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The Napo Basin in Ecuador is an important drainage of the Amazon Basin, the most biodiverse ecosystem for freshwater
species. At the same time, this basin has conspicuous information gaps on its biodiversity patterns and human threats. Here,
we estimated the diversity distribution patterns of freshwater vertebrates and invertebrates in the Napo Basin, as a tool for
present and future management and conservation efforts. Also, we assessed the spatial congruence of the diversity patterns
observed between aquatic vertebrates and invertebrates. For this, we compiled occurrence records for 481 freshwater verte-
brate species (amphibians, birds, mammals, reptiles, and fish), and 54 invertebrate families obtained across an altitudinal
gradient of the basin (200–4500 m). Using these occurrence records and environmental variables, we modeled the distribu-
tion of each vertebrate species and invertebrate family. Then, we stacked these distributions to build species richness maps
for vertebrates, and a family richness map for invertebrates. We found that the most diverse areas for vertebrate species are
the lowlands (<600 m), whereas richness of invertebrate families peaks at higher elevations (lower montane forests). Con-
gruence among species richness patterns of the five vertebrate groups was high (r = 0.66), with fish being the best predictor
for vertebrates (r = 0.78). However, congruence decreased at higher elevations (r = 0.14), suggesting that specific species or
habitat-based approaches should be used in the highlands. Also, we found a high correlation between species and family
richness of freshwater invertebrates (r = 0.66), suggesting that family richness of invertebrates could be used as a surrogate
of species richness in this basin. We highlight this correlation because, at the watershed scale, it allows working with family
groups where species-level taxonomy is challenging. Our results provide the first comprehensive representation of freshwa-
ter biodiversity patterns at high resolution in an Andean-Amazon basin, and calls attention to the need for incorporating dif-
ferent taxonomic groups when assessing diversity patterns. Given these different diversity patterns, conservation programs
for this basin should incorporate both vertebrate and invertebrate groups as biodiversity indicators. Finally, our study pro-
vides a practical methodological guidance in the estimation of freshwater diversity in regions of scarce information with
high conservation priority, such as the Andean-Amazon basins.

Keywords: Ecuador; freshwater tropical ecosystems; Napo Basin; aquatic invertebrate families; vertebrate species

La cuenca del Napo es un drenaje importante de la cuenca del Amazonas, el ecosistema más biodiverso en especies de
agua dulce. Sin embargo, esta cuenca presenta importantes vacíos de información sobre los patrones de biodiversidad y
las amenazas humanas. Este estudio estima los patrones de distribución de la diversidad de vertebrados e invertebrados de
agua dulce en la cuenca del Napo de Ecuador, evalúa la congruencia espacial entre dichos patrones de diversidad y dis-
cute las implicaciones de estos resultados en los esfuerzos actuales y futuros en el manejo y conservación de la cuenca.
Para ello, recopilamos datos de presencia de 481 especies de vertebrados de agua dulce (anfibios, aves, mamíferos, reptiles
y peces), y de 54 familias de invertebrados obtenidos en el gradiente altitudinal de la cuenca (200–4500 m). A partir de
estos datos de presencia y de variables ambientales, modelamos la distribución de las especies de vertebrados y de las
familias de invertebrados. Posteriormente, combinamos las distribuciones espaciales obtenidas para construir mapas de
riqueza de especies de vertebrados, y de riqueza de familias de invertebrados. Encontramos que las tierras bajas (<600 m)
son las áreas más diversas para vertebrados acuáticos, mientras que la riqueza de las familias de invertebrados tienen picos
de riqueza en elevaciones más altas (bosque montano bajo). La congruencia espacial entre los mapas de riqueza de los
cinco grupos vertebrados fue alta (r = 0.66), siendo el patrón de los peces el mejor indicador de riqueza (r = 0.78). Sin
embargo, esta congruencia entre los vertebrados disminuye a medida que incrementa la elevación (r = 0.14), por lo que
para la conservación en tierras altas son preferibles los enfoques basados en manejo de hábitat o en especies específicas.
También se encontró una alta correlación entre la riqueza de especies y de familias de invertebrados de agua dulce

*Corresponding author. Email: jdlessmann@uc.cl

© 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Neotropical Biodiversity, 2016
Vol. 2, No. 1, 99–114, http://dx.doi.org/10.1080/23766808.2016.1222189

Published online 12 Sep 2016

http://orcid.org/0000-0002-1502-625X
http://orcid.org/0000-0002-1502-625X
http://orcid.org/0000-0002-1502-625X
http://orcid.org/0000-0003-0098-978X
http://orcid.org/0000-0003-0098-978X
http://orcid.org/0000-0003-0098-978X
http://orcid.org/0000-0002-8337-7959
http://orcid.org/0000-0002-8337-7959
http://orcid.org/0000-0002-8337-7959
http://orcid.org/0000-0002-2833-2512
http://orcid.org/0000-0002-2833-2512
http://orcid.org/0000-0002-2833-2512
mailto:jdlessmann@uc.cl
http://creativecommons.org/licenses/by/4.0/
http://www.tandfonline.com
http://www.tandfonline.com
http://www.tandfonline.com
http://dx.doi.org/10.1080/23766808.2016.1222189


(r = 0.66), lo que sugiere que la riqueza de la familia podría ser utilizado como sustituto de la de especies en esta cuenca;
destacamos esta correlación ya que es difícil trabajar con taxonomía a nivel de especie de invertebrados a escala de
cuenca. De esta forma, nuestros resultados proporcionan la primera representación de los patrones de biodiversidad de
agua dulce a alta resolución en una cuenca andino-amazónicos y llama la atención sobre la necesidad de incorporar los
diferentes grupos taxonómicos en la evaluación de los patrones de diversidad. Teniendo en cuenta estos diferentes
patrones de diversidad, los programas de conservación en esta cuenca deben incorporar tanto los grupos de vertebrados e
invertebrados como indicadores de biodiversidad. Por último, nuestro estudio proporciona una práctica orientación
metodológica en la estimación de la biodiversidad de agua dulce en regiones de escasa información con alta prioridad de
conservación, tales como las cuencas andino-amazónicas.

