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Abstract

In this paper a new data-driven approach is proposed for uniaxial compressive strength (q,) prediction
of laboratory soil-cement mixtures. The proposed model is able to predict q, over time under different
conditions, e.g. different cement contents or soil types, and can be applied at the pre-design stage. This
means that the model can be applied previously to the preparation of any laboratory formulation. The
designer only needs to collect information about the main geotechnical soil properties (grain size,
organic matter content, among other) and select the binder composition to prepare the mixture.

Based on a sensitivity analysis, the key model variables were identified and its effect quantified. Thus,
it was caught by the model the most relevant variables in q, prediction over time and very high
prediction capacity with an overall regression coefficient higher than 0.95.

Keywords: Soil-cement mixtures; Laboratory formulations; Uniaxial compressive strength; Data mining;
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1 Introduction

The uniaxial compressive strength (q,) of soil-cement mixtures is a fundamental design parameter
necessary for many transportation geotechnics applications. This mechanical property is obtained
through laboratory tests requiring time, which is generally very limited. Consequently, is very useful
to have at this stage, at least pre-design, prediction tools to obtain this design parameter. However, this
not taken into account the number of variables that affect q, and obviously the traditional statistical
analysis is unable to deal with.
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Aiming to overcome this limitation, a first and successful attempt was recently made, taking
advantage of the high learning capabilities of Data Mining (DM) techniques (Tinoco et al.; 2011;
Tinoco et al., 2014; Gomes Correia et al, 2014). Although a good performance have been achieved for
both strength and stiffness prediction of laboratory soil cement mixtures (see Figure 1), there are some
limitations that still need to be overcome. In particular, the model dependence on the mixtures
proprieties, such its porosity, is one of its main drawbacks. As can be observed in Figure 2, which
shows and compare the relative importance of the input variables in q, and E; (young modulus)
prediction, the mixture porosity has a relative importance around 15% in q, prediction and higher than
20% in E, prediction.
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Figure 1: Data mining models performance in laboratory soil cement mixtures - mechanical properties prediction
(Gomes Correia et al, 2014): a) q, and b) E,
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Figure 2: Comparison of the relative importance of each input variable in laboratory soil cement mechanical
properties prediction according to SVM-q,.Lab and SVM-E,.Lab models (Tinoco et al., 2014).
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Aiming to overcome such models dependence of the final mixtures properties, in this paper a new
model (data-driven approach) is proposed for q, prediction over time which is independent of final
mixtures properties.

The proposed model, based on advanced statistics analysis, allows to estimate g, over time based
on 8 input variables such as the cement content, soil grain size distribution or type of cement. A cross-
validation approach under 5 runs was applied for model generalization assessment.

2 Models and Data
2.1 Data Mining Algorithms

As previously underlined, the proposed models were developed using data mining techniques
(Witten and Frank, 2005), namely support vector machines (SVM) (Smola and Scholkopf, 2004),
artificial neural networks (ANN) (Kenig et al, 2001) and multiple regression (MR), which has been
successful applied in many different scientific domains (Domingos, 2012; Goh and Goh, 2007;
Kewley et al., 2000; Cortez et al., 2009) to solve real problems that traditional analysis are unable to
deal with. These techniques, characterized by high learning capabilities, make use of computational
tools to extract useful knowledge from raw data (Fayyad et al., 1996). For a baseline comparison, the
classic Multiple Regression (MR) method was also tested.

ANN and SVM models were implemented using the rminer library of the R tool (Cortez, 2010).
For ANN, it was adopted the multilayer perceptron that contains only feedforward connections, with
one hidden layer with H hidden units with logistic functions: 1/(1 + e™). To find the best value for
H, a grid search of {1,2,...,10} was used. For SVM, the methodology proposed by Huang et al.
(2007) for model selection (i.e. to select the best values of the hyperparameters C, € and y) was
applied.

2.2 Models Assessment

Models performance was evaluated based on the difference between experimental and predicted
values for all N examples. In a model for which such difference is close to zero a high accuracy is
expected. In particular, three different metrics were calculated (Tinoco et al., 2011): Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), and Coefficient of Correlation (R?). Low values of
MAE and RMSE, as well as an R? close to the unit value should be interpreted as high predictive
capacity of the model. The Regression Error Characteristic (REC) curve (Bi and Bennett, 2003),
which plots the error tolerance on the x-axis versus the percentage of points predicted within the
tolerance on the y-axis, was also adopted during model performance analysis. For validation purposes,
a 5 runs were applied under a 10-fold cross-validation schema.

