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ABSTRACT

Taxonomic instability in (multi)sets of phylogenetic trees is often caused by missing data,
analytical artefacts and/or data incongruence due to homoplasy or loci with different evolutionary
histories. This thesis focuses, primarily, on methods to subset and summarise heterogeneous
(multi)sets of trees, and on an approach to mitigate the effects of non-effective overlap caused by
non-random patterns of missing data.

A generalised definition of tree islands to any tree-to-tree distance metric is provided, which
allows these heterogeneous tree subsets to be easily identified from any tree distribution, and
not just as a byproduct of heuristic parsimony tree searches. Expanding on earlier studies,
partitioned-by-island, weighted- and rarefied-by-island-size consensus methods are proposed,
and the effect of islands on topology-based taxonomic instability tests explored. An R package
to extract islands from trees on the same leaf set, islandNeighbours, is described and applied
to a Bayesian tree distribution. For trees on non-identical leaf sets, a new subsetting strategy
based on tree-to-supertree distances, clumps of trees, is proposed and applied to multiple tree
(multi)sets with the newly developed clumpy Python pipeline.

An approach combining (gene-)tree jackknifing on matrix representation of splits with Con-
catabominations (a heuristic compatibility-based taxonomic instability test, Siu-Ting et al. 2015)
is proposed to identify instances of non-effective overlap on a newly inferred caecilian Tree of
Life, and also candidate loci for targeted taxon sampling with the aim of ameliorating taxonomic
overlap. This approach is also compared to the mathematical gene sampling sufficiency approach.

Lastly, a morphological dataset used to illustrate the presence and effects of islands, and the
effects of focal tree choice on clumps, is thoroughly reanalysed and an easily implementable tool
for comparison of branch support measures across trees with identical leaf sets described and
illustrated with trees inferred from a hypothetical dataset.
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1
INTRODUCTION

The use of trees, whether graphical depictions or written similes, to illustrate changes and

relationships between objects has a long history (Pietsch 2012). However, one of, if not, the first

explicit uses of a branching diagram to depict evolutionary history, which clearly resembles

a modern phylogenetic tree, can be traced to Charles Darwin and his theory of descent with

modification, with the only illustration featured in On the Origin of Species (Darwin 1859) being

a tree-like diagram of descent (Fig.1.1). While there are other tree-like depictions of Life on

Earth that predate Darwin’s, none do so in quite the same vein. For example, Edward Hitchcock’s

"Paleontological Chart’ resembles modern chronograms incorporating stratigraphic information

(e.g., Kamei et al. 2012), but it also harkens to Aristotle’s scala naturae and to God, not evolution,

as the agent of change (Hitchcock 1840, Pietsch 2012); and, while Jean-Baptist Lamarck did link

a tree-like diagram with his theory of evolution through inheritance of acquired traits, he also

believed in spontaneous generation and multiple origins of life (de Lamarck 1809). Following from

Darwin’s diagram, tree-like depictions of evolution became ubiquitous, but they still consisted of

untestable classifications—even if some where later confirmed (e.g., dinosaurs as ancestors of

modern birds Agnolin et al. 2019, Fürbringer 1888)—with many retaining a view that increased

complexity equalled ’more evolved’ forms and that humans were the pinnacle of evolution (e.g.,

Haeckel 1874). It was not until the advent of systematic phylogenetics, the approach based on

shared derived characters still in use today, that these branching diagrams went beyond the

graphical depiction of classifications and became testable hypotheses of relatedness (Hennig

1966) that could, in turn, be used to test processes and patterns of evolution.

However, as methods for phylogenetic analysis improved (along with the inescapable advances

in computing technologies), and the amount, and types, of available data increased, it became

clear that there was not one, but many evolutionary histories (e.g., gene tree-species tree problem,

reviewed in Degnan & Rosenberg 2009; morphology vs. molecules, Swofford 1991). This recogni-
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CHAPTER 1. INTRODUCTION

FIGURE 1.1. Tree-like diagram foldout from Charles Darwin’s (1859) On the Origin of Species.

tion of inferred tree set heterogeneity then led to attempts to identify and summarise subsets

of similar trees from heterogeneous tree distributions (e.g., Hendy et al. 1988, Maddison 1991),

along with efforts to understand the causes of topological incongruence. The latter include evolu-

tionary processes—gene paralogy, incomplete lineage sorting (ILS), reticulate events, etc. (e.g.,

Alexander et al. 2017, Martin & Burg 2002, Pollard et al. 2006)—missing data (e.g., Huelsenbeck

1991, Lemmon et al. 2009, Simmons 2012), and analytical artefacts (Léveillé-Bourret et al. 2017,

Simmons et al. 2022). As for the former, the question of whether a single or multiple consensus

trees should be used to summarise heterogeneous tree sets remains, as does the question of

how to subset these tree sets (e.g., Nixon & Carpenter 1996, Tahiri et al. 2018). This thesis is

an attempt to generalise some of the previously proposed approaches to subset distributions

of heterogeneous trees on two fronts: extend existing subsetting strategies to easy to compute

tree-to-tree distances, and to the context of trees with non-identical leaf sets. It is also an attempt

to identify and mitigate the effects of non-random missing data, caused by sparse sampling, on

tree inference.

1.1 Concepts and terminology

While, whenever possible, empirical data is used to test and illustrate the newly generalised

and/or proposed approaches to test for, and mitigate the effects of, the presence of real and
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FIGURE 1.2. Basic tree terminology with a) showing a rooted and b) an unrooted tree, and c) an
unrooted network.

artefactual topological incongruence, this is also a piece of work that spans the biological, com-

putational and mathematical facets of phylogenetic analyses. Because of this, the terminology

used throughout this thesis switches between that commonly used by biologists and that used

by mathematicians and computer scientists to refer to phylogenetic trees. I will, thus, use this

section to introduce the terminology and concepts used throughout the next chapters. I will also

give an overview of amphibian taxonomy, since it is the only biological model used in all chapters

to follow.

1.1.1 Phylogenetic trees and networks

The mathematically-minded reader may want to refer to Semple & Steel (2003) and Steel

(2016) for in depth explanations of phylogenetic trees and related concepts, and to Huson et al.

(2010) for an overview of phylogenetic networks methods and concepts. While the biologically-

minded reader may want to brush up on graph and set theory concepts (e.g., Balakrishnan 1997,

Lipschutz 1998).

1.1.1.1 Basic terminology

Phylogenetic trees are acyclic connected graphs consisting of branches (edges) connected

to nodes (vertices) and the more general phylogenetic networks are (a)cyclic connected graphs,

see figure 1.2. These graphs can be directed (rooted) or undirected (unrooted), and trees are

the special case of networks where no cycles are present. In unrooted phylogenetic trees, all

nodes with degree = 1 are leaves (tips) and all others are internal nodes. Leaves are on terminal

branches, while internal nodes are connected by internal branches. For rooted trees, the root has

indegree of zero, all leaves have outdegree = 0 and any node with outdegree > 0 is an internal

node. In rooted phylogenetic trees, all nodes have indegree = 1, if any node has indegree > 1

3
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FIGURE 1.3. Tree splits and their notations, including a table of splits.

the acyclic graph is a network. Additionally, all leaves are uniquely labelled in both trees and

networks (for the case of multilabelled trees see Huber et al. 2006).

Other useful terminology deals with tree resolution (ρ): a fully resolved tree (ρ = 1) can also

be referred to as a binary or bifurcating tree; whereas, a partially resolved tree (ρ < 1) can also

be referred to as unresolved or polytomous. While only briefly mentioned in Chapters 5 and 6,

polytomies can be soft or hard (Maddison 1989). The latter correspond to multifurcations due

to concurrent divergence events (if the tips are species then the multifurcations are concurrent

speciation events), while the former denotes topological uncertainty.

1.1.1.2 Splits

Beyond graphs and parenthetical notation—e.g., the tree in figure 1.3 can be written as

(A,((X,B),(C,D)))—trees can also be described as collections of splits. Splits are partitions of the

leaves in a tree into two non-empty and disjoint sets. For example, the tree in figure 1.3 is made

up of two splits: BX|ACD and BXA|CD. It may be useful to equate branches and splits, with the

splits showing the subsets of tips on either side of a branch. Because terminal branches will be

present in any tree, their corresponding splits are called trivial splits. Internal branches, on the

other hand, correspond to non-trivial splits and these are the ones we are interested in when

exploring topological incongruence. Lastly, full splits show the full set of tips on the input tree(s),

while partial splits show a subset of all tips.

1.1.2 Consensus trees and supertrees

Supertrees are phylogenetic trees that summarise a set of input trees, and a consensus tree

is the special case of a summary tree whose input set is made up of trees with identical leaf sets

(Fig. 1.4). While there is a very rich literature about consensus (e.g., Adams 1986, Bonnard et al.

2006, Bryant 2003, Wilkinson 1994) and supertree methods (e.g., Baum & Ragan 2004, Gordon

1986, Wilkinson & Cotton 2006, Wilkinson et al. 2005), for this thesis only an understanding of

the strict (Sokal & Rohlf 1981) and majority-rule (Margush & McMorris 1981) consensus methods
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FIGURE 1.4. Tree summaries, a) shows the case where consensus trees are used (trees with
identical leaf sets), and b) shows the supertree case (trees with non-identical leaf sets).

is required. The strict consensus tree displays only those splits that are common to all trees in

the input set, whereas the majority-rule consensus displays all (non-conflicting) splits present in

at least 50% of the input trees (Fig. 1.4a).

1.1.3 Amphibian taxonomy

Given that amphibian phylogenies are used in all chapters of this thesis, a short summary of

Lissamphibia taxonomy is warranted. Crown group Lissamphibia includes all descendants of

the last common ancestor of the extant amphibian orders: Gymnophiona (caecilians), Caudata

(salamanders) and Anura (frogs), figure 1.5. Currently, the best supported hypothesis of extant

lissamphibian relationships (based on molecular and morphological data) is the Batrachia

hypothesis, which places caecilians as sister to frogs and salamanders (e.g., Frost et al. 2006,

Pyron & Wiens 2011, Trueb & Cloutier 1991). But there is evidence of multiple gene trees

supporting the Procera (frogs sister to other lissamphibians) or Acauda (salamanders sister to

caecilans and frogs) hypotheses (e.g., Hime et al. 2021, Siu-Ting et al. 2019). With the Procera

hypothesis also being identified from morphological data (e.g., Vallin & Laurin 2004). However,

despite some evidence for the Procera and Acauda hypotheses, most workers accept the Batrachia

hypothesis of extant amphibian relationships.