Palabras claves: Ecuador; Cuenca del Napo; ecosistemas tropicales de agua dulce; familias de invertebrados acuáticos;
especies de vertebrados

Introduction

Freshwater ecosystems are among the most speciose in
the world.[1] Globally, over 126,000 described species
inhabit freshwater systems, including fish, mollusks,
amphibians, reptiles, insects, plants, and mammals, all of
them concentrated in less than 1% of the world’s sur-
face area.[1,2] However, freshwater diversity is highly
threatened by human activities, including dams, water
withdrawals, pollution, invasive species, and overharvest-
ing.[3] These impacts to freshwater biodiversity may also
diminish the provision of freshwater ecosystem services,
such as food security and nutrition, which are essential
to human populations.[4]

In order to implement conservation and management
programs for freshwater groups, a better understanding of
species distributions and diversity patterns is essential.[5]
For example, the identification of priority areas for fresh-
water biodiversity conservation requires information on
the distribution of species and their levels of protection
inside protected area networks.[6] Similarly, the use of
surrogates or biodiversity indicators, which facilitate the
development of conservation programs, heavily rely on
understanding how effectively one taxon predicts the spe-
cies richness pattern of other taxa.[7–9] Nevertheless,
despite the conservation crisis for freshwater diversity,
there is a lack of comprehensive, synthesized data about
freshwater species distributions. As consequence of these
information gaps in the freshwater biological knowledge,
in the tropics terrestrial plants and vertebrates are usually
used to direct conservation planning, whereas freshwater
groups are overlooked.[10] Also, these biodiversity indi-
cators have been more intensely explored for guiding the
management of terrestrial ecosystems, and there is still
little experience in terms of their application to aquatic
environments. Moreover, the longitudinal nature and the
connectivity that characterizes river and stream ecosys-
tems suggest that their effective management will require
different levels of information (e.g. flow and inundation
area) and the adaptation of planning tools that reflect the
particularities of lotic ecosystems.

Although recent years have witnessed increased
efforts to estimate the richness of freshwater vertebrate

species at a global scale,[6,11–13] the validity of these
patterns at finer spatial scales is relatively unexplored.[5]
Moreover, the usefulness of this information to guide
management and conservation interventions that are
implemented at smaller geographical scales (i.e. water-
shed) is limited.[6,13] In this context, a more effective
management of river and stream ecosystems will require
the development and adaptation of tools for gathering
and interpreting information on the patterns of biodiver-
sity of these ecosystems at scales that are relevant for
integrative management.

The Napo River Basin, in the northern Ecuadorian
Andes, is one of the main tributaries of the Amazon River
basin,[14] and offers a striking example of the ecological
and socioeconomic complexities that make conservation
of lotic ecosystems in the tropical Andes challenging.[15]
The Napo Basin is considered part of the most biologically
diverse ecoregion in the world for freshwater fish, amphib-
ians, birds, and mammals.[6,11,12,16] In fact, this water-
shed harbors more than 560 fish species, a number that
greatly exceeds the species richness of other large water-
sheds around the globe.[17,18] This high diversity is
possibly explained by the large altitudinal gradient
(158–5890 m) that generates a great variety of climatic
conditions.[19] Also, there are unique habitats throughout
the region such as productive flooded forests, oxbow
lakes, black, clear and white water streams, which promote
higher fish diversity and endemism.[16,18,20]

Despite its biological importance, the Napo Basin is
subject to a wide array of human-induced threats. In recent
decades, there has been an important increase in human
land use and extractive practices in the basin,[21] which
are threatening its long-term viability, the integrity of its
biodiversity, and the ecosystem services that multiple
human populations derive from this region.[22] Specifi-
cally, this basin is exposed to numerous impacts caused by
hydroelectric projects, oil extraction, copper and gold min-
ing, timber extraction, extensive agriculture and cattle
ranching.[15,19,21,23–25] At the same time, the basin
lacks systematic information about its freshwater species
distributions and diversity patterns, an information gap that
hinders adequate conservation and management initiatives.
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A systematic analysis of freshwater diversity in a
tropical basin presents substantial challenges. First, high-
quality information on the spatial distribution of species
is difficult to compile and, typically, this information is
incomplete and spatially biased to the most accesible
areas.[26,27] Therefore, instead of using spatially biased
data, it is advisable to spatially model freshwater species
distributions using observed locality data and environ-
mental variables.[28] This technique is known as distri-
bution or habitat modeling, and has been used in
numerous studies to address sampling bias, data sparse-
ness, and to characterize species richness and distribution
for a great variety of groups.[29,30]

Entire taxonomic groups that are speciose and sensi-
tive to human impacts are regularly ignored in diversity
studies.[31] Ideally, an accurate estimation of freshwater
diversity patterns should include both vertebrate and
invertebrate taxa because they may have different diver-
sity patterns.[1,2,31] However, typically, adequate data
on the diversity of most invertebrate groups in tropical
freshwaters do not exist.[1] Therefore, the second chal-
lenge to study the freshwater diversity in the Napo Basin
is the incorporation of freshwater invertebrate taxa,
which requires invertebrate inventories across a broad
altitudinal gradient. Moreover, considering the high
species diversity of invertebrates in the tropics and the
large size of the Napo Basin, taxonomic identifications at
the species level are costly in terms of money, human
effort, expertise, and time.[32] Instead, family-level iden-
tification for invertebrates is more efficient, and problems
such as under-sampling and erroneous identifications are
greatly reduced, increasing the reliability and robustness
of the patterns revealed.[33] Nevertheless, for conserva-
tion planning in the Napo Basin, the validity of aquatic
invertebrate family richness patterns as a proxy for
species diversity patterns must be evaluated.[32]

In this context, by using the Napo Basin in northeastern
Ecuador as a case study, this research aims to provide a
model for characterizing freshwater biodiversity patterns
for large Andean-Amazon basins. Specifically, we explore
the use of spatial distribution modeling to describe the
diversity patterns for both freshwater vertebrate and inver-
tebrate groups. We also assess the congruence of diversity
patterns observed among freshwater vertebrate taxa and
between two different taxonomic levels of invertebrate
fauna (family and species). The ultimate goal of these
analyses is to identify taxonomic groups that can‘t act
as surrogates for characterizing biodiversity patterns
for conservation.[5] Our study provides methodological
guidance for the estimation of freshwater diversity in
assemblages that exhibit high species richness and hetero-
geneity in terms of the species dependency on fluvial aqua-
tic ecosystems. Finally, our study discusses implications
for conservation planning of fluvial ecosystems, especially
along altitudinal gradients in Andean-Amazon watersheds.

