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Abstract: Conjugated polymers (CPs) have proved to be promising chemosensory materials
for detecting nitroaromatic explosives vapors, as they quickly convert a chemical interaction
into an easily-measured high-sensitivity optical output. The nitroaromatic analytes are strongly
electron-deficient, whereas the conjugated polymer sensing materials are electron-rich. As a result,
the photoexcitation of the CP is followed by electron transfer to the nitroaromatic analyte, resulting
in a quenching of the light-emission from the conjugated polymer. The best CP in our studies was
found to be poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene] (F8T2). It is photostable, has a good
absorption between 400 and 450 nm, and a strong and structured fluorescence around 550 nm.
Our studies indicate up to 96% quenching of light-emission, accompanied by a marked decrease
in the fluorescence lifetime, upon exposure of the films of F8T2 in ethyl cellulose to nitrobenzene
(NB) and 1,3-dinitrobenzene (DNB) vapors at room temperature. The effects of the polymeric matrix,
plasticizer, and temperature have been studied, and the morphology of films determined by scanning
electron microscopy (SEM) and confocal fluorescence microscopy. We have used ink jet printing
to produce sensor films containing both sensor element and a fluorescence reference. In addition,
a high dynamic range, intensity-based fluorometer, using a laser diode and a filtered photodiode was
developed for use with this system.

Keywords: conjugated polymers; explosives detection; trace analysis; optical sensor; luminescence
sensor

1. Introduction

Part of the extensive research in conjugated polymers (CPs) and conjugated polyelectrolytes (CPEs)
is motivated by their capacity as sensitive fluorescent materials for chemo- and biosensing. They offer
a broad range of possibilities for transforming analyte receptor interactions, as well as nonspecific
interactions, into observable (transducible) responses [1,2]. Amplified quenching in fluorescent CP
was introduced by Swager and Zhou [3] and opened the way for novel sensory materials using
this important class of conjugated polymers. In 1998, Yang and co-workers [4] used a fluorescence
quenching transduction mechanism together with the amplifying nature of conjugated polymers
to develop a material highly sensitive to 2,4,6-trinitrotoluene (TNT) vapors, the major explosive
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component of landmines. One peculiarity of nitroaromatics which may be used in detection based
on fluorescence techniques is their electron-accepting capability. CPs are promising for redox sensing
because they are normally electron donors. This donor behavior is further enhanced in their delocalized
pi excited states. This excited state delocalization is crucial because the resulting exciton migration
along the polymer chain increases the frequency of interaction with a bound quencher, in this case
the nitroaromatic analytes, which contributes to improve detection sensitivity. For these reasons,
nitroaromatic analytes can efficiently quench the emission of CP by photoinduced electron transfer
process. As a practical result, photoexcitation of the conjugated polymer is followed by electron transfer
to the nitrated organic compounds, resulting in a quenching of the CP fluorescence. Fluorescence
quenching sensing methods are promising for rapid and sensitive detection of explosives vapors,
and possess major advantages, including high sensitivity signal output and operational simplicity [5].

The detection of explosives is a major quest for security in many civilian and military
environments, and is usually carried out through the sensing of the vapor emitted by the explosives,
or of markers present with them. These sensors must satisfy several criteria, such as sensitivity,
reversibility and the capability for real-time signal processing. For nitroaromatic explosives, sensing of
a few parts per billion or less of the analyte vapor is mandatory, and should be accompanied with rapid
and, ideally, reversible changes in the sensor output. Some assessments of explosives containing soils
have been performed, and it has been indicated that the concentration of TNT is around 10–100 ng/kg.
The vapor concentration is even lower, around the 100 pg/kg to 100 fg/kg level [6]. For in-field
detection of such materials, a portable system would be highly beneficial.

