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The time evolution of electron waves in graphene superlattices is studied using both
microscopic and “effective medium” formalisms. The numerical simulations reveal
that in a wide range of physical scenarios it is possible to neglect the granularity
of the superlattice and characterize the electron transport using a simple effective
Hamiltonian. It is verified that as general rule the continuum approximation is
rather accurate when the initial state is less localized than the characteristic spatial
period of the superlattice. This property holds even when the microsocopic electric
potential has a strong spatial modulation or in presence of interfaces between different
superlattices. Detailed examples are given both of the time evolution of initial
electronic states and of the propagation of stationary states in the context of wave
scattering. The theory also confirms that electrons propagating in tailored graphene
superlattices with extreme anisotropy experience virtually no diffraction. C 2016 Au-
thor(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1063/1.4959190]

I. INTRODUCTION

Graphene is a carbon-based material where the atoms are arranged in a honeycomb lattice.1–8

This genuinely two-dimensional material is characterized by unusual and remarkable electronic
properties, including a “relativistic”-type spectrum, such that the propagation of low-energy elec-
trons in graphene is described by the massless Dirac equation.3 These properties pushed graphene
into the frontline of condensed matter physics research.1–7

Interestingly, it may be feasible to gain additional control over the transport properties of
electrons in graphene by artificially introducing a new length scale into the system in the form
of a periodic electrostatic potential.9–16 These structures, known as graphene superlattices, may be
realized using different techniques, such as with periodically patterned gates, with the deposition of
adatoms on graphene’s surface, or using a crystalline substrate.17–24

Rooted in the superlattice concept, it was recently proposed that it may be possible to extend
to electronics some phenomena and devices originally discussed in the context of electromagne-
tism,25,26 such as the “perfect lens”27,28 or an electron “wormhole”.29 In these works, the propaga-
tion of the electrons in the superlattices was studied using an effective medium approach, wherein
the granular details of the superlattices are homogenized.27 Within this framework the structure
is regarded as a continuum and the dynamics of the wave function envelope is described by an
effective Hamiltonian.

The main objective of the present work is to demonstrate that the effective medium theory
proposed in Ref. 27 can be used to determine the time evolution of electronic states in graphene

aTo whom correspondence should be addressed: E-mail: mario.silveirinha@co.it.pt
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superlattices. To this end, we develop a finite-difference time-domain (FDTD) algorithm to charac-
terize the propagation of electron waves in superlattices using both microscopic and macroscopic
formalisms. We present a detailed comparison of the physical response predicted by the two ap-
proaches. It is important to highlight that the application of numerical methods to the Schrödinger
and Dirac equations is well known and has been widely reported in the open literature (e.g.
Refs. 30–39). In particular, Refs. 30 and 31 study the propagation of electron waves in graphene het-
erojunctions using the FDTD method. However, the key novelty of our work is the verification that
the effective medium formalism developed in Ref. 27 can be used to predict the physical response
in the frame of time evolution problems as well as in the frame of stationary state problems in
complex propagation scenarios. We are unaware of similar studies in related physical platforms. To
this end, a FDTD algorithm based on a leapfrog update scheme40 is developed and applied to the
characterization of graphene superlattices using both the macroscopic and microscopic models. It
is underlined that the theory developed in Refs. 30 and 31 cannot be directly applied to the prop-
agation of electron waves in the context of the effective medium model considered here, and this
is the reason why we develop our own numerical scheme to solve the modified Dirac equation. It
is important to make clear that what we designate here by “microscopic model” corresponds to the
description of the electron wave propagation in graphene using the two-dimensional Dirac equation,
which is itself an effective medium theory. Our effective Hamiltonian corresponds thus to a second
level of homogenization. The Dirac equation is a valid starting point for a microscopic theory when
the period of the superlattice is much larger than the atomic constant of graphene. Furthermore,
the Dirac equation has been the basis of several successful theoretical predictions supported by
experiments, such as the negative refraction of Dirac fermions and the connection between the
optical conductivity of graphene and the fine structure constant.41,42 One of the nontrivial aspects of
an effective medium approach is the correct formulation of boundary conditions at interfaces. Here,
the boundary condition introduced in Ref. 29 is implemented in the FDTD code, and its validity is
numerically confirmed in complex propagation scenarios.

The article is organized as follows. In Sec. II the effective medium model is succinctly re-
viewed. Section III describes the FDTD algorithm used to characterize the time evolution of elect-
ron waves. In Secs. IV and V, the theory is applied to the propagation of stationary states and to the
time evolution of initial electronic states, respectively. Finally, in Sec. VI conclusions are drawn.

II. EFFECTIVE MEDIUM MODEL

The propagation of the charge carriers in graphene may be described using the massless Dirac
equation3:

i~
∂

∂t
ψ = Ĥψ, (1)

being Ĥ = −i~vF
(
σx

∂
∂x
+ σy

∂
∂y

)
+ V (r) the “microscopic” Hamiltonian operator near the K point,

where V is the microscopic potential, ψ = {Ψ1,Ψ2} is the two-component pseudospinor, vF
≈ 106m/s is the Fermi velocity and σx,σy are the Pauli matrices. It is relevant to mention that for
superlattices made from adatoms or for graphene-boron nitride superlattices the Hamiltonian gains
an additional σz component.43 Such a term can be easily incorporated into our FDTD discretization,
but for simplicity in what follows we focus on superlattices described by a microscopic electrostatic
potential with a one-dimensional spatial variation of the form V (x) = Vav + Vosc sin (2πx/a) (see
Fig. 1(a)). Here, Vav is the average potential and Vosc is the peak amplitude of the oscillating part of
the potential.

By solving the Dirac equation (1) it is possible to completely characterize the wave function
ψ in both spatial and time domains. However, since the microscopic potential V has a complex
spatial dependence, this approach may be computationally demanding and provides limited physical
insights.