The relationships between fossil amphibians, on the other hand, remain uncertain, an ex-

ample being the salamander-like albanerpetontids. Phylogenetic analyses have placed them

both crownward (e.g., Gardner 2001, McGowan 2002) and stemward of Gymnophiona (e.g., Mar-
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FIGURE 1.5. Traditional crown group Lissamphibia and their hypothesised relationships.

janović & Laurin 2019). In fact, Marjanović & Laurin’s (2019) analyses find both placements for

albanerpetontids, meaning that their phylogenetic placement remains elusive. In addition to

this, some studies also raise questions of the content, potential non-monophyly of and origins

of Lissamphibia (e.g., Anderson et al. 2008, Pardo et al. 2017). For a recent, in depth, review of

lissamphibia (and early tetrapod) relationships see Marjanović & Laurin (2019).

1.2 Aims

In this thesis, I aim to provide approaches/tools that can be used to explore and summarise

heterogeneity in (multi)sets of inferred phylogenetic trees, in both the consensus and supertree

contexts. I also attempt to tackle the problem of mitigating non-effective overlap between sampled

loci with inferred gene trees, and discuss strategies to compare branch support values across mul-

tiple trees. The common thread to all chapters is the recognition that the results of phylogenetic

inference analyses are only as good as their underlying data, and that attempts should be made

to explore and understand any inferred topological uncertainty.

In Chapter 2, I generalise the definition of islands of trees (Maddison 1991) to any tree-to-tree

distance metric, describe an R (R Core Team 2019) package to extract islands from any (multi)set

of trees on the same leaf set and compare it to existing approaches to subset and summarise

heterogeneous (multi)sets of trees. I also address the single vs. multiple consensus debate by

comparing three island-based consensus methods. Throughout the chapter, tree sets inferred

from Pardo et al.’s (2017) data matrix are used to explore and illustrate the concepts and analyses

introduced.

In the third chapter, I explore whether the presence of islands in a (multi)set of trees can be

detected by topology-based tests of taxonomic instability, and, if the island structure is already

known, whether there are recognisable patterns linking taxa identified as unstable and causes of
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instability. Additionally, I reanalyse the Pardo et al. (2017) dataset under multiple parsimony

and Bayesian inference analytical settings to better understand what is causing the extensive

taxonomic instability encoded in this dataset. As part of this reanalysis, I also review the scoring

of logically and/or biologically dependent characters and compare the tree sets inferred from the

original Pardo et al. (2017) dataset to a modified version of it (Schoch et al. 2020) .

In Chapter 4, I define and describe the analytical pipeline for a novel approach, clumps of trees,

to subsetting (multi)sets of trees with non-identical leaf sets, based on tree-to-supertree distances.

I then run multiple phylogenomic datasets through this pipeline and explore the biological

information relayed by the extracted clumps of trees. I also use the set of most parsimonious

trees (MPTs) from Chapters 2 and 3 to compare the outputs of the clumping and island extraction

analyses, and to test whether changing the supertree method alters the identified clump structure.

Chapter 5 is a departure from tree clustering analyses, dealing instead with non-effective

overlap due to missing data. Here, I propose a method to inform targeted taxon/locus sampling

aimed at decreasing taxonomic instability caused by non-effective overlap between sampled loci

based on gene tree jackknifing, and compare it to the gene sampling sufficiency mathematical

approach (Steel 2016). I then apply the proposed approach to a phylogenetic tree of caecilians,

and to a selection of datasets previously analysed with gene sampling sufficiency (Dobrin et al.

2018).

Lastly, in Chapter 6, I introduce two Python (Van Rossum & Drake 2009) scripts: one to test

for the non-random distribution of poor, or inflated, branch support values in a fully resolved

phylogenetic tree; and another to compare probabilistic support measures for sets of trees on

the same leaf set. I also discuss potential extensions to the case of (multi)sets of trees with

non-identical leaf sets, and close this thesis with suggestions for further research on the topics

covered.

Note: Chapter 2 is written in the first person plural, we, because it consists of a co-authored

publication. The preamble to the chapter includes a short description of each author’s contribution

to the final text. All other chapters are written in the first person singular, I.
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ON DEFINING AND FINDING ISLANDS OF TREES AND MITIGATING

LARGE ISLAND BIAS

A version of this chapter was published as:

Serra Silva, A. and Wilkinson, M. (2021), ’On defining and finding islands of trees and mitigating

large island bias’, Systematic Biology 70 (6), 1282–1294. https://doi.org/10.1093/sysbio/

syab015.

ASS ran the analyses, implemented the R code, designed the x-NNI extraction algorithms,

made all figures and tables, and wrote the first draft. MW designed the property algorithm and

implemented the Pascal code. ASS and MW wrote the accepted manuscript.

2.1 Introduction

Phylogenetic analyses may recover multiple trees, either by design (e.g., Bayesian inference,

resampling techniques) or because the data support multiple sufficiently optimal solutions.

Typically, in such cases, a consensus tree is used to provide a graphical summary of the multiple

trees. There are many consensus methods, but the strict (Sokal & Rohlf 1981) and the majority-

rule (Margush & McMorris 1981) are among the most commonly used, and easiest to interpret.

Majority-rule consensus trees display only those splits present in a majority of the input trees,

and, decorated with the frequencies of occurrence of the displayed splits, are routinely used to

summarise bootstrap and Bayesian analyses. Strict consensus trees display just those splits that

are present in all input trees, a subset of those displayed by majority-rule trees, and are mainly

used to summarise sets of most parsimonious trees (MPTs). Despite concerns that summarising

MPTs with the majority-rule consensus is potentially misleading (e.g., Sharkey & Leathers 2001,

Sharkey et al. 2013, Sumrall et al. 2001, Wilkinson & Benton 1996) some workers still use the
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majority-rule method as if it were unproblematic (e.g., Coiffard et al. 2013, Gunnell et al. 2017,

Pardo et al. 2017, Taylor et al. 2008).

It has long been appreciated that sets of inferred trees may comprise (may be partitioned into)

distinct subsets (families or islands) of trees, which it may be useful to summarise separately

(Hendy et al. 1988, Maddison 1991). These subsets have mostly been defined based on tree-

to-tree distances (e.g., families of trees, Hendy et al. 1988), including those based on branch

rearrangement metrics (e.g., tree islands, Maddison 1991). As originally defined, islands are sets

of trees such that any pair is connected by a series of included trees, each of which is sufficiently

similar to the adjacent members of the series. Islands were discovered through application of

heuristic branch swapping to different starting trees. Initially, the main concerns were that

different islands could have major implications for character evolution (Maddison 1991) and that

heuristic searches could get trapped in sub-optimal islands (e.g., Olmstead et al. 1993, Olmstead

& Palmer 1994), so that large numbers of starting trees should be used to improve the chances of

finding all islands. In a parsimony context, it has been shown that if most of the overall variation

in tree topology is between islands of trees and the islands contain very disparate numbers of

trees, then the majority-rule consensus will be dominated by the largest islands. The concern

is that such ’large island bias’ will conceal important variation in tree topology (Sumrall et al.

2001). In the extreme, if the size of one tree subset sufficiently outnumbers all others, then the

majority-rule consensus will show only those relationships found in the largest island, thus losing

the information in smaller islands. Beyond parsimony, the number of such subsets, the distances

between them, and their posterior probabilities can affect chain convergence in Bayesian analyses

(Höhna & Drummond 2011, Lakner et al. 2008), and the presence of multiple sets of equally-

optimal trees (terraces) can negatively affect tree search in maximum likelihood analyses of

concatenated alignments (Sanderson et al. 2011, 2015). However, in model-based phylogenetics,

subsets of trees are seldom explored outside of the tree search context, and it is thus unknown

how prevalent the issue of large island bias is when summarising tree distributions obtained by

Bayesian and likelihood analyses.

Here we revisit the problem of large island bias, illustrate it with a recent empirical example,

investigate its cause in this case, and consider how it may be mitigated. We briefly review the

use of tree-to-tree distance metrics in defining subsets of trees. We extend the concept of islands

of trees to encompass multisets (weighted sets) of trees, as may result from resampling methods

and Bayesian analyses, and to allow them to be based on any tree-to-tree distance. We consider

how islands can be discovered a posteriori, and identify islands in a tree distribution recovered by

Bayesian inference. We compare islands and some alternative approaches to partitioning these

empirical sets of trees. We seek to highlight the potential importance of subsets of trees, such as

islands, and motivate further work on their discovery and interpretation.
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2.2 Defining islands of trees

The existence of distinct subsets of similar trees and implications for consensus were first

considered by Hendy et al. (1988). They conceived of families of trees as subsets such that all

members are only a small distance from all other members, defined a family more formally as

all trees within a fixed distance from a tree T, and employed clustering based on a pairwise

tree-to-tree distance to identify families in their examples. Their definition and clustering used

the symmetric difference on full splits (Hendy et al. 1984), also known as the partition metric or

Robinson-Foulds distance (RF, Robinson & Foulds 1981), as the tree-to-tree distance. Several

similar heuristic clusterings of trees have been developed subsequently (e.g., Guénoche 2013,

Stockham et al. 2002). Somewhat differently, Maddison (1991) defined the mutually exclusive

subsets he denoted as tree islands, based on branch/tree rearrangement operations, with each

island being the set of all trees of parsimony length ≤ L, connected to each other through a series

of included trees that differ by no more than one branch rearrangement.

Maddison (1991) focused on the branch rearrangement operations commonly used in heuristic

searches of tree space, nearest-neighbour interchange (NNI), subtree prune-regrafting (SPR)

and tree bisection-reconnection (TBR), which are also the bases for corresponding tree-to-tree

distances (the minimum numbers of each such operation needed to convert one tree into the other).

This facilitates the discovery of islands during tree search without any need for computing tree-

to-tree distances and clustering. Otherwise, branch rearrangement operation metric calculations

are NP-hard problems (e.g., Allen & Steel 2001, Bordewich & Semple 2005, DasGupta et al. 2000)

and, despite attempts to develop efficient algorithms for calculating or approximating branch

rearrangement metrics (e.g., Brown & Day 1984, DasGupta et al. 2000, Goloboff 2008, Whidden &

Matsen IV 2018), a posteriori identification of islands defined by branch rearrangement operation

metrics from sets of trees remains computationally expensive. Given that NNI rearrangements

are special cases of SPR rearrangements, which are special cases of TBR rearrangements (Bryant

2004, Chernomor et al. 2015), the number of TBR islands will be less than or equal to the number

of SPR islands, which in turn will be less than or equal to the number of NNI islands (Maddison

1991).