In order to address these issues, we have developed a new conjugated polymer-based
optical sensor of trace explosives vapors. For the chemosensory material, we have used hairy-rod
polymers [7], an important class of π-conjugated polymers, such as poly(fluorene-2,7-diyl)s (PFs).
These have excellent photoluminescence quantum yields, good thermal stability, and good solubility
in several solvents [8]. The linear side chain poly[9,9-dioctylfluorene-2,7-diyl] (PFO) and its
homologue poly[9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene]) (F8T2) were used in this study
(Figure 1). Detailed spectroscopic and photophysical properties of these polymers have been presented
elsewhere [9].
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sensitivity in ethyl cellulose films when exposed to nitrobenzene (NB) and 1,3-dinitrobenzene (DNB) 
vapors. These are chosen as models or markers of more common nitroaromatic explosives, such as 
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Figure 1. Structures of the CPs used: (A) poly[9,9-dioctylfluorene-2,7-diyl] (PFO); (B) poly[(9,9-
dioctylfluorenyl-2,7-diyl)-co-bithiophene] (F8T2); and (C) poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-
(1,4-benzo-2,10,3- thiadiazole)] (F8BT).

For many practical applications, it is desirable to incorporate CPs in an appropriate porous inert
matrix. In this work, we used ethyl cellulose (EC) to incorporate the CPs. Both CPs exhibit high
sensitivity in ethyl cellulose films when exposed to nitrobenzene (NB) and 1,3-dinitrobenzene (DNB)
vapors. These are chosen as models or markers of more common nitroaromatic explosives, such as
TNT or RDX. EC is the most common insoluble cellulose derivative used and is available in a variety
of viscosity grades, according to the molecular weight range of the products. The molecular weight
affects the mechanical properties, which have fundamental importance for producing intact films,
depending on the application [10]. Plasticizers are generally used to improve the mechanical properties
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of a polymer matrix. This occurs because the plasticizer can decrease the intramolecular forces between
the polymer chains, reducing the glass transition temperature and increasing the permeability of
the polymer matrix to gases or other analytes [11]. In this work, we use polyethylene glycol and
polypropylene glycol with different molecular weights as plasticizers to improve the mechanical
properties and permeability of our polymer matrices.

This contribution is divided in two parts. First, we report absorption, emission spectra,
and fluorescence lifetimes of the PFO and F8T2 in ethyl cellulose films, the structural characterization
of the thin films, and then discuss the ability of these materials to sense TNT model compounds. In the
second part, we study the improved polymer matrices produced by the introduction of plasticizers
which increase the sensitivity to TNT-like compounds when compared with the non-plasticized ones.
We also develop other methods for CP device preparation in the solid matrix, such as ink jet printing
technology: in this case we added an internal reference, a CP whose fluorescence is not quenched
by the TNT-like molecules, to provide potential for ratiometric sensing. In this condition, we print
different zones with the two CPs, and use as “paper” the non-plasticized ethyl cellulose matrix.

2. Materials and Methods

2.1. Materials

Ethyl cellulose of viscosity grade 100 cP, was acquired from Sigma-Aldrich (St. Louis, MO,
USA) and used without any treatment. The conjugated polymers, poly[9,9-dioctylfluorene-2,7-diyl]
(PFO, Mw ≥ 20,000) poly[9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene]) (F8T2, Mn > 20,000) and
poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT, Mn ± 17,000-23,000) were from Sigma-Aldrich.
Solutions for film preparation were made by dissolving ethyl cellulose and the CPs (200–500 ppm) in
toluene (GPS grade, Carlo Erba Reagents) at room temperature. Nitrobenzene (ACS reagent, 99%) and
1,3-dinitrobenzene (99%) were from Sigma-Aldrich.

2.2. Film Preparation and Ethyl Cellulose Plasticization

Films were prepared by solution casting of a mixture of ethyl cellulose and the CPs (200–500 ppm)
from toluene at room temperature. To ensure good optical quality of the films, the solvent was evaporated
slowly at room temperature (72 h) and the last traces removed in an oven at 60 ◦C for 10 min.
No differences in fluorescence behavior were observed when samples were left at this temperature
for longer times. Plasticized films were obtained by the addition of 1–10 wt % of polyethylene glycol (600
and 3400) and polypropylene glycol (average Mw = 1000) to EC, followed by its dissolution in the solvent.
The thicknesses of the films were 400–600 µm as measured with a micrometer (Etalon Rolle, Switzerland).