A solution to reduce the complexity of the problem is to use effective medium methods. It was
recently shown that the electronic states with the pseudo-momentum near the Dirac K point can
be accurately modeled using an effective medium framework.27,29 In this approach, the microscopic
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FIG. 1. (a) Sketch of a graphene superlattice characterized by a sinusoidal-like periodic electrostatic potential V (x)
=Vav+Vosc sin(2πx/a). (b) Anisotropy ratio as a function of Vosc. (c) Energy dispersion of i) Pristine graphene (χ = 1)
and ii) Graphene superlattice characterized by an extreme anisotropy (χ = 0).

potential is homogenized and the effective Hamiltonian treats the superlattice as a continuum char-
acterized by some effective parameters.27,29 For an unbounded superlattice the effective Hamiltonian
is of the form:

�
Ĥe fψ

� (r) = [−i~vFσ (χ) · ∇ + Vav] · ψ (r) , (2)

where σ (χ) = σxx̂ + χσyŷ and χ is an effective medium parameter designated by anisotropy ratio.
The value of χ depends on the amplitude of the fluctuating part of the microscopic potential Vosc

and is numerically determined using the “first principles” homogenization approach described in
Ref. 27. The explicit dependence of χ on the peak amplitude of the oscillating part of the potential
Vosc is shown in Fig. 1(b), and reveals that the proper tuning of Vosc may enable a regime charac-
terized by an extreme anisotropy, where χ = 0. It is well known that graphene superlattices may
have strongly anisotropic Dirac cones and particle velocities, and may allow for the propagation of
electron waves with virtually no diffraction.18,19,29 The stationary states energy dispersion obtained
with the macroscopic framework is given by27:

|E − Vav | = ~vF


k2
x + χ2k2

y, (3)

where E is the energy of the electrons and k =
�
kx, ky

�
is the wave vector associated with the elec-

tronic state, measured with respect to the K point. In pristine graphene the anisotropy ratio is unity
(χ = 1) and the energy dispersion is determined by the usual Dirac cone, as depicted in Fig. 1(ci)).
This linear energy dispersion corresponds to an isotropic propagation velocity. Quite differently,
the energy dispersion for a superlattice with extreme anisotropy (χ = 0) corresponds to a Dirac
cone stretched along the y-direction, as shown in Fig. 1(cii), so that the electrons are allowed to
propagate only along the x-direction. It is important to note that for sufficiently strong modulations
of the electric potential new Dirac points can emerge in the energy spectrum.17,21–24 This effect
is fully described by the microscopic theory [Eq. (1)] but not by the effective Hamiltonian which
predicts a unique Dirac point.

The minimum value of Vosc that leads to an extreme anisotropy is Vosca/~vF ≈ 7.55. Interest-
ingly, this amplitude for Vosc is precisely coincident with an analytical solution of Ref. 12 for new
zero-energy states (due to the zero-crossing of the energy spectrum for large ky) and for a strong
enhancement of the conductance in superlattices with a sinusoidal profile. Since in an extreme
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anisotropy regime there is a strong enhancement of the electric response,44 it follows that the con-
tinuum approximation captures the essence of the findings of Ref. 12. Furthermore, it will be shown
that despite the emergence of new Dirac points the effective Hamiltonian describes extremely well
the electron wave propagation in graphene superlattices with a strong potential modulation when the
electron state has a characteristic width a few times larger than the lattice period.

III. THE FDTD ALGORITHM

The knowledge of the time dynamics of electrons is essential to predict the response of
graphene-based electronic devices. As a starting point, it is convenient to consider a generalized
Schrödinger equation with a fictitious source term:

i~
∂

∂t
ψ = Ĥψ + i~vFj. (4)

The term j =
�
j1 j2

�T may be regarded as an external source that injects carriers into the sys-
tem. As explained later with detail, this fictitious source is useful to characterize extended (non-
localized) stationary energy states. In case of heterojunctions with a spatially varying anisotropy
ratio χ, the macroscopic Hamiltonian (2) should be written as:

Ĥe f = −i~vF

(
σx

∂

∂x
+

(
1
2
χ

∂

∂ y
+

1
2

∂

∂ y
χ

)
σy

)
+ Ve f (r) , (5a)

Ve f (r) = Vav (r) + ∂u
∂x
~vF . (5b)

We replaced χσyi ∂
∂y
→ 1

2 χσyi ∂
∂y
+ 1

2
∂
∂y

χσyi to ensure that the Hamiltonian remains Hermitian
when the anisotropy ratio χ depends explicitly on the y coordinate. In addition, a spatially depen-
dent χ requires that the macroscopic potential Vav is transformed as Vav → Vav +

∂u
∂x
~vF (Eq. (5b)),

where u = u (χ) is defined as in Eq. (A3) of Appendix A. This transformation is required for the
correct modeling of the wave propagation at an interface between distinct superlattices, as discussed
in Appendix A.

For conciseness, next we present a unified description of the FDTD method that applies to
both the microscopic and macroscopic (effective Hamiltonian) approaches. It is implicit that in the
microscopic approach χ = 1 and Ve f = V . The system (4) with the Hamiltonian (5) can be spelled
out as:

∂Ψ1

∂t
= −vF

(
∂

∂x
− i

(
∂

∂ y

χ

2
+

χ

2
∂

∂ y

))
Ψ2 +

Ve f

i~
Ψ1 + vF j1, (6a)

∂Ψ2

∂t
= −vF

(
∂

∂x
+ i

(
∂

∂ y

χ

2
+

χ

2
∂

∂ y

))
Ψ1 +

Ve f

i~
Ψ2 + vF j2. (6b)

To discretize this system and obtain the time update equations in an explicit form, the spatial
domain is discretized into a rectangular grid, such that the node distances along the x- and
y-directions are taken equal to ∆x and ∆y, as shown in Fig. 2. The pseudospinor is sampled at time
instants separated by the time step ∆t.

As usual, the partial derivatives are replaced by finite differences such that for a generic
physical entity F:

∂lF (i) = F
�
i + 1

2

�
− F

�
i − 1

2

�

∆l
, (7)

where ∂l ≡ ∂/∂l for l = x, y, t, and F (x, y, t) = F
�
p∆x,q∆y,n∆t

�
≡ F (p,q,n). In our algorithm the

components of the pseudospinor Ψ1 and Ψ2 are sampled at different points of space-time such that:

Ψ1 (p,q,n) ≡ Ψn
1,p,q, (8a)
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FIG. 2. The superlattice is discretized into a finite number of nodes with the pseudospinor components Ψ1 and Ψ2 defined
in two staggered subgrids. The component Ψ1 is defined over the nodes (p,q) whereas Ψ2 is defined over the nodes
(p+1/2,q+1/2) shifted by a half-grid period.