Methods

Study area

This study was carried out in the 59,573 km2 Napo
Basin in North-eastern Ecuador (Figure 1(a)). Although
the Napo Basin extends beyond the international borders
of Ecuador (to Perú and Colombia), for the remainder of
this paper we use ‘Napo Basin’ to refer only to the
Ecuadorian portion of this watershed. The digital infor-
mation of the limits and configuration of the Napo Basin
was obtained from the Instituto Geográfico Militar del
Ecuador.[34]

The Napo Basin in Ecuador comprises an altitudinal
gradient of more than 5000 m, with thousands of streams
and rivers that run through 25 ecosystems.[35] The
majority of large rivers in the lower Napo Basin (e.g.
Napo, Coca, Tiputini, Yasuní, and Curaray) are ‘white
waters rivers’,[36] that drain extensive territories in the
Andean mountains and gather large amounts of sedi-
ments, which result in the murky and alkaline nature of
these rivers.[10] The lower Napo Basin also harbors a
smaller number of acidic ‘blackwater’ rivers, which
originate in lowland swamps and flooded forests and
owe their tea-like appearance to humic acids and other
tannic and organic compounds released during decompo-
sition of leaf litter in these forests.[10] In contrast to the
lower part of the basin, a vast number of smaller streams
and fast rivers of stony substrate, drain the upper reaches
and have clear and well-oxygenated water that tumble
down the steep slopes of the Andes.

Given the large altitudinal gradient and different
ecological formations of our study area, we classified the
Napo Basin into three main altitudinal zones to facilitate
the discussion and interpretation of results: lowlands
(<600 m), lower montane forests (600–1600 m), and
upper montane forests ecosystems (1600–5897 m).
Although this classification is relatively arbitrary, we
used these ranges to reflect the very different topography
that characterizes these altitudinal zones and influences
their aquatic biota. The upper montane forest (which in
this case includes the páramo ecosystems) is character-
ized by complex topography and steep slopes, with fast
running rivers and streams that cut deep canyons through
the mountains. The lower montane forests coincide with
the area where the slopes of the Andes recede and the
rivers become bigger and wider as they approach the
Amazonian plain. Finally, the lowland forests are charac-
terized by relatively flat terrain and large, slow-moving
rivers that are loaded with sediments eroded from the
Andes.

Freshwater biodiversity data

We considered as freshwater fauna the following taxa:
(i) species that are fully aquatic during their entire life
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Figure 1. Study area, the Napo Basin in Ecuador. (A) Altitudinal gradient, main rivers, floodplains systems, and some main rivers
and cities in the basin. (B) Location of all vertebrate species records obtained from museum databases and online data-sets, and
(C) sampling localities surveyed for freshwater invertebrates and amphibians during this study.
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cycle (e.g. riffle beetles, and fish), (ii) species that
depend on streams, rivers, ponds, or lakes at least in one
life-history stage (e.g. aquatic larvae of otherwise terres-
trial amphibians or invertebrates), and (iii) species with
preference for aquatic habitats for feeding, nesting, and
breeding (e.g. ducks and egrets).

To assess freshwater vertebrate diversity, we included
records from amphibians, birds, mammals, reptiles, and
fish. For all these species, we collected presence data
from museum databases (MZUTI: Museo de Zoología,
Universidad Tecnológica Indoamérica, Ecuador) and
online data-sets,[37–39] books, and scientific papers (see
Appendix S1 in supplementary data for a list of the
references). As result, a total of 20,261 records for 481
freshwater vertebrate species were included in our study
(Figure 1(b)), corresponding to 10 mammals, 19 reptiles,
93 amphibians, 138 birds, and 221 fish (see Appendix
S2 for a list of the species included). These data repre-
sent 83% of freshwater species of mammals,[40,41] 60%
of reptiles,[42] 90% of birds,[42,43] 74% of amphibians,
[44–46] and 40% of fish [17,20] reported for the Napo
Basin.

In addition to locality data from the literature, we col-
lected new data on amphibians and aquatic invertebrates
during field surveys covering an elevational gradient from
218 to 4246 m in the Napo the basin (see EVOTRAC
[47] and PEER [48] projects). Amphibians were sampled
along streams at 200 m elevation intervals, when possible;
two researchers sampled each stream once during three-
to-four hours per night and collected individuals were
identified to the species level at the MZUTI. For inverte-
brates, a total of 134 streams were sampled along the ele-
vation gradient in the Napo Basin (Figure 1(c)). At each
stream site, we collected five Surber samples and one
D-net sample (500 uM mesh) for 5 min. Samples were
sorted and classified in the Aquatic Ecology Laboratory of
Universidad San Francisco de Quito (LEA-USFQ). Given
our large number of samples, the high diversity, and taxo-
nomic complexity of aquatic invertebrate in the tropics,
all specimens were classified to the family level, resulting
in 54 families (50 insect families and four non-insect
families; see Appendix S2 in supplementary data for a list
of the families collected) with more than five unique
records in the basin. All specimens are housed at MZUTI
(Patente No. 010–2015-FAU-DPAP-MA).

