
Article

Intrusion Detection and Prevention in CoAP Wireless
Sensor Networks Using Anomaly Detection

Jorge Granjal * ID , João M. Silva ID and Nuno Lourenço ID

Centre for Informatics and Systems, Department of Informatics Engineering, University of Coimbra Polo 2,
3030-290 Coimbra, Portugal; jcbsilva@student.dei.uc.pt (J.M.S.); naml@dei.uc.pt (N.L.)
* Correspondence: jgranjal@dei.uc.pt; Tel.: +351-914-607-418

Received: 12 June 2018; Accepted: 24 July 2018; Published: 27 July 2018
����������
�������

Abstract: It is well recognized that security will play a major role in enabling most of the applications
envisioned for the Internet of Things (IoT). We must also note that most of such applications will
employ sensing and actuating devices integrated with the Internet communications infrastructure and,
from the minute such devices start to support end-to-end communications with external (Internet)
hosts, they will be exposed to all kinds of threats and attacks. With this in mind, we propose
an IDS framework for the detection and prevention of attacks in the context of Internet-integrated
CoAP communication environments and, in the context of this framework, we implement and
experimentally evaluate the effectiveness of anomaly-based intrusion detection, with the goal of
detecting Denial of Service (DoS) attacks and attacks against the 6LoWPAN and CoAP communication
protocols. From the results obtained in our experimental evaluation we observe that the proposed
approach may viably protect devices against the considered attacks. We are able to achieve an accuracy
of 93% considering the multi-class problem, thus when the pattern of specific intrusions is known.
Considering the binary class problem, which allows us to recognize compromised devices, and though
a lower accuracy of 92% is observed, a recall and an F_Measure of 98% were achieved. As far
as our knowledge goes, ours is the first proposal targeting the usage of anomaly detection and
prevention approaches to deal with application-layer and DoS attacks in 6LoWPAN and CoAP
communication environments.

Keywords: intrusion detection; anomaly detection; 6LoWPAN; CoAP; internet-integrated
sensor networks

1. Introduction

It is a well known fact that most of the applications envisioned for the IoT will be supported
(at least partially) by sensing and actuating devices which are constrained in terms of the
available energy, memory and computational performance. The integration of such devices with
the Internet communications infrastructure will enable end-to-end communications with other devices,
anywhere on the Internet, but also new avenues for attacks from such less resource-constrained hosts.
The aforementioned integration scenario is becoming a reality, thanks to the design and adoption of
a standardized communications stack being designed for the IoT [1]. This stack is enabled by protocols
such as 6LoWPAN (6LoWPAN adaptation layer) [2], Routing Protocol Layer (RPL) [3] and CoAP
Constrained Application Protocol (COAP) [4]. We verify that there is currently a lack of proposals in
the literature focusing on the specificities of detecting and dealing with attacks against the security
and stability of 6LoWPAN and CoAP devices and communication environments. With this motivation
in mind, in this article we propose an anomaly-based intrusion detection and prevention framework
for Internet-integrated CoAP sensor networks, in the context which we implement and experimentally

Sensors 2018, 18, 2445; doi:10.3390/s18082445 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-6714-1164
https://orcid.org/0000-0001-7628-9072
https://orcid.org/0000-0002-2154-0642
http://www.mdpi.com/1424-8220/18/8/2445?type=check_update&version=1
http://dx.doi.org/10.3390/s18082445
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 2445 2 of 17

evaluate the effectiveness of complementary anomaly-based intrusion detection techniques in dealing
with DoS attacks and attacks against the operations of the 6LoWPAN and CoAP protocols.

In our experimental methodology, we start by programming CoAP intrusion (attack) scenarios
using the Contiki operating system [5] via the IoT-LAB [6] platform. The traffic generated during the
experiments is used to apply feature extraction and complementary machine-learning approaches,
validating the models built on top of the classification algorithms employed. We thus analyze
the traffic patterns employing 6LoWPAN and CoAP communications, with the goal of training
a machine learning algorithm to detect abnormal or suspicious communications. Our article proceeds
as follows. In Section 2 we identify the challenges of intrusion detection and prevention in the context
of IoT communication environments, and observe the current shortage of solutions designed for
Internet-integrated 6LoWPAN and CoAP communication environments. In Section 3 we present the
proposed framework for intrusion detection and prevention, and the techniques employed in our work
to detect anomalies. In Section 4 we analyze the results obtained from the experimental evaluation of
the proposed approach, and in Section 5 we conclude the article and discuss future research work in
this area.

2. Security and Intrusion Detection in the IoT

We begin by analyzing security in the context of Internet-integrated sensor networks,
more precisely how intrusion detection may be applied to IoT CoAP communication environments,
as is our goal.

2.1. Security in the Context of Internet-Integrated Sensor Networks

A standardized communications stack is currently being formed with the purpose of enabling
IP communications with constrained sensing and actuating devices [1]. In this context, protocols
such as 6LoWPAN [2], RPL [3] and CoAP [4] have been designed to run over IEEE.802.15.4 [7]
physical (PHY) and MAC layer communications, and other technologies are also being adopted by
the 6LoWPAN adaptation layer, as is the case of Bluetooth Low Energy (BLE) [8]. IEEE 802.15.4 is
inherently a link-layer communications technology, and as such only offers security to hop-by-hop
communications. As this stack enables end-to-end communications (at the network and higher
layers) between Internet-integrated constrained wireless sensing devices and other Internet entities,
attacks against such devices may be diverse and take place at all layers of the stack. For example,
in IEEE 802.15.4, confirmation (ACK) packets are not encrypted, and the knowledge of the numbering
of the packet to be confirmed may be sufficient to perform a replay attack. As for the 6LoWPAN [2]
adaptation layer, it was designed without security mechanisms, although proposals exist in the
literature in this context [9]. Regarding routing operations performed over 6LoWPAN, Routing
Protocol Layer (RPL) [3] defines a framework capable of transporting secure versions of the routing
messages, as well as a set of mandatory cryptographic algorithms to be supported by sensing devices.
Despite such functionalities, we find that RPL is vulnerable to attacks such as rank attacks, local repair
attacks and resource depleting attacks [10].