Ψ2

(
p +

1
2
,q +

1
2
,n +

1
2

)
≡ Ψn+ 1

2

2,p+ 1
2 ,q+

1
2
. (8b)

Therefore, the discretization of Ψ1 and Ψ2 ensures that the partial derivatives of Ψ1 (Ψ2) in the
spatial domain are defined over the same spatial subgrid as Ψ2 (Ψ1). The time derivatives of Ψ1 and
Ψ2 are also defined in staggered time grids. Applying these principles to the system (6) leads to the
following time update equations:

Ψ
n+1
1,p,q

(
1 −

Vp,q

i~2
∆t

)
= Ψn

1,p,q

(
1 +

Vp,q

i~2
∆t

)
+ vF∆t j

n+ 1
2

1,p,q+

− vF∆t
(

1
2∆x
− i

χp,q + χp+ 1
2 ,q+

1
2

4∆y

)
Ψ

n+ 1
2

2,p+ 1
2 ,q+

1
2
−

(
1

2∆x
+ i

χp,q + χp− 1
2 ,q+

1
2

4∆y

)
Ψ

n+ 1
2

2,p− 1
2 ,q+

1
2

+

(
1

2∆x
+ i

χp,q + χp+ 1
2 ,q−

1
2

4∆y

)
Ψ

n+ 1
2

2,p+ 1
2 ,q−

1
2
−

(
1

2∆x
− i

χp,q + χp− 1
2 ,q−

1
2

4∆y

)
Ψ

n+ 1
2

2,p− 1
2 ,q−

1
2


(9a)

Ψ
n+ 1

2

2,p+ 1
2 ,q+

1
2

*
,
1 −

Vp+ 1
2 ,q+

1
2

i~2
∆t+
-
= Ψ

n−1/2
2,p+ 1

2 ,q+
1
2

*
,
1 +

Vp+ 1
2 ,q+

1
2

i~2
∆t+
-
+ vF∆t jn

2,p+ 1
2 ,q+

1
2

− vF∆t
(

1
2∆x
+ i

χp+ 1
2 ,q+

1
2
+ χp+1,q+1

4∆y

)
Ψ

n
1,p+1,q+1 −

(
1

2∆x
− i

χp+ 1
2 ,q+

1
2
+ χp,q+1

4∆y

)
Ψ

n
1,p,q+1

+

(
1

2∆x
− i

χp+ 1
2 ,q+

1
2
+ χp+1,q

4∆y

)
Ψ

n
1,p+1,q −

(
1

2∆x
+ i

χp+ 1
2 ,q+

1
2
+ χp,q

4∆y

)
Ψ

n
1,p,q


(9b)

where Vp,q = Ve f

�
p∆x,q∆y

�
, χp,q = χ

�
p∆x,q∆y

�
, etc. In the derivation of the above equations,

we use interpolation formulas such as Ψ1
�
p,q,n + 1

2

�
≈ 1

2

(
Ψn

1,p,q + Ψ
n−1
1,p,q

)
to evaluate the wave

function at points not lying in the pertinent subgrid. By sequentially using the explicit update
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equations (9) in a leapfrog scheme,40 it is possible to determine Ψn
1,p,q and Ψ

n+ 1
2

2,p+ 1
2 ,q+

1
2

at a generic

instant of time n from the knowledge of the initial state of the system (Ψn
1,p,q and Ψ

n+ 1
2

2,p+ 1
2 ,q+

1
2

calculated at n = 0). This update scheme is completely analogous to the FDTD algorithm for elec-
tromagnetic waves.40 In Appendix B, we formally demonstrate that our algorithm is stable provided
the time step satisfies:

∆t <
1
vF

1
1
∆2
x
+

χ2

∆2
y

. (10)

Moreover, in Appendix C, it is shown that unbounded regions (with the graphene sheet infinitely
extended) can be numerically emulated using a “perfectly matched layer” (PML). For complex
heterostructures the FDTD algorithm may require substantial computational resources. Given the
processing power provided by current graphics processing units (GPUs), the algorithm was imple-
mented based on parallel computing methods. A validation of the FDTD algorithm for electron
waves propagating in simple graphene heterostructures is reported in the Supplementary Mate-
rials.45 In the next sections, the algorithm is applied to graphene superlattices.

IV. STATIONARY STATES IN GRAPHENE SUPERLATTICES

In the following, we investigate the propagation of extended stationary states (with a definite
energy) in graphene superlattices using both the microscopic and effective medium formalisms.

First, we consider the propagation problem in an unbounded graphene superlattice. Within the
continuum approximation described in Sect. II, the wave packet (group) velocity is given by [see
Eq. (3)]:

v =
1
~
∇kE = sgn (E − Vav) vF 1

k2
x + χ2k2

y

�
kx, χ

2ky

�
. (11)

Thus, unlike in pristine graphene (χ = 1) in general the group velocity is not parallel to the
quasi-momentum k. In particular, in the extreme anisotropy limit (χ = 0) the group velocity sat-
isfies v = ±vFx̂, and hence in this case all the electron states flow along the x-direction and the
superlattice supports diffractionless propagation.11–16 To illustrate this effect, we consider the prop-
agation of a Gaussian electron wave with initial beamwidth radius RG = 14.14a and normalized
energy E0a/~vF = 0.2 in an unbounded graphene superlattice. The superlattice is characterized by
χ = 0, (Vav − E0) a/~vF = 0.1, being a = 10nm the lattice period. In a first stage, the superlattice is
treated as a continuum.

An (extended) stationary state can be characterized with the FDTD method using a fictitious
“electron source”, i.e. with a suitable j in Eq. (4). The role of the source is to imitate the continuous
flow of the incoming stationary wave packet. The explicit formulas that are used to generate an
incoming Gaussian wave packet with energy E = E0 are given in Appendix D. The time dependence
of the fictitious source is of the form e−iω0t with ω0 = E0/~, and the source is turned on at time t = 0
with an initial state ψt=0 = 0. In order to imitate an unbounded structure the computational domain
is truncated with a PML. After a sufficiently long time, the wave function will reach a steady state
such that the time variation of ψ is also of the form e−iω0t in all points of space and the integral |ψ|2dxdy becomes time independent. In all the calculations of the article, we used a time step
∆t = 0.35 ∆

vF
√

2
≈ 0.62as for a spacing between nodes ∆ = ∆x = ∆y = 0.25nm, consistent with the

stability criterion defined in Eq. (10).
In the present example, the stationary regime in the FDTD method is reached after 16 × 103

time steps so that the propagation time is t ≈ 0.99ps. The spatial distribution of the probability
density function is depicted in Fig. 3(a) and reveals that the beamwidth of the electron wave is unaf-
fected by the propagation in the superlattice. Note that in our plots the x- (stratification) direction is
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FIG. 3. (a) Density plot of |ψ|2 calculated with the continuum approximation. (b) Similar to (a) but calculated with the exact
microscopic theory. (c) Longitudinal profiles of the probability density function (normalized to arbitrary units) calculated
using the microscopic model (black curve), and with the continuum approximation (green – light gray – curve). (d) Trans-
verse profiles of the probability density function at x = 20a calculated with the microscopic model (thick black curves) and
with the continuum approximation (dashed green curves). In all the examples, E0a/~vF = 0.2 and (Vav−E0)a/~vF = 0.1.
The incident Gaussian electron wave has RG = 14.14a and propagates in a superlattice characterized by the anisotropy ratio
χ = 0 (in the microscopic model Vosca/~vF ≈ 7.55).

the vertical axis. This confirms that within the continuum approximation a superlattice with χ = 0 is
insensitive to diffraction effects.

