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With the aim of performing an argument supplementary to the previous paper by the present
authors [Y. Tsue, C. Providência, J. da Providência, and M. Yamamura, Prog. Theor. Exp. Phys.
2017, 081D01 (2017)], in this paper, a practical scheme for constructing the minimum-weight
states of the su(n)-Lipkin model in arbitrary fermion number is discussed. The idea comes from
the following two points: (i) consideration of the property of one-fermion transfer induced by
the su(n)-generators in the Lipkin model and (ii) use of the auxiliary su(2)-algebra presented by
the present authors. The form obtained under points (i) and (ii) is simple.
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subject Index D50

1. Introduction

As is well known, the Lipkin model proposed by Lipkin, Meshkov, and Glick in 1965 [1] is a classical
one. This model is based on the su(2)-algebra and has played, in a certain sense, a central role in
the studies of nuclear many-body theories. As one of the theoretical interests, the original Lipkin
model has been generalized to the form based on the su(n)-algebra. We call it the su(n)-Lipkin model
[2–5]. However, the generalization has been restricted to the case of the “closed-shell” system: In
the absence of interaction, all fermions fully occupy the energetically lowest single-particle level.

Under the above-mentioned situation, the present authors recently published three papers, in which
the su(n)-Lipkin model was discussed for the case in arbitrary fermion number [6–8]. In particular,
in Ref. [6], which will be referred to as (I), we discussed the minimum-weight states in arbitrary
fermion number. In the “closed-shell” system, the minimum-weight state is simply and uniquely
given without any comment. However, the algebraic approach to many-body theories starts with the
task of how to express the minimum-weight states. In the case with the “closed-shell” system, we
can skip this task. After finishing this step, we must construct the orthogonal set by operating the
“raising” operators on the minimum-weight states appropriately. This problem was discussed in the
frame of our idea [7,8]. In this paper, a practical scheme for constructing the minimum-weight states
of the su(n)-Lipkin model in arbitrary fermion number is presented with a supplementary argument
to discussions developed in Ref. [8].
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In (I), we gave a possible idea for constructing the minimum-weight states in the case with arbitrary
fermion number. The basic idea can be found in the paper by the present authors [9]: introduction
of new su(2)-algebra into the su(2)-Lipkin model. Any of the three generators commutes with the
three generators in the Lipkin model. We called it the auxiliary su(2)-algebra. With the help of this
algebra, we can determine the minimum-weight states of the su(2)-Lipkin model. In this connection,
the magnitude of this new su(2)-algebra in the case of the “closed-shell” system is equal to zero. In
(I), we generalize this case to the su(n)-Lipkin model. Naturally, in this case, we can also present
the auxiliary su(2)-algebra generalized from the form in the su(2)-Lipkin model. The explicit form
of the minimum-weight states of the su(n)-Lipkin model is shown in the relation (I.5.15). As can be
seen in this relation, the minimum-weight states are expressed in terms of the raising operators of the
auxiliary su(2)-algebras of the su(n′)-Lipkin model for n′ ≤ n. However, the commutation relations
among the generators with n′ and n′′ (n′ �= n′′) are complicated. Therefore, it may be very tedious to
obtain the normalized states. The above tells us that the form (I.5.15) may not be practical. The aim
of this paper is to give an alternative form of the minimum-weight states, which may be expected to
overcome the above-mentioned trouble with the normalization.

This paper is organized as follows: In the next section, we recapitulate briefly the su(n)-Lipkin
model and show the existence of the auxiliary su(2)-algebra. In Sect. 3, the minimum-weight state
is constructed with arbitrary fermion number in an alternative form to overcome the previously
encountered trouble with the normalization. The last section is devoted to concluding remarks.