In our work we consider that a particular focus on the Constrained Application Protocol
(CoAP) [11] is of importance, given that it promises to play a major rule in enabling the IoT. CoAP was
designed with the purpose of extending the REpresentational State Transfer (REST) architecture of
the web to encompass sensors and actuators. The CoAP protocol inherits the same Create, Read,
Update, Delete (CRUD) operations as ReST, the same applying to the error codes, and also shares
some URL similarities. Regarding security, other than introducing security at the application-layer
itself, CoAP delegates its support to the Datagram Transport Layer Security (DTLS) protocol at the
transport-layer, with the goal of transparently securing communications between devices. Devices may
authenticate using DTLS with pre-shared keys, public-keys or X.509 digital certificates. It is important
to note that, despite the fact that DTLS offers transparent security for end-to-end communications
between devices, it does not protect such devices against a number of external and internal attacks.



Sensors 2018, 18, 2445 3 of 17

Among such attacks we may find cache manipulations, which make the devices susceptible to man
in the middle attacks, Distributed Denial of Service (DDoS) amplified attacks, spoofing attacks and
cross-layer attacks, which may allow to bypass firewalls. On the other hand, internal attackers may
try to subvert the normal operations of the CoAP protocol, as well as its semantic rules. Therefore,
end-to-end security mechanisms may be complemented by appropriate detection and prevention
approaches deployed in the context of the Internet-integrated WSN, as is our motivation in this work.

2.2. Intrusion Detection Approaches on the Internet

Before delving into the problem of detecting attacks in IoT CoAP communication environments,
we find it useful to observe how intrusion detection is approached in the current Internet
communications infrastructure. According to [12], IDS solutions currently employed in the Internet are
classified in one of three major categories: signature-based detection (SD), anomaly-based detection
(AD) and stateful protocol analysis (SPA). SD intrusion detection [13] (also known as knowledge-based
detection or misuse detection) employs patterns or strings (signatures) of known attacks. As for
AD intrusion detection [14] (also known as behavior-based intrusion detection), an anomaly is
characterized as a deviation from the normal (expected) behavior of the network, with such behavior
being characterized via a profile built from monitoring regular activities of the network. Profiles can
be either static or dynamic, and are defined by a set of attributes which, in the case of a system,
may include the frequency of key strokes by a user in a given system, the number of files accessed on
a given time period or the number of incorrect attempts on the login screen, among others. Finally,
with SPA intrusion detection [15] (also known as specification-based systems), suspicious activities are
detected using profiles defined for specific protocols or applications.

It is also useful to consider how the technologies related with intrusion detection are employed
in practical systems and, in this case, we find host-based IDS (HIDS), network-based IDS (NIDS)
and wireless-based IDS (WIDS) [12]. HIDS implementations are mostly focused on monitoring and
detecting suspicious activities in hosts, and usually are capable of monitoring all or parts of the
dynamic behavior and state of the computer system, when compared with a baseline built during its
initial setup. As for NIDS, such systems monitor a network or systems for malicious activities or policy
violations, by analyzing the network traffic captured at strategic locations of the communications
infrastructure. WIDS are similar to NIDS, while in this case being more focused on the monitoring of
wireless communications.

2.3. Intrusion Detection on the IoT

As previously discussed, we consider that attacks against the security and stability of
Internet-integrated constrained sensing and actuating devices may take place at the various layers of
the communications stack, thus from the IEEE 802.15.4 [7] link layer up to the application layer using
CoAP [4]. For example, we may find jamming and collisions attacks at the link layer, while at
the application layer flooding and overwhelming of CoAP communications are two examples
of attacks against this communications protocol [10]. On [16], jamming, cloning of things and
eavesdropping are identified as possible DoS attacks against IoT communication environments,
either at the routing or application layers. In [17] a solution is described to prevent DoS attacks
against sensing devices originated at the Internet, by employing more capable devices and edge
routers in the support of security-related operations. In this proposal, the routers also authorize the
forwarding of communications between the WSN and the Internet domains, for the devices that pass
a set of predefined conditions. In [16], a system is proposed to secure IoT devices via encryption
and policy enforcement mechanisms employing Suricata [18] as an SD IDS. Authors in [19] propose
SVELTE, an hybrid IDS for the detection of attacks against routing using RPL, which merges the
characteristics of SD and AD intrusion detection. This proposal is evaluated through simulation with
good results in dealing with sinkhole attacks.



Sensors 2018, 18, 2445 4 of 17

In [20] the authors propose REATO, a rule-based solution for actively and dynamically detecting
and dealing with DoS attacks in the context of a cross-domain IoT middleware. This system is
designed to react to various situations in order to block undesired communications, and the proposal
is implemented and evaluated experimentally, and found to be viable in defending from DoS attacks
in an IoT scenario. In [21] a hybrid IDS (RIDES) is proposed with the goal of dealing with Ping
of Death (PoD) attacks. RIDES is based on two main components, the signature code generator,
which uses bloom filters for storing signature codes for Snort [22], and the network anomaly detector,
which employs cumulative sum control charts for detecting abnormal network activity. The authors
argue that RIDES can reduce energy consumption by 8 µJ using signature codes, and it is shown that
the true positive ratio increases with the time interval.

We also find [23,24] as proposals of anomaly-based detection systems. The two proposals focus
on preventing botnet attacks and on the usage of TCP communications, thus not being compliant with
the usage of 6LoWPAN and CoAP, which currently run over UDP. We may find also other proposals
in the literature with different methodologies, such as [25] for wormhole detection, Reference [26]
based on Deep Packet Inspection (DPI) and [27]. In conclusion, and regarding the previously discussed
proposals, we note that most of the implemented pure AD solutions are not extensively described in
the literature. We also note that none of the existing proposals target the detection and handling of
attacks at the CoAP application-layer, as per our motivation in this work.

