1:1,000; Santa Cruz Biotechnology); CHOP (1:1,000; Santa Cruz); PC1

(1:5,000; MyBiosource); PC2 (1:5,000; MyBiosource), alpha-tubulin (1:8,000;

Sigma-Aldrich); and beta-actin (1:5,000; Sigma-Aldrich). Detection was per-

formed by enhanced chemiluminescence (Pierce). Band intensities were

quantified using the ImageJ software.

i.c.v. Cannulation and Treatments

i.c.v. surgery was performed at 9 weeks of age as previously described

(Schneeberger et al., 2013). On experimental days, 10-week-old control and

POMCMfn2KO mice or C57BL/6J mice fed with NCD or HFD for 4 days

were fasted overnight and infused with 2 ml of either vehicle (aCSF; Tocris

Bioscience), a-MSH (1 nmol/ml; Sigma-Aldrich), or TUDCA (2.5 mg/ml; Calbio-

chem) just after lights on. Two hours later, a PTT was performed. For TUDCA

experiments, an extra i.c.v. injection was performed just before fasting.

Statistics

Data are expressed as mean ± SEM. p values were calculated using unpaired

Student’s t test, two-way ANOVA, or one-way ANOVA with post hoc Sidak

multiple comparisons test as appropriate. p < 0.05 was considered significant.
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guera, E., Sancho, A., Dı́az-Ramos, A., Hernández-Alvarez, M.I., Sebastián,

D., Mauvezin, C., et al. (2013). Mfn2 modulates the UPR and mitochondrial

function via repression of PERK. EMBO J. 32, 2348–2361.

Ngoh, G.A., Papanicolaou, K.N., andWalsh, K. (2012). Loss of mitofusin 2 pro-

motes endoplasmic reticulum stress. J. Biol. Chem. 287, 20321–20332.

Ozcan, U., Cao, Q., Yilmaz, E., Lee, A.H., Iwakoshi, N.N., Ozdelen, E., Tunc-

man, G., Görgün, C., Glimcher, L.H., and Hotamisligil, G.S. (2004). Endo-

plasmic reticulum stress links obesity, insulin action, and type 2 diabetes.

Science 306, 457–461.

Ozcan, U., Yilmaz, E., Ozcan, L., Furuhashi, M., Vaillancourt, E., Smith, R.O.,

Görgün, C.Z., and Hotamisligil, G.S. (2006). Chemical chaperones reduce

ER stress and restore glucose homeostasis in a mouse model of type 2 dia-

betes. Science 313, 1137–1140.

Ozcan, L., Ergin, A.S., Lu, A., Chung, J., Sarkar, S., Nie, D., Myers, M.G., Jr.,

and Ozcan, U. (2009). Endoplasmic reticulum stress plays a central role in

development of leptin resistance. Cell Metab. 9, 35–51.

Purkayastha, S., Zhang, H., Zhang, G., Ahmed, Z., Wang, Y., and Cai, D.

(2011). Neural dysregulation of peripheral insulin action and blood pressure

by brain endoplasmic reticulum stress. Proc. Natl. Acad. Sci. USA 108,

2939–2944.

Rossi, J., Balthasar, N., Olson, D., Scott, M., Berglund, E., Lee, C.E., Choi,

M.J., Lauzon, D., Lowell, B.B., and Elmquist, J.K. (2011). Melanocortin-4 re-

ceptors expressed by cholinergic neurons regulate energy balance and

glucose homeostasis. Cell Metab. 13, 195–204.

Schneeberger, M., Dietrich, M.O., Sebastián, D., Imbernón, M., Castaño, C.,

Garcia, A., Esteban, Y., Gonzalez-Franquesa, A., Rodrı́guez, I.C., Bortolozzi,
370 Cell Reports 12, 361–370, July 21, 2015 ª2015 The Authors
A., et al. (2013). Mitofusin 2 in POMC neurons connects ER stress with leptin

resistance and energy imbalance. Cell 155, 172–187.

Schneeberger, M., Gomis, R., and Claret, M. (2014). Hypothalamic and brain-

stem neuronal circuits controlling homeostatic energy balance. J. Endocrinol.

220, T25–T46.

Sebastián, D., Hernández-Alvarez, M.I., Segalés, J., Sorianello, E., Muñoz,
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