We can usefully extend Maddison’s (1991) tree island definition in three ways. Firstly, we

allow for islands to be defined using any tree-to-tree distance, not just those based on branch

rearrangement operations. This has important consequences for the discovery of islands. Secondly,

we define subsets of sufficiently optimal trees (i.e. all trees of length ≤ L in parsimony, or all trees

with likelihood l or better in model-based inference methods), where all adjacent trees differ by

less than some threshold distance (such as a maximum of x branch rearrangements rather than

a single branch rearrangement, or some chosen RF value). This leads us to recognise, 1-NNI

islands, which are contained in 2-NNI islands, 3-NNI islands to x-NNI islands (Fig. 2.1), and the

same follows for SPR, TBR and RF islands. In this formulation, it follows that for any set of trees

there will exist some categorisation under which the set comprises a single island. A similar idea,
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FIGURE 2.1. x-NNI islands. Three trees separated by more than one nearest neighbour inter-
change (NNI) branch rearrangement, and thus occupying individual 1-NNI islands (solid line
boxes). With the NNI threshold increased to two, T1 and T2 comprise one 2-NNI island, but T3
being more than two NNIs away from T1,2 is in its own 2-NNI island (dashed line boxes). When
the NNI threshold is three, because all trees are three or fewer NNIs from T2, there is a single
3-NNI island comprising all trees (dotted line box). If T2 were not present, the NNI threshold
required for T1 and T3 to be in the same x-NNI island is four, since that is the NNI distance
between T1 and T3.

"water level", was explored by Morrison (2007), but it dealt exclusively with the relaxation of

tree optimality, not with the connectivity distance of trees within an island. Insofar as more or

less substantial incongruences between trees may be better reflected by TBR or NNI distances,

comparing tree islands defined using different measures and thresholds may help clarify the

nature of any incongruence. Thirdly, we can remove the restriction to sufficiently optimal trees

and allow islands to be defined for any given set or multiset (i.e. a weighted set) of trees. This is

useful for extending the notion of tree islands to the potential multisets (where elements may be

repeated) found through Bayesian inference and bootstrap resampling. Lakner et al. (2008) and

Höhna et al. (2011) have both employed the notion of islands in a Bayesian context as areas of

tree space with a high probability density. In the case of multisets of trees, we use island size to

denote the number of distinct tree topologies in an island, island mass to denote the total number

of trees in an island, and island density to denote the ratio between island size and mass.

Formally, given i) a set T of trees, ii) a pairwise tree distance function d : T ×T →R+
0 , and

iii) a threshold x ∈R+
0 , we define an undirected, edge-weighted graph G = (V ,E), where V =T

and there is an edge (T,T ′) ∈ E if and only if d(T,T ′)≤ x. The tree islands of (T ,d, x) correspond

to connected components of graph G. Allowing the tree-to-tree distance function to take on all

non-negative real numbers (x ∈R+
0 ) means that this definition encompasses non-binary trees and
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can be applied to tree distance metrics that take branch lengths into account.

The definition of islands, irrespective of the tree-to-tree distance metric used, leads to natural

partitionings of a set of trees into mutually exclusive and exhaustive subsets. By contrast, families

of trees as defined by Hendy et al. (1988) do not yield mutually exclusive subsets of trees, since a

tree may be x RF units away from multiple trees (T1,T2, ...,Tn), and thus belong to multiple x-RF

families. Note that in the case of binary trees, an NNI of 1 corresponds to an RF of 2 (Chernomor

et al. 2015), so that a 2-RF island and a 1-NNI island are equivalent. In contrast, there is no

one-to-one correspondence between an SPR (or TBR) and any RF value, so that, for example,

from the equations in Chernomor et al. (2015), a 4-RF island might contain trees that are in the

same 1-TBR, but not the same 1-SPR islands. Unlike branch rearrangement metric calculations,

RF calculations are not an NP-hard problem and RF calculators are widely available. Thus,

identifying RF islands a posteriori is more tractable than a posteriori discovery of islands based

on NNIs, SPRs or TBRs. Of course, other metrics could be used to define and identify islands or

other subsets of trees, and what metrics are most helpful under what circumstances remains an

open question.

Distinct subsets of trees may provide insights into real biological processes and/or into our

attempts to infer relationships, and thus some attention has been paid to the identification of

optimal partitions and the associated question of whether a single or multiple consensus trees are

required to adequately, or best, represent a set of trees (e.g., Bonnard et al. 2006, Guénoche 2013,

Stockham et al. 2002). In this context, interest in islands is justified by their potential to produce

natural partitions of tree space without heuristic clustering (or concern for any theoretical ’best’

clustering). Islands based on branch rearrangement operations are a virtually cost-free byproduct

of some searches of tree space, and, as we show, finding islands based on more readily calculated

tree-to-tree distances is not intractable. Islands may have a role in investigating what number of

consensus trees best summarises a tree distribution, but our primary practical purpose here is to

illustrate the potential negative impact of large island bias and how this may be mitigated.

2.3 Islands and consensus

2.3.1 Example

Pardo et al. (2017) described the fossil amphibian Chinlestegophis jenkinsi from the Triassic

of North America, and sought to infer its relationships to extant and fossil amphibians through

Bayesian and parsimony analyses of a dataset comprising 76 taxa and 345 morphological charac-

ters, both summarised using the majority-rule consensus. Their Bayesian analysis provided high

posterior probabilities for a close relationship of Chinlestegophis with extant Gymnophiona, and,

in contrast to many other studies (e.g., Maddin et al. 2012, Ruta & Coates 2007), only a distant

relationship between these and the other living amphibians (Anura and Caudata, collectively

Batrachia). This is a surprising and potentially paradigm shifting result with major implications
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for the meaning, content, age and evolutionary history of the Lissamphibia (the least inclusive

clade including all living amphibians). Congruence between the majority-rule consensus from

their parsimony and Bayesian analyses was used to bolster their phylogenetic conclusion.

Pardo et al.’s (2017) parsimony analysis yielded 882 equally optimal trees. Although the

majority-rule consensus of these trees is highly congruent with their Bayesian analysis, it is

noteworthy that none of the approximately 25 internal branches separating the Gymnophiona

from their more traditional placement with Batrachia occur in every MPT and that, in a bootstrap

analysis (Felsenstein 1985), none garnered support of more than 50%. These observations

suggest that the parsimonious interpretation of the data offers little or no support for their

novel interpretation of Lissamphibia.

Repeating the parsimony analysis, the "Tree-island profiles" in PAUP* v.4a165 (Swofford

2003) reveals that the 882 MPTs are distributed in five 1-TBR islands (that also correspond to

five 1-SPR, 1-NNI and 2-RF islands) and that we refer to simply as islands. The largest island

contains more than half of the trees (486), a condition under which we expect the majority-rule

consensus of all the trees to be dominated by the largest island. For example, any splits that are

common to all the trees in the largest island will necessarily be in the majority-rule consensus

of all the MPTs. Thus, in this example, the majority-rule consensus tree of all MPTs (Fig. 2.2a)

and that of the subset of these trees in the largest island (Fig. 2.2b) share 69 splits, most (64) of

which are present in every tree in the largest island, with just one branch in each consensus tree

that is unresolved in the other (RF = 2).

The key issue is whether island size can reasonably be taken as a proxy for support. Are

inferred relationships in larger islands better supported than those in smaller islands by virtue

of the relative sizes of the islands? Sumrall et al. (2001) showed, with examples of bimodal

distributions of labile taxa, that subsets of trees may be larger simply because of their having

greater local instability. This is not a good reason for preferring relationships in one subset

over another, hence Sumrall et al.’s (2001) recommendation that palaeontologists should not

use the majority-rule consensus to summarise MPTs. As we shall see, the present example

illustrates this problem in a multimodal (multiple island) context, demonstrates how Sumrall

et al.’s (2001) sensible advice is sometimes ignored or overlooked, and leads to the potential

solutions or ameliorations we consider below.

2.3.2 Partitioned-by-island consensus

Recognising that islands may "form sets of trees that might be profitably studied separately"

(Maddison 1991, p.325) and that "[c]hoosing just a single consensus tree may ignore information

in the data" (Hendy et al. 1988, p.358), we can instead generate a consensus of each tree island.

If we consider topological variants within islands to be minor, then computing a consensus of

each island will help reveal the major variants (Maddison 1991). Applied to our example we

obtain one well resolved consensus per island (Figs. 2.2b, 2.3a-d). Note that whereas we have
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FIGURE 2.2. Majority-rule consensus trees of all MPTs from Pardo et al.’s (2017) amphibian
dataset (a), and of the largest MPT island (b), with the number of MPTs present in each set. All
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used the majority-rule method to produce the partitioned-by-island consensus trees, most of the

displayed branches are common to all the relevant input trees and the strict consensus would

have been just as useful as it has been in other studies of incongruence (e.g., Hibbett & Donoghue

2001, Soltis & Kuzoff 1995). Our results reveal that a majority, the three smallest of the five

islands, feature a more traditional Lissamphibia in which Gymnophiona is closely related to

Batrachia. Although an important caveat to their phylogenetic conclusions, Pardo et al. (2017) do

not mention that the more traditional Lissamphibia is as parsimonious as the novel relationship

inferred using Bayesian inference.

Comparison of the partitioned-by-island consensus trees sheds light on the likely cause of

the substantial size disparity between islands. Each consensus shows areas of local instability

(indicated either by polytomies or by branches labelled with occurrences of less than 100%).

Across the five partitioned-by-island consensus trees, there are 12 areas of local instability (all

reflecting up to three possible alternative resolutions corresponding to NNIs). Of these, nine
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are present in the largest island, while only four are present in the smallest island, and three

occur in every island (Fig. 2.2b, Fig. 2.3a-d, table 2.1). Differences in island size are mostly

explained by the number of instances of local instability that the island includes (Pearson’s

correlation test: r = 0.9053, p-value = 0.0345), each of which provides an independent source

of alternative relationships. Linear increases in the number of instances of local instability i

produce exponential increases (bounded by 3i) in the number of trees as a result of their possible

combinations. The link between island size and local instability is confirmed when the bounded

maximum size of each island is taken as an alternate measure of instability (r = 0.9925, p-value

= 0.0008). Another line of evidence that links large island size with high local instability, in this

dataset, is the average degree of each island. If islands result from rearrangments around a small

number of poorly resolved nodes then they would be densely connected, with lots of NNI edges

connecting trees. We used NetworkAnalyzer (Assenov et al. 2007), available through Cytoscape

v.3.7.1 (Shannon et al. 2003), to calculate the average degree of trees within each island, which

corresponds to an NNI graph, and found that the smallest and largest islands had, respectively,

the lowest (4.33) and highest (9.00) average vertex degrees (table 2.1). Furthermore, the highly

positive significant correlations between local instability and island sizes were also found between

number of local instabilities in and average vertex degree of an island (r = 0.9936, p-value =

0.0006), and island size and average vertex degree (r = 0.9138, p-value = 0.0290). Should island

size be unrelated to the amount of local instability present in an island, we would not expect this

pattern.

Consider two conflicting relationships, one present in all the trees in a small island and the

other present in all trees in a larger island. We contend that confidence in any such branch should

be considered independent of the combinatoric effects on island size of regions of instability in

other parts of the trees. From that point of view the effect is a bias toward stable relationships in

larger islands.