To validate these results we applied the FDTD algorithm to the corresponding microscopic
structure taking into account that the microscopic potential has a sinusoidal-type spatial variation
(see Fig. 1(a)) with Vosca/~vF ≈ 7.55. This value of Vosc corresponds to a vanishing χ in the con-
tinuum model (see Fig. 1(b)).27 The probability density function obtained with the microscopic
approach is depicted in Fig. 3(b), and agrees extremely well with the effective medium theory
results. This is corroborated by Figs. 3(c) and 3(d), which show the longitudinal and transverse
profiles of the probability density function determined using the continuum and the microscopic
models. Moreover, in Figs. 4(a)-4(b) we also represent the amplitude and phase of the two compo-
nents of the pseudospinor ψ = {Ψ1,Ψ2} along the y = 0 line. As is well known, each component
of the pseudospinor is associated with a different sublattice of graphene.3,46 Thus, the FDTD results
show that the continuum model accurately characterizes the effective response of both sublattices.
It should be noted that the region x > 52a of the computational domain corresponds to the PML
region, whose boundary is marked by the dashed vertical line in Fig. 3(c) and in Fig. 4. As seen, the
PML region effectively “absorbs” the electron wave without reflections, mimicking an open bound-
ary. We numerically verified (not shown) that the results are virtually unchanged for a graphene strip
with a finite transverse width W along the y-direction, being W a few times larger than RG. Thus, in
the extreme anisotropy limit the edges play no role on the electron wave propagation.

It is interesting to note that due to the granularity of the superlattice the microscopic model
results have considerable fluctuations on the scale of a, particularly the phase of the pseudospinor
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FIG. 4. (a) Amplitude and phase ofΨ1 (along the y = 0 line) calculated using the microscopic model (green discrete symbols)
and with the continuum model (black solid curves). (b) Similar to (a) but for Ψ2. (c) and (d) are similar to (a) and (b) but the
microscopic results are spatially averaged. The structural parameters and the energy value are as in Fig. 3.

oscillates wildly in each period as seen in Figs. 4(a)-4(b). To filter out these oscillations, the
microscopic results are spatially averaged, so that for a physical entity F we calculate Fav (x, y)
= 1

a

a/2
−a/2

F (x + x ′, y) dx ′. The transverse profiles of the amplitude and phase of the pseudospinor

ψ = {Ψ1,Ψ2} calculated using the effective medium theory and the microscopic model with spatial
averaging are shown in Fig. 4(c)-4(d). The results demonstrate that with the spatial averaging the
microscopic and the effective medium model results are virtually coincident, which is consistent
with the theory of Ref. 27. In the rest of the article, the spatial averaging is applied to all the
microscopic model results.

To determine the limits of validity of the continuum approximation, we calculated the station-
ary regime results for Gaussian wave packets with increasingly small radial width RG (Fig. 5).
The simulations show that for RG = 1.9a the continuum model still captures the physical response
of the superlattice, but for smaller beamwidths (e.g. RG = 0.4a) it gives results diverging from
the microscopic theory. Indeed, for RG = 0.4a the wave is diffracted by the structure leading to a
significant broadening of the wave packet, as illustrated in Fig. 5(f). This finding is consistent with
the general limits of validity of effective medium methods which are expected to break down when
the wave becomes more localized than the lattice period.27 Indeed, when RG < a, electronic states
with large values of the wave vector (e.g. states associated with new Dirac points) can influence the
wave propagation. These states are not described by the continuum model.

Next, we study the wave propagation in complex graphene heterostructures. Specifically, in a
first step we investigate the electron wave scattering by a superlattice nanostrip encapsulated in pris-
tine graphene. The superlattice nanostrip has the same structural parameters as in Fig. 3 and thick-
ness W = 20a. Figure 6 shows the transmission coefficient T for the pseudo-spinor amplitude calcu-
lated with the FDTD code for E = E0, with E0a/~vF = 0.2, as a function of the pseudo-momentum
ky. These results are compared with “exact” analytical results for plane wave incidence obtained
using the theory of Ref. 29. Note that the analytical results depend if the superlattice is regarded as a
granular structure or as a continuum.29

As seen in Fig. 6, there is an excellent agreement between the FDTD results and the analyt-
ical theory for both the microscopic (Fig. 6(b)) and the continuum formulations (Fig. 6(a)). Note
that as kya increases from 0 to 0.2 the incidence angle varies from 0o to 90o (grazing incidence).
For kya > 0.2 the incident wave is evanescent and the x-component of the incident wave vector
becomes imaginary so that the states are not normalizable.

A crucial aspect is that within the macroscopic framework the wave function is not continuous
at the interface, but it rather satisfies a boundary condition derived in Ref. 29 and further discussed

 30 August 2023 08:25:25



075109-9 Fernandes et al. AIP Advances 6, 075109 (2016)

FIG. 5. Gaussian electron wave with RG = 1.9a and energy E0a/~vF = 0.2 (stationary regime). (a) Longitudinal profiles
of |ψ|2 (normalized to arbitrary units) calculated using the microscopic model (green – light gray – dashed curve), and with
the continuum model (black curve). (b) Density plot of |ψ|2 calculated with the continuum approximation. (c) Similar to (b)
but calculated with the exact microscopic theory. (d)-(f) Similar to (a)-(c) but for a wave with RG = 0.4a. In all the examples
the structural parameters of the superlattice are as in Fig. 3.

in Appendix A. In the FDTD algorithm the effect of the nontrivial boundary condition is described
by the function u (χ) in Eq. (5b). When u (χ) is taken equal to zero the boundary condition reduces
to the continuity of the pseudospinor.