3. Anomaly-Based Intrusion Detection in Internet-Integrated CoAP WSN

We now present the system architecture in the context of which we implement intrusion
detection, in particular for the detection of DoS attacks and attacks at the application-layer against the
CoAP Protocol.

3.1. Considered Approach

The approach considered in our work may be characterized along the taxonomy proposed in [12],
as is characterized as follows:

• System network architecture: we adopt a centralized approach, with the goal of detecting attacks
subverting the client-server model of CoAP in the range of the system detecting communications.

• Networking type: as is common in sensor network communication environments, a wireless
hierarchical model is considered, with IEEE 802.15.4 at the link layer (supporting hop-by-hop
communications), and 6LoWPAN, RPL and CoAP at the higher layers.

• Collection component: For traffic collection, we use an agent, in particular an IoT-LAB sniffer
node capable of capturing the traffic in a specific location of the network.

• Data collection: data collection is centralized, given that the capture of the network traffic is
performed in a specific node of the network.

• Data type: We store the captured wireless network traffic in the pcap (Packet Capture) format.
• Time of detection: in our implementation it is currently performed off-line.
• Granularity: in our current implementation we adopt a periodic (batch) approach to

traffic capturing.
• Detection discipline: we consider the state-based and stimulating evaluation disciplines, since the

IDS reports if a node is in the normal or compromised state. We identify the former as “NORMAL”
throughout the article, and the latter as “INTRUSION”.

• Processing strategy: we adopt a centralized approach to processing the gathered data and to
detect attacks.

• Detection methodology: as previously discussed, we currently consider, implement and evaluate
anomaly-based CoAP intrusion detection in the context of the proposed framework.

We proceed by analyzing the proposed framework for intrusion detection and prevention in the
context of Internet-integrated CoAP sensor networks.



Sensors 2018, 18, 2445 5 of 17

3.2. System Architecture

We illustrate the architecture considered for the purpose of implementing and evaluating intrusion
detection and prevention in Figure 1. This architecture considers the employment of a 6LoWPAN
border router (6LBR) mediating communications between the WSN and Internet communications
devices, the usage of CoAP sensing and actuating devices, and the clients of the resources supported
by such devices, which may be either internal (in the same WSN domain) or external (in a different
WSN domain or located in the Internet). Thus, CoAP clients associate with CoAP servers in order to
request, actuate or observe particular resources available at the application-layer.

Figure 1. Architecture for intrusion detection in the context of Internet-integrated CoAP
sensor networks.

As illustrated in Figure 1, we assume the presence of a device employed to support intrusion
detection operations. This device owns the resources required for performing capturing of the
communications in its range, thus acting as a network sniffer. Another important requirement is that
this device also supports a high level language interpreter in order to support the machine-learning
algorithms employed for anomaly detection. In our current implementation of this architecture,
this role is assumed by the 6LBR, and the fact that this device is responsible for filtering (mediating)
the forwarding of communications between the Internet and WSN domains is also of help given that,
after an intrusion has been detected, subsequent communications between the attacker and the attacked
device may be denied. In the current implementation of the proposed architecture, CoAP server devices
do not communicate with each other and CoAP client nodes request resources from servers at a rate
controlled by a timer. As previously discussed, for the purpose of implementing and experimentally
evaluating the considered architecture and the anomaly-detection mechanisms employed, we use the
IoT-LAB [6] platform, configured to support a multi-hop topology. As a limitation of this platform,
we consider requests to CoAP resources using GET requests only. Our implementation of the various
devices in this architecture is performed in the Contiki operating system, in particular by building on
top of the source code for the border-router (for the 6LBR), the er-example-server (CoAP server) and
the er-example-client (CoAP client) implementations.

3.3. Misbehavior Detection

We find it important to start by identifying the threat model considered, and in this context
we focus on internal attackers, thus devices that are able to participate in 6LoWPAN and CoAP
communications [11], while at the same time trying to subvert the normal usage patterns, rules or



Sensors 2018, 18, 2445 6 of 17

semantics of the CoAP protocol. More precisely, we currently consider the detection of anomalies of
four different (and complementary) classes of attacks against 6LoWPAN and CoAP communication
environments and devices. We also label each class of attack, for the purpose of its employment with
supervised machine learning algorithms, as follows:

• Label 1—Refers to CoAP requests sent to a CoAP server at a rate above a particular threshold,
thus traducing an attack which we subsequently designate as “DoS FREQ”;

• Label 2—Refers to CoAP acknowledgements sent to a CoAP server when no corresponding CoAP
requests exists, which we subsequently designate as “DoS ACK”;

• Label 3—Refers to requesting resources that are not supported (available) by the CoAP server,
which we subsequently designate as “WRONG URI”;

• Label 4—Refers to sending requests to a CoAP server with an invalid ACCEPT option, which we
subsequently designate as “WRONG ACCEPT”.

Other than the previous anomalous situations, the NORMAL class, using the label “0”, refers to
the absence of an attack in the CoAP communications environment. The aforementioned situations
are evaluated in the context of our framework and are known for not being detected by simple
Signature-based IDS approaches. As such, this motivates our focus on the application of anomaly-based
intrusion detection to CoAP communication environments. The presence of an attack reveals the
compromised nodes, and as examples of anomalous behaviors we may consider an attacker trying
to drain all the energy from the batteries of the compromised node, or forcing the remaining nodes
to process unnecessary messages. Our discussion proceeds with an analysis of the machine learning
methodology and of the algorithms employed for the purpose of implementing anomaly-based
intrusion detection in the context of our framework.

