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Abstract

Background: Autism is a global neurodevelopmental disorder which generally manifests during the first 2 years
and continues throughout life, with a range of symptomatic variations. Epidemiological studies show an important
role of genetic factors in autism and several susceptible regions and genes have been identified. The aim of our
study was to validate a cost-effective set of commercial Multiplex Ligation dependent Probe Amplification (MLPA)
and methylation specific multiplex ligation dependent probe amplification (MS-MLPA) test in autistic children refered
by the neurodevelopmental center and autism unit of a Paediatric Hospital.

Results: In this study 150 unrelated children with autism spectrum disorders were analysed for copy number
variation in specific regions of chromosomes 15, 16 and 22, using MLPA. All the patients had been previously
studied by conventional karyotype and fluorescence in situ hybridization (FISH) analysis for 15(q11.2q13) and,
with these techniques, four alterations were identified. The MLPA technique confirmed these four and identified further
six alterations by the combined application of the two different panels.

Conclusions: Our data show that MLPA is a cost effective straightforward and rapid method for detection of
imbalances in a clinically characterized population with autism. It contributes to strengthen the relationship
between genotype and phenotype of children with autism, showing the clinical difference between deletions
and duplications.

Keywords: Autism, Autism spectrum disorders, Copy number variants, Genotype, Multiplex Ligation-dependent Probe
Amplification (MLPA), Methylation Specific Multiplex Ligation-dependent Probe Amplification (MS-MLPA), Phenotype

Background
Autism is a global neurodevelopment disorder which, in
most cases, manifests during the first 2 years and prolongs
throughout life, having clinical variances with aging. It
belongs to a large family of disorders - autism spectrum
disorder (ASD), clinically characterized by difficulties with
communication and social interaction, verbal language
deficiencies and by repetitive and stereotype behaviour [1].
Epidemiological studies revealed that the number of
children with ASD has been increasing throughout the
world. In Portugal, a published study in 2007, suggested a
prevalence of 9,2/10 000 cases, in the main land, and 15,6/
10 000 in the Azores Islands [2]. Several epidemiologic

studies identified the importance of genetic factors in
autism, specifically the existence of a higher rate of simi-
larities in monozygotic twins (60 to 90%) in contrast to
only 3 to 10% in dizygotic twins [3–6]. Structural chromo-
somic imbalances - copy number variants (CNVs) – seams
to be a key player in the disorder and a risk factor for
autism especially in the sporadic forms [7–11]. CNVs
associated with autism may be inherited or de novo,
affecting preferentially the chromosomes regions: 1q21,
2p16.3, 3p25-26, 7q36.2, 15q11-13, 15q24, 16p11.2,
16p13.11, 17q12 and 22q11.2 [12–14]. A recent genome
wide copy number variation analysis projected between
156 and 280 genomic intervals contributing to autism.
Exome sequencing of over 900 individuals provided an
estimate of nearly 1.000 contributing genes [15–18].
The most consistently reported submicroscopic chromo-
some abnormalities detected by chromosomal microarray
(10–20%) are recurrent CNVs at 16p11.2, 15q11-13 and
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22q11.2 [12, 19, 20]. Submicroscopic rearrangements as
deletions or duplications in 15q11-13 region, and especially
proximal 15q duplications containing the critical regions of
Prader-Willi and Angelman Syndrome (PWS/AS), have
been reported in various patients with autism representing
the majority of chromosome alterations described in this
population [12, 21].
Microdeletions of the short arm of chromosome