2.3. Ink Jet Printing

A FUJIFILM Dimatix Materials printer DMP-2800 Series was used for printing films. This is
suitable for printing the CPs on an appropriate matrix. Toluene solutions of the CPs were used to
fill disposable cartridges that have 16 individually-tunable, piezo-actuated nozzles. Cartridges are
available for dispensing 10 pL or 1 pL drops. Drops were printed by voltage-driven deformations of
a membrane wall of a chamber behind each nozzle. The segments of this action make up a waveform
that is optimized for each ink, as well as the intended print job.

2.4. Luminescence Characterization

The UV spectroscopic measurements were performed at room temperature with a Shimadzu
UV-3101PC UV-VIS-NIR spectrometer, using cells of 1.0 cm optical path length for solution
measurements. The emission and excitation spectra were recorded with a Horiba Jobin-Ivon SPEX
Fluorolog 3–22 fluorescence spectrometer. The Fluorolog consists of a modular spectrofluorimeter with
double-grating monochromators for excitation (200–950 nm range, optimized in the UV with a blaze
angle at 330 nm) and emission (200–950 nm range, optimized in the visible and with a blaze angle at
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500 nm). The bandpass for excitation and emission was 5 nm with a wavelength accuracy of ± 0.5 nm.
The excitation source consisted of an ozone-free 450 W xenon lamp. The emission detector employed
was a Hamamatsu R928 photomultiplier, with a photodiode as the reference detector. The fluorescence
quenching of the film was measured in a sealed cuvette containing the nitrobenzene or 1,3-dinitrobenzene
vapors at room temperature (293 K).

Time-resolved picosecond fluorescence intensity decays were obtained by the single-photon
timing method with laser excitation, with the set-up described elsewhere [12]. Decay data analysis
with a sum of exponentials was achieved by means of a Microsoft Excel spreadsheet specially designed
for lifetime analysis that considers deconvolution with the instrument response function (IRF) [13].

2.5. Structural Characterization

A confocal laser scanning microscope (Leica TCS-SP5) equipped with a CW Ar ion laser (458,
465, 488, 496, and 514 nm) and a pulsed Ti:sapphire (Spectra-Physics Mai Tai BB, 710–990 nm, 100 fs,
80 MHz) was used to obtain images of the films.

SEM was performed with a Hitachi S2400 microscope and the images were recorded by software
Quantax (Bruker; Billerica, MA, USA). Samples were coated with gold and registered at 50× and
500× magnification.

2.6. Sensor Prototype

A portable device (Figure 2) was developed and tested for the study of the fluorescence quenching
of the CP films by the nitroaromatic vapors. A Sony SLD3135 laser diode (405 nm; 50 mW) with
integrated monitoring photodiode was used as excitation source and a Vishay BPW34 Silicon PIN
photodiode covered with a green filter (Edmund Optics #43-934) to avoid excitation light from
reaching the measuring photodiode was used for the detection. The general architecture is described
elsewhere [14].
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3. Results and Discussion

The ground-state absorption spectrum of F8T2 was obtained in toluene solution and in ethyl
cellulose films (Figure 3). In the case of the thin film a new band is observed at longer wavelengths
(492 nm). A number of possible explanations exist for this new band. However, detailed analysis
suggests that it is associated with the so-called β phase of the F8T2 [15]. The β phase is a metastable
state with part of the CP in a rigid extended structure, and can be formed through evaporation of
an appropriate solvent, by treatment of the film or one of the other phases by solvent vapor, or by
keeping the polymer in a restricted environment. The β-phase peak was observed originally by
Bradley and co-workers [16] in PFO polystyrene films and PFO solutions in poor solvents (such as
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methylcyclohexane) [17]. We observed this new band at 492 nm in the absorption spectrum of the PFO
ethyl cellulose films (Figure 4), even though F8T2 is a less rigid polymer than PFO, strong support
has been presented from steady-state and time-resolved fluorescence and fluorescence anisotropy
measurements for the formation of the β-phase with this polymer [18].
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The presence of NB vapor does not change significantly the absorption spectrum (Figure 4) of the
PFT2 or PFO ethyl cellulose films, suggesting the absence of ground-state complexation.
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of nitrobenzene vapor; (B) Absorption spectra of the PFO film in the presence (dashed line) and absence
(solid line) of nitrobenzene vapor. Both CPs are incorporated in an ethyl cellulose matrix.