3.4. Learning Methodology

Supervised Learning is a family of Machine Learning (ML) techniques that searches for the design
of computational models capable of learning patterns from annotated data, in order to automatically
classify new sets of unseen data. The performance of these techniques highly depend on the quality of
the data and the parameters used in the configuration of the model, such as the kernel function and
learning rates. These parameters must be selected carefully, in order to build models that can deliver
good quality results.

Concerning the data used, it is preprocessed using Standardization, i.e., all of the features have a
gaussian distribution of mean 0 and and standard deviation 1. This ensures that the features have the
same underlying distribution, thus avoiding any misbehaviour from the ML algorithms. To extract
features from the original data we employed the Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA).

The algorithm used to perform the detection of intrusions is the Support Vector Machines
(SVM). SVMs are powerfull classification methods that perform well using reasonable amounts
of computational resources. This is an important requirement to take into account on these
systems, which makes the use of Neural Networks infeasible due to their excessive computational
requirements and time-consuming learning process. Besides, SVMs have a faster classification
procedure, which facilitates a real time implementation, and they have the advantage of being
non-linear classifiers, based on the kernel function that is used.

The intrusion detection mechanism was implemented using two different approaches: multi-class
and binary-class. In the multi-class case we are interested in knowing which intrusion the system
has detected. On the other hand, in the binary-class case we are simply detecting if there was an
intrusion or not. To transform the multi-class problem into a binary-class one, we reduce the number of
labels to two, where misbehavior labels were converted to a single label. For example, the multi-class
array of labels [0; 1; 2; 1; 0; 3; 4; 2; 1] is converted into [0; 1; 1; 1; 0; 1; 1; 1; 1], where 0 means
no intrusion and 1 means intrusion. The calculation of the features and the learning methodology



Sensors 2018, 18, 2445 7 of 17

considered are depicted in Figure 2. In this figure, the steps marked as “2” take place simultaneously,
meaning that when the calculation of the features is completed the new data will be available for
classification. Simultaneously, the network traffic starts to be obtained (using a network sniffer) again
by the device supporting the IDS (the 6LBR in our implementation, as previously discussed in the
context of Figure 1).

Figure 2. Approach considered for the Learning Methodology.

Referring again to Figure 2, in step “3” a set of labels is returned, and such labels are computed
by applying the learned model to the test data. The process involves the splitting of packets and
the calculation of features, and its aggregation is analyzed in greater detail in the context of the
experimental evaluation, which we discuss next.

4. Experimental Evaluation

We proceed by analyzing the results obtained from our experimental evaluation of the proposed
intrusion detection approaches, starting with an analysis on how the experiments were implemented
and automated.

4.1. Implementation and Automation of the Experiments

The first step towards the implementation and automation of the experiments is the selection of
an operating system to be employed in the constrained sensing devices, with the purpose of supporting
the detection of attacks against the security of the network and devices. In addition, as our goal is to
perform an overall experimental evaluation of the proposed mechanisms, it is necessary to select the
platform to be employed for this purpose, as well as the tools to support the statistical data gatherer
and the intrusion detection component in our architecture.

The operating system employed for the purpose of supporting intrusion detection is Contiki [5],
due to its stability, hardware compatibility and the quality of the documentation at hand. As for
the platform, we employed IoT-LAB [6], a platform which facilitates the process of deployment



Sensors 2018, 18, 2445 8 of 17

experiments, collecting and performing analysis on the results. With IoT-LAB, we are able to combine
physical and simulation/emulation scenarios, and obtain real time data from any of the nodes
in the network via Wireshark. IoT-LAB currently supports pressure, temperature, magnetometer,
accelerometer, gyroscope and light sensors and, for the purpose of our experiments, we used M3 Open
Nodes [28], due to the availability of network sniffers and power tracing tools using such devices.

Regarding the intrusion detection component of our architecture, the ML application classifies
nodes as either in the fully operational (normal) state or, on the other hand, as being compromised.
Depending on the misbehavior detected for the node considered to be compromised, the node is
labeled along the nomenclature discussed in Section 3.2. We developed an application to support
the training phase of the IDS in Python 2, which also incorporates the GUI illustrated in Figure 3,
developed in Tkinter. The library employed to support machine learning is Scikit-learn [29], and the
plots were generated with matplotlib [30]. In our application, and by tuning the adequate parameters,
we are able to choose to perform stratified splitting of the dataset into train/test parts with the desired
proportion, and also perform pre-processing, feature extraction and classification. We have also
implemented a functionality for performing a grid search for the best parameters of the classifier,
according to the desired scoring goal. In Figure 4 we illustrate the methodology considered when
building the experimental scenario employing the IoT-LAB platform.

Figure 3. User interface developed to support the training phase.

Figure 4. Methodology supporting the experimental measurements.

The steps illustrated in Figure 4 reflect the various phases of the process employed to bootstrap
the devices used in our experiments, to run the experiments and finally to retrieve information from



Sensors 2018, 18, 2445 9 of 17

the experimental measurements using the IoT-Lab platform. In Step 1 the local computer is connected
to the IoT-Lab server in order to select the physical nodes to be employed in the experiments. In Step 2,
the experiment is submitted to the platform, together with the specification of the firmware and
a profile for the CoAP server and 6LBR devices. As for the CoAP client nodes, only a profile is
associated, since the OS image of the client nodes is flashed after the IPv6 address of the CoAP server
is known. In Step 3, we replace the hard-coded IPv6 address on the client nodes by the IPv6 address of
the CoAP server, compiling the source code of the client and uploading the new image. After this last
phase, the IoT-Lab setup is ready to support our experimental measurements.

In each experiment we employ a 6LBR, a CoAP server and three CoAP clients, among which one
of the clients is employed to perform the attacks. We run each experiment during a period of 30 min,
and a total of four experiments are performed with different attack (anomaly) scenarios. At the end of
each experiment, the pcap capture file is analyzed by running Wireshark from Python, and employing
the statistical capabilities of the network sniffer in order to calculate the features. Using Wireshark,
we collect network data during a customized period of time, and perform an analysis at the end of
that period. For the training phase, our approach was to split the entire training pcap file into subfiles,
with the duration of the sampling period, using the editcap utility available with Wireshark.