16p11.2 were also identified in up to 1% of patients with
autism [22–25]. The microduplication of this region was
also observed in a similar percentage of individuals,
however the association with autism is less convincing
due to the increased frequency observed in the control
groups [25, 26]. Deletions and duplications in the region
22q13.3 also appear to be risk factors for ASD. Among
the three genes (ACR, RABL2B, SHANK3) in 22q subtelo-
meric region, SHANK3 is the candidate gene for neurobe-
havioral symptoms observed in affected individuals with
22q13 deletions. This gene has a mutation frequency of
0.5 to 1% in individuals with ASD [27–29].
It is well accepted that array comparative genomic

hybridization (CGH) should be the first genetic test to
be offered for detection of genomic imbalances in
patients with intellectual disability and ASD [30, 31],
however access to these costly methods and techniques
can be difficult especially given the current economic
and financial context in many countries and conse-
quently the pressure from the hospital administrations
to contain expense. Clinicians often are confronted
with this economical and financial issues and have diffi-
culties to respond to families request to find the cause
of these children pathology. One of the aims of this
study was to evaluate the detection rate of MLPA tech-
nique that could allow a rapid and cost-saving response
in a large consultation of children with ASD.
We analysed the presence of CNVs in the most common

described chromosomic regions associated with ASD
(15q11-q13, 16p11.2 and 22q13) in 150 children using
MLPA and MS-MLPA techniques. A clinical assessment of
each case was also done to allow genotype-phenotype
correlations in the cases with genetic alterations.

Methods
Clinical assessment
For this study, a pilot population of 150 children was
analysed. They were clinically diagnosed with autism by
the Unit of Neurodevelopment and Autism of the Paediat-
ric Hospital, Coimbra Hospital and University Centre,
Portugal. The diagnosis was based on a clinical observa-
tion by a multidisciplinary team coordinated by a neuro-
developmental paediatrician. ASD diagnosis was assigned
on the basis of the gold standard instruments: parental or
caregiver interview (Autism Diagnostic Interview-Revised,
ADI-R [32]), direct structured proband assessment (Autism

Diagnostic Observation Schedule, ADOS [33]), both his-
tory and observation for rating (Childhood Autism Rating
Scale, CARS [34]) and clinical examination performed by
an experienced neurodevelopmental Paediatrician. The
latter allows the classification of the degree of autism into
mild to moderate (score between 30 and 37) and severe
(38–60). The current diagnostic criteria for autism were
revised according to the Diagnostic and Statistical Manual
of Mental Disorders fifth edition, DSM-5 [1]. It was consi-
dered a diagnosis of autism (this term being used synonym-
ously to ASD) any case where ADI-R and ADOS presented
as positive scores and all patients met the criteria for ASD
from the DSM-5.
An EDTA blood sample from each child was collected

for the genetic evaluation by MLPA and MS-MLPA for
chromosomes 15q11-13, 16p11 and 22q13. A more
detailed clinical evaluation was done for the ten children
that presented alterations in the MLPA study, proceeding
to the analysis of the relative clinical relevant data to the
current clinical history of autism, accordingly to Table 1.
Whenever possible, laboratory studies were done on the
parents of the children with chromosome alterations.

Conventional cytogenetic and fluorescence in situ
hybridization
All 150 children participating in this study, had been
previously evaluated by high resolution conventional

Table 1 Clinical data relevant to the clinical history of the
cohort

Personal history: pre and perinatal

Parturition type

Gestational age

Apgar index

Somatometry birth (weight/height/head circumference)

Personal history: Acquisition of neurodevelopment

Walking age

First words

First sentences

Global developmental quotient (GDQ) - Griffiths scale
(between 2 and 6 years of age)

Global intelligence quotient (GIQ) - WISC-III
(between 6 and 16 years of age)

Pathological personal history

Visual or auditory deficits

Epilepsy (two or more critical episodes in apyrexia)

Family history

Physical exam

Dysmorphisms and signs of neurocutaneous syndromes

Collection of anthropometric measurements (actual growing)

Classical neurologic exam
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cytogenetic using standard GTG-banding on pro-
metaphases obtained from 72 h PHA stimulated peripheral
blood lymphocyte cultures according to standard proce-
dures [35].
FISH for the critical region 15q11.2 was performed

using two commercially available DNA probes: LSI
SNRPN/CEP15 (locus D15Z1)/LSI PML and LSI D15S10/
CEP15 (locus D15Z1)/LSI PML (Vysis, Chicago, IL)
according to standard procedures and manufacturer’s
instructions [35].