The F8T2 emission spectrum has a maximum at 545 nm (Figure 5). In the presence of NB vapor
we observed a decrease of the emission intensity of about 42%. In the case of the PFO, the emission
showed a structured fluorescence spectrum between 400 and 600 nm, attributed to at least three
vibronic components. We observed only a 34% drop in the fluorescence emission intensity in the
presence of NB vapor at 445 nm. As mentioned, the CPs are good electron donors and their fluorescence
is quenched by NB through photoinduced electron transfer. The amplifying nature of the exciton
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delocalization in the conjugated polymers makes them highly sensitive materials to quenching by
nitroaromatic vapors.
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Figure 5. Fluorescence spectra in the absence (solid line) and presence of saturated NB vapors at room
temperature (dashed line) of: (A) PFO in ethyl cellulose film, λexc = 410 nm, and (B) F8T2 in ethyl
cellulose film, λexc = 490 nm.

Time-resolved fluorescence decays of CPs in thin films of ethyl cellulose recorded at the maximum
emission wavelength are well fitted with sums of three exponentials (Table 1). This agrees with previous
studies [18] showing triple exponential decays of F8T2 in methylcyclohexane (MCH), with lifetimes
of 650 ps, 440 ps, and 20 ps. The longest decay time (650 ps) is assigned to the β-conformation
and the intermediate lifetime (440 ps) to the α-conformation [18]. The shortest time (20 ps) may
result from solvent/conformational relaxation or intramolecular energy transfer from non-ordered to
ordered chain segments. Studies of PFO in toluene solution [19] also show a complex decay, a sum
of two or even three exponentials are being required to obtain good fits. A fast component of about
20 ps is found, and is more important (with greater amplitude) at the onset of the emission band.
An intermediate component is also observed around 90 ps and a predominant decay time around 360 ps
is observed independent of the emission wavelength and attributed to the PFO intrinsic fluorescence
lifetime. In thin films, the decay is again described by a of sum of three exponentials, however, at long
wavelengths, it is dominated by a long component of 3 ns, attributed to the presence of photooxidized
species, such as keto defects and other emissive defects, which are easily populated by efficient energy
migration [20].

Table 1. Decay times and amplitudes of the PFO and F8T2 in ethyl cellulose thin film without NB
vapors and in the presence of NB vapors.

NB τ1/ns (f1 *) τ2/ns (f2 *) τ3/ns (f3 *) τaverage/ns τfluor change (%) **

F8T2
Without 0.03 (0.10) 0.43 (0.55) 0.62 (0.35) 0.40

65With 0.005 (0.07) 0.04 (0.51) 0.29 (0.42) 0.14

PFO
Without 0.16 (0.26) 0.31 (0.63) 1.70 (0.11) 0.43

72With 0.05 (0.37) 0.08 (0.52) 0.55 (0.11) 0.12

* computed from the individual lifetimes and pre-exponential factors: α1, α2 and α3, f1 = α1τ1/(α1τ1 +
α2τ2 + α3τ3), f2 = α2τ2/(α1τ1 + α2τ2 + α3τ3) and f3 = 1 − ( f1 + f2). ** computed as:

(
τaverage without NB vapors−τaverage with NB vapors

τaverage without NB
) × 100.

The drop in the average lifetimes (τ⁄τ0) of F8T2 and PFO, resulting from the presence of NB
vapors, is 35% and 28%, respectively. Comparing these values with those measured in steady-state
conditions, 42% and 34% for F8T2 and PFO, respectively, it is concluded that the quenching induced
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by the nitroaromatics is predominantly a dynamic process. This is important as it favors reversibility
of the sensing system.

To increase the sensitivity towards detection of nitroaromatic vapors of the P8T2 ethyl cellulose
films, we have tested the effect of adding different plasticizers to the ethyl cellulose matrix. Plasticized
films show a very high sensitivity towards nitroaromatics when compared with the non-plasticized
ones, probably due to higher permeability (Figure 6). For example, using only 1% (w/w) of the
plasticizer PEG 3400, we obtained in a short time (three minute) of 2,3-dinotrobenzene, DNB, vapor
exposure a fluorescence quenching of 95% (Figure 6B).
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We can see from Figure 6 a stronger fluorescence quenching caused by the DNB vapors.
This higher quenching efficiency may arise from the higher electron affinity of DNB, outweighing its
lower vapor pressure [21]. In all the studied plasticized films, the sensitivity towards nitroaromatic
vapors increases when compared with the neat ethyl cellulose films, as can be seen from the decrease
in fluorescence lifetimes in Table 2.