4.2. Features Considered

In each experiment, a set of features are computed from the corresponding capture file, and we
proceed by describing the features considered in our analysis.

4.2.1. Features for Information from IEEE 802.15.4

• wpan − nonask − phy. f rame_length—Frame length.
• wpan.aux_sec. f rame_counter—Frame counter.
• wpan.bcn.gts.count—Guaranteed Time Slot (GTS) descriptor count.
• wpan.cmd.gts.length—GTS Length.
• wpan.correlation—Link Quality Indicator (LQI) correlation value.
• wpan. f rame_length—Frame length.
• wpan.gtsreq.length—GTS length.
• wpan.sec_ f rame_counter—Frame counter.
• wpan.sec_key_sequence_counter—Key sequence counter.

4.2.2. Features for Information from 6LoWPAN

• 6lowpan. f rag.size—Datagram size.
• 6lowpan. f ragment.count—Message fragment count.
• 6lowpan.hc2.udp.length—Length.
• 6lowpan.hops—Hop limit.
• 6lowpan.iphc.hlim—Hop limit.
• 6lowpan.mesh.hops—Hops left.
• 6lowpan.nhc.ext.length—Header length.
• 6lowpan.reassembled.length—Reassembled 6LoWPAN length.
• 6lowpan.udp.length—Length.

4.2.3. Features for Information from IPv6

• ipv6. f low—Flow label.
• ipv6. f ragment.count—Fragment count.
• ipv6.hlim—Hop limit.
• ipv6.opt.calipso.cmpt.length—Compartment length.
• ipv6.opt.jumbo—Payload length.
• ipv6.opt.length—Length.
• ipv6.opt.rpl.sender_rank—Sender rank.
• ipv6.plen—Payload length.



Sensors 2018, 18, 2445 10 of 17

• ipv6.reassembled.length—Reassembled IPv6 length.
• ipv6.shim6.len—Length.
• ipv6.shim6.opt.elemlen—Element length.
• ipv6.shim6.opt.len—Length.
• ipv6.shim6.opt.total_len—Total length.

4.2.4. Features for Information from CoAP

• coap.opt.block_size—Encoded block size.
• coap.opt.length—Options length.
• coap.opt.length_ext—Options extended length.
• coap.opt.max_age—Max-age.
• coap.token_len—Token length.
• coap.code—Status code.

As can be observed from the previous listing, the features identified belong in the context of
the various communication protocols forming the standardized communications stack of the IoT [1],
which we have previously discussed.

4.3. Evaluation Strategy

The classifiers of our intrusion detection approach are evaluated during the training phase, and in
this context we consider fundamental scoring metrics of performance, in particular Accuracy, the Recall
(or True Positive Rate), Precision, False Positive Rate and F_Measure, defined as follows:

Recall =
TP

TP + FN

Accuracy =
TP + TN

n

Precision =
TP

TP + FP

False Positive Rate =
FP

FP + TP

F_Measure = 2 × Precision ∗ Recall
Precision + Recall

In the previous definitions, TP represents the number of true positives, TN the number of true
negatives, FN the number of false negatives, FP the number of false positives and n the number of
observations considered. These performance metrics are evaluated considering confusion matrices
and ROC (Receiving Operator Characteristic) curves, both in the multi and binary class approaches,
which we proceed to analyze.

4.4. A Multi-Class Problem Approach

The results obtained from the analysis of the pcap files are constituted by observations,
consisting of arrays of features organized as a rectangular matrix. Such observations are submitted to
data pre-processing, dimensionality reduction and classifier training. The proportion of the number of
NORMAL vs. erroneous observations (thus, resultant from the misbehaving node) is of 2 to 1, thus for
each two NORMAL observations we observe one erroneous observation.

We split the classification problem into two problems. The first considers the four attacks and the
normal behavior of the node, allowing a security manager to know the type of misbehavior present in
the topology, if any. The second problem was approached from a binary problem perspective, and in
this case the goal of the security manager is simply to detect the presence of an intrusion in the network.



Sensors 2018, 18, 2445 11 of 17

The two types of problems may yield different results, since the classifier will have in consideration
that, for the binary class problem, the ERRONEOUS label is a combination of all the four labels of
misbehavior. Moreover, the LDA feature extraction algorithm has in consideration the labels of the
observations, which are different for the multi and the binary class problems.

We employed two feature extraction algorithms, Principal component analysis (PCA) and Linear
discriminant analysis (LDA). For both algorithms, we trained classifiers regarding the scoring metric
of Accuracy. For PCA, the data is pre-processed with a Standard Scaler, mean 0 and standard deviation
1. The features of the data are reduced by PCA to 3 components with whitening, and the method is set
to auto. Next, a grid search for the best parameters of the SVM classifier is performed, with a K-fold of
3 and setting the scoring metric to Accuracy. In this process we employed the following SVM Kernels:
Linear, RBF, polynomial and sigmoidal. The obtained results are illustrated in Figures 5 and 6.

(a)

(b)

Figure 5. Multi-class problem—Grid Search SVM with: RBF Kernel, One vs. Rest decision function
shape, 30 iterations and scoring criterion of accuracy, Confusion Matrix (a) and ROC Curves (b).

(a)

(b)

Figure 6. Multi-class problem—Grid Search SVM with: sigmoidal Kernel, One vs. Rest decision
function shape, 30 iterations, and a scoring criterion of accuracy, confusion Matrix (a) and ROC
Curves (b).



Sensors 2018, 18, 2445 12 of 17

For each considered Kernel, the best parameters and accuracy results are found by a grid search
under the previously described conditions. The results obtained in this process are presented in Table 1.

Table 1. SVM Parameters obtained using accuracy as the scoring metric (previously processed with
multi-class PCA).