To highlight the importance of using the correct boundary condition in the continuum approx-
imation, we consider the scenario wherein a Gaussian electron wave with RG = 5a, normalized
energy E0a/~vF = 0.2 impinges on a superlattice nanostrip with an incidence angle θi = 53o. The
input interface is at x = 10a. The Gaussian wave is created by a fictitious source placed at the
x = 0 plane. The graphene nanostrip is a superlattice with thickness W = 20a, average potential

FIG. 6. (a) Transmission coefficient as a function of the normalized transverse quasi-momentum ky (continuum approxima-
tion). The incident electron wave propagates in pristine graphene with energy E0a/~vF = 0.2 and impinges on a superlattice
nanostrip with thickness W = 20a and with the same structural parameters as in Fig. 3. (b) is similar to (a) but calculated
for the associated microscopic structure. In both the examples, the discrete symbols represent the results calculated using the
FDTD algorithm and the solid thick curves represent the analytical results obtained using the theory of Ref. 29.
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FIG. 7. An incident Gaussian electron wave with RG = 5a propagating in pristine graphene impinges on a superlattice nanos-
trip characterized by the anisotropy ratio χ = 0.25 (in the microscopic model Vosca/~vF ≈ 6.13) and (Vav−E0)a/~vF = 0.1.
The energy is E0a/~vF = 0.2 and the incident angle is θi = 53o. (a) Density plot of |ψ|2 calculated with the exact microscopic
theory. (b) Similar to (a) but calculated with the continuum model. (c) Similar to (b) but calculated with the incorrect
boundary condition. (d) Longitudinal profiles of |ψ|2 calculated using the microscopic model (black curve), with the
continuum model (green – light gray – dashed curve), and with the continuum model with the incorrect boundary condition
(red – dark gray – dotted curve). (e) Amplitude of the transmission coefficient as a function of the normalized transverse
quasi-momentum ky. The legend is as in (d).

(Vav − E0) a/~vF = 0.1 and anisotropy ratio χ = 0.25 (in the microscopic model Vosca/~vF ≈ 6.13).
Figure 7 shows the calculated probability density function for the microscopic theory, the effec-
tive medium theory with the correct boundary condition, and the effective medium theory assum-
ing the continuity of the pseudospinor. The last case corresponds to setting u = 0 in the update
equations.

As seen in Fig. 7(a)-7(c) the continuum model only concurs with the exact microscopic theory
when the correct parameter u is used. This is made clear in Fig. 7(d), which shows the longitudinal
profiles of the probability density function. The red dotted curve, which corresponds to the incorrect
boundary condition (i.e. to the continuity of the macroscopic pseudospinor), underestimates the
value of the wave function inside the superlattice. To have a clearer idea of the discrepancy intro-
duced by the incorrect boundary condition we show in Fig. 7(e) the transmission coefficient for a
plane wave that impinges on the same graphene nanostrip.29 Consistent with the results of Fig. 7(d),
the incorrect boundary condition strongly underestimates the transmission across the nanostrip,
especially for ky > E0/~vF.

V. TIME EVOLUTION OF ELECTRONIC STATES

In the following, the problem of time evolution of a given initial electronic state is considered.
This problem involves solving the FDTD equations subject to a given initial condition ψ|t=0. Of
course, in this context one does not need to consider a fictitious source and hence we set j = 0 in
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Eq. (4). In this work, the initial state is assumed to be of the form (the normalization of the wave
function is arbitrary):

ψ (x, y, t = 0) = *.
,

1
~vF

E0 − V
�
kx0 + i χ ky0

�+/
-

ei(kx0x+ky0y)e
− (x−x0)2+(y−y0)2

R2
G . (12)

This initial state corresponds to a Gaussian wave packet initially centered at (x0, y0) and with a

radial width RG. The parameters E0 and k0 =
�
kx0, ky0

�
(with |E0 − V | = ~vF


k2
x0 + χ2k2

y0) play
the role of “energy” and quasi-momentum of the wave packet, even though, strictly speaking the
considered state is not an eigenstate of the energy operator. The vector k0 determines the direction
of propagation. Similar to the previous sections, the computational domain is surrounded by a PML
to avoid reflections from the sidewalls. Thus, after a sufficiently long time the initial state will be
absorbed by the PML and the probability of finding the electron inside the computational domain
approaches zero.

In the first example, the initial electronic state propagates in an unbounded superlattice charac-
terized by an anisotropy ratio χ0 and average potential V0 = 0, as shown in Fig. 8(a). The parameters

FIG. 8. (a) Geometry of the unbounded superlattice under study. (b) Transverse profile of the probability density function at
x = 0 sampled at the time instant t = 0 (black curves), at x1= 12.35a sampled at t = t1= 2000∆t (green – light gray – curves)
and for x2= 2x1 sampled at t = t2= 4000∆t (blue – dark gray – curves), for pristine graphene (χ0= 1) with V0= 0. (c)
Similar to (b) but for a superlattice with χ0= 0.7 (Vosca/~vF ≈ 3.58). (d) Similar to (b) but for a superlattice with χ0= 0
(Vosca/~vF ≈ 7.55). In all plots, the dashed lines represent the microscopic theory results, and the solid thick lines represent
the continuum approximation results. The time animations of all plots are available online (Multimedia view) [URL: http:/
/dx.doi.org/10.1063/1.4959190.1][URL: http://dx.doi.org/10.1063/1.4959190.2][URL: http://dx.doi.org/10.1063/1.4959190.
3] [URL: http://dx.doi.org/10.1063/1.4959190.4] [URL: http://dx.doi.org/10.1063/1.4959190.5].45
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FIG. 9. (a) and (b) Time evolution of an initial electronic state with RG = 4a (a) Longitudinal profiles of the prob-
ability density function at x = 0 sampled at the time instants t = 0, t = t1= 1000∆t and t = t2= 2000∆t . Solid blue
curves: continuum approximation. Dashed red curves: microscopic theory. (b) Spatial distribution of the probability den-
sity function calculated using the (i) continuum model and (ii) the microscopic model at the time instant t = 1000∆t .
(c) and (d) are similar to (a) and (b) but calculated for an initial electronic state with RG = 1a. (e) and (f) are similar to
(a) and (b) but calculated at t = t1= 250∆t , t = t2= 1000∆t and t = t3= 2000∆t for an initial electronic state with RG

= 0.25a. In all the examples the superlattice is characterized by an anisotropy ratio χ0= 0 (Vosca/~vF ≈ 7.55).

that characterize the initial state are RG = 2.82a, E0a
~vF
= 1.9 and k0 = (1.9,0) /a, with a = 10nm; the

initial wave packet is centered at (x0, y0) = (−15a,0).
First, we consider the electron wave propagation in pristine graphene (χ0 = 1). Using the

FDTD algorithm the wave function was sampled at three different time instants, t = 0, t = t1

= 2000∆t and t = t2 = 4000∆t, with the time step ∆t defined as in Sect. IV. Figure 8(b) represents
the transverse profiles of probability density function at the x=const. lines wherein the amplitude of
|ψ (x, t)|2y=0 is maximal for a fixed t. As expected, the time evolution of the initial electronic state
causes the Gaussian wave packet to broaden and increase its characteristic size. Indeed, in pristine
graphene there is no preferred direction of motion because the group velocity is independent of the
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direction of propagation, and hence the wave is diffracted. Note that in this example the microscopic
and continuum results are coincident because there is no microscopic potential.