2. Recapitulation of the su(M + 1)-Lipkin model and auxiliary su(2)-algebra

First, we recapitulate briefly the su(M +1)-Lipkin model in a form suitable for the present discussion.
It consists of (M +1) single-particle levels (M = 1, 2, . . .), which are labeled as i = 0, 1, 2, . . . , M .
The case with M = 1 corresponds to the original su(2)-Lipkin model [1]. Each single-particle level
contains 2� single-particle states that are discriminated from each other by μ = 1, 2, . . . , 2�.
Thus, every single-particle state can be specified by (i, μ). With the use of the fermion operators
(c̃i,μ, c̃∗

i,μ), we define the following bilinear form:

S̃ i =
2�∑

μ=1

c̃∗
i,μc̃0,μ, S̃i =

2�∑
μ=1

c̃∗
0,μc̃i,μ, (i = 1, 2, . . . , M )

S̃ i
j =

2�∑
μ=1

(
c̃∗

i,μc̃j,μ − δij c̃
∗
0,μc̃0,μ

)
. (i, j = 1, 2, . . . , M ) (2.1)

The set (̃Si, S̃i, S̃ i
j ) forms the su(M + 1)-algebra:[

S̃ i, S̃j
] = S̃ i

j , (2.2a)[
S̃ i

j , S̃k
]

= δjk S̃i + δij S̃
k , (2.2b)[

S̃ i
j , S̃ l

k

]
= δjl S̃

i
k − δik S̃l

j . (2.2c)

The su(n)-generators (2.1) are expressed in the form
∑2�

μ=1 c̃∗
i,μc̃j,μ for i �= j including the case with

i or j = 0. In this form, we can see that j changes to i, but μ does not change. Later, this property
will play a key role in constructing the minimum-weight states.
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In association with the above su(M +1)-algebra, we can introduce new su(2)-algebra in the present
fermion space. Two cases with M = 1 and an arbitrary value of M have been discussed in Refs. [9]
and [6], respectively. We introduce the following operators:

d̃∗
μ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

M∏
i=0

c̃∗
i,μ, (M = 1, 3, 5, . . .)

eμ

M∏
i=0

c̃∗
i,μ, (M = 2, 4, 6, . . .).

(2.3)

Here, eμ denotes the Clifford number obeying

eμ · eμ′ + eμ′ · eμ = 2δμμ′ . (2.4)

With the use of the operator (2.3), we define �̃± in the form

�̃+ =
2�∑

μ=1

d̃∗
μ, �̃− =

2�∑
μ=1

d̃μ. (2.5)

The operator �̃0 is defined as

�̃0 = 1

2

2�∑
μ=1

[ d̃∗
μ, d̃μ ]. (2.6)

In (I), we proved that �̃±,0 obey the su(2)-algebra and, further, they commute with any of the present
su(M + 1)-generators: [

�̃+, �̃−
] = 2�̃0,

[
�̃0, �̃±

] = ±�̃±, (2.7)[
�̃±,0, any of (̃Si, S̃i, S̃ i

j )
]

= 0. (2.8)

In the relation (2.5) with (2.3), we can see the following about a series of single-particle states
(0, μ), (1, μ), . . . , (M , μ) appearing in the states under consideration: The operation of �̃+ can
work only in the case where this series is fully vacant and, in any other case, this series vanishes. On
the other hand, if this series is fully occupied, the operation of �̃− does not make this series vanish
and, for any other case, this series vanishes.

In (I) and, of course, Ref. [9], we called the set (�̃±,0) the auxiliary su(2)-algebra in the su(M +1)-
Lipkin model. However, in (I), the explicit form of �̃0 is presented in two simple cases with M = 1
and 2. We can show that �̃0 is generally expressed as

�̃0 = 1

2

2�∑
μ=1

(
M∏

i=0

ν̃i,μ −
M∏

i=0

(1 − ν̃i,μ)

)
, (2.9)

ν̃i,μ = c̃∗
i,μc̃i,μ. (2.10)

Hereafter, we will use the following operators:

ν̃i =
2�∑

μ=1

ν̃i,μ, Ñ =
M∑

i=0

ν̃i. (2.11)
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Here, ν̃i and Ñ denote the fermion number operator in the level i and the total, respectively. The case
with M = 1 is given as

�̃+ =
2�∑

μ=1

c̃∗
0,μc̃∗

1,μ, �̃− =
2�∑

μ=1

c̃1,μc̃0,μ, �̃0 = 1

2
Ñ − �. (2.12)

The form (2.12) has been reported in Ref. [9]. Since [�̃0, �̃±] = ±�̃± and [Ñ , �̃±] = ±(M+1)�̃±,
�̃0 can be expressed in the form

�̃0 = 1

M + 1
Ñ − L̃,

[ L̃, �̃±
] = 0. (2.13)

Of course, L̃ satisfies [
L̃, any of

(̃
Si, S̃i, S̃ i

j

) ]
= 0. (2.14)

On the basis of the above relations, we will discuss how to construct the minimum-weight state of
the su(M + 1)-Lipkin model in arbitrary fermion number. As was mentioned in the introduction, the
argument in this paper may be supplementary to that given in (I).