In this example, the partioned by island consensus approach also allows us to distinguish

between major conflicts reflecting alternative placements of Gymnophiona, Batrachia and Chin-

lestegophis and more minor patterns of local instability. Among the latter it enables us to

distinguish those that are contingent on, and those that are entirely independent (I, II and VI

which are present in all islands) of these major conflicts.

2.3.3 Weighted-by-island-size majority-rule consensus

If we are interested in finding which relationships are supported across multiple islands

(and those that are not), island size bias can be avoided by giving all islands equal weight. One

means of achieving this is by, under the assumption of island equiprobability, assigning weights

inversely proportional to the size of the island to which the input trees belong, so that trees in

larger islands will contribute less to the consensus. Here then, trees are assigned a weight of 1
ni

,

where ni = size of the ith island. To implement this, tree weights can be added to Nexus format
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TABLE 2.1. Areas of local instability present in each island. Presence of each area of local
instability is denoted by a plus sign (+), and the islands are identified by their size. The areas
identified by Roman numerals correspond to the areas of local instability labelled in figures 2.2b
and 2.3a-d. The average degree for each island (NNI graph) is also provided.

Area 18 72 90 216 486

I + + + + +

II + + + + +

III + - + + +

IV - - - + +

V - + - + +

VI + + + + +

VII - + - + +

VIII - - - - +

IX - - - - +

X - + - + -

XI - - + - -

XII - - + - -

Total 4 6 6 8 9

Average degree 4.33 6.33 6.33 7.67 9.00

tree files by inserting the expression "[&W 1
ni

]", with ni replaced by the corresponding island

size, before each tree string, and the option "usetreewts" must be set to "yes" in PAUP*. When

dealing with multisets, the weight of each unique topology will be mt
ni

, where mt corresponds to

the number of times a unique topology is present in the tree distribution. As such, in multisets

the sum of tree weights for any island with repeat topologies might exceed one.

In our example, trees in the smallest island have a weight of 1
18 , while those in the largest

island have a weight of 1
486 , but each island has a weight of 1. The resulting weighted-by-island-

size majority-rule consensus (Fig. 2.4) is, unsurprisingly, less resolved than each partitioned-by-

island consensus. It resembles a strict consensus of all the MPTs with some additional information

on splits that occur (with sufficient frequency) in a majority of islands. Interestingly, the weighted-

by-island-size consensus recovers a subtree, (Siderops,(Batrachosuchus,(Laidleria,(Plagiosuchus,

Gerrothorax)))), including three splits that are present in all trees of all but the largest island

but are not present in the standard majority-rule consensus. To some extent this approach

mitigates against failure to acknowledge alternatives that may follow from the uncritical use and

unwarranted acceptance of the majority-rule consensus highlighted by Sumrall et al. (2001).
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FIGURE 2.4. Weighted majority-rule consensus of all MPTs from Pardo et al.’s (2017) amphibian
dataset. All taxa whose placement is the same in all tree islands were collapsed under the
label Outgroups. Extant taxa are highlighted in bold, Chinlestegophis jenkinsi is underlined and
members of the traditional Lissamphibia crown-group are highlighted in blue.

2.3.4 Rarefied-by-island-size majority-rule consensus

Alternatives to differential weighting of trees are rarefaction and oversampling. One such

strategy is to randomly select n tree topologies from each island, without replacement, resulting

in equal representation of each island in any consensus. The number of trees included per island

can be formulated as n = s× p, where s is the size of the smallest island and p the proportion of

trees from the smallest island to be included, with p ∈ [1
s ,1]. Using p = 1 will minimise stochastic

loss of information from the larger islands, resulting from the random draw of source trees, which

may be particularly important if s is small (e.g., ≤ 20). For multisets, resampled topologies that

appear more than once in the tree distribution can be weighted by the number of times they are

present in the multiset.

With Pardo et al.’s (2017) MPTs, s is 18, so we set p = 1, giving a total of 90 trees as input to
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the majority-rule consensus. To further ensure results were not unduly affected by stochastic

errors introduced by the random draw of input trees, we repeated the random selection and

consensus computations 1000 times (see below for implementation, for single and multiple

replicates). Both the strict and standard majority-rule consensus trees of these 1000 rarefied

majority-rule consensus have the same topology as the weighted-by-island-size majority-rule

consensus (Fig. 2.4), emphasising that the two approaches are both attempting to remove large

island bias by giving islands equal weight.

2.3.4.1 Implementation of rarefied-by-island-size consensus

The rarefied-by-island-size majority rule consensus was implemented as follows, the ran-

domised tree sets were obtained in R v.3.5.3 (R Core Team 2019) with the following command,

t(replicate(1000, unlist(list(sort(sample.int(18, 18)), sort(sample.int(72,18) + 18), sort(sample.int(90,

18) + 90), sort(sample.int(216, 18) + 180), sort(sample.int(486, 18) + 396))))), where the values fol-

lowing the addition sign correspond to the sum of the length of all islands smaller than the island

being sampled. The resulting table was edited by substituting all "^" (start of line) by "\tcontree

", and all "$" (end of line) by "/ majrule=yes strict=no treefile=RarefiedM50-#.tre;\n", the edited

text was then inserted into a Nexus file containing the PAUP* block and the output file numbers

edited manually. If a single replicate is desired the R command should be c(sort(sample.int(18,

18)), sort(sample.int(72,18) + 18), sort(sample.int(90, 18) + 90), sort(sample.int(216, 18) + 180),

sort(sample.int(486, 18) + 396)), and the regular expressions for text manipulation do not need to

be modified beyond changing the desired treefile name.

2.4 Extracting islands of trees and other tree clustering
methods

2.4.1 islandNeighbours R package

To facilitate the extraction of islands under our generalised definition, we wrote an R package

that makes use of two algorithms (see below) to identify and extract islands from any distribution

of trees with the same leaf set. The non-tree generating functions in the islandNeighbours

package can be applied directly to a tree distribution or to a pre-calculated tree-to-tree distance

matrix. The tree-generating functions are currently restricted to the x-NNI case, but may in

time be extended to the SPR and TBR cases. Additionally, all functions in the package work

with unrooted trees, but there is the capacity to modify the functions to allow rooted trees to

be used directly for island identification. The package is available from the GitHub repository:

https://github.com/anaserrasilva/islandNeighbours.
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2.4. EXTRACTING ISLANDS OF TREES AND OTHER TREE CLUSTERING METHODS

2.4.1.1 x-NNI islands

Exhaustive search for x-NNI island extraction:

Step 1:

Given a tree distribution

For each tree in the distribution:

Generate 1-NNI neighbourhood of tree:

If x > 1:

For each tree in neighbourhood generate its 1-NNI neighbourhood:

Repeat x−2 times

Filter the x-neighbourhood for those trees shared with the tree distribution

Step 2:

When all filtered neighbourhoods have been identified:

Compare and merge filtered neighbourhoods with shared trees:

Recurse until only x-NNI islands are left

This algorithm requires two functions to be implemented: one to generate the filtered neigh-

bourhoods, and another to compare and merge them. The algorithm is implemented in the

islandNeighbours R package for extraction of 1- and 2-NNI islands. The current exhaustive

search implementation for 2-NNI islands is bounded by (2(n−3))x × t non-unique trees, where n

is the length of the leaf set, 2(n−3) is the size of a tree’s 1-NNI neighbourhood, x = 2 is the x-NNI

threshold, and t is the size of the tree distribution. Thus, this implementation is too slow and not

suitable for anything beyond small datasets (e.g., the tree set in Fig. 2.1).

2.4.1.2 x-Distance islands

Island extraction from a matrix of any pairwise tree-to-tree distances (D):

Choose a threshold x-D

Create a vector with the tree distribution’s length and all values set to property a

(Indices in the tree distribution and property vector have 1:1 correspondence)

Set the first instance of a to b

Find the trees within x-D of first tree and change them to property b in vector

For all but the first tree:

Find the trees within x-D of trees with property b:

Set corresponding vector indices to b

For all trees in the distribution:

Find the trees within x-D of trees with property b:

Set corresponding vector indices to b

Remove all trees with property b from tree distribution

Recurse until all x-D islands have been extracted
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This approach is analogous to graph colouring (properties a, b). It is implemented in the

islandNeighbours R package as a stand-alone function, and combined with the calculation of an

RF distance matrix, and that of a quartet distance (QD, Estabrook et al. 1985) matrix.

2.4.2 Finding NNI islands in a Bayesian tree distribution

The presence of ’tree islands’ in Bayesian analyses can affect chain convergence (Lakner

et al. 2008, Höhna & Drummond 2011), but, to our knowledge, their effects on summarising the

resulting tree distribution have not been explored, perhaps due to the computational expense of

calculating branch rearrangement metrics on typically large samples of often large trees a poste-

riori (Allen & Steel 2001, Bordewich & Semple 2005, DasGupta et al. 2000). We developed a small

R (R Core Team 2019) package that uses the nni function in phangorn (Schliep 2011) to iteratively

generate the 1-NNI neighbourhood of each tree in a distribution and filter the neighbourhood to

retain only those trees that are also present in the tree distribution. Filtered neighbourhoods are

then recursively checked for shared trees, if these are present tree neighbourhoods are merged

until only the 1-NNI islands remain (see subsection 2.4.1.1 above).

Re-analysing the Pardo et al. (2017) dataset in MrBayes v.3.2.6 (Ronquist et al. 2012), under

the Mk+I+G model, with two independent runs of four chains for 10 million generations, sampled

every 10000, and a relative burn-in of 25%, yielded a tree distribution containing 1502 unique

trees. The majority-rule consensus tree is identical to that reported by Pardo et al. (2017). Applied

to this distribution, our R script yielded 1489 1-NNI islands, 1480 comprise a single tree (mass =

1, density = 1), five of the islands contained two trees (mass = 2, density = 1), and four islands

were made up of three trees (mass = 3, density = 1), see supplementary materials for the tree files.

Given that the distribution is composed exclusively of very small islands we can conclude that,

unlike in the parsimony analysis, the majority-rule consensus of the Bayesian tree distribution

has not been substantially affected by any 1-NNI large island bias.

2.4.3 More on finding islands a posteriori

The discovery of tree islands, both as a general phenomenon and in specific instances, was

associated with heuristic tree searches using the branch rearrangement operations (NNI, SPR,

TBR) that are the bases of the tree-to-tree distances used in Maddison’s (1991) original definition

of tree islands. Although convenient and helpful for islands to be found as a byproduct of tree

searches, the original definition of islands in terms of tree-to-tree distances that are particularly

hard to compute a posteriori probably has limited subsequent application of the concept of tree

islands to investigations of tree distributions more generally. Indeed, to our knowledge, our

example above is the first. However, our NNI-island finder R script is very slow, and extended

to find 2-NNI islands (see subsection 2.4.1.1) it is too slow to be used with anything other than

small toy datasets.
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FIGURE 2.5. Multidimensional scaling plots of the a) set of MPTs and b) Bayesian posterior
distribution of trees obtained from Pardo et al.’s (2017) amphibian dataset.