We did similar studies for the case of superlattices characterized by anisotropy ratios χ0 = 0.7
and χ0 = 0 (Vosca/~vF ≈ 3.58 and Vosca/~vF ≈ 7.55, respectively, in the microscopic model). The
corresponding results are depicted in Figs. 8(c) and 8(d), respectively, and the associated time
animations can be found in Ref. 45. As seen, consistent with the findings of Sect. IV, as the value
of χ0 approaches zero the broadening of the wave packet becomes insignificant. In particular, for
χ0 = 0 (Fig. 8(d)) the electronic state is unaffected by diffraction and the shape of the wave front
does not change with time. Importantly, the results obtained with the exact microscopic model are
largely coincident with the results obtained with our effective medium theory, confirming that the
effective Hamiltonian can be used - when the initial state is less localized than the period a − to
predict the time evolution of the electronic states in a superlattice.27

Similar to the previous section, the continuum model breaks down when the characteristic
size of the initial electronic state is comparable to the period of the superlattice. This property is
made clear by the results of Fig. 9, which shows that the effective medium theory still concurs

FIG. 10. (a) Geometry of a graphene heterostructure formed by superlattices with anisotropy ratios χ1 and χ2 and average
potentials V1 and V2 embedded in pristine graphene (χ0= 1 and V0= 0). (b) Longitudinal profile of |ψ|2 sampled at t = 0
(black curves), t1= 2000∆t (green curves), t2= 3800∆t (blue curves), t3= 5600∆t (gray curves) and t4= 7600∆t (brown
curves). (c) Transverse profile of |ψ|2 sampled at the same time instants as in (b). (d) Similar to (c) but the sampling time
is t = t4. (e) Longitudinal profile of Ψ1 sampled at the same time instants as in (b). (f) Similar to (e) but for Ψ2. In all
the examples, the results calculated with the exact microscopic theory are depicted with dashed lines and the continuum
approximation results are depicted with solid thick lines.
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extremely well with the microscopic theory for an initial state with RG = 4a (Figs. 9(a) and 9(b)).
However, when the width of the initial state is decreased to RG = a or RG = 0.25a (Figs. 9(c)-9(f))
the spatial spectrum of the initial state is formed by harmonics with large wave vectors that are not
described by the continuum approximation, and hence the two formulations predict quite different
time evolutions.

In the final example, we consider an electron wave propagating in a cascade of several su-
perlattices embedded in pristine graphene (χ0 = 1 and V0 = 0) (Fig. 10(a)). With reference to
Fig. 10(a), the parameters of the superlattices are: anisotropy ratio χ1,2 = ∓0.2 (Vosc,1a/~vF ≈ 8.90
and Vosc,2a/~vF ≈ 6.41 in the microscopic model), average potential V1,2a/~vF = ∓0.5 and thick-
nesses W1 = 7.5a and W2 = 15a. The initial state propagates along the x-direction and has a radial
width RG = 2.82a and E0a/~vF = 1.9. Similar to the previous example, the time evolution problem
is solved using the FDTD algorithm and the longitudinal profile of probability density distribution is
sampled at specific time instants: t = 0, t1 = 2000∆t, t2 = 3800∆t, t3 = 5600∆t and t4 = 7600∆t. As
depicted in Fig. 10(b), the sampling times are such that the maximum of |ψ|2 lies at the mid-plane
of each superlattice nanostrip in Fig. 10(a). Remarkably, despite the complexity of the microscopic
potential, the results obtained with the continuum model are nearly overlapped with the microscopic
theory results.

To highlight the agreement between both models, we also calculated the transverse profiles of
the wave function at the same time instants. As seen in Figs. 10(c) and 10(d), there is an almost
exact agreement between the two formalisms, and only in the case t = t1, the profiles are not exactly
overlapped. Figures 10(e)) and 10(f) also reveal that the agreement is similarly good for the indi-
vidual components of the pseudo-spinor. Interestingly, one may detect in these profiles the presence
of some trembling motion in the wave function. Such a feature is perfectly captured by the con-
tinuum approximation. The trembling motion trailing the main beam is plausibly a manifestation
of the Zitterbewegung effect,47–51 caused by the interference between positive and negative energy
states. In our problem, the Zitterbewegung is due to the fact that states with energies E − V < 0
may be excited in the graphene superlattice regions and hence coexist with states with E − V > 0.
Indeed, the presence of interfaces may imply a redistribution of the relative weight of the waves
with E − V > 0 (forward waves) and the waves E − V < 0 (backward waves, with opposite phase
direction). Note that due to the Klein tunneling3–5 the reflections are rather weak in our problem,
and hence the pulse broadening should not be attributed to them.

VI. CONCLUSION

In this article it was numerically demonstrated that an effective Hamiltonian proposed in an
earlier work (Ref. 27) can be used to characterize the electron transport and the time evolution
of a given initial state in complex graphene heterostructures. To this end, a FDTD algorithm was
developed to study the electron wave propagation in the frame of the effective medium theory. We
derived the conditions of stability of the algorithm and proposed a way to mimic open boundaries
based on an absorbing boundary condition. Importantly, the numerical results reveal that the effec-
tive Hamiltonian accurately describes both the extended stationary states (continuous spectrum)
and the time dynamics of an initial wave packet, provided the initial state is not more localized
than the characteristic spatial period of the superlattice. Surprisingly, this property holds even
for strong modulations of the electric potential that lead to the emergence of new Dirac points
(e.g., for Vosca/~vF ≈ 7.5512). Moreover, the numerical results confirm that within the effective
Hamiltonian framework the correct boundary condition does not correspond to the continuity of
the pseudospinor. We envision that the developed computational tools can be useful to characterize
complex graphene electronic devices and may be generalized to determine the optical response (e.g.
the conductivity) of graphene superlattices.
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APPENDIX A: THE HAMILTONIAN OF GRAPHENE HETEROSTRUCTURES

As discussed in the main text, a graphene superlattice may be regarded as a continuum char-
acterized by the Hamiltonian (2). This Hamiltonian can be used to describe the electron wave
propagation in a homogeneous unbounded region. Crucially, it was demonstrated in Ref. 29 that
for graphene-based heterostructures, e.g. at an interface between a graphene superlattice (regarded
as a continuum) and pristine graphene, the boundary conditions at the interface are not trivial and
do not imply the continuity of the pseudospinor. Indeed, it is possible to ensure the continuity
of the probability density current jx = vFψ