Scoring Metric: Accuracy

C Kernel Iterations Degree (Valid on
Polynomial Only) Gamma Coef0 Decision Function Shape Accuracy

0.957895 ‘linear’ 30 1 0.100000 0.000000 ‘ovr’ 0.212513
0.957895 ‘rbf’ 30 1 1.000000 0.000000 ‘ovr’ 0.509824
0.410526 ‘poly’ 30 2 0.621053 0.105263 ‘ovr’ 0.283868
0.200000 ‘sigmoid’ 30 1 0.194736 0.947368 ‘ovr’ 0.618408

As we can observe, PCA does not yield very good results while, nonetheless, RBF and sigmoidal
kernels gave the best results on PCA in terms of accuracy, as shown in Table 1, with ∼51% for the
RBF kernel and ∼62% for the sigmoidal kernel. Even with the previous two best kernels with PCA,
there were cases of 0% of TP, being WRONG ACCEPT for the RBF kernel and DoS ACK for the
sigmoidal kernel. According to the ROC curves of the previous best kernels, RBF has a higher recall
and F_Measure on average than sigmoidal, scoring 76% for the DoS ACK attack, as illustrated in
Figure 5b, versus the 21% of the same kernel, as in Figure 6b. The best result for sigmoidal kernel versus
RBF kernel, in terms of F_measure and Recall, was with the WRONG ACCEPT attack, scoring 80%,
versus the 48% of RBF kernel.

In our next evaluation, LDA is used with the method of singular value decomposition and 6
components. Again, the data is pre-processed with a Standard Scaler, mean 0 and standard deviation 1.
The results are illustrated in Figures 7 and 8.

(a)

(b)

Figure 7. Multi-class problem—Grid Search SVM with polynomial Kernel, One vs. Rest decision
function shape, 30 iterations, and scoring criterion of accuracy, Confusion Matrix (a) and ROC
Curves (b).



Sensors 2018, 18, 2445 13 of 17

(a)

(b)

Figure 8. Multi-class problem—Grid Search SVM with sigmoidal Kernel, One vs. Rest decision function
shape, 30 iterations, and a scoring criterion of accuracy, confusion Matrix (a) and ROC Curves (b).

For each kernel, the best parameters and accuracy results are found by a grid search under the
previously described conditions. The results obtained in this process are presented in Table 2.

Table 2. SVM Parameters obtained using accuracy as the scoring metric (previously processed with
multi-class LDA).

Scoring Metric: Accuracy

C Kernel Iterations Degree (Valid on
Polynomial Only) Gamma Coef0 Decision Function Shape Accuracy

0.452632 ‘linear’ 30 1 0.100000 0.000000 ‘ovr’ 0.932782
0.578947 ‘rbf’ 30 1 0.810526 0.000000 ‘ovr’ 0.632368
0.200000 ‘poly’ 30 1 0.147368 0.000000 ‘ovr’ 0.933816
0.284211 ‘sigmoid’ 30 1 0.100000 0.000000 ‘ovr’ 0.753361

As can be observed, the results show that LDA is better than PCA in terms of clustering the data
according to each of the classes. By applying grid search with the same kernels, the polynomial kernel
of degree 1 reaches a total accuracy of ∼93%, which corresponds to a linear kernel, versus the second
best kernel, which is sigmoidal, with ∼75% of accuracy, as is visible in Table 2. In fact, sigmoidal kernel
gave TPs of 0% for all attacks except DoS FREQ, with an almost 50% of average for the remaining
attacks. ROC curves on the polynomial case also gave very high Recall and F_Measure scores, with the
minimum of 90% for the DoS FREQ attack.

4.5. A Binary Class Problem Approach

We proceed by discussing the results obtained by following the binary class problem approach.
For this approach, we considered the following two labels in our evaluation: NORMAL with Label
“0” and ERRONEOUS with Label “1”. For this approach, we only employ the most accurate feature
extraction method, based on the previous obtained multi-class results, and that is LDA. The method of
singular value decomposition and two components is applied. Once more, data is pre-processed with
a Standard Scaler, with mean 0 and standard deviation 1. The features of the data are reduced by LDA
to 2 components, and the method is set to singular value decomposition (SVD). Next, a grid search for



Sensors 2018, 18, 2445 14 of 17

the best parameters of the SVM classier is performed, with a K-fold of 3 and setting the scoring metric
to Accuracy. We employ the following SVM Kernels: Linear, RBF, polynomial and sigmoidal, and the
obtained results are illustrated in Figures 9 and 10.

(a) (b)

Figure 9. Binary class problem—Grid Search SVM with polynomial Kernel, One vs. Rest decision
function shape, 30 iterations, with scoring criterion of accuracy, confusion Matrix (a) and ROC
Curves (b).

(a) (b)

Figure 10. Binary class problem—Grid Search SVM with sigmoidal Kernel, One vs. Rest decision
function shape, 30 iterations, and a scoring criterion of accuracy confusion matrix (a) and ROC
Curves (b).

For each Kernel, the best parameters and accuracy results are found by a grid search under
the previously described conditions. The corresponding results are presented in Table 3. As can
be observed, the Sigmoidal Kernel is able to accurately classify NORMAL observations with a ratio
of false positives of 1%, as can be seen in Figure 10a, though with an amount of false negatives of
20%. For the polynomial Kernel, there are 0% false negatives and 28% of false positives, as can be
observed in Figure 9a. In terms of recall, both polynomial and sigmoidal kernels present similar results,
polynomial being 2% ahead of sigmoidal, as can be seen in Figures 9b and 10b.



Sensors 2018, 18, 2445 15 of 17

Table 3. SVM Parameters obtained using accuracy as the scoring metric (previously processed with
dual-class LDA).