Table 2. Decay times of F8T2 in ethyl cellulose thin films with different plasticizers in the presence and
in the absence of nitroaromatic vapors.

NB DNB

τaverage without
NB vapors/ns

τaverage with
NB vapors/ns

τfluor.
Decrease (%) *

τaverage without
NB vapors/ns

τaverage with
DNB vapors

τfluor.
Decrease (%) *

Neat Ethyl Cellulose 400 340 15 400 300 25
1% PEG 3400 380 330 13 375 200 47
1% PEG 600 380 300 21 380 180 53

* computed as: (
τaverage without NB or DNB vapors−τaverage with NB or DNB vapors

τaverage without NB or DNB vapors
) × 100.

By comparing the values in the lifetime attenuation for the plasticized and non-plasticized films
(Table 2), we observe that the addition of only 1% by weight of plasticizer to the neat ethyl cellulose
matrix increases the sensitivity of F8T2 towards these nitroaromatic vapors by ca. 5% (NB), 29%, and
35% (DNB). The molecular weight of the plasticizer does not appear to have a significant influence
on the increase in the sensitivity of the CP, but it is noted that a lower molecular weight one seems
to facilitate a slightly stronger quenching with both NB and DNB. This may be a result of better
compatibility with the EC matrix, and, hence, production of a more amorphous structure.

The thermal behavior of these plasticizers films was studied. Neat ethyl cellulose has a glass
transition temperature (Tg) at 130–133 ◦C [22]. As expected, the addition of plasticizer decreases the Tg
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of the samples. For example, using 25% (w/w) PEG 400 the Tg drops to 70 ◦C [21]. This strong decrease
means that there is a good compatibility between the polymer matrix and the plasticizer. In general,
plasticizers reduce polymer interchain interactions by distributing themselves homogeneously within
the polymer, hence increasing the free volume. However, a reduction in the Tg value down to near
room temperature will result in an increase in chain mobility and, consequently, could enhance the
crystallization of films by reducing the energy required for this process. This phenomenon would lead
to structural changes resulting in loss of transparency. The thermal stability of the films was studied
by monitoring the fluorescence intensity with an increase of the temperature. These experiments
(Figure 7) were performed in the absence and in the presence of DNB vapors.
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absence (solid line) and presence (dashed line) of DNB vapor with as a function of the temperature.
Excitation wavelength was 450 nm.

It can be seen that the increase of DNB vapor pressure with the temperature is not the major
factor involved. Instead, the temperature dependence appears to result from the decrease in Tg upon
PEG addition.

The morphology of the CP films was studied by confocal fluorescence microscopy. Typical images
obtained from this technique are shown in Figure 8, in which the green spots represent the emission
of the CPs. These films do not exhibit bulk phase separation at the magnifications studied, but some
polymer aggregation can be observed, especially in the ethyl cellulose film containing F8T2.

The surface morphology of the films was studied using scanning electron microscopy (SEM)
(Figure 9). The surface of neat ethyl cellulose film (not shown) is rather smooth, compact,
and featureless. However, in the case of ethyl cellulose, F8T2 blends, phase separated zones are
observed for concentrations above the incorporation capacity of CPEs into ethyl cellulose films,
Figure 9A. The addition of a plasticizer to the neat ethyl cellulose can be seen in Figure 9B to introduce
some porosity. This film has pores with diameters between 1.5 and 3 µm, randomly distributed.
The formation of these pores in the plasticized films may explain, in part, the increased sensitivity to
the nitroaromatic vapors observed by fluorescence quenching of the CPs.
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Fluorescence quenching based sensors normally require a reference material, such that the degree
of quenching measured by the ratio of signals from sensor and reference materials. We have produced
such a ratiometric system using ink-jet microprinting (IJMP) (Figure 10). The IJMP allows direct
deposition of minuscule quantities of the CPs onto the ethyl cellulose film substrate (thickness 240 µm).
The diameter and uniformity of the microdot can be controlled by modifying substrate surface
chemistry and ink preparation [21].