Modeling freshwater biodiversity patterns

The diversity patterns of freshwater fauna in the Napo
Basin were analyzed using species richness for vertebrates
and family richness for invertebrates.[5] To calculate spe-
cies richness for vertebrates, we first estimated their geo-
graphic distributions, using Species Distribution Models
(SDMs).[49] SDM is a technique that generalizes the
empirical relationships between species occurrences and

underlying habitat conditions, to predict the probability of
species occurrence within a given area. To construct
SDMs, we used Maxent, a machine-learning algorithm
based on the principle of maximum entropy.[50] Maxent
is an adequate technique for our goal because it performs
adequately when modeling presence-only occurrence data
with low sample sizes, and with moderate errors in their
georeferencing.[29,51,52]

In the case of invertebrates, for each sampling site,
we estimated the number of invertebrate families. How-
ever, the relationship between family richness and envi-
ronmental variables was problematic to model, probably
because of the diverse ecological requirements of species
within each of the 54 families. Therefore, we modeled
the geographic distribution of each family using Maxent,
producing an equation that relates the family occurrences
and the corresponding environmental variables. This
approach has some limitations, such as treating a family
as a biological unit, when in reality, species are actually
the biological units that interact and evolve a given eco-
logical niche.[49] However, predicting the geographic
distributions of a supraspecific monophyletic taxa has
been carried out by other studies [53–55] based on the
fact that ecological niches are attributes of supraspecific
clades, as result of a composite function of the niches of
its constituent species. In the case of the Napo Basin, it
has been reported that several invertebrate families and
even orders show clear diversity patterns related to
environmental variables such as altitude and water
temperature,[33,56] facilitating the modeling of these
supraspecific taxa.

Vertebrate species and invertebrate families with five
or more unique data records in the Napo Basin were
modeled.[57,58] As environmental predictors, we
selected a set of 16 variables related to climate, topogra-
phy, hydrology, and landscape, at ~0.5 km2 of resolution,
hypothesized to influence the distribution of the freshwa-
ter species at a regional scale (Table 1).

For vertebrates, we had to implement two main
modifications in the modeling process according to the
different levels of dependence of species to water bodies.
The first modification was the use of different sets of
environmental variables. The distribution of obligate
freshwater species (such as fish and some mammals) is
strongly influenced by the characteristics of the basins
because they are confined to freshwater environments
and are unable to move by land or air.[5,13] Thus, to
model these species we included three variables related
to microbasin characteristics such as flow accumulation,
density of drainage, and drainage size. However, birds,
amphibians, and semiaquatic mammals are able to dis-
perse overland, and, therefore, are less dependent on
basin conditions.[5] For these species, the modeling pro-
tocol excluded the three variables related to microbasins,
resulting in biologically relevant SDMs.
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The second modification in the construction of the
vertebrate SDMs was the generation of different back-
ground sets. To represent the range of environmental
conditions in the modeled region, background data are
constructed, which usually consists of 10,000 random
points in the study area.[59] Instead, species occurrence
records in the Napo Basin are biased towards main river
courses, which are easily navigable and usually near
urban centers (Figure 1). These sampling differences
between the species occurrence and random background
leads to inaccurate models for birds and amphibians
since the distribution of several of these species are not
restricted to the main rivers.[59–61] To solve this prob-

lem, SDMs for birds and amphibians were constructed
using their presence localities as background data. Thus,
these backgrounds reflect the same sample selection bias
as the occurrence data, improving the performance of the
SDMs.[59–61] In contrast, for fish, mammals, reptiles,
and invertebrates that have a naturally high diversity of
species in the main watercourses, the use of a
background with 10,000 random points across all the
Napo Basin was more appropriate. For invertebrates, we
excluded the size and water accumulation of microbasins
from the modeling because these variables showed low
variability among sampling sites, biasing the family
distribution models for the invertebrate families.

Table 1. Environmental data layers used in the species and family distribution models.

Variable Description Data source

Climatic
Annual maximum

temperature
Air temperature was used as a substitute for water temperatures, since these
two variables are usually strongly positively correlated in regional and large-
scale studies [102]

Ministerio del Ambiente
del Ecuador [35]

Annual minimum
temperature

Annual precipitation The precipitation has an important influence in the water regimes, flow rivers,
and flood process

Ministerio del Ambiente
del Ecuador [35]

Topographic
Elevation (DEM) Elevation and slope are important in describing the hydrological

characteristics of the river, providing favorable or non-favorable habitats [103]
SRTM (http://
srtm.csi.cgiar.org/)

Slope Derived from DEM
Aspect Aspect is an important contributor to vegetation and habitat type, as north-

facing slopes often have very different conditions and temperatures than
south-facing slopes [87]

Derived from DEM

Hydrologic
Topographic wetness

index
This index involves the upslope contributing area (a), a slope, and a couple
of geometric functions. Higher values represent drainage depressions and
more wetness

Derived from DEM

General curvature The curvatures indicate the concavity or convexity of regions, and where
running water would converge, diverge, accelerate or decelerate as it flows
over the region [87]

Derived from DEM
Longitudinal Curvature
Cross-sectional curvature
Average of flow

accumulation in
microbasins

The flow accumulation represents the potential water accumulation in the
stream channels

Derived from DEM

Drainage density in
microbasins

The drainage density has been determined as influent in the fish
distributions.[104] For each microbasin we divide the total stream length (km)
by microbasin area (km2)

Derived from DEM

Microbasin size The watershed area is related to river size and strongly influences stream fish
assemblages [104]

IGM (www.igm.gob.ec)

Floodplains (categorical) The floodplains systems may have different species compositions given their
difference in the hydrological regimes. Floodplain zones: lakes and lagoons
and other flooded areas by more than 8 months. Floodable zones: seasonally
flooded with water from overflowing rivers or local precipitation. Zones
susceptibility to flood: occasionally they may be flooded due to overflowing
rivers or high rainfall events

Ministerio del Ambiente
del Ecuador [35]

Landscape
Ecosystems (categorical) The ecosystems indicate important aspects of the different habitats and the

zones with different “type of waters”, which influence the distribution of
aquatic species

Sierra [105]

Geomorphology
(categorical)

Describe the three-dimensional landscape (geoforms) characterized by one or
more morphometric, lithological and structural attributes. The geomorphology
influences the distribution of species and ecosystems at multiple scales