Scoring Metric: Accuracy

C Kernel Iterations Degree (Valid on
Polynomial Only) Gamma Coef0 Decision Function Shape Accuracy

0.200000 ‘linear’ 30 1 0.100000 0.000000 ‘ovr’ 0.858325
0.200000 ‘rbf’ 30 1 0.100000 0.000000 ‘ovr’ 0.830403
0.915790 ‘poly’ 30 3 0.621053 0.000000 ‘ovr’ 0.810238
0.200000 ‘sigmoid’ 30 1 0.9052632 0.315710 ‘ovr’ 0.927094

In conclusion, from our previous discussion we may note that, in our work, we employ
pre-processing algorithms and train classifiers for building the intrusion model, according to the multi
and binary class approaches. As we have observed from the results of our experimental evaluation,
for the multi-class problem approach the proposed system is capable of distinguishing between the
four types of misbehaving scenarios implemented, and to reach an accuracy of 93% for the best SVM
classier, with accuracy as the scoring metric and when employing LDA to perform feature extraction.
As for the binary class problem approach, considering the best SVM parameters, a classification of
NORMAL and ERRONEOUS behaviors can reach an accuracy of 92% and an F_Measure of 98%.

5. Conclusions and Future Work

In this article we have proposed an IDS framework for the detection and prevention of attacks
in Internet-integrated CoAP networks, and in the context of this framework we have evaluated the
effectiveness of employing anomaly-based intrusion detection in preventing DoS attacks against
such communication environments. From a practical perspective of implementing an IDS system in
Internet-integrated CoAP sensing applications, it is crucial to prevent the most intrusions as possible,
while at the same time assuring a low rate of false negatives, even if at a cost of increasing false
positives. This must be taken into account when searching for the maximum accuracy, and from
our results we may also consider that, in the case that the security manager is interested and able
to identify particular attacks, the multi-class problem approach is appropriate, since results show
that a linear Kernel or a polynomial Kernel have the best results regarding accuracy. On the other
hand, the binary class approach is a good fit to capture the largest possible amount of anomalous
(ERRONEOUS) behaviors. In general, we consider that the results obtained from our experimental
evaluation show that anomaly-based intrusion detection is viable to protect 6LoWPAN and CoAP
communication environments from internal and Internet-originated attacks against the security and
stability of the devices.

Although only SVM was used as a classier algorithm, the proposed system can be extended to include
additional algorithms, such as K-NN, Neural Networks or Random Forests. Thus, the implementation
and evaluation of such alternative algorithms in the context of the proposed framework is part of our
plans to conduct further research work in this area. The inclusion of other algorithms will also provide
an opportunity to evaluate the scalability of the proposed system using machine learning models that
more demanding in terms of computational resources such as delay, storage and computational effort.
In addition, and from a more practical implementation standpoint, another aspect that we plan to target
is related to how the features are currently calculated. The computational efficiency in this step can
certainly be improved by developing an application for calculating features directly from the captured
data. Additional intrusions will also be considered in future developments, particularly regarding attacks
focused on subverting the usage rules and the semantics of the CoAP protocol, either by internal or
external attackers.

Author Contributions: J.G., J.M.S. and N.L. conceived and designed the experiments, analyzed the data and have
written the article. The experiments have been performed by J.M.S.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2018, 18, 2445 16 of 17

References

1. Palattella, M.R.; Accettura, N.; Vilajosana, X.; Watteyne, T.; Grieco, L.A.; Boggia, G.; Dohler, M. Standardized
protocol stack for the internet of (important) things. IEEE Commun. Surv. Tutor. 2013, 15, 1389–1406.
[CrossRef]

2. Montenegro, G.; Kushalnagar, N.; Hui, J.; Culler, D. Transmission of IPv6 Packets Over IEEE 802.15.4
Networks. Available online: https://tools.ietf.org/html/rfc4944 (accessed on 25 July 2018).

3. Winter, T.; Thubert, P.; Brandt, A.; Hui, J.; Kelsey, R.; Levis, P. Pister, K.; Struik, R.; Vasseur, J.P.; Alexander, R.
RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. Available online: http://www.rfc-editor.
org/info/rfc6550 (accessed on 25 July 2018).

4. Bormann, C.; Castellani, A.P.; Shelby, Z. Coap: An application protocol for billions of tiny internet nodes.
IEEE Int. Comput. 2012, 16, 62–67. [CrossRef]

5. Dunkels, A.; Gronvall, B.; Voigt, T. Contiki-a lightweight and flexible operating system for tiny networked
sensors. In Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks,
Tampa, FL, USA, 16–18 November 2004; pp. 455–462.

6. FIT IOT-LAB. Iot Experimentation at a Large Scale. Available online: https://www.iot-lab.info/ (accessed on
9 February 2018).

7. Howitt, I.; Gutierrez, J.A. IEEE 802.15.4 low rate—wireless personal area network coexistence issues.
In Proceedings of the 2003 IEEE Wireless Communications and Networking (WCNC 2003), New Orleans,
LA, USA, 16–20 March 2003; Volume 3, pp. 1481–1486.

8. Nieminen, J.; Savolainen, T.; Isomaki, M.; Patil, B.; Shelby, Z.; Gomez, C. Ipv6 Over Bluetooth(r) Low Energy.
Available online: http://www.rfc-editor.org/info/rfc7668 (accessed on 25 July 2018).

9. Granjal, J.; Monteiro, E.; Silva, J.S. Security for the internet of things: A survey of existing protocols and
open research issues. IEEE Commun. Surv. Tutor. 2015, 17, 1294–1312. [CrossRef]

10. Le, A.; Loo, J.; Lasebae, A.; Aiash, M.; Luo, Y. 6LoWPAN: A study on QoS security threats and
countermeasures using intrusion detection system approach. Int. J. Commun. Syst. 2012, 25, 1189–1212,
doi:10.1002/dac.2356. [CrossRef]

11. Shelby, Z.; Hartke, K.; Bormann, C. The Constrained Application Protocol (CoAP). Available online:
http://www.rfc-editor.org/info/rfc7252 (accessed on 25 July 2018).