However, our revised definition of islands, usefully extends the notion to any tree-to-tree

distance, including those whose calculation is not NP-hard, such as RF. Finding islands a

posteriori based on such metrics is expected to be more efficient and tractable than finding islands

based on branch rearrangement metrics. Indeed, given the pairwise distances of a set of trees,

finding islands is not difficult (they are the disconnected components of the corresponding graph

after removal of edges that are below the threshold value). We have implemented a simple exact

algorithm that finds islands from a tree-to-tree distance matrix (see subsection 2.4.1.2).

As expected, 2-RF islands found using this algorithm in our example parsimony and Bayesian

tree distributions are identical to the corresponding 1-NNI islands. Applying increasingly higher

RF thresholds, we found that the island structure of the MPT distribution is robust, with the

first change in island structure at x = 12 (when the two largest islands merged into one). In

contrast, the Bayesian island structure is less stable, with a single large island forming at x = 6

that steadily increases in size with each increment in the RF threshold, while still identifying

large numbers of single tree islands and without finding any alternative islands of substantial

size (table 2.2). This pattern is as expected if we partition a homogeneous tree distribution, with

increasing thresholds adding more trees to a single island in the centre of the distribution that

excludes progressively fewer outliers. By x = 10 the largest island encompasses over 50% of

the trees in the Bayesian tree distribution, and the partitioning of outliers from trees toward

the centre of the distribution is apparent in a multidimensional scaling based on pairwise RF

distances (Fig. 2.5, see next subsection). At this point the majority-rule consensus of the single

large island is, as expected, identical to that of the full Bayesian tree distribution.
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TABLE 2.2. Number and size of x-RF islands found in the Bayesian tree distribution at different
RF thresholds.

Island size 2-RF 4-RF 6-RF 8-RF 10-RF 12-RF

1 1480 1373 1125 725 397 190

2 5 28 38 22 9 1

3 4 6 5 2 1 0

4 0 2 0 2 0 0

5 0 0 0 2 0 0

6 0 1 0 0 0 0

7 0 1 0 0 0 0

9 0 1 0 0 0 0

25 0 1 0 0 0 0

286 0 0 1 0 0 0

709 0 0 0 1 0 0

1084 0 0 0 0 1 0

1310 0 0 0 0 0 1

Total islands 1489 1413 1169 754 408 192

2.4.4 Other approaches to partitioning sets of trees

In this section we briefly consider other methods that have been developed for partitioning

sets of trees and, where possible, compare their results with the partitioning by islands of our

examples. Of the various clustering approaches that have been proposed few have been compared

to tree islands and all are as yet rarely used in practice.

Similar to Hendy et al. (1988) and Höhna and Drummond (2011), we visualised our exam-

ple empirical tree distributions through multidimensional scaling (MDS). Using the function

metaMDS in the R package vegan v2.5-7 (Oksanen et al. 2020) with the RF distance matrix as

input, MDS produces a clear separation of the five islands of MPTs (Fig. 2.5a). In contrast, MDS

produces no partitioning of the Bayesian tree distribution but does reveal that trees in the large

10-RF island are concentrated at the centre of the sampled tree space.

Stockham et al. (2002) framed the question of how many consensus trees should be used to

summarise a set of trees as a bicriterion problem of complexity (numbers of consensus trees)

versus information loss (the distance between the tree distribution being summarised and the

tree distribution induced by the strict consensus trees of the proposed clusters). While this

remains an important open problem, it motivated and informed their comparison of 1-TBR

islands (a byproduct of heuristic parsimony searches) and partitionings of several empirical

sets of trees based on two families of clustering algorithms applied to RF distances, k-means
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and agglomerative clustering (sometimes referred to as linkage clustering). Of the investigated

methods they preferred complete linkage clustering. For our MPTs the complete linkage algorithm,

computed using the R function hclust, yielded five well defined clusters, corresponding to the five

islands from our example, and no discernible clusters in the Bayesian tree distribution. Results

of the k-means analyses, however, change depending on the parameters used, making them

harder to interpret. The function find.clusters, from the R package adegenet v.2.1.3 (Jombart

2008), using the Bayesian Information Criterion (BIC), ’goodfit’, and ’choose.n.clust=FALSE’

settings, identified k=8 as the optimal number of clusters for the MPT distribution and k=10 for

the Bayesian distribution. However, if ’goodfit’ is exchanged for the ’diffNgroup’ setting, while

the optimal number of clusters does not change for the MPT distribution, for the Bayesian

distribution the optimal k becomes 2.

More recently, Tahiri et al. (2018) modified the k-medoids algorithm to work with RF distances,

and compared its performance under squared and non-squared RF and the Silhouette and

Caliński-Harabasz validity indices. Differently from Stockham et al. (2002), they sought to

provide an optimal set of majority-rule (rather than strict) consensus trees and they made no

comparison to islands. Tahiri et al. (2018) found that their k-medoids algorithm performs best

with the non-squared RF distance and the Silhouette validity index, and that it cannot deal with

single cluster datasets. We ran their k-medoids implementation under the recommended setting,

which yielded two clusters for the MPT distribution, corresponding to the extended and restricted

Lissamphibia groups of trees, so one cluster includes the three smallest islands, while the other

is made up of the two largest islands. For the Bayesian distribution the application accepted

the input file but did not generate any output files, suggesting that this corresponds to the k=1

instance, which Tahiri et al.’s (2018) algorithm cannot deal with. Another clustering algorithm is

the basis of Guénoche’s (2013) multiple consensus tree method, but we were unable to find an

implementation that would allow any investigation of this method.

An alternative to distance-based clustering algorithms are graph-based methods. Bonnard et

al. (2006) introduced the multipolar consensus which defines a minimal set of consensus trees

(poles) that display all the splits that occur above some minimum frequency (α) in the input trees,

and implemented a greedy heuristic graph-colouring algorithm based on split compatibility to

approximate the multipolar consensus. At α= 0.5 the method yields the majority-rule consensus.

Applied to our example datasets, the multipolar consensus, with the default α= 0 (i.e. including

all splits), identified eight poles from the MPT distribution, four of which are relatively well

resolved and are most similar to the partitioned-by-island consensus trees of each of the three

smallest and the largest islands, the other four poles are mostly unresolved. For the Bayesian

tree distribution, 13 poles were identified, but only one is well resolved. At α= 0.4, the multipolar

consensus identifies two poles in the MPT distribution, which are most similar to the partitioned

consensus trees of each of the two largest islands.

Finally, an approach originally designed to partition sets of gene trees is based on the notion
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of trees of trees (Darlu & Guénoche 2011, Nye 2008), where each tree topology becomes a leaf in a

tree, and the nodes represent intermediate topologies between the input trees. We were unable to

find an implementation of Darlu and Guénoche’s (2011) TreeOfTrees and our tree distributions

are too large for Nye’s (2008) metaTree (both the web-based and stand-alone implementations).

As a rough proxy (in which nodes do not represent intermediate tree topologies) we computed

neighbour-joining (NJ) and unweighted pair group method with arithmetic mean (UPGMA) trees

from the RF distance matrices (e.g., Graham et al. 1998). These methods also found the five

islands of MPTs and no clear partitioning of the Bayesian tree distribution.

While unsurprising that the various methods considered sometimes yield somewhat different

partitionings it is noteworthy that several produce partitionings that are either identical to or

otherwise similar to islands.

2.5 Discussion

Historically, most users of parsimony were interested in discovering relationships that are

present in every most parsimonious tree, leading to a strong preference for the exclusive use of

the strict consensus to summarise most parsimonious trees, and a focus on the unambiguously

or strictly supported relationships they display (Nixon & Carpenter 1996). Other relationships

might be considered unsupported but there is a difference between a relationship that is present

in some MPTs and a relationship that is not present in any MPT. The former seems somewhat

better, if ambiguously, supported by the parsimonious interpretation of the data. It is tempting

to go further and interpret the frequencies of occurrence of alternative ambiguously supported

relationships in a set of MPTs as a measure of their relative support. This would follow from

an assumption that, for example, all MPTs are equally probable. However, if there are multiple

islands of MPTs, alternative measures of support would follow from an assumption that all

islands are equally probable.

Each of the potential assumptions (equiprobable trees or equiprobable islands) might be

justified by appeal to the principle of indifference (Keynes 1921). However, both assumptions can

be met simultaneously only if all MPTs belong to a single island or all islands have exactly the

same size. Otherwise, as our example shows, they can lead to very different and contradictory

conclusions. In general, we expect such disagreements to be more likely and profound the greater

the asymmetries in island size. Clearly, when confronted with multiple islands of disparate sizes,

it is sensible to try to understand the causes of the differences.

In our parsimony example, island size is highly correlated with the number of areas of local

instability, and is explained by their combinatorial consequences. This argues against island size

being correlated with the probability of the island containing the correct tree, against equiproba-

bility of trees, and against the use of the majority-rule consensus, because of the unjustifiable

large island bias that ensues. The partitioned-by-island consensus reveals five major variants
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involving alternative interrelationships of Gymnophiona, Batrachia, and Chinlestegophis, and

helps in understanding the substantial large island bias due to different combinations of more

local instability. In contrast to the majority of trees, the majority of islands recovered the tradi-

tional Lissamphibia (Figs. 2.3a-c). Both the majority of trees and the majority of islands have

Chinlestegophis closely related to Gymnophiona (Figs. 2.2b, 2.3a, b, d). Interestingly, Schoch et

al.’s (2020) recent analyses of a dataset slightly modified from that of Pardo et al. (2017) recovered

the restricted Lissamphibia crown group, with Chinlestegophis only distantly related (similar to

Fig. 2.3c), emphasising that robust inferences of amphibian interrelationships, i.e. inferences that

are insensitive to minor variations in the underlying data and/or to method of analysis, may be

hard to obtain. More detailed exploration of the phylogenetic relationships seemingly supported

by the data is facilitated by the variant consensus approaches and may be especially intriguing

for groups whose evolutionary history is still being debated, including amphibians (reviewed in

Marjanović & Laurin 2019).

Sumrall et al. (2001) recognised the large island bias issue in bimodal tree distributions,

warned against using the majority-rule consensus to summarise MPTs, and advocated the sole

use of the strict consensus. However, that strict consensus trees can be very poorly resolved has

seemingly motivated the use of less strict methods and, over time, Sumrall et al.’s (2001) findings

and recommendations have been increasingly overlooked or forgotten. Revisiting the issue, we

also urge caution against uncritical use of the majority-rule consensus. If the strict consensus

is poorly resolved, then the partitioned-by-island consensus, where islands are summarised

individually, can be particularly useful in distinguishing major alternatives and local instabilities.

Reduced consensus methods (Wilkinson 1994) may also be helpful in this context. If island

sizes are disparate, then simple modifications to the majority-rule consensus, through weighting

or rarefaction can remove any large island bias from a unitary consensus summary, if such

is needed. Our preference is for exploration and flexible use of multiple consensus methods.