Ministerio del Ambiente
del Ecuador [35]
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The distribution models were developed with Maxent
3.3.3e,[62] setting the convergence threshold to 10−5,
maximum iterations to 500, and the regularization
parameter to ‘auto’. Given the large number of species
in this study, we did not remove highly correlated vari-
ables, allowing Maxent to choose the most informative
variables among all predictors for modeling each species.
Also, we were not interested in explaining the impor-
tance of the environmental predictors for each species,
which is the aspect that could be affected when corre-
lated variables are included.[63,64] For vertebrate spe-
cies, we reclassified the 0.0–1.0 distribution model maps
into binary (presence/absence) maps using the Maximum
Training Sensitivity Plus Specificity threshold, which
minimizes the false-presence errors.[65] For inverte-
brates, we reclassified the models with the ‘Minimum
Training Presence’ threshold, which ensures that all
records collected in the field for each family are included
as presences in its binary distribution map. As a control
measure of the modeling performance, we employed the
AUC statistic (Area under ROC curve), which was cal-
culated using 10-fold cross-validation.[66] Also, we
compared the resulting models with the species distribu-
tions reported in the literature [40,41,43,67] and with the
expert opinion in the case of fish species. Thus, when
necessary, we removed areas of overprediction and areas
beyond geographic barriers that are likely to preclude
species dispersal.[68]

Finally, we generated vertebrate species richness
maps, which show the number of species by ~0.5 km2.
These maps were produced by summing all individual
binary SDMs for all species and for each vertebrate spe-
cies group. Similarly, for freshwater invertebrates we
added all the family distribution models to obtain a
family richness map. Also, we used analyses of variance
and Tukey HSD to test differences in vertebrate and
invertebrate richness among the three elevation levels.

Congruence of freshwater biodiversity patterns

We explored congruence among diversity patterns of the
five vertebrate groups using pairwise Spearman correla-
tion coefficients. We calculated the correlation between
the numbers of species in each pixel from the species
richness maps of the five vertebrate groups. We also ana-
lyzed congruence separately for each of the three eleva-
tion levels (lowlands, lower montane forests, and upper
montane forests) to assess if the importance of a species
group as a surrogate may change with elevation. Since
these analyses invoked a large number of tests (10 corre-
lations within each altitudinal zone), we used a Bonfer-
roni correction and considered significant only those
correlations for which p < 0.05/10 = 0.005. In addition,
considering that pixels within a richness map could be
spatially autocorrelated, to test for significance of the

correlation analyses we used a modified t-test, which cal-
culates an effective number of degrees of freedom due to
spatial autocorrelation.[69]

We also examined the validity of using families of
invertebrates as surrogates for species diversity patterns.
For this, we classified invertebrates to morphospecies for
26 samples located between 1700 and 4250 m. Then,
through a Pearson analysis we correlated the number of
families and the number of species found in each sample
site. In this case, a positive and significant correlation
could allow us to analyze the correlation level between
the diversity patterns of invertebrate families and
vertebrate species.

In order to ensure the reliability of our data for
conservation purposes, the correlation level among the
vertebrate groups and between the taxonomic levels of
the invertebrate should be more than r = 0.5.[5,9]

Results

Diversity pattern for freshwater biodiversity

Distribution models of the 418 vertebrate species and 54
invertebrate families were acceptable in regard to AUC
values (all > 0.7).[66] Average AUC values varied
among groups: invertebrates (0.95, SD 0.03), fish (0.95,
SD 0.07), birds (0.92, SD 0.07), mammals (0.92, SD
0.07), reptiles (0.87, SD 0.07), and amphibians (0.82,
SD 0.07) (see Appendix S2 and S3).

The lowlands of the Napo Basin were inferred to be
the most diverse area for vertebrates (F(2, 255367) = 80,309,
p < 0.0001; Tukey HSD test p < 0.0001, Figure 2a).
Within this altitudinal zone, the highest species richness is
found in large microbasins with large drainage area and
water accumulation, as well as in flooded forests. In addi-
tion, several poorly known rivers such as the Cononaco,
Nashiño, and Ashmahuayacu, for which we had no infor-
mation or few records, appear as potentially diverse areas
for vertebrate species.

Similar to the general vertebrate diversity pattern,
fish, reptiles, and mammals had diversity peaks in the
main rivers, whereas the richest areas for birds and
amphibians were less restricted to these water courses
(Figure 2(b–f)). Also, species richness of fish, the most
diverse group of the vertebrates in the Napo Basin, was
highest in the lowlands with a steep decrease at eleva-
tions >600 m. In contrast, the other groups have several
species distributed at higher elevations.

Contrary to the patterns observed for vertebrates,
areas between 1100 and 1900 m concentrate pixels that
have high richness of invertebrate families (Figure 3).
Similarly, and according to the altitudinal levels, the
lower montane forest were the most rich in families
(F(2, 255367) = 43,190; p < 0.0001; Tukey HSD test
p < 0.0001). Specifically, the orders of Coleoptera,
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Figure 2. Species richness for freshwater vertebrates in the Napo Basin. Species richness maps were obtained from the summation
of the species distribution models of (A) all species, (B) amphibians, (C) birds, (D) mammals, (E) reptiles, and (F) fish. Main state
protected areas in the Napo Basin are: Yasuní National Park (Y NP), Cuyabeno Faunistic Reserve (C FR), Cayambe Coca National
Park (CC NP), Sumaco Napo-Galeras National Park (SN NP), Antisana Ecological Reserve (A ER), Colonso-Chalupas Biological
Reserve (CC BR), and Llanganates National Park (L NP).
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Diptera, Ephemeroptera, and Trichoptera, had their
diversity peaks at higher elevations. Other orders (i.e.,
Odonata, Megaloptera, and Hemiptera), however, are
more diverse in lowland areas.

Congruence of the freshwater biodiversity patterns

In the Napo Basin, spatial pattern of species richness of
freshwater vertebrates are significantly correlated across
the five vertebrate taxa, with mean correlation values
generally high (r = 0.66, SD 0.11, Table 2). On average,
fish have the highest level of correlation with the other
vertebrate groups (r = 0.78, SD 0.03), although correla-
tion with birds was not significant (p > 0.005). In
contrast, birds and mammals have the lowest aver-
age correlation coefficients with other groups of freshwa-
ter vertebrates (r = 0.61, SD 0.12; r = 0.61, SD 0.10,
respectively).