Multiplex Ligation-dependent Probe Amplification (MLPA)
MLPA (P343-B1) and MS-MLPA (ME028) (Fig. 1a) probe
panels were applied as described in the protocols of the
manufacturer (MRC – Holland). The P343-B1 panel,
applied to all cases, has 54 MLPA probes for the three
regions 15q11-13, 16p11 and 22q13, implicated in autism.
The 12 most relevant genes studied in chromosome 15
were: SNRPN-HB2-85, UBE3A, ATP10A, GABRB3, OCA2,
APBA2, NDNL2, TJP1, TRPM1, KLF13, CHRNA7, SCG5).
The MS-MLPA ME028 PWS/AS panel, was applied to the
patients without alterations detected with the P343-B1
panel. This panel has 25 specific probes for the critical
regions of Prader-Willi and Angelman syndromes, as well
as five probes to assess the state of methylation, allowing
the study of more proximal genes that are not included in
P343-B1 panel, like NIPA1 and TUBGCP5. In the region
of microdeletion 16p11 the nine studied genes were LAT,
SPN, MAS, MVP, SEZ6L2, HIRIP3, DOC2A, MAPK3,
CD2BP2. The gene SHANK3 in 22q13 was the one studied
in chromosome 22. The products of amplification were
identified and quantified by capillary electrophoresis in an

ABI 3130 genetic analyser (Applied Biosystems, Japan) and
the results were analysed using the GeneMapper v4.1 soft-
ware (Applied Biosystems, Foster City, USA) and Coffalyser
(MRC-Holland, Amsterdam, Holland). The linear ratios of
deletion and duplication were fixed at 0.7 e 1.3 respectively.

Results
The study of the conventional karyotype, together with
FISH analysis for 15(q11.2q13) detected duplication of
this proximal region in three cases (I, IV, V) and triplica-
tion in one case (VI) (Table 2).
The application of the MLPA – Panel P343 confirmed

two of the cases identified by cytogenetics (I, VI), rede-
fined to a triplication a duplication previously diagnosed
by FISH (case V) and identified alterations in three more
cases - a duplication (15q11.2-q13.1) (case II) and a dele-
tion (15q13.2-q13.3) (case IX) of the critical region of
the chromosome 15 and a duplication in 22q13.33 (case
X) (Table 2 and Fig. 1b).
The use of Panel ME028 confirmed one of the alter-

ations, diagnosed by FISH as a mosaic, to be a maternal
duplication of the proximal region of 15q11.2 (case IV)
and identified three more cases, with normal result after
application of MLPA Panel P343: two microdeletions
(cases VII and VIII) and one duplication (case III) of the
most proximal region of 15q11.2 (NIPA1, TUBGCP5)
(Table 2 and Fig. 1b).
No alterations were observed in these 150 patients for

the critical region 16p11.2.
The main clinical data from these ten patients with

structural chromosome alterations are described in
Table 3.

A B C

Fig. 1 a Schematic representation of the studied genes by the two panels (MLPA panel ME028 and panel P343) of probes and of breakpoints on
chromosome 15. Arrows indicate the genes identified by each panel (P343 – dark arrows; MEO28 – blue arrows), some of the genes (two arrows)
are common to both panels; b Schematic representation of the extent of alterations detected in the region 15q11-15q13 by the two MLPA panels
and the involved genes in the studied cases, with duplications in green boxes, triplications represented in yellow and deletions in red; c Schematic
representation of the alteration detected in the region 22q13.33 by the MLPA P343 panel. BP-break point; C – Case; CEN-centromere;
Del-deletion; Dup-duplication; mos-mosaic; TEL-telomere; Trip-triplication
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The study of the patient’s parents was possible in only
six of the ten individuals with alterations: in four of
them, the alteration is maternally inherited (cases III, IV,
VIII and X), one has a paternal origin (case IX) and in
case VI the alteration is de novo. For the remaining four
cases, it was not possible to ascertain the parental origin
because either child was adopted or because some
parents rejected to be studied.
Cases I and II, are carriers of the same duplication on