Discovery of islands should motivate interest in their biological or methodological significance,

and discovery of disparate sizes raises the possibility of large-island bias, and should motivate

further assessment of the cause of the size disparity and whether it should impinge on our

assumptions of equiprobability of, for example, trees or islands. Note that while we have focused

on the majority-rule consensus and the attendant issue of large island bias, researchers may

choose to investigate or summarise islands with whichever approaches they prefer, including

construction of any form of consensus tree or network (explored in the next chapter).

As we have shown, the notion of islands is extendable to methods that can produce multisets

of trees or where the sampled trees are not optimal per se, but are due to resampling methods

or come from regions of tree space with sufficiently high probability densities. Bayesian and

resampling analyses can provide direct evidence that trees are not equiprobable, because each

topology can be sampled multiple times, such that island size (number of unique topologies) is

less than the sampling of trees from an island (island mass). Whereas island mass should be
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driven by the posterior probabilities/frequency of sampling of the included trees given the data,

island size differences may result in large island biases, which would be of concern. However,

the Bayesian distribution from our example revealed no great disparities in 1-NNI/2-RF island

sizes, with the number of islands very close to the number of trees. Thus both equiprobable tree

and equiprobable island assumptions seem reasonable enough. Furthermore, that increasing the

RF threshold only partitions the Bayesian tree distribution into a single large ’central’ island,

and many small islands of outliers is consistent with the tree distribution being homogeneous.

Thus, island structure provides no basis for questioning the use of the majority-rule consensus to

summarise the results of the Bayesian analysis.

Unfortunately, given that computing branch rearrangement metrics a posteriori is an NP-

hard problem (Allen & Steel 2001, Bordewich & Semple 2005, DasGupta et al. 2000), finding

islands based on these metrics in tree distributions from Bayesian and resampling analyses will

be intractable in many cases. This is particularly unfortunate if topological differences that are

readily described by such branch rearrangements are potentially linkable to or suggestive of

specific evolutionary processes and/or analytical artefacts. For example, we suggest that whereas

single NNI moves might represent stochastic error, SPR moves (that are not NNIs) might indicate

instances of horizontal gene transfer (HGT), and TBR moves (that are not SPRs) might indicate

local rooting problems such as might result from long branch attraction.

Our method of finding 1-NNI islands a posteriori directly (i.e.without computing NNI dis-

tances), is of limited use for large tree distributions, because it replaces distance metric calcula-

tions with very large numbers of pairwise comparisons of trees. However, our extended definition

of tree islands allows for the use of any tree-to-tree distance metrics to define islands and makes

it possible for islands to be identified a posteriori and for their causes and consequences to be

explored. It reflects our point of view that islands are interesting more for the natural way in

which they partition a set of trees than for any specific tree-to-tree distance that they were

originally based upon. As such tree islands are complementary to other means of data exploration

that involve attempts at partitioning sets of trees in order to provide better summaries and

promote better understanding.

Other extensions to the notion of islands might be helpful. Allowing for trees with partially

overlapping leaf sets might be achievable through generalised tree-to-tree distances (see Cotton

and Wilkinson 2007) and allow clustering of gene trees without having to prune/regraft taxa,

and might also help shed light on the phenomenon of tree terraces (Sanderson et al. 2011, 2015).

Another possible extension might be to node-labelled trees, this would be particularly interesting

given the recent drive to solve the single vs. multiple consensus problem in cancer phylogenetics

(Aguse et al. 2019, Govek et al. 2018). Current methods are based exclusively on graph-based

clustering, using a variety of distances for rooted trees (Aguse et al. 2019, Govek et al. 2018) that

could conceivably be used to define and find islands.

28



2.6. DATA AND SOFTWARE AVAILABILITY

2.6 Data and software availability

The data, scripts and results for this chapter are available on the following repository:

• Dryad, https://doi.org/10.5068/D14X10.

The islandNeighbours R package is available from:

• GitHub, https://github.com/anaserrasilva/islandNeighbours.
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3
MORE ON ISLANDS AND THE Chinlestegophis jenkinsi

CONUNDRUM

3.1 Introduction

Large (multi)sets of phylogenetic trees with poorly resolved consensus trees are often diag-

nostic of the presence of unstable taxa. To identify which, and sometimes why, taxa are unstable

multiple data- and topology-based methods for taxonomic instability identification have been de-

veloped (e.g., Aberer et al. 2012, Thorley & Wilkinson 1999, Wilkinson 1995b). In addition to these

methods, some non-parametric resampling techniques, primarily used to test tree robustness to

data perturbations (e.g., first order taxon-jackknifing Lanyon 1985), can also be used to identify

rogue taxa. However, these resampling approaches often require multiple rounds of tree inference,

thus limiting their widespread use. While the effects of isolated or grouped unstable taxa have

been tested for some topology-based methods (Wilkinson & Crotti 2017), to my knowledge the

same has not been done for the presence of multiple tree subsets, e.g. tree islands (Maddison 1991,

Serra Silva & Wilkinson 2021). Given that the presence of multiple subsets of equally-optimal

trees can substantially influence both tree search (e.g., Höhna & Drummond 2011, Lakner et al.

2008, Olmstead et al. 1993, Sanderson et al. 2011) and the summary of inferred trees (see Chapter

2 and citations therein), it is not unreasonable to expect that topology-based taxonomic instability

identification analyses, such as leaf stability (LS, Thorley & Wilkinson 1999, Wilkinson 2006),

are also affected by large island bias.

Another alternative to topology-based instability tests is the use of (non-tree) phylogenetic

networks. These are being increasingly used to summarise (multi)sets of phylogenetic trees

where incomplete lineage sorting (ILS), hybridization or other reticulation events are suspected

(reviewed in Elworth et al. 2019). While phylogenetic networks have been primarily used to
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explore incongruences in molecular datasets and/or trees inferred from molecular data, the latter

are often called consensus networks (Holland & Moulton 2003), they have also started to be used

with morphological data. Using a set of craniodental characters, Caparros and Prat (2021) have

recently applied phylogenetic networks to the study of hominin evolution. However, despite the

large size of the tree set they used for the network analyses (9639 trees), all trees belonged to the

same 1-TBR island (PAUP*’s (Swofford 2003) default branch-rearrangement setting for maximum

parsimony heuristic searches), and the network analyses would thus have been immune from

large island bias. As such, it remains unclear whether the presence of multiple 1-TBR islands

affects the visualisation of consensus networks.

In this chapter, using Pardo et al.’s (2017) set of most parsimonious trees (MPTs), I explore

how two topology-based instability tests, LS and relative bipartition information content (RBIC,

Aberer et al. 2012), behave in the presence of islands and how island structure can be taken

into account when using these methods. I also use two (non-tree) phylogenetic network methods

to show that large island bias extends beyond the majority-rule consensus (MRC, Margush &

McMorris 1981). And, lastly, I reanalyse the Pardo et al. (2017) data matrix to identify some

potential causes of instability, and explore the robustness of their conclusions on lissamphibian

relationships.

3.2 Islands and taxonomic instability

Methods to explore taxonomic instability can be broadly divided into data (e.g., safe taxonomic

reduction (STR, Wilkinson 1995b) and its heuristic extension Concatabominations (Siu-Ting

et al. 2015), and a priori taxon jackknifing) and topology-based methods (e.g., LS, RBIC and a

posteriori taxon jackknifing). While the presence of multiple subsets of trees is not expected to

negatively influence data-based methods (even if we may expect some of, or all, the taxa driving

island structure to be identified as unstable), topology-based methods may be prone to some

of the problems highlighted for the MRC. In other words, if there is more topological variation

between subsets of trees than within, could the set of identified unstable taxa change between

analysing the full set of trees and analysing each subset separately? For ease of interpretation

and discussion, I will focus on the exhaustive and mutually exclusive islands of trees (previous

chapter, Maddison 1991) and will again use the Pardo et al. (2017) set of MPTs and its 1-TBR

(also 1-SPR, 1-NNI and 10-RF) islands for the analyses below. If we do expect topological variation

to be greater between islands, we may sensibly expect four outcomes: a taxon is i) stable within

and between tree islands; ii) stable within islands, but unstable between; iii) unstable within

islands, but stable between; or iv) unstable within and between islands, table 3.1. These outcomes

correspond to interactions between causes of instability and relationships between taxa in a

(sub)set of trees. Specifically, taxa that are stable only within islands correspond to the taxa

responsible for island structure (in other words, globally unstable taxa) and their instability is
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TABLE 3.1. Instability patterns possible for any taxon present in a partitionable (multi)set of
trees.

Between

islands

Within

islands stable unstable

stable + + + -

unstable - + - -

caused, primarily, by homoplasy, i.e. independently evolved similarity. Taxa that are unstable

only within islands, on the other hand, correspond to locally unstable taxa and are likely caused

by missing data (potentially ILS in molecular datasets), although less severe levels of homoplasy

(than seen in the globally unstable taxa) cannot be discarded. Finally, taxa that are unstable both

within and between islands likely have very large amounts of missing data and/or homoplasy, and

the inference analyses may benefit from their removal. Understanding if, and how, topology-based

methods are influenced by the presence of multiple islands is especially important when dealing

with datasets, like Pardo et al.’s (2017), where the strict consensus (SC, Sokal & Rohlf 1981) is

mostly unresolved, hinting at extensive taxon instability, but a priori data-based approaches, like

STR (PerlEQ v1.0, Jeffery and Wilkinson (2003), available from https://uol.de/en/biology/

research-groups/systematics-and-evolutionary-biology/programs), do not identify any

taxa for safe removal, i.e. taxa whose removal does not affect the relationships between the

remaining taxa in a matrix.

To explore whether large islands influence topology-based taxonomic instability analyses,

I ran the full set of Pardo et al.’s (2017) MPTs, and each tree island, through LS analyses, as

implemented in RogueNaRok (RNR, Aberer et al. 2012). All LS measures were used for the anal-

yses: i) LSmax, the normalised maximum (bootstrap) proportion for a quartet/triplet, ii) LSdi f f ,

the normalised difference between the proportions of the two most supported quartet/triplet

resolutions, and iii) LSent, the entropic LS or the normalised negative sum of the product of the

frequency of each quartet/triplet resolution and the log of that frequency (f),

LSent = 1− −∑
( f × log( f ))
log( f )

(Thorley 2000, Thorley & Wilkinson 1999, Wilkinson 2006). The MPTs were also run through

RNR’s RBIC optimality criterion, set to optimise the SC, with dropsets of 1, 5, 10 and 15 taxa.