Correlation of richness patterns among vertebrate
species groups decreases as the altitude increases
(Table 2). In the lowlands, species richness patterns had
the highest correlation values (r = 0.58, SD 0.18), fol-
lowed by montane forests, where correlation is moderate
(r = 0.39, SD 0.19). In the streams and rivers of the
upper montane forests, the average correlation is very
week (r = 0.14, SD 0.36), as well as pairwise correla-
tions between groups (r < 0.3).

For the 26 water sampling sites between 1700 and
4250 m, species richness of freshwater invertebrates was
highly correlated with family richness (r = 0.66,
p < 0.05). Finally, we found an insignificant negative
correlation between diversity patterns for invertebrate
families and vertebrate species, (r = −0.33, p = 0.32).

Discussion

Studies focused on freshwater diversity patterns are a
vital foundation for natural resource management and
conservation in tropical basins.[10] In Andean-Amazon
basins, these studies have been scarce, probably because
the difficulty of addressing its great diversity in species
and explore the different environments of the region.
Here, based on biological records and spatial modeling
techniques, we generated comprehensive information in
high resolution on the freshwater biodiversity patterns in
the Napo Basin in an effort to facilitate conservation and
management of the large basins that constitute the head-
waters of the Amazon river.

Freshwater biodiversity patterns

Our study uncovers patterns inferred from an extensive
collection of freshwater taxa records (481 vertebrate spe-
cies and 54 aquatic invertebrate families), representing
approximately 60% of the known freshwater species of
amphibians, birds, mammals, reptiles, and fish in the
Napo Basin. We decided to include species with different
levels of freshwater dependence because (i) all freshwa-
ter species, whether or not they are confined to aquatic
environment, are affected by human pressures to these
ecosystems, and (ii) this set of species also reflects the
interconnectedness between aquatic ecosystems and the
terrestrial environments that they drain. We also made
efforts to incorporate information from the entire basin, a
challenging task given its notable area and altitudinal
gradient, as well as from organisms with different
ecological requirements and evolutionary trajectories
(vertebrates and invertebrates). Thus, our biological
dataset is unique and provides useful insights into the
diversity patterns of the region.

Based on distribution models, we found that for all
vertebrates (amphibians, birds, mammals, reptiles, and
fish), species richness was highest in the lowlands
(<600 m), decreasing consistently throughout the mid-
range, and high-altitude ecosystems, whereas the richness
of invertebrate families has its highest value at middle
elevations (lower montane forest). These contrasting pat-
terns of diversity among vertebrate and invertebrate
groups are remarkable and have important consequences
for the ecology and management and of tropical basins
with large altitudinal gradients. Potential explanations are
manifold, but we suggest that an important factor

Figure 3. Family richness for freshwater invertebrates in the
Napo Basin. This map was obtained from the summation of 54
invertebrate family distribution models. Main state protected
areas in the Napo Basin are: Yasuní National Park (Y NP),
Cuyabeno Faunistic Reserve (C FR), Cayambe Coca National
Park (CC NP), Sumaco Napo-Galeras National Park (SN NP),
Antisana Ecological Reserve (A ER), Colonso-Chalupas
Biological Reserve (CC BR), and Llanganates National Park
(L NP).
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explaining these contrasting patterns might be related to
different levels of spatial heterogeneity that vertebrate
and invertebrate groups experience along the watershed.
Given the short lifespan of aquatic invertebrates and their
relatively limited dispersal capabilities, the steep environ-
mental gradients that predominate in the Andean slopes,
might have favored aquatic invertebrate speciation at
mid-range altitudes.[70] Moreover, considering the small
size of invertebrates, larger rivers and low topographic
variation in the lowlands could represent a relatively
homogeneous environment, with limited opportunities
for speciation. Also, the low invertebrate diversity in the
lowlands could be due to physical and chemical proper-
ties of water, such as low pH, high water temperatures,
low dissolved oxygen content (because of low turbu-
lence and consumption generated by organic matter
decomposition), presence of suspended solids, high clay
content in sediments, and high disturbance as a conse-
quence of water flood pulses.[70–72] At much higher
elevations (>3600 m), the diversity of invertebrate family
decreases, probably because of low temperatures in gen-
eral, high daily variation in temperature,[56,70] and the
diminution in oxygen saturation that could affect the
long-term viability of the invertebrate species.[73]

Large vertebrates frequently experience the land-
scape at a much larger spatial scale than aquatic inverte-
brates and, given their longer life spans and relatively
better dispersal capabilities they exploit a diversity of

environments created by the dynamic nature of lowland
rivers and their floodplains.[74] Moreover, higher
diversity of vertebrates in the lower altitudes might be a
direct consequence of the higher productivity of these
systems,[5,75,76] especially in the form of allochtho-
nous organic matter from the terrestrial ecosys-
tem.[77,78] Additionally, it has been suggested that,
compared to the Andes, the lowlands have experienced
longer periods of time of comparatively stable climates,
favoring species diversification under competitive pres-
sures.[79] Lowlands usually encompass large geographi-
cal areas (large rivers and basins) and exhibit high
environmental heterogeneity at larger spatial scales (i.e.
Varzea and Igapó forests, rivers and lagoons) and also
temporal scales (due to flood-pulse dynamics), favoring
allopatric speciation of larger groups.[5,10,80] This fact
is especially important for fish species, which are
restricted to river channels, whereas other taxa have
varying abilities to colonize other river systems by land
or air.[5,13] Thus, the high diversity of vertebrates is
concentrated in the large rivers at lowlands and flooded
zones, whereas in montane forests, where rivers and
basins are too small and homogeneous (at a river scale)
for most vertebrates, their diversity drastically decreases.
There are, of course, exceptions to these patterns; for
example, small vertebrates such as glass frogs are
adapted to small montane streams and have their
richness peak at middle elevations.[81]

Table 2. Correlation tests for species richness between pairs of freshwater vertebrate taxa in the entire Napo Basin and by altitudinal
zone.