chromosome 15 [15q11.2q13.1(SNRPN,UBE3A,ATP10A,
GABRB3,OCA2) x3] (Fig. 1b), both have severe autism
but with different levels of cognition. Case II is an
adopted boy with a global psychomotor developmental
delay from the first year of age and currently with mild
intellectual disability.
Cases III and IV, evaluated by the second MLPA probe

panel have more proximal duplications of chromosome
15 (Fig. 1b). Both children have mild autism. Case III
which has the more proximal duplication shows a
normal global intelligence quotient (GIQ) and a normal
motor and language development. Case IV has a mild
intellectual deficit.
Cases V and VI (Fig. 1b), both presented mild to

moderate autism but with distinct levels of intellectual
disability, varying from mild in case V to severe in case
VI, which is coincident with the extent of the tripli-
cated region that includes a greater number of genes.
In both patients, strabismus is present as well as motor

development delay, not found in previously described
patients, carriers of duplications. This strongly suggests
a gene dosage effect.
Cases VII and VIII (Fig. 1b) both have microdeletions

of the proximal genes, both have similar levels of neuro-
development features, presenting mild autism and mild
(case VIII) or absent (case VII) intellectual disability. In
case VIII, the alteration is of maternal origin and the
progenitor is reported as having learning difficulties.
In case IX (Fig. 1b), the deleted region is distal to the pre-

vious two cases reported and involves a greater number of
genes, however the clinical presentation is similar between
the three cases (VII, VIII and IX). In this case the deletion
was inherited from the father, but was not possible to ascer-
tain his phenotype.
Lastly, from the 150 individual evaluated there was

one case (X) identified with duplication of the SHANK3
gene on 22q13.33, associated with mild autism and
average intellectual quotient and without other significant
neurodevelopmental alterations except for clumsiness.
The duplication was inherited from an asymptomatic
mother.
Concerning to the prenatal history, most cases did

not reveal any anomalies, being born from gestations
of term, without prenatal incidents. As for the early
development markers, half of the children walked after
18 months, which suggests an early alteration in neu-
rodevelopment. However, the growth with regards to

Table 3 Prenatal and perinatal History and Neurodevelopment

Case Prenatal History Actual
Growing

GPDD
(1st year)

March
(months)

1st Words
(months)

1st sentences
(months)

Epilepsy

I Part/GA: Forceps/38w BW: 3350 g (P63); BL:52 cm
(P90); BHC:35 cm (P72) AI :10

W: P75 H: P75 HC: >P50 Noa 12 12 Doesn’t build
sentences

No

II Part/GA: Eutocic/ ? BW: 3380 g (P?); AI:10 W: P95 H: P50 HC: P95 Yes 16 12 48 No

III Part/GA: Ventouse/39w BW: 3450 g (P55); BL:50 cm
(P47); BHC:35.5 cm (P69); AI :10

W: P90 H: P75 HC: >P50 Noa 12 24 36 No

IV Part/GA: CS/ 40w BW: 3460 g (P41); BL:50.5 cm
(P39); BHC:35 cm (P45); AI:10

W: P75/90 H: P90 HC: P90 Yes 18 14 36 No

V Part/GA: Ventouse/39w BW: 2485 g (P4); BL:47 cm
(P8); BHC:32.5 cm (P11) AI :10

W: P25 H: P25 HC: P50 Yes 24 20 36 No

VI Part/GA: Eutocic/? BW: 2840 g (P?); BL:50 cm (P?); IA:10 W: >P75 H: P50 HC: P50 Yes 24 60 Doesn’t build
sentences

Yes

VII Part/GA: Eutocic/35w BW: 2510 g(P46); BL:45 cm (P31);
BHC:33 cm (P72) AI:10

W: P50 H: P50 HC: P75 Yes 24 36 42 No

VIII Part/GA: CS/ 38w High Risk in Pregnancy due to
previous abortions (2) BW: 3470 g (P72); BL:49 cm
(P47); BHC:36 cm (P88); AI:10