Frequently, the absence of explanatory power of complex DM algorithms, such as SVM or ANN,
is pointed out as their main drawback. In order to overcome this problem, Cortez and Embrechts
(2013) proposed a novel visualization approach based on a sensitivity analysis (SA) method. SA is a
simple method that is applied after the training phase and that measures the model responses when a
given input is changed, allowing the measurement of the relative importance of each input variable, as
well as its average effect on the target variable.

In the present work, it was applied the Global Sensitivity Analysis (GSA) method (Cortez and
Embrechts, 2013), which is able to detect interactions among input variables. This is achieved by
performing a simultaneous variation of F inputs. Each input is varied through its range with L levels
and the remaining inputs fixed to a given baseline value. In this work, it was adopted the average input
variable value as a baseline and set L=12, which allows an interesting detail level under a reasonable
amount of computational effort.
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With the sensitivity response of the GSA, two important visualization techniques can be computed.
The input importance barplot shows the relative influence (R,) of each input variable in the model. To
measure this effect, first the gradient metric (g,) for all inputs was calculated. After that, the relative
influence was computed.

L
-9 = 5 _%5 _
R, = a/zz:l gi - 100(%) where, g, = Z |ya,j ya,j—1|/(L 1) (1)
j=2

where a denotes the input variable under analysis and J, ; is the sensitivity response for x ;.

To analyze the average impact of a given input in the fitted model, the Variable Effect
Characteristic (VEC) curve can be used. For a given input variable, the VEC curve plots the attribute L
level values (x-axis) versus the SA responses (y-axis).

2.3 Database

For models training, a database with 269 records was taken. These samples make part of a
laboratory study aiming to define the binder mixture to obtain the best technical, economical and
environmental soil stabilization (Correia 2011; Venda Oliveira et al., 2012; Venda Oliveira et al.,
2013; Venda Oliveira et al., 2014; Correia et al., 2015). The soils selected were from Coimbra area
(located near Coimbra city, Portugal), ranging from cohesive to cohesionless soils, organic to non-
organic soils, presenting different geotechnical properties. Fourteen different binders were tested,
including Portland cement, slag, fly ash, lime and silica fume, applied individually or combined.

As models input a set of 8 variables were selected. The definition of such variables took into
account the empirical knowledge related to soil cement mixtures behavior, particularly concerning to
the q, evolution with time (Sariosseiri and Muhunthan, 2009; Lee et al., 2005; Lorenzo and Bergado,
2004; Chen and Wang, 2006). Also the feedback obtained from the learning process was used in the
input variables selection. Bellow are listed all the 8 input variables considered in the models for q,
prediction.

Soil clay content (%) — %Clay

Soil organic matter content (%) — 2%60M

Relation between water and cement content — wy/a,,
Cement dosage (kg/m’) — kg/m’

Age of the mixture (days) — ¢

Coefficient related with the cement type — s
Percentage of cement (%) — C

Coefficient related with the secondary binder — L,

Table 1 summarizes the main statistics of all 8 model inputs as well as of the output variable.

Variable Minimum  Maximum Mean Standard deviation
%Clay 0.00 25.00 9.42 4.67
%0OM 0.00 19.40 7.98 473
wya, 0.63 1091 452 1.80
kg/m3 57.30 500.00 158.74 69.07
t (days) 3.00 360.00 31.88 33.36
s 0.20 0.38 0.23 0.07
C 0.50 1.00 0.78 0.11
L 0.00 28.50 20.73 12.07
qu(MPa) 0.10 377 1.14 0.88

Table 1: Summary of the main statistics of the input and output variables used in q, prediction.
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3 Results

This section summarizes some of the most relevant results achieved during the q, study through the
application of advanced statistics analysis.

The average hyperparameters and fitting time values (and respective 95% level confidence
intervals according to a t-student distribution) of the three DM algorithms trained for q, prediction of
laboratory soil cement formulations (i.e. MR, ANN and SVM) are shown in Table 2.