3. Construction of the minimum-weight states of the su(n)-Lipkin model in
arbitrary fermion number

Let |m〉〉 denote the minimum-weight state. It obeys the following condition:

S̃i|m〉〉 = S̃ j
i |m〉〉 = 0, (i > j) (3.1a)

S̃ i
i |m〉〉 = −σi|m〉〉. (3.1b)

The condition (3.1b) can be rewritten in the form

(ν̃i − ν̃0)|m〉〉 = −σi|m〉〉. (i = 1, 2, . . . , M ) (3.2)

For the state |m〉〉 obeying the condition (3.1), we have the relation

ν̃k ,μS̃i|m〉〉 = S̃iν̃k ,μ|m〉〉 = 0, (3.3a)

ν̃k ,μS̃ j
i |m〉〉 = S̃ j

i ν̃k ,μ|m〉〉 = 0, (i > j) (3.3b)

ν̃k ,μS̃ i
i |m〉〉 = S̃ i

i ν̃k ,μ|m〉〉 = −σiν̃k ,μ|m〉〉. (3.3c)

Then, as a possible choice, it may be permitted to set up the relation

ν̃k ,μ|m〉〉 = νk ,μ|m〉〉, νk ,μ = 1 or 0. (3.4)

If νk ,μ = 1 and 0, the single-particle state (k , μ) is occupied and vacant, respectively, for the fermion.
As has already been mentioned, one-fermion transfer through the su(M + 1)-generators (2.1) occurs
between (i, μ) and (j, μ) with i �= j including i or j = 0. It should be noted that μ does not change.
Then, the condition (3.1a) tells us that in the state |m〉〉, the one-fermion transfer occurs in the case
from the state (i, μ) to the lower state (j, μ), i.e., i > j. If the state (j, μ) is occupied, i.e., νj,μ = 1,
then, by the Pauli principle, this transfer is forbidden. Therefore, in the state |m〉〉, as the single-
particle level becomes higher, i.e., i increases, the occupation number of the fermions in the state i
decreases. In our present model. we cannot find any condition that interferes with the relation (3.4).
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Fig. 1. The schematic level scheme and occupation numbers.

To search for the state |m〉〉, we introduce the state |m0〉〉 governed by the conditions

S̃i|m0〉〉 = S̃ j
i |m0〉〉 = 0, (i > j), S̃ i

i |m0〉〉 = −σi|m0〉〉, (3.5)

�̃−|m0〉〉 = 0, �̃0|m0〉〉 = −λ|m0〉〉. (3.6)

The condition (3.5) is identical to the relation (3.1). The relation (2.8) teaches us that the relations
(3.5) and (3.6) are compatible with each other. If |m0〉〉 is obtained, |m〉〉 can be expressed in the form

|m〉〉 = (
�̃+

)λ+λ0 |m0〉〉. (λ0 = −λ, −λ + 1, . . . , λ − 1, λ) (3.7)

As has already been mentioned, if, in |m0〉〉, the series of the single-particle states
(0, μ), (1, μ), . . . , (M , μ) is fully vacant, we have �̃+|m0〉〉 �= 0 and, in any other case, �̃+|m0〉〉 = 0.
If in |m0〉〉, this series is fully occupied, we obtain �̃−|m0〉〉 �= 0 and in any other case, �̃−|m0〉〉 = 0.