W: P95 H: P95 HC: > > P50 Yes 15 40 60 No

IX Unknown W: P50 H: P50 HC: >P95 Yes 19 30 42 No

X Part: CS/ 41w BW: 4610 g (P94); BL:51 cm (P35);
BHC:37 cm (P76); AI:10

W: P95 H: P90 HC: >P95 Noa 12 12 36 No

aonly identified at the age of 2 years old - followed by regression
Pre and perinatal history: AI Apgar Index at 5 min, BHC Birth head circumference, BL Birth length, BW Birth Weight, CS Caesarean Section, GA Gestational Age, Part
Parturition type, P percentile according Fenton growth chart
Actual Growing: HC head circumference, H Height, W – Weight
GPDD Global psychomotor developmental delay, w pregnancy weeks, g grams, cm centimeters
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stature, weight and head circumference, did not reveal
alterations (Table 3).

Discussion
Of the 150 children evaluated in this pilot study, only
four (3%) had revealed alterations detected by conven-
tional cytogenetics and FISH. This number increased
after MLPA and MS-MLPA analysis with the identifica-
tion of 6 more imbalances. Being a technique with
higher resolution, MLPA also allowed the redefinition of
a duplication, initially reported by conventional cytogen-
etics as a triplication (case V - Fig. 2) and allowed the
identification of imbalances of six new cases (Table 2).
Of these ten patients, only one presented duplication on

the SHANK3 gene on 22q13.33, which is in accordance
with the reported frequency in the population (1% of
patients with ASD) [13, 28]. All the others showed
imbalances on chromosome 15 (four duplications, two
triplications and three deletions) [9, 36, 37]. No cases
of deletion nor duplication on 16p11.2 were found in
our sample, possibly due to the relative low frequency
of up to 1% mentioned in other studies. Walsh and

Bracken in 2011 made a review of literature and a
meta-analysis of 3613 ASD patients from seven studies
redefining a prevalence of 16p11.2 microdeletion CNVs
in 0.5% (0.31–0.82%, 95% CI) and 16p11.2 microdele-
tion CNVs in 0.28% (0.14–0.56%, 95% CI) not in dis-
agreement with our results [25, 38].

CNVs in 15q11-15q13 region
In cases I, II, III and IV we found duplications of specific
regions of chromosome 15 that involve several break
points (Fig. 1b).
Two of the patients (case I and II) presented a dupli-

cation that affects BP2-BP3 (Fig. 1b). This alteration
involves the critical region for Prader-Willi and Angelman
Syndrome which is subjected to genomic imprinting and
referred as the imbalance more frequently found in indi-
viduals with ASD [37, 39]. Numerous studies support that
the majority of cases with this alteration are associated to
maternal transmission or appear de novo, while the pater-
nal inheritance leads to a normal phenotype [37, 40, 41]. It
was not possible to ascertain the parental origin in these
two patients (cases I and II), however the family history is

Fig. 2 FISH and MLPA results for patient V. a Metaphase hybridization showing a gain in 15q11.2 (D15S10 probe in red) interpreted as a duplication. b
Metaphase hybridization showing a gain in 15q11.2 (SNRPN probe in red) interpreted as a duplication. c Overview of MLPA P343 result
using CoffalyserV7 software (MRC Holland, Amsterdam, Netherland) revealing the presence of 4 copies and not 3 of region 15q11.2q12 in
patient V compatible with a triplication and not a duplication
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suggestive of neurodevelopmental delays, with a brother
with autism (case I) and neuropsychiatric disorders, with
mother with depressive disorder (case II), indicating a pos-
sible inheritance of the mentioned alterations (Table 2).
These two cases (I and II) with the same genetic imbal-
ances, both have severe autism although with different in-
tellectual levels. According to Bolton PF et al. (2001) and
Depienne C et al. (2009) the patients with duplication of
the critical region (BP2-BP3), as occurs in these two cases,
have frequently an abnormal phenotype that includes
development delay, especially in speech and language, dif-
ferent degrees of intellectual disability, motor coordination
difficulties and mild dysmorphisms (which are absent in
our cases) [34, 40].
Case III, is a case of a more proximal duplication (be-