12. Liao, H.J.; Lin, C.H.R.; Lin, Y.C.; Tung, K.Y. Intrusion detection system: A comprehensive review. J. Netw.
Comput. Appl. 2013, 36, 16–24. [CrossRef]

13. Can, O.; Sahingoz, O.K. A survey of intrusion detection systems in wireless sensor networks. In Proceedings
of the 2015 6th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO),
Istanbul, Turkey, 27–29 May 2015; pp. 1–6.

14. Aljawarneh, S.; Aldwairi, M.; Yassein, M.B. Anomaly-based intrusion detection system through feature
selection analysis and building hybrid efficient model. J. Comput. Sci. 2018, 25, 152–160. [CrossRef]

15. Gai, K.; Qiu, M.; Tao, L.; Zhu, Y. Intrusion detection techniques for mobile cloud computing in heterogeneous
5G. Secur. Commun. Netw. 2016, 9, 3049–3058. [CrossRef]

16. Kasinathan, P.; Pastrone, C.; Spirito, M.A.; Vinkovits, M. Denial-of-Service detection in 6LoWPAN based
Internet of Things. In Proceedings of the 2013 IEEE 9th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob), Lyon, France, 7–9 October 2013; pp. 600–607.

17. Oliveira, L.M.L.; Rodrigues, J.J.P.C.; de Sousa, A.F.; Lloret, J. Denial of Service Mitigation Approach for
IPv6-enabled Smart Object Networks. Concurr. Comput. Pract. Exp. 2013, 25, 129–142. [CrossRef]

18. Suricata. Home Page. Available online: https://suricata-ids.org/ (accessed on 9 February 2018).
19. Raza, S.; Wallgren, L.; Voigt, T. SVELTE: Real-time intrusion detection in the Internet of Things. Ad Hoc Netw.

2013, 11, 2661–2674. [CrossRef]
20. Sicari, S.; Rizzardi, A.; Miorandi, D.; Coen-Porisini, A. REATO: REActing to Denial of Service attacks in the

Internet of Things. Comput. Netw. 2018, 137, 37–48. [CrossRef]
21. Sellami, L.; Idoughi, D.; Baadache, A. Intrusions Detection System Based on Ubiquitous Network Nodes.

arXiv 2014, arxiv:1407.7715.
22. Roesch, M. Snort: Lightweight intrusion detection for networks. Lisa 1999, 99, 229–238.

http://dx.doi.org/10.1109/SURV.2012.111412.00158
https://tools.ietf.org/html/rfc4944
http://www.rfc-editor.org/info/rfc6550 
http://www.rfc-editor.org/info/rfc6550 
http://dx.doi.org/10.1109/MIC.2012.29
https://www.iot-lab.info/
http://www.rfc-editor.org/info/rfc7668
http://dx.doi.org/10.1109/COMST.2015.2388550
https://doi.org/10.1002/dac.2356
http://dx.doi.org/10.1002/dac.2356
http://www.rfc-editor.org/info/rfc7252
http://dx.doi.org/10.1016/j.jnca.2012.09.004
http://dx.doi.org/10.1016/j.jocs.2017.03.006
http://dx.doi.org/10.1002/sec.1224
http://dx.doi.org/10.1002/cpe.2850
https://suricata-ids.org/
http://dx.doi.org/10.1016/j.adhoc.2013.04.014
http://dx.doi.org/10.1016/j.comnet.2018.03.020


Sensors 2018, 18, 2445 17 of 17

23. Cho, E.J.; Kim, J.H.; Hong, C.S. Attack Model and Detection Scheme for Botnet on 6LoWPAN. Management
Enabling the Future Internet for Changing Business and New Computing Services; Hong, C.S., Tonouchi, T., Ma, Y.,
Chao, C.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 515–518.

24. Gupta, A.; Pandey, O.J.; Shukla, M.; Dadhich, A.; Mathur, S.; Ingle, A. Computational intelligence based
intrusion detection systems for wireless communication and pervasive computing networks. In Proceedings
of the 2013 IEEE International Conference on Computational Intelligence and Computing Research, Enathi,
India, 26–28 December 2013; pp. 1–7.

25. Pongle, P.; Chavan, G. Real time intrusion and wormhole attack detection in internet of things. Int. J.
Comput. Appl. 2015, 121, 9. [CrossRef]

26. Summerville, D.H.; Zach, K.M.; Chen, Y. Ultra-lightweight deep packet anomaly detection for Internet
of Things devices. In Proceedings of the 2015 IEEE 34th International Performance Computing and
Communications Conference (IPCCC), Nanjing, China, 14–16 December 2015; pp. 1–8.

27. Saeed, A.; Ahmadinia, A.; Javed, A.; Larijani, H. Intelligent Intrusion Detection in Low-Power IoTs.
ACM Trans. Int. Technol. 2016, 16, 27. [CrossRef]

28. FIT IOT-LAB. M3 Open Node. Available online: https://www.iot-lab.info/hardware/m3/ (accessed on
16 February 2018).

29. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12,
2825–2830.

30. Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5120/21565-4589
http://dx.doi.org/10.1145/2990499
https://www.iot-lab.info/hardware/m3/
http://dx.doi.org/10.1109/MCSE.2007.55
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Security and Intrusion Detection in the IoT
	Security in the Context of Internet-Integrated Sensor Networks
	Intrusion Detection Approaches on the Internet
	Intrusion Detection on the IoT

	Anomaly-Based Intrusion Detection in Internet-Integrated CoAP WSN
	Considered Approach
	System Architecture
	Misbehavior Detection
	Learning Methodology

	Experimental Evaluation
	Implementation and Automation of the Experiments
	Features Considered
	Features for Information from IEEE 802.15.4
	Features for Information from 6LoWPAN
	Features for Information from IPv6
	Features for Information from CoAP

	Evaluation Strategy
	A Multi-Class Problem Approach
	A Binary Class Problem Approach

	Conclusions and Future Work
	References