On the basis of the above consideration, first, we construct the simplest example of |m0〉〉. We treat
the following case: For the level i (= 0, 1, 2, . . . , L), νi,μ = 1 in the range μ = 1 + μi, 2 +
μi, . . . , νi−1 + μi, νi + μi and in the remaining ranges νi,μ = 0. The above-mentioned scheme
is illustrated in Fig. 1, which teaches us that νi fermions occupy the level i. Any fermion does not
occupy the levels i = L + 1, L + 2, . . . , M . Consideration of the one-fermion transfer and the
operation of �̃± gives us the following relation:

ν0 ≥ ν1 ≥ · · · ≥ νL > 0, νL+1 = νL+2 = · · · = νM = 0, (3.8a)

0 ≤ μ0 ≤ μ1 ≤ · · · ≤ μL, (3.8b)

ν0 + μ0 ≤ 2�. (3.8c)

Thus, |m0〉〉 can be expressed in the form

|m0〉〉 =
L∏

i=0

νi+μi∏
μ=1+μi

c̃∗
i,μ|0〉〉. (

c̃i,μ|0〉〉 = 0
)

(3.9)

5/10

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2017/12/123D

02/4743142 by U
N

IV.C
O

IM
BR

A/FAC
.PSIC

O
LO

G
IA E user on 24 August 2023



PTEP 2017, 123D02 Y. Tsue et al.

Of course, { |m0〉〉 } forms a normalized orthogonal set. The quantity σi given in the relation (3.5) is
expressed as

σi =
{

ν0 − νi, (i = 1, 2, . . . , L)

ν0, (i = L + 1, L + 2, . . . , M ).
(3.10)

The above relations lead us to

σ1 ≤ σ2 ≤ · · · ≤ σL < σL+1 = σL+2 = · · · = σM (= ν0). (3.11)

Hereafter, instead of {σi}, we formulate the minimum-weight states by {νi}. With the use of the
relation (2.9) for �̃0, we obtain λ in the form

λ = 1

2

⎛⎝ μ0∑
μ=1

1 +
2�∑

μ=ν0+μ0+1

1

⎞⎠ = � − 1

2
ν0. (3.12)

The total fermion number for |m0〉〉, which is denoted as Nmin, is given in the form

Nmin =
L∑

i=0

νi = ν0 + ν(L),

ν(L) =
L∑

i=1

νi. (3.13)

Then, L, the eigenvalue of L̃ that is defined in the relation (2.13), is given by

L = � − M − 1

2(M + 1)
ν0 + 1

M + 1
ν(L). (3.14)

The quantity λ0 for any fermion number, N , is expressed as

λ0 = 1

M + 1
N −

(
� − M − 1

2(M + 1)
ν0 + 1

M + 1
ν(L)

)
. (3.15)

Of course, λ0 obey the inequality

− λ ≤ λ0 ≤ λ. (3.16)

The case with λ0 = λ gives us the maximum fermion number, Nmax. With the use of the relations
(3.13) and (3.15) for λ0 = λ, we have

Nmax = 2� · (M + 1) − Mν0 − ν(L)

= Nmin + (M + 1) · 2λ. (3.17)

Through the relation (3.7), the normalized state |m〉〉 is given as

|m〉〉 =
√

(λ − λ0)!
(2λ)!(λ + λ0)!

(
�̃+

)λ+λ0 |m0〉〉. (3.18)

Therefore, we do not have the trouble with the normalization.
A schematic feature of Fig. 1 is depicted in Fig. 2. In the upper figure in Fig. 2, the block [B]

surrounded by the points A, A′, B, and B′ is trapezoid-like in shape. The segments AA′ and BB′ are
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Fig. 2. A schematic feature of Fig. 1.

Fig. 3. Schematic depiction of the case composed of two blocks.

parallel with each other and the sections AB and A′B′ are stepwise. If BB′ = 0 and BB′ = AA′, [B]
becomes triangle-like (Fig. 21) and rectangular (Fig. 22), respectively. Further, as a possible shape
of [B], we have the figure obtained by piling the trapezoid-like figure on the rectangle (Fig. 23).
The number of lattice points in [B] corresponds to the total fermion number in |m0〉〉, Nmin. The
intervals OP and P′O′ are related to the number of �̃+ operations. If OA (A′O′) = 0, the point P
(P′) disappears and the operation of �̃+ is meaningless. If OA (A′O) ≥ 1, the interval OP (P′O′) for
the operation of �̃+ becomes meaningful. Next, we consider the case composed of two blocks [B1]
and [B2], which is depicted in Fig. 3. The discussion in the case with [B] can be applied to the sides
OA1 and A′

2O′ in the present case. Then, it may be enough to discuss the interrelation between the
points A′

1 and A2. It is easily verified that, if A′
1A2 ≤ 1, the interval A′

1A2 does not contribute to the
operation of �̃+, but if A′

1A2 > 1, A′
1A2 contributes to the operation of �̃+.