Model Hyperparameter time (s)
MR - 0.31+0.03
ANN H=T7%+2 27.87+2.06
SVM vy=042+0.06; C=5.04+027; £¢=-4.74+0.26 18.71+0.15

Table 2: Hyperparameters and computation time for each fitted model.

Table 3 shows and compare the performance of MR, ANN and SVM algorithms in q, prediction,
based on MAE, RMSE and R* metrics (mean values and respective 95% level confidence intervals
according to a t-student distribution). From its analysis, we observe that SVM performs much better
than MR, having achieved a R* around 0.93. ANN attained a very similar performance with an R*
around 0.91. Also based on MAE and RMSE metrics, a good performance is confirmed from ANN
and SVM (in both cases very low values where achieved).

Model MAE RMSE R’
MR 0.35+0.00 0.56+0.01 0.59+0.01
ANN 0.16 £0.02 026+0.03 091 +0.02
SVM 0.15+0.01 0.23+0.03 0.93+0.01

Table 3: Models performance comparison based on metrics MAE, RMSE and R”.

REC curves depicted on Figure 3a confirms the high performance of ANN and SVM algorithms in
qu predictions and show that, for example, more than 95% of the records can be accurately predicted
within an absolute deviation lower than 0.50 MPa, and that all ANN and SVM prediction have an
absolute deviation lower than 1.00 MPa.

Although ANN-q,.Lab_new and SVM-q,.Lab_new models present a very high performance, we
observed that q, prediction accuracy can be improved through the calculation of the average of ANN-
gu.Lab_new and SVM-q,.Lab_new prediction. With this trick, an R higher than 0.95 is achieved as
well as an RMSE very close to 0.19MPa.

Figure 3b shows the relation between observed values and the average of ANN-q,.Lab_new and
SVM-q,.Lab_new models prediction, from which is observed a high prediction capacity of the models.

Based on a GSA, the average relative importance of each input variable was quantified. From
Figure 4a, which plots the relative importance of each input variable according to ANN-q,.Lab_new
(mean value and the correspondent t-student 95% confidence interval), it is observed that cement
dosage, relation between water and cement content and age of the mixture are the three most influent
variables in q, development, weighing around 45% in the model. With a weigh around 28% appears
the soil influence (%Clay and %OM). These set of 5 variables incorporate the well known influence
(from empirical studies) of the cement and water content, age of the mixtures as well as the soil
properties.
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Figure 3: Models performance: a) REC curves of MR-q,.Lab_new, ANN-q,.Lab_new and SVM-q,.Lab_new
models; b) Scatterplot of the average of ANN-q,.Lab_new and SVM-q,.Lab_new predictions.

Figure 4b depicts the effect of the most relevant variable in q, prediction according to ANN-
q..Lab_new model, showing, as expected, an increase of q, with the cement content (kg/mS). The VEC
curve of the cement dosage has two stretches with high growth rate separated by a stretch with low
growth rate between 150 and 300 kg/m’. This behavior already have been observed in experimental
studies (Horpibulsuk 2001; Correia, 2011; Zhang et al 2013) and can be explained by the existence of
a transitional zone where the stabilized soil starts to lose its identity (soil particles linked by
cementitious products), gradually transforming into a cement mortar (a hardened paste with soil
particles embedded in it).
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Figure 4: Global sensitivity analysis results over ANN-q,.Lab_new model: a) Relative importance of each input
variable; b) VEC curve of cement dosage (kg/m°) variable.
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4 Conclusions

In this work it was evidenced the high learning capabilities of data mining algorithms, particularly
artificial neural networks and support vector machines and its great contribute to help in solving
complex problems in geotechnical field when the traditional statistical tools are unable to deal with.
Particularly, a data driven approach able to predict uniaxial compressive strength (q,) of laboratory
soil cement mixtures with high accuracy (R* higher than 0.95) was developed. Additional to its
accuracy, the proposed approach has the advantage to be applied during the pre-design stage since
only depends on parameters not requiring experimental measurements.

Supported on a detailed sensitivity analysis it were identified the key variables in q, development,
where the cement dosage, the relation between water and cement content and age of the mixture were
ranked as the three most influent. The effect of cement dosage in q, increase and its evolution with
time was also observed and quantified, which is in agreement with the empirical knowledge related
with soil cement mixtures.
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