tween BP1-BP2) (Fig. 1b). The patient has mild autism,
without intellectual impairment and with normal motor
and language development. The common phenotype found
in this alteration is highly variable, even between members
of the same family [40, 42]. It can vary between autism,
other neurodevelopmental disorders, mild socialization
problems or learning difficulties, neuropsychiatric manifes-
tations or even a normal phenotype, which is corroborated
by other authors [37, 41]. The genetic alteration in this
patient is also present in his mother who is phenotypically
normal. One of the patient’s brother, presents a serious
socialization problem nevertheless he was not available for
study.
Case IV also presents a duplication of the proximal region

involving more genes than the previous one (case III)
(Fig. 1b). It corresponds to a mosaicism with three cell
lines. This patient presents mild intellectual disability and
mild autism, as in case III. In this case IV, a milder pheno-
type could be expected since this aberration is present in a
mosaic state. In the blood lymphocytes, the normal cellular
lineage is the most representative. The ring chromosome
was inherited from the mother that is not a mosaic in the
blood and does not present with any type of clinical alter-
ation. Other tissues were not evaluated for the detection of
the mosaic state.
Regarding the two cases with triplication (V and VI),

both have mild to moderate autism with distinct levels of
intellectual disabilities which is, mild in case V but severe
in case VI. The latter have a greater number of triplicated
genes, being the distal breakpoint correspondent to BP4
(Fig. 1b). Genes APBA2, NDNL2 and TJP1 that are tripli-
cated in case VI may be responsible for the more severe
intellectual disability. Both patients had delay motor
developmental skills (age of walking 24 months), which
was not seen in the cases with duplication in our cohort,
suggesting that a greater number of copies may be related
to a more severe motor development delay. Both present
vision deficit and one of them (case VI) also has epilepsy,
which has been frequently associated with autism [43, 44].

Cases VII and VIII present microdeletion of proximal
genes (NIPA1, TUBGCP5) and show similar levels of
motor and cognitive development, both have mild autism
with normal intelligence quotient and motor and language
development delay, noted from the first year. These
discrete phenotypes, as it happens in cases III and IV, that
involve duplications of the same region, suggests that
alterations involving this region, that not include the
critical region of PWS and AS may not have any signifi-
cant clinical effects. These alterations may also manifest as
a milder form, like the mother in case VIII that, despite
having the exact same deletion as her son, only had
learning difficulties in her childhood which did not
affect her adult independent life. Cases like this had
been described repeatedly with significant phenotypic
variability [39, 45]. Copy numbers losses and gains in
this region have been identified with a frequency of 1%
in the normal population, proving to be a challenge for
genetic counselling [37, 39].
Case IX also corresponds to a microdeletion that is

different from the previous ones since there are other
breakpoints involved (BP4-BP5) (Fig. 1b) with a greater
number of genes involved (MTMR15, TRPM1, KLF13,
CHRNA7). The clinical condition is however similar to
the two previous cases, contrary to what would be ex-
pected, based on the genetic differences. In this case, the
deletion was inherited from an apparently normal father.
This situation has already been reported in other cases,
supporting the evidence of a higher frequency of dele-
tions inherited from healthy parents, comparing to those
that occur de novo [46, 47]. There are a great variety and
heterogeneity of the phenotypic expression for this dele-
tion of 1.6 Mb size. It ranges from normal phenotype (as
it happens in the father), to intellectual disability with
borderline intellectual quotient and autism (present in
the patient), epilepsy, bipolar disorder, schizophrenia
and other neuropsychiatric disorders [47, 48]. Depres-
sion that are frequently associated with this deletion, has
been refered in the patient paternal grandmother but
she was unavailable for study. In our sample, no cases of
duplication of BP4-BP5 were found, which is in agreement
with other reports [48–50]. If duplications involving this
region cause phenotypical anomalies, its penetrance seems
to be lower than it is in deletions which therefore may
explain its minor frequency.
The structural alterations presented in this study