∗ · σx · ψ at an interface (x = x0) between two distinct
graphene based nanomaterials without having a continuous pseudospinor.29 In particular in Ref. 29,
a generalized boundary condition of the type Ux−0

· ψ
�
x−0
�
= Ux+0

· ψ
�
x+0
�

was put forward to char-
acterize a step-like discontinuity of the anisotropy ratio parameter, where U is a unitary operator
of the form U = eiuσx =

( cos u i sin u
i sin u cos u

)
, with u (χ) some function that depends on the microscopic

potential. Within this theory, it is clear that the term −i~vFσx
∂
∂x

in Eq. (2) needs to be replaced by
−i~vFσxU−1 ∂

∂x
U. Hence, we should write the Schrödinger equation as:

i~
∂

∂t
ψ = −i~vF

(
σxU−1 ∂

∂x
U + χσy

∂

∂ y

)
ψ + Vavψ. (A1)

Importantly, this modified equation holds at all points of space, including the interfaces. Using the
formulas U−1 ∂

∂x
U = ∂

∂x
+
�
U−1 · ∂U

∂x

�
= ∂

∂x
+ ∂u

dx

�
U−1 · dU

du

�
and U−1 · dU

du
= iσx, we may simplify

Eq. (A1) as follows:

i~
∂

∂t
ψ = −i~vF

(
σx

∂

∂x
+ χσy

∂

∂ y

)
ψ +

(
Vav +

∂u
∂x
~vF

)
ψ. (A2)

The above equation is consistent with the effective Hamiltonian in Eq. (5) of the main text. The
function u (χ) may be heuristically determined with a numerical fitting as explained in Ref. 29. In
case the microscopic electrostatic potential is characterized by a sinusoidal spatial variation (Fig. 1),
we found that the function u is given by:

u ≈ 0.59 arccos (1 + 1.42 (χ − 1)) . (A3)

APPENDIX B: STABILITY OF THE FDTD ALGORITHM

Here, it is shown that the update equations (9) are numerically stable provided the time step
is sufficiently small. In the following, it is assumed that the structure is spatially homogeneous (χ
and Ve f are independent of the spatial coordinates) and that there is no electron source (j = 0). Our
aim is to characterize the stationary states of the system. To this end, we look for plane-wave type
solutions of Eq. (9) with:

*
,

Ψ
n
1,p+1,q

Ψ
n+1/2
2,p+1/2,q+1/2

+
-
= ξp *

,

Ψ
n
1,p,q

Ψ
n+1/2
2,p−1/2,q+1/2

+
-
, (B1a)

*
,

Ψ
n
1,p,q+1

Ψ
n+1/2
2,p+1/2,q+1/2

+
-
= ξq *

,

Ψ
n
1,p,q

Ψ
n+1/2
2,p+1/2,q−1/2

+
-
, (B1b)

where ξp = eiθp and ξq = eiθq are the spatial phase-shifts between adjacent nodes. In addition,
we assume a time variation such that Ψn+1

1,p,q = λΨn
1,p,q and Ψn+1/2

2,p,q = λΨn−1/2
2,p,q with λ = λ

�
ξp, ξq

�
.

The algorithm is stable provided |λ | ≤ 1 for arbitrary values of the spatial phase-shifts ξp, ξq with
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�
ξp
�
=
�
ξq
�
= 1. Substituting Eq. (B1) into Eq. (9) it is readily found that the plane wave states must

satisfy:

λΨn
1,p,q

(
1 − V

i~2
∆t

)
= Ψn

1,p,q

(
1 +

V
i~2
∆t

)
− vF∆tλ

(
1

2∆x
− i

χ

2∆y

)
−

(
1

2∆x
+ i

χ

2∆y

)
ξ−1
p

+

(
1

2∆x
+ i

χ

2∆y

)
ξ−1
q −

(
1

2∆x
− i

χ

2∆y

)
ξ−1
p ξ−1

q


Ψ

n− 1
2

2,p+ 1
2 ,q+

1
2

(B2a)

λΨ
n− 1

2

2,p+ 1
2 ,q+

1
2

(
1 − V

i~2
∆t

)
= Ψ

n−1/2
2,p+ 1

2 ,q+
1
2

(
1 +

V
i~2
∆t

)
− vF∆t

(
1

2∆x
+ i

χ

2∆y

)
ξpξq −

(
1

2∆x
− i

χ

2∆y

)
ξq

+

(
1

2∆x
− i

χ

2∆y

)
ξp −

(
1

2∆x
+ i

χ

2∆y

)
Ψ

n
1,p,q (B2b)

The above system of equations may be written in a compact matrix form as follows:

*....
,

1
λ

(
λ − 1 − V

i~2
∆t (λ + 1)

)
vF∆t D−

vF∆t D+

(
λ − 1 − V

i~2
∆t (λ + 1)

)+////
-

*.
,

Ψ
n
1,p,q

Ψ
n− 1

2

2,p+ 1
2 ,q+

1
2

+/
-
= 0, (B3a)

D− =
(

1
2∆x
− i

χ

2∆y

)
−

(
1

2∆x
+ i

χ

2∆y

)
ξ−1
p +

(
1

2∆x
+ i

χ

2∆y

)
ξ−1
q −

(
1

2∆x
− i

χ

2∆y

)
ξ−1
p ξ−1

q , (B3b)

D+ =
(

1
2∆x
+ i

χ

2∆y

)
ξpξq −

(
1

2∆x
− i

χ

2∆y

)
ξq +

(
1

2∆x
− i

χ

2∆y

)
ξp −

(
1

2∆x
+ i

χ

2∆y

)
. (B3c)

To have nontrivial solutions, λ is required to satisfy the characteristic equation:

1
λ

(
λ − 1 − V

i~2
∆t (λ + 1)

)2

− (vF∆t)2D−D+ = 0. (B4)

Using ξp = eiθp and ξq = eiθq it can be shown that:

D−D+ =
−4χ2

∆2
x∆

2
y


∆

2
xcos2 θp

2
sin2 θq

2
+
∆2

y

χ2 sin2 θp

2
cos2 θq

2


. (B5)

The solutions of characteristic equation are:

λ =
1

(A − i)2

−1 − A2 +

B2

2
± B

(
B
2

)2

− A2 − 1

, (B6)

with the parameters A = V
2~∆t and B2 = −(vF∆t)2D−D+ > 0 real-valued. It is straightforward to

check that if
�
B
2

�2 − A2 − 1 < 0 then

|λ | = 1
(1 + A2)