Altitudinal level Amphibians Birds Mammals Reptiles Fish Average

Napo Basin 0.66 (SD 0.11)
Amphibians – 0.61 ns 0.56** 0.68** 0.81** 0.67 (SD 0.11)
Birds 0.61ns – 0.54 ns 0.49** 0.78* 0.61 (SD 0.13)
Mammals 0.56** 0.54ns – 0.58** 0.75** 0.61 (SD 0.10)
Reptiles 0.68** 0.49** 0.58** – 0.76** 0.63 (SD 0.12)
Fish 0.81** 0.78* 0.75** 0.76** – 0.78 (SD 0.03)
Lowlands (<600 m) 0.58 (SD 0.18)
Amphibians – 0.25* 0.51* 0.67** 0.57** 0.50 (SD 0.18)
Birds 0.25* – 0.51** 0.38** 0.63** 0.44 (SD 0.16)
Mammals 0.51** 0.51* – 0.64** 0.85** 0.63 (SD 0.16)
Reptiles 0.67** 0.38** 0.64** – 0.80** 0.62 (SD 0.18)
Fish 0.57** 0.63** 0.85** 0.80** – 0.71 (SD 0.13)
Lower montane forests (600–1600 m) 0.39 (SD 0.19)
Amphibians – 0.29** 0.33** 0.62** 0.58** 0.45 (SD 0.17)
Birds 0.29** – 0.05ns 0.29** 0.31** 0.23 (SD 0.12)
Mammals 0.33** 0.05ns – 0.50** 0.32** 0.30 (SD 0.19)
Reptiles 0.62** 0.29** 0.50** – 0.66** 0.52 (SD 0.17)
Fish 0.58** 0.31** 0.32** 0.66** – 0.46 (SD 0.18)
Upper montane forests (>1600 m) 0.14 (SD 0.36)
Amphibians – 0.13ns −0.51** 0.52** 0.45** 0.15 (SD 0.47)
Birds 0.13ns – −0.02* 0.28ns 0.25** 0.16 (SD 0.14)
Mammals −0.51** −0.02* – −0.19** −0.16** −0.22 (SD 0.21)
Reptiles 0.52** 0.28ns −0.19** – 0.65** 0.32 (SD 0.37)
Fish 0.45** 0.25** −0.16** 0.65** – 0.30 (SD 0.35)

Notes: Results of significance tests are corrected for spatial autocorrelation. **p < 0.005 (Bonferroni correction); *p < 0.05; ns, not significant.

108 J. Lessmann et al.



Congruence of biodiversity patterns for freshwater taxa

Species diversity patterns in the Napo Basin are relatively
similar among freshwater amphibian, birds, mammals,
reptiles, and fish. Specifically, fish have the best congru-
ence with other vertebrate groups, which means that, in
this basin, this taxon is the best option as a surrogate for
freshwater vertebrate conservation efforts that are focused
on richness indicators (caution should be taken when
using fish as surrogate for freshwater birds since the cor-
relation was high, but not significant). Since fish are
restricted to the water bodies, their distributions could
represent a common place to find other freshwater taxa
with broader distributions. However, this pattern is not
captured in larger scale studies. For example, according
to Tisseuil et al. [5], at a global scale fish are the group
with the lowest species richness congruence. These differ-
ent results between our work and Tisseuil et al. [5] high-
light the importance of studying the diversity patterns at a
more detailed scale when conservation planning is carried
out at finer spatial resolutions.

We also found that congruence of species richness
among vertebrates became weaker with an increase in
altitude. For example, within the upper montane forests,
all correlations between species groups were significantly
lower. Thus, it seems that for specific conservation plans
within the upper montane forests it is not adequate to
use a single species group as a surrogate and, instead,
species-specific or habitat focused approaches are sug-
gested as an alternative.[9]

Since species are the basic unit for biodiversity con-
servation, it is important to assess if invertebrate family
richness pattern could be used as a surrogate for species
diversity in the Napo Basin. Although several studies
have generally concluded that the number of higher
taxa is often strongly correlated with species richness,
[32,82–84] in Ecuador this relation for invertebrates has
not been well studied.[33] Our results suggest that,
across a large altitudinal gradient in the high montane
elevational zone in the Napo Basin, freshwater inverte-
brate family richness is highly correlated with species
richness. Thus, family level data could be used as surro-
gate of species in biodiversity assessments in the higher
elevation portion of the Napo Basin, when the objective
is to examine biodiversity patterns and to rank sites
according to their conservation value.[9] Also, this high
correlation allowed us to directly compare the distribu-
tion patterns found between vertebrates and invertebrates.
We conclude that middle altitudes in the Napo Basin are
the richest areas for the invertebrate species, while verte-
brate species diversity is low. Given the differences in
diversity patterns of vertebrates and invertebrates it is
clear that both groups should be incorporated as biodi-
versity indicators when assessing patterns and defining
conservation priorities.[7]

Methodological considerations

There are some important methodological aspects of our
study worth highlighting. First, there are several studies
focused on understanding freshwater diversity patterns at
regional scales using modeling techniques, but usually
these studies focus on one species group (usually fish). In
contrast, we made an effort to incorporate taxa represent-
ing different levels of water dependence, and modeled
their distributions through the use of different sets of the
environmental variables and background data. Second, our
work offers a good example of how to estimate diversity
patterns in a region with scant information about aquatic
systems. Since the Napo Basin has a large drainage den-
sity, important physical and chemical parameters for rivers
(and thus for freshwater organisms) such as pH, dissolved
oxygen, temperature, and sediment, were not available.
However, we included surrogate information like the geo-
morphology and ecosystem types, which accurately
describe the location of aquatic environments such, as var-
zea (whitewater) and igapó (blackwater) forests. These
types of environments have different values for the param-
eters mentioned above and, therefore, influence the diver-
sity of aquatic species in the Amazonian region.[79]
Similarly, the river flow or river discharge flow is a major
determinant of physical habitat in streams, which in turn
influences biotic composition.[85] However, measures of
river flow across the entire Napo Basin are scarce. Instead,
variables used in our study such as slope, flow accumula-
tion, topographic curvatures, and precipitation can be used
as surrogates or indicators of different levels of stream and
river flow at the basin scale.[86,87] Third, despite of the
difficulty of including invertebrate species in a freshwater
diversity pattern analysis, the family information offers an
alternative for studying this important and taxonomically
complex group. Therefore, we opted for generating family
distribution maps employing the principles of the species
distribution models. Despite the limitations of this
approach, we obtained a detailed family richness map
that closely matched with observed patterns in the field,
allowing us to visualize and compare with confidence the
differences between the diversity patterns of freshwater
invertebrates and vertebrates.