If we follow the above consideration, it may be easy to treat the general case, i.e., the case with K
blocks. First, we prepare the blocks labeled by κ = 1, 2, . . . , K ; [Fκ ] denotes the κth block. Then, it
is enough to line them up along the μ-axis (Fig. 4). Of course, it is natural to avoid overlapping them
with each other. The relation (3.13) is useful in the present case and then we can construct |m0〉〉. The
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Fig. 4. Schematic depiction of the case composed of K blocks.

relation (3.18) gives us |m〉〉. The number of the lattice points N κ in [Bκ ] and Nmin

(
= ∑K

κ=1 N κ
)

are given by

Nmin = ν0 + ν(L), (3.19)

ν0 =
K∑

κ=1

νκ
0 , νi =

K∑
κ=1

νκ
i , ν(L) =

L∑
i=1

νi, (3.20)

L = max
(
L1, . . . , LK) . (3.21)

For the other relations, we have the same expressions as those given in the simplest example.
We will show the domains on the plane (ν0, ν(L)), where the inequalities (3.8a) and (3.16) are

realized. These inequalities lead us to the following relations:

ν(L) ≤ Lν0, (3.22a)

ν(L) ≤ N − ν0, (3.22b)

ν(L) ≥ −(2(M + 1)� − N ) + Mν0. (3.22c)

The relation (3.22a) is derived from the inequalities (3.8a), but the reverse is not true. In the case
with L = 0, we can simply show the following domains:

(i) 0 ≤ N ≤ 2�, 0 ≤ ν0 ≤ N , ν(0) = 0, (3.23a)

(ii) 2� ≤ N ≤ 2(M + 1)�, 0 ≤ ν0 ≤ 2(M + 1)� − N

M
, ν(0) = 0. (3.23b)

In the case with 1 ≤ L ≤ M − 1, the domains are depicted in Figs. 51, 52, and 53.

4. Concluding remarks

Finally, we will give some remarks. As was mentioned in the introduction, the algebraic approach
to many-body theories starts with the task of how to express the minimum-weight states. In this
paper, we have presented a practical scheme for constructing the minimum-weight states in the
space spanned by i = 0, 1, . . . , M and μ = 1, 2, . . . , 2�. If we encounter a system that contains
the components violating the su(n)-symmetry to a greater or lesser degree, we must treat plural
minimum-weight states simultaneously. In such situations, our scheme may be useful. On the other
hand, we know the case where it may be enough to adopt a single minimum-weight state. In this case,
our scheme becomes much simpler. It may be permitted to change the numbering of μ appropriately.
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Fig. 5. The domains in which the inequalities (3.8a) and (3.16) are realized are shown as the areas inside the
triangle and quadrilateral, respectively.

Fig. 6. The schematic level scheme and occupation numbers.

This leads us to put μi = 0 (i = 0, 1, . . . , L) in Fig. 1, which becomes Fig. 6. In this case, |m0〉〉 can
be expressed in the form

|m0〉〉 =
L∏

i=0

νi∏
μ=1

c̃∗
i,μ|0〉〉. (4.24)

9/10

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2017/12/123D

02/4743142 by U
N

IV.C
O

IM
BR

A/FAC
.PSIC

O
LO

G
IA E user on 24 August 2023



PTEP 2017, 123D02 Y. Tsue et al.

The form (4.24) is useful for the Hamiltonian expressed in terms of the generators (2.1), e.g., such
as that given in the relations (I.2.6) and (I.2.9).

Thus, we have been able to obtain the minimum-weight states |m〉〉 in a practical scheme. Needless
to say, the above treatment is predicated on the property of the one-fermion transfer proper to the
generators in the su(n)-Lipkin model. In this transfer, the quantum number μ does not change.
Further, we should stress that the auxiliary su(2)-algebra also plays a central role: with the aid of
this algebra, |m〉〉 is derived from |m0〉〉.

In the forthcoming paper, we will propose an idea for the random phase approximation based on
the minimum-weight state (4.24) and discuss the phase change observed under this approximation.
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