(
1 + A2 − B2

2

)2

+ B2
(
1 + A2 − B2

4

)
1/2

= 1. (B7)

Thus, we can conclude that the FDTD algorithm is stable when
�
B
2

�2 − A2 − 1 < 0. This condition is
equivalent to

χ2

∆2
x∆

2
y


∆

2
xcos2 θp

2
sin2 θq

2
+
∆2

y

χ2 sin2 θp

2
cos2 θq

2


(vF∆t)2 < 1 +

(
V
2~
∆t

)2

. (B8)

The above inequality should hold for arbitrary values of the spatial phase-shifts ξp = eiθp and

ξq = eiθq. To satisfy this stability criterion it is sufficient to ensure that χ2

∆2
x∆

2
y

(
∆2
x +

∆2
y

χ2

)
(vF∆t)2 < 1,

which is the same as Eq. (10).
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APPENDIX C: THE PERFECTLY MATCHED LAYER

Here, it is explained how an unbounded graphene region can be mimicked using the FDTD
method. This can be done with a “perfectly matched layer” (PML) that ideally should “absorb”
any incoming electron wave. We propose to do this by tailoring the electrostatic potential V such
that in the PML region V is complex-valued and the wave propagation is damped. Analogous ideas
are used in electromagnetics to imitate the wave propagation in unbounded regions.52 It should be
noted that a Hamiltonian with a complex-valued V is not Hermitian and hence it is compatible with
damping in the wave propagation. It can be easily verified that to have a damped wave propaga-
tion the electric potential V must have a negative imaginary part: Im {V } < 0. For example, for
pristine graphene the relevant Hamiltonian is Ĥ = −i~vFσ · ∇ + V and hence from the Schrödinger
equation one obtains a modified probability current conservation law ∇ · je + ∂W

∂t
+ ploss = 0, being

je = vF
�
ψ∗ · σx · ψx̂ + ψ∗ · σy · ψŷ

�
the probability current, W = |ψ|2 the probability density and

ploss = −Im {V } 2
~
|ψ|2. The term ploss is the instantaneous rate of “probability absorption” per unit

of volume, and hence should be positive to have a damped propagation. Thus, it is required that
Im {V } < 0.

In our numerical implementation the PML completely surrounds the material region of interest
with dimensions Lx × Ly (Fig. 11). In a time evolution problem of a certain initial localized elec-
tronic state, the wave will eventually reach and be absorbed by the PML. Hence, after a sufficiently
long time it will eventually abandon the region of interest (confined by the PML boundary) so that |ψ|2dxdy → 0. The thicknesses of the vertical and horizontal PML regions are dPML,x and dPML, y,
respectively (Fig. 11).

In our numerical implementation it is assumed that χ in the PML regions is the same as in
the material adjacent to the PML. Similarly, the real part of the potential V is the same as for the
neighboring material (V0). We adopted the following potential distribution in the regions 1 and 2 of
the PML:

V − V0 = −i0.7~vF

(
2π

dPML, y

dy

dPML, y

)
. (C1)

where 0 < dy < dy,PML is the distance to the PML boundary (e.g. for −dPML, y < y < 0 one has
dy = |y | and for Ly < y < Ly + dPML, y one has dy = y − Ly). Note that Im {V } < 0 to ensure the
wave absorption in the PML. Similarly, in regions 2 and 3 of the PML we use:

V − V0 = −i0.7~vF

(
2π

dPML,x

dx

dPML,x

)
, (C2)

FIG. 11. Illustration of the PML regions surrounding the relevant computational domain, i.e. a graphene heterostructure with
spatially varying anisotropy ratio χ and potential V .
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where 0 < dx < dx,PML is the distance to the relevant PML boundary. Note that in regions 2 and 3
the imaginary part of the potential is continuously increased (in absolute value) until it reaches a
constant value. This ensures a good absorption of the electron waves. In our simulations we used a
PML with thicknesses dPML,x = 15a and dPML, y = 15a.

APPENDIX D: THE CURRENT SOURCE

As discussed in the main text, it is possible to study the extended electronic states (the contin-
uous spectrum) with a given energy E = E0 (e.g. the scattering of a plane wave by a graphene
heterostructure) using the FDTD method. More specifically, an incoming incident wave can be
emulated by introducing a fictitious electron source j =

(
j1
j2

)
in the massless Dirac equation (4). For

plane wave incidence, the following current distribution is adopted,

j = j0eiky0(y−y0)e−iω0tδ (x − x0) , t > 0, (D1)

where ω0 = E0/~, r0 = (x0, y0) defines the location of the source, and j0 is the vector

j0 = σx · *.
,

1
~vF

E0 − V
�
kx0 + i χky0

�+/
-
. (D2)

In the above k0 =
�
kx0, ky0

�
is the wave vector associated with the plane wave, which satisfies

|E0 − V | = ~vF


k2
x0 + χ2k2

y0. If E0 > V one should choose k>
x00, otherwise k<

x00.
Next it is shown that in a steady-state (t → ∞) this source emits a plane wave of the form

ψ =

(
1

~vF
E0 −V

�
kx0 + i χky0

�
)

eik0·(r−r0) into the region x > x0. Indeed, in a steady-state (t → ∞) the

solution of (4) under the excitation (D1) satisfies:

ψ =




C+
*.
,

1
~vF

E0 − V
�
kx0 + i χky0

�+/
-

eikx0(x−x0)eiky0(y−y0)e−iω0t, x > x0

C−
*.
,

1
~vF

E0 − V
�
−kx0 + i χ ky0

�+/
-

e−ikx0(x−x0)eiky0(y−y0)e−iω0t, x < x0

(D3)

where C± are unknown constants. From here it follows that at x = x0 the term −i~vFσx
∂ψ
∂x

in Eq. (4)
originates a δ-type singularity that should cancel out the term +i~vFj. This is only possible if the
vector j0 satisfies:

j0 = C+σx · *.
,

1
~vF

E0 − V
�
kx0 + i χky0

�+/
-
− C−σx · *.

,

1
~vF

E0 − V
�
−kx0 + i χky0

�+/
-
. (D4)

Hence, in order that in the stationary state all the “electrons” are launched into the semi-space
x > x0 one should have C+ = 1,C− = 0, which yields (D2).

An incoming Gaussian beam with radius RG may also be generated with an excitation of the
form (D1) using a Gaussian modulating term:

j0 = σx · *.
,

1
~vF

E0 − V
�
kx0 + i χky0

�+/
-

e
− (y−y0)2

R2
G . (D5)

Note that in the numerical implementation δ (x − x0) → 1
∆x

δp,p0 wherein p0 determines the grid line
wherein the fictitious source is placed.
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