The spatial modeling of distributions has some
limitations that are important to mention. We identified
several sites of high richness for vertebrate species and
invertebrate fauna in the Napo Basin, but this is a pattern
based entirely on environmental variables; thus, it is pos-
sible that some diverse areas no longer have habitat to
protect as a consequence of human activities (see more
below). For example, areas nearby large lowland cities
(Coca, Nueva Loja) are heavily deforested, with a strong
presence of the oil industry and human settlements.
Thus, for conservation programs it is important to take
into account the current condition of ecosystems.
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On the other hand, many remote areas of the Napo
Basin remain poorly explored in terms of biological
inventories and, therefore, the set of environmental con-
ditions of these areas could be under-represented in the
species occurrence data used in our study. Although the
spatial modeling may help reduce the impact of sampling
bias, in some cases, this bias may result in species distri-
bution models that are too restricted, with false species
absences in under-represented areas that could affect the
accuracy of species and family richness maps. Thus, it is
possible that some remote areas of the Napo Basin iden-
tified as poor vertebrate and invertebrate diversity (such
as those areas with zero species or families in Figures 2
and 3) may actually have higher richness. However,
other types of data available for highly diverse areas
such as observed points or geographic ranges, usually
produce greater errors (both false species absences and
presences).[26,88] Despite these limitations, the spatial
distribution modeling is recommended over other
approaches for understanding the diversity pattern in
tropical regions with poor accessibility.[89]

Implications for conservation planning

Our study emphasizes the need of including different
faunal groups for conservation planning. In fact, the low
congruence between groups is interesting because it sug-
gests that there are different hotspots of freshwater diver-
sity along the basin. Invertebrates, for example, had
higher diversity at mid elevations; therefore, conservation
plans should include fluvial corridors along altitudinal
gradients to increase the probabilities of sustaining this
biological diversity in the long term. Interestingly, these
mid-elevation rivers and streams in the Andean-Amazon
regions are probably one of the most threatened aquatic
ecosystems in this region, specially due to the construc-
tion of hydropower dams [25] that are still erroneously
considered by local governments, as environmentally
friendly energy projects.[90]

Other groups like fish, were not necessarily diverse
at mid altitudinal ranges, but might have high levels of
endemism.[91] Moreover, fluvial corridors in the Tropi-
cal Andean regions have proven to be critical for annual
long-term migration for hundreds of fish species (e.g.
Prochilodus nigricans, Pseudoplatystoma spp., Brachy-
platystoma spp.) that spawn in higher altitudes in the
foothills of the Andes.[15] Similarly, certain groups of
amphibians have been proven to have higher diversity at
mid-elevation ranges,[81] highlighting the importance of
altitudinal corridors in these watersheds. In the Napo,
specifically, there are several protected areas (Figures
2(a) and 3(a)) that comprise large altitudinal gradients
and should be managed specifically for the conservation
of these species. The Cayambe-Coca National Park,
Antisana Ecological Reserve, Sumaco Napo Galeras

National Park, Llanganates National Park, and the new
Colonso-Chapulas Biological Reserve [92] are some of
these areas. Although there are still questions about the
efficiency of the management of these protected areas,
their conservation value is extremely important. More-
over, even though these areas were not necessarily cho-
sen for the protection of freshwater ecosystems and
diversity, their protection could improve the conservation
of unique and different freshwater habitats along these
Andean-Amazon basins.

For all the other freshwater groups (fish, amphibian,
reptiles, birds, and mammals) the lower Napo Basin had
the highest diversity; of special relevance are the main
stems of the Napo, the Aguarico, the Cononaco, and the
Curaray (Figures 1 and 2(a)). The Napo, Tiputini, Aguar-
ico, and Shushufindi rivers in the northern corner of the
Napo Basin, have the highest values of freshwater mam-
mals, amphibians, and fish. These areas, although admir-
ably iconic for their diversity,[93] are subject to great
pollution threats.[94] Oil extraction since the 1970s have
had large impacts, especially in the form of oil spills in
hundreds of hectares of lowland Amazonian soils and
water courses.[95–98] The direct impact that oil spills have
had on the biodiversity of the Napo Basin has not been
properly quantified. Additionally, these lowland areas are
experiencing a high rate of agricultural and urban expan-
sion; and this by itself is intensifying the pressure on natu-
ral resources (i.e. organic and chemical pollution). Wildlife
hunting and artisanal fishing is not well regulated,[99] and,
consequently, some of the most charismatic fauna are
already very uncommon and the most abundant groups are
becoming decimated by these practices.[100] Although
anthropogenic threats go beyond the scope of this paper, it
is important to take into account that some areas might
have already lost some of that incredible diversity pre-
dicted for these areas in this study. Nevertheless, the low-
land forests in the Napo have large extensions within two
protected areas (Cuyabeno Faunistic Reserve and the
Yasuní National Park; Figure 2(a)), which hopefully will
provide the core for the protection and restoration of the
rich biodiversity of the lower portion of this watershed.

Finally, these freshwater diversity distribution maps
provide a first step necessary for conservation planning
of freshwater ecosystems in an Andean-Amazon water-
shed. For instance, with the information presented in our
study, it is now possible to perform a formal conserva-
tion gap analysis for freshwater faunal diversity, which is
essential to the creation of new conservation areas that
increase the representation of biodiversity in the reserve
systems of Ecuador.[101] In this context of conservation
planning, future studies should complement the presented
richness maps with detailed information about beta diver-
sity or endemism patterns of freshwater taxa, which
could reveal unnoticed priority sites for protection of
the Napo Basin. Also, it is critical to develop spatial data
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about anthropogenic threats to model different scenarios
for conservation, mitigation, and even restoration of
these diverse but also endangered regions.
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