We have used F8T2 as sensor material, and have incorporated another CP, F8BT (Figure 1),
which is not readily oxidizable and does not exhibit any fluorescence changes in the presence of DNB
and NB vapors, thereby serving as an internal reference. Table 3 shows the analysis of fluorescence
decays of the imprinted ethyl cellulose sensor by IJMP. In the presence and absence of concentrated
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DNB vapors, we observed that F8BT did not exhibit any significant attenuation of its fluorescence
lifetime, in contrast to the quenching observed with F8T2. In this case, we can use this system as
a sensor with an internal reference for nitroaromatic vapors.Sensors 2017, 17, 2532 10 of 12 
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Table 3. Decay times of the F8T2 and F8BT imprinted by IJMP in ethyl cellulose film in presence or
absence of nitroaromatics vapors.

F8T2 F8BT

τaverage without
DNB vapors/ns

τaverage with
DNB vapors/ns

øfluor.
Decrease (%) *

τaverage without
NB vapors/ns

τaverage with
DNB vapors

τfluor.
Decrease (%) *

1. 8 0.86 52 0.79 0.78 1

* computed as: (
τaverage without NB vapors−τaverage with NB vapors

τaverage without NB vapors
) × 100.

If we compare the values in the lifetime attenuation for the F8T2 and F8BT (Table 3), we observe
that the F8T2 lifetime decreases by 52%, whereas there are insignificant changes in the F8BT lifetime.
The measured sensitivity is equivalent to that obtained in plasticized ethyl cellulose films.

The sensor was tested in a dynamic setup composed of two mass flow controllers (MFCs Dwyer
GFC-2102), one controlling the flow of clean air and the other controlling the flow of saturated
nitrobenzene vapor, obtained from a bubbler at constant temperature and constant pressure. Both MFCs
are controlled from MATLAB through a microcontroller (PIC24FV16KM202) that sets the references to
the MFCs, defining the composition of the nitrobenzene-clean air mixture. As expected, the proposed
differential approach guaranteed very good sensitivity and fast response from the electronics side
while providing high-level input signals. Figure 11 shows the sensor response after a 20-second
exposure to minute NB vapors.

For in-field applications, the fast response to the presence of a small concentration of
nitroaromatics is a very positive characteristic. Although the recovery time is rather long (several
minutes), this can be acceptable for scenarios where the detection of frequent changes in the analyte
level is not required.
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4. Conclusions

We have studied fluorene-based conjugated polymers as fluorescence sensing materials for
nitroaromatic vapors with the overall goal of detecting explosives using such polymers. The best
conjugated polymer in our studies was found to be poly(9,9-dioctylfluorenyl-2,7-diyl]-co-bithiophene]
(F8T2). It is stable, has a good absorption between 400 and 450 nm, a strong and structured fluorescence
around 550 nm. A 96% quenching of fluorescence, accompanied by a corresponding decrease in the
fluorescence lifetime, is seen on exposure of the plasticizer film of F8T2 ethylcellulose to the model
compounds nitrobenzene (NB) and 1,3-dinitrobenzene (DNB) vapors, both from the family of common
explosives vapors.

Furthermore, it was demonstrated that ink-jet microprinting can be used as a convenient approach
to easily and rapidly fabricate films containing these sensors and inert reference materials, with the
same sensitivity of plasticized ethyl cellulose films towards nitroaromatic vapors.

A sensor prototype based on the F8T2 conjugated polymer was developed and tested. The ability
of the sensor to detect small quantities of nitrobenzene was confirmed. The sensor prototype showed
very fast response (a few seconds) to the presence of small concentrations of the target analyte,
but also showed a large recovery time, which limits its potential applications. This slow recovery may
result from the designed sampling chamber and also from the time required for desorption of the
nitrobenzene molecules from the polymer surface. Both of the above aspects will be addressed
in a future designs, optimizing polymer thickness and porosity, and optimizing the shape and
arrangement of the sampling chamber.
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