The RBIC is defined by Aberer et al. (2012) as the ratio between the sum of all support values (S)

and the theoretical maximum support for a binary tree prior to taxon removal,

RBIC =
∑

S
100× (n−2)

,
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CHAPTER 3. MORE ON ISLANDS AND THE CHINLESTEGOPHIS JENKINSI CONUNDRUM

where n−2 corresponds to the number of internal branches in a fully resolved unrooted tree with

n tips (n−1 for rooted trees), and the multiplication factor of 100 assumes the use of percentual

support values (e.g., bootstrap proportions, Felsenstein 1985). The SC was chosen due to the MRC

biases detailed in the previous chapter, and under the SC the RBIC is equivalent to Pattengale et

al.’s (2011) relative information content optimisation criterion, which consists of optimising the

number of bipartitions in the SC. Interestingly, this measure was also one of the parameters (the

other parameter being number of taxa) used by Wilkinson (1995c) to distinguish primary reduced

consensus (RC) trees from other RC trees. Following Wilkinson and Crotti (2017), several dropset

sizes were used in the RBIC, since unstable taxa may be missed if they are part of an unstable

group, i.e. where the taxa in a clade are stable in relation to each other but the group is unstable

in relation to the rest of the tree.

Starting with all 882 MPTs, LS analyses identified crown lissamphibians as the most unstable

taxa (table 3.2), with Chinlestegophis within the 15 most unstable taxa (taxon instability ranking

varies slightly between LS measures). The RBIC results for the set of MPTs changed with dropset

size, with RBIC-1, 5 and 10 recovering Chinlestegophis as the single most unstable taxon, and

its removal increasing the number of bipartitions in the SC from 35 to 36. RBIC-15, however,

recovered two sequential sets of unstable taxa, the first included all crown lissamphibians (both

extant and extinct) and Chinlestegophis, removal of which drives the number of bipartitions in

the SC to 48, and the second set made up of Laidleria, whose placement differs between the four

smallest islands and the largest island (Fig.2.3a-d and Fig.2.2b, respectively), removal of this

taxon adds another bipartition to the SC. Thus, removal of the taxa identified by RBIC-15 on the

full set of trees increases the resolution of the SC from 35 to 49 bipartitions.

When the islands were individually tested for the presence of unstable taxa, however, all LS

measures exceed 0.94 (table 3.2), and the RBIC analyses identify Trematosaurus as unstable in

island-72 and -216 (Fig.2.3b and Fig.2.3d). Thus, just like in the MRC scenario, identification

of unstable taxa in the presence of multiple tree subsets yields different results if we look at

those sets individually, or if we look at the full (multi)set. In this example, for the within island

analyses, the taxa with the lowest stability scores can be found in the areas of local instability

identified in the previous chapter (Fig.2.2b, Fig.2.3a-d and Table 2.1). In short, with Pardo et al.’s

(2017) trees, testing all MPTs identified the group(s) of taxa whose position changed between,

but not within, islands of MPTs as unstable (crown Lissamphibia and Chinlestegophis), but the

within islands analyses found only "locally" unstable taxa (e.g., Trematosaurus). Additionally,

RBIC analyses whith dropsets > 1 identifying groups of unstable taxa may also be indicative of

an underlying island structure in the (multi)set of trees being analysed.

To summarise, the taxonomic instability analyses on the MPTs recovered three of the four

predicted outcomes: i) most taxa are stable within and between islands; ii) crown Lissamphibia

and Chinlestegophis are stable within islands, but unstable between them; iii) Trematosaurus is

unstable within some islands, but stable between them; iv) no taxa were identified as unstable
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within and between islands. Following from the links between instability patterns and causes

made earlier in the section, Lissamphibia and Chinlestegophis’ instability is caused by homoplasy,

particularly between Chinlestegophis, Eocaecilia and Rileymillerus (see subsection 3.4.1 below for

details), while the instability of taxa like Trematosaurus is likely due to missing data, although

low levels of homoplasy cannot be discarded. Thus, understanding how unstable taxa behave in

the presence of multiple islands of trees is not essential to interpreting taxonomic instability

analyses, but understanding the relationship between island structure and causes of instability

might help mitigate the latter.

3.3 Phylogenetic networks

From Chapter 2 and the topology-based taxonomic instability analyses, we know that the

topological incongruences in Pardo et al.’s (2017) MPTs are not restricted to a single unstable

taxon, rather to a group of unstable taxa (crown Lissamphibia+Chinlestegophis). Thus far, I

have focused on the effects of large island bias in the computation of consensus trees and on

how to mitigate these effects within the single or multiple consensus tree debate. However, there

is an alternative to consensus trees and clustering analyses that can display at least some of

the topological incongruences present in a (multi)set of trees in the same graphical summary:

phylogenetic networks. While there are multiple types of phylogenetic networks (summarised

in Fig. 4.1 of Huson et al. 2010), including phylogenetic trees, I will focus only on those used in

Caparros & Prat (2021): consensus (Holland & Moulton 2003) and reticulation networks (Huson

et al. 2005). Consensus and reticulation networks differ in that, for a given multi(set) of trees, the

former display all splits over a selected frequency threshold (setting this to 50% is equivalent to

computing the MRC), and thus the split incompatibilities present in the tree (multi)set (Holland

& Moulton 2003). Reticulation networks, on the other hand, use those split incompatibilities

to identify and display the presence, but not type, of reticulation events (Huson et al. 2005). In

short, consensus networks summarise split incompatibilities, while reticulation networks display

evolutionary histories. These approaches, particularly reticulation networks, have generally

been applied to molecular datasets (including, but not restricted to, sequence data, inferred

trees, matrix representation of splits, etc.), partly because they were developed with the aim of

understanding the topological conflicts in (multi)sets of gene trees (e.g., Huson et al. 2005), and

because reticulation events are often investigated at the molecular not morphological level (e.g.,

Cai et al. 2021, Suvorov et al. 2022).

Using SplitsTree v.4.14.8 (Huson & Bryant 2006) I computed the consensus and reticulation

networks for the Pardo et al. (2017) MPTs. The consensus networks were computed for split

frequency thresholds of 33% (default), 20%, 10% and 0%, all displayed with ’EqualAngle’. The

reticulation networks were computed from the consensus networks, using the RECOMB2007 al-

gorithm (Huson & Kloepper 2007), rooted on Proterogyrinus, and displayed with ’EqualAngle120’.
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a

db

c

VIII and IX

I and II

V

VI

VIII, IX, XI and XII

X
VII

VI

I and II

IV
V

III

FIGURE 3.1. Consensus networks of Pardo et al.’s (2017) set of most parsimonious trees for a)
33%, b) 20%, c) 10% and d) 0% split frequency thresholds. Roman numerals correspond to the
areas of instability identified in figures 2.2b and 2.3a-d. High resolution image files for each
network are available from https://doi.org/10.6084/m9.figshare.c.6050033.

For ease of visualisation, Nexus formatted network files and EPS image files are available from

https://doi.org/10.6084/m9.figshare.c.6050033. The consensus network for the default

split frequency threshold shows most of the split incompatibilities centred on the areas of local

instability VIII and IX (Fig. 3.1a and Fig.2.2b), along with the possible solutions for the polytomies

corresponding to areas I, II, V and VI (Fig. 3.1a, Fig.2.2b and Fig.2.3). The 20% threshold displays
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split incompatibilities from areas VII to XII, which share taxa with areas VIII and IX, and the

solutions to polytomies I to VI (Fig. 3.1b, Fig.2.2b and Fig.2.3). As in the two largest islands,

Chinslestegophis is placed with Rileymillerus and Gymnophiona within Stereospondyli in the 33%

and 20% threshold consensus networks. At thresholds 10% and 0% the consensus networks are

(near) uninterpretable (Fig.3.1c-d), due to the very large number of split incompatibilities present

in the input tree set. Although, in the 10% threshold network Chinlestegophis is found with

Rileymillerus, while Gymnophiona and Batrachia are each in well-defined clades, and in the 0%

threshold network the relationship between Chinlestegophis and Rileymillerus breaks down, but

Gymnophiona and Batrachia are still recovered as clades. These results are consistent with what

we know of the island structure of Pardo et al.’s (2017) MPTs. First, areas of instability VII–XII

are each present in at least one of the four largest islands, share taxa (e.g., Sangaia contributes

to areas VIII and XII) and/or are in close proximity in at least two islands. Additionally, many of

the taxa in these local instability areas were also recovered by most island-specific LS analyses

as some of the least stable taxa (e.g., Trematosaurus, Trematolestes, Bentosuchus). That the

33% threshold consensus network displays split incompatibilities that match up with areas of

local instability (VIII and IX) restricted to the largest island (∼ 55% of all trees), and the 20%

threshold network starts recovering split incompatibilities present in the next largest islands

(∼ 25% and ∼ 10% of all trees), suggests that, much like the MRC, consensus networks are also

affected by large island bias. This is further supported by the amount of split incompatibilities

found between Chinlestegophis, Rileymillerus, Gymnophiona and Batrachia.

The reticulation networks yielded very similar results to the consensus networks, as ex-

pected from the latter being the input for the identification of reticulation events. For the default

threshold, two reticulation events were identified between taxa contributing to areas VIII and

IX, and single events were identified for the isolated polytomies corresponding to areas I, II, V

and VI (Fig.3.2a). The 20% threshold reticulation network finds single reticulation events for the

localised polytomies (areas I to VI) and a minimum of eight reticulation events in areas VII–XII,

including the two found under the 33% threshold (Fig.3.2b). Unfortunately, the large number of

taxa and high level of split incompatibilities in this dataset makes the networks hard to interpret

and the reticulation nodes in area VII/X hard to parse. It is, however, still possible to recognise

the placement of Chinlestegophis with Rileymillerus and Gymnophiona in Stereospondyli, i.e.

the extended Lissamphibia hypothesis. The 10% network displays a very complex history of

reticulations with all Dissorophoidea and Stereospondyli taxa (see Fig.3.4 for higher order am-

phibian taxonomy) being involved in, or descended from, at least one reticulation event (Fig.3.2c).