involving various regions of chromosome 15, have a
significant role in the pathogenesis of other different
conditions. They affect predominantly the brain function
like in ASD and intellectual disability (that varies from
mild to severe), epilepsy and neuropsychiatric disorders
like schizophrenia and bipolar disease. This phenotypic
variability suggests that other events may contribute for
the manifestation of those conditions.
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Various factors have been proposed to explain this vari-
ability in phenotype. Besides from incomplete penetrance
and the contribution of adjacent genes, the presence of a
masked recessive mutation or functional polymorphism
on one of the genes may be another factor, environmental
and perinatal factors, maternal conditions [51, 52]. The
possibility of different phenotypic expressions between di-
verse members of the family with a deletion, caused by
defects of imprinting, would be another hypothesis to
explain this variability, however it seems unlikely on the
alterations that affect BP1-BP2 and BP4-BP5, as none of
the genes in these regions have been described as imprinted
(Genomic Imprinting Website: www.geneimprint.com/site/
genes-by-species, September 2008).
Another hypothesis is the possible capability that some

individuals may have to overcome one or more deficien-
cies caused by haploinsufficiency of specific genes during
pre or postnatal development [53]. This supports the
fact that some carriers have normal development from
birth, while others have learning difficulties during their
childhood that cause no impact in the adult life. This is
enforced by the fact that some parents who present the
same alterations as their children, have no problem re-
lated to social integration. In addition to all these pos-
sible explanations, one cannot exclude the presence of
other CNVs not detected with this approach, neither the
environmental factors that may also play a vital role in
the child’s development.

CNVs in SHANK3 at 22q13.33 region
A single duplication was found on gene SHANK3 at
22q13.33 which is associated to mild autism with normal
intellectual quotient. Microdeletions and point mutation
involving SHANK3 region have been reported as cause
of a spectrum of neuropsychiatric disorders including
“22q13 deletion syndrome” (also known as Phelan-
Mcdermid syndrome) and ASD [28, 29]. In the same
way, 22q13 duplications involving SHANK3 were re-
ported in patients with Asperger syndrome, attention
deficit-hyperactivity disorder (ADHD) or schizophrenia,
suggesting that an overexpression of this gene could be
also pathogenic [27]. In our sample, case X is a patient
with a SHANK3 duplication that was inherited from a
healthy mother which leads us to question of its patho-
genicity. A situation of incomplete penetrance or expres-
sion variability cannot be ruled out in the same way as
in 22q11.2 duplication syndrome [54], neither can be
excluded the presence of other CNVs not detected with
this approach.

Conclusion
In this study, it was also possible to establish some cor-
relations between certain genotypes and corresponding
phenotypes, despite of some variability.

The study of autism is a challenge due to the great
variety of behavioural and neurodevelopmental manifes-
tations with variable severity and many co-morbidities.
With the development of new technologies that allow an
approach to the whole genome, certainly there will be a
greater contribution for a better comprehension of its
aetiology. It is vital that children with ASD are followed-
up by specialized professionals in the neurodevelopment
area, so that clinical details can be well accurate to allow
strong genotype-phenotype correlations.
Our study indicates that MLPA can be a cost-effective

method for detection of microdeletions and microduplica-
tions in ASD population. In patients with relevant pheno-
typic characteristics, this approach could replace other
expensive and laborious techniques in clinical diagnosis.
Additionally, in some cases karyotype and/or FISH analysis
should be considered, mainly for the detection of
supernumerary marker chromosomes. For example, the
invdup(15) is a well documented cause of ASD with
distinct phenotype and prognosis.
It is well established that array-CGH should be the

first-tier test for neurodevelopmental disorders, MLPA,
although with some limitations, since it is a target
method, can be considered as a test in large populations
where the costs and economic pressures limits a more
expensive method for diagnosis.
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