This analysis still finds Chinlestegophis nested in Stereospondyli, but neither the extended nor

restricted Lissamphibia are found. This reflects the drastic topological shifts between islands-

18 and -90 (restricted Lissamphibia in Dissorophoidea), island-72 (restricted Lissamphibia in

Stereospondyli), and islands-216 and -486 (extended Lissamphibia). The computation of the

reticulation network for the 0% threshold consensus network was cancelled after running for 36
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a b

c

VI

VIII and IX

I and II

V

VIII, IX, XI and XII

X

VII

VI

V

IV

III

I and II

FIGURE 3.2. Reticulation networks of Pardo et al.’s (2017) set of most parsimonious trees for
a) 33%, b) 20% and c) 10% split frequency thresholds. Reticulate nodes are in dark blue, as per
SplitsTree default drawing settings. High resolution image files for each network are available
from https://doi.org/10.6084/m9.figshare.c.6050033.

hours, as the next slowest analysis (10% threshold) took less than five minutes. However, given

the consensus network for this threshold (Fig.3.1d), we might expect a reticulation network at

least as complex as the one inferred for the 10% threshold. Thus, consensus and reticulation

networks, much like the MRC, are prone to large island bias, with reticulation networks not

always computable in the presence of high levels of split incompatibility.
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3.4 Reanalysis of Pardo et al.’s (2017) data matrix

Congruence between the tree summaries of multiple phylogenetic analyses of the same

dataset using distinct inference methods is often used as a sign of data robustness and used to

bolster confidence on the inferred tree topologies (e.g., Pardo et al. 2017, San Mauro et al. 2014,

Taboada et al. 2020). However, when using the MRC to summarise inferred tree (multi)sets, this

congruence can be positively misleading, particularly when large island bias is present. As briefly

mentioned in Chapter 2, the MRCs of the parsimony and Bayesian inference analyses of Pardo et

al.’s (2017) data matrix are highly congruent (see their Fig.S7). Yet, the island structures of the

tree sets yielded by the two analyses are highly disparate, with the parsimony analyses recovering

a set that can be partitioned into five well-defined islands that support distinct Lissamphibia

make-ups and placements, whereas the island structure of Bayesian tree distribution changes

every time the distance threshold changes (see fig.2.5 and table 2.2), and consists of a large

central island surrounded by large numbers of singleton or small islands that uniformly support

the extended Lissamphibia hypothesis.

Moreover, topology-based instability analyses further emphasise the difference between the

tree sets recovered by the parsimony and Bayesian analyses. While the RBIC analyses of the

MPTs recovered different sets of unstable taxa for different dropset sizes (see section 3.2), the

same analyses for the Bayesian tree distribution recovered Apateon, Iberospondylus, Lapillopsis

and Sangaia as the most unstable taxa for all dropsets. The only variations between the results

of the latter analyses are whether Iberospondylus and Lapillopsis should be removed separately

or as a unit, and the order in which the four taxa should be removed. The results obtained by

the inference and taxonomic instability analyses show that the Pardo et al. (2017) data matrix is

not robust to changes in inference method, which is further supported by Schoch et al.’s (2020)

analyses of a slightly modified version of the Pardo et al. (2017) data, see subsection 3.4.3. Thus,

to understand the Chinlestegophis conundrum, we must first understand the data matrix.

3.4.1 Resampling analyses

A fundamental aspect of phylogenetic analyses that I have only briefly mentioned in regards

to the Pardo et al. (2017) data matrix is branch support. In the previous chapter, I mentioned that,

under parsimony, none of the splits that separate Gymnophiona and Batrachia had a bootstrap

support (Felsenstein 1985) greater than 50%. In fact, a bootstrap analysis in PAUP* v.4a165, with

1000 replicates under the same settings as the heuristic equal-weights parsimony search and

with the ’MulTrees’ option selected, weakly supported (53%) the restricted Lissamphia and was

uniformative in regards to Chinlestegophis’s placement. This result might lead us to think that

despite the islands that display the restricted Lissamphibia making up only c.20% of the inferred

MPTs, they may in fact be better supported by the underlying data. However, if jackknife analy-

ses are used to calculate branch support, neither the restricted nor the extended Lissamphibia
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hypotheses are supported. With similar settings to the bootstrap analysis (number of replicates

set to 100 due to memory constraints), delete-half (Lanyon 1985) and Farris jackknife (delete
1
e ≈ 36.8%, Farris et al. 1996) both weakly support Gerobatrachus+Batrachia (54% and 57%) and

Rileymillerus+Chinlestegophis+Gymnophiona (55% and 54%), but are uninformative regarding

the relationship between these two clades, and thus restricted vs. extended Lissamphibia. With

only 11 out of 345 characters not having taxa with missing (’?’) and/or inapplicable (’-’) character

states (see next subsection), it is not surprising that the trees summarising the resampling analy-

ses are poorly resolved (e.g., dos Santos & Falaschi 2007, Wilkinson 2003). Unfortunately, memory

constraints prevented saving the trees inferred for each resampling replicate, and I was unable

to check whether the large island bias present in the heuristic parsimony search also affected

the bootstrap and/or jackknife analyses, commonly summarised with their MRC. That different

support measures find generally low branch support across the inferred relationships and that

they yield conflicting results regarding the relationship between Batrachia and Gymnophiona,

not only confirm that the MRC is a poor summary of the MPTs but also that the Pardo et al.

(2017) data matrix is not robust to perturbations.

In addition to serving as measures of branch support, resampling techniques can also be

used to identify unstable taxa. While the character-based jackknifing analyses showed only that

there is no overwhelming support for either the restricted or extended Lissamphibia hypotheses,

taxon jackknifing might help us identify the taxa whose data underpin the taxonomic instability

that characterises this dataset. Because taxon jackknife requires a tree inference analysis each

time a taxon is removed from the matrix, these resampling analyses can be quite time and

resource intensive. A way of optimising first order taxon jackknifing is to use the output from

(other) taxonomic instability analyses as a guide. Unfortunately, as mentioned above, the STR

analysis (and its heuristic extension, Concatabominations (Siu-Ting et al. 2019)) did not find

any candidate taxa for safe removal. However, the topology-based dropset-1 RBIC analysis did

identify Chinlestegophis as the most unstable taxon, offering a starting point for the first order

taxon jackknifing analyses. Additionally, from the partitioned-by-island consensuses computed in

Chapter 2 (Fig.2.2b and Fig.2.3), we know that Chinlestegophis always places with Eocaecilia

and/or Rileymillerus. We thus have a trio of taxa for which we can explore whether removing any

one of them from the matrix affects the number of trees and islands inferred from the resampled

matrices, and whether, removed taxa aside, the topologies inferred are similar between taxon

jackknifing runs.

It is worth noting that we can also jackknife taxa from the inferred trees a posteriori. However,

the removal of Chinlestegophis results only in removing it from the set of MPTs, without affecting

the number of unique MPTs nor of tree islands. In fact, a posteriori removal of Chinlestegophis,

Eocaecilia and Rileymillerus—whether we remove one, two, or all three of these taxa—affects only

the number of tips on the MPTs, not their numbers nor island structure. Using LSmax as the guide

for taxon removal order, we need to remove Eocaecilia, Epicrionops, Ichthyopis and Karaurus
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FIGURE 3.3. Strict consensus trees of the first-order taxon jackknife analyses omitting a) Chin-
lestegophis, b) Eocaecilia and c) Rileymillerus.

before the number of trees drops to 648 and that of 2-Robinson-Foulds (RF, Robinson & Foulds

1981) islands to four. If any external information is ignored and all taxa are tested, the taxa

whose removal affects tree number the most are Broomistega, Rhineceps and Uranocentrodon,

which correspond to polytomy VI (one of the three areas of instability present in all islands, table
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TABLE 3.3. Post-inference first order taxon jackknife. List of taxa whose removal from the set of
inferred MPTs resulted in decrease in MPT number, the change in MPT set size (∆Trees) and the
size of the ensuing set of MPTs. Island number was not affected by taxon removal.

Taxon ∆Trees MPT set

Broomistega, Rhineceps, Uranocentrodon 588 294

Trematosaurus 540 342

Ambystoma, Cryptobranchus, Hynobius 387 495
Acheloma, Broiliellus, Cacops,

Dissorophus, Ecolsonia, Phonerpeton
294 588

Amphibamus, Platyrhinops 288 594

Karaurus, Kokartus 234 648

Batrachosuchus, Laidleria, Sangaia, Siderops 162 720

Trematolestes 72 810

Benthosuchus, Edingerella 36 846

2.1 and Figs.2.2b and 2.3). The removal of any one of these taxa decreases the size of the MPT set

to 294 trees, removing exactly two thirds of the original trees, by virtue of breaking the polytomy.

Thus, with post-inference taxon jackknife we can identify locally unstable taxa but not the taxa

driving island structure.

Returning to data-based jackknifing, under the same settings as the original parsimony

tree search, all three first order jackknife analyses recovered a single 1-TBR island, with re-

stricted Lissamphia nested within Dissorophoidea (Fig.3.3a-c and table 3.4). The run without

Chinlestegophis recovers 18 MPTs with three unstable subtrees: (Dissorophus, Broiliellus, Ca-

cops), (Acheloma, Phonerpeton, Ecolsonia) and (Rhineceps, Uranocentrodon, Broomistega). These

subtrees correspond to the three areas of instability present in all 1-TBR islands identified from

the MPTs inferred from the the original Pardo et al. (2017), areas I, II and VI (Fig.2.2b and

table 2.1). However, for the two runs where Chinlestegophis is retained the number of MPTs

recovered increases comparatively to the no-Chinlestegophis analysis, and Chinlestegophis is

placed as the sister taxon to the remaining taxon (Rileymillerus or Eocaecilia), table 3.4 and

figures 3.3b-c. The increase in number of MPTs is also reflected by an increase in taxonomic

instability. In addition to the three subtrees above, the relationship between and placement of

Edingerella and Benthosuchus also become uncertain, and, with the removal of Rileymillerus, so

does the subtree (Paracyclotosaurus, Mastodonsaurus, Cyclotosaurus). Interestingly, these taxa

all correspond to those identified as least stable in the partitioned-by-islands LS analyses (table

3.2). Thus, from the taxon-based resampling analyses, it is clear that the uncertainty surrounding

the lissamphibian relationships is anchored by the Chinlestegophis-Eocaecilia-Rileymillerus triad.

However, how characters have been described and scored in the Pardo et al. (2017) matrix may
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also influence whether the extended or restricted Lissamphibia hypotheses are recovered by the

phylogenetic inference analyses.

3.4.2 Treatment of polymorphic taxa, missing and inapplicable data

Unlike aligned molecular datamatrices, where characters consist of positions in a sequence

and the states are dictated by the nucleotide or amino acid residue identified at each position,

in morphological datasets characters and character states are delineated and identified by

systematists (Wilkinson 1995a). As such, morphological datamatrices carry with them a certain

degree of subjectivity, which can lead to different workers scoring the same character(s) differently

for the same taxa (e.g., Pardo et al. 2017, Schoch et al. 2020). While these rescorings alone can

lead to inferring trees displaying different evolutionary hypotheses, the Pardo et al. (2017) data

matrix also includes two aspects of character scoring, polymorphic taxa and inapplicable data,

whose presence and choice of how to analyse them can lead to the recovery of different (multi)sets

of inferred trees (e.g., Brazeau et al. 2019, Nixon & Davis 1991, Platnick et al. 1991).

Starting with polymorphic taxa, which can at best lead to changes in tree length (Nixon &

Davis 1991), the Pardo et al. (2017) matrix contains 10 characters for which at least one taxon was

scored as polymorphic (characters 10, 17, 106, 160, 246, 248, 253, 267, 321 and 324). In PAUP*,

the user can choose to treat these character codings as uncertainty (the taxon might have any of

the selected character states) or polymorphism (individuals in the taxon display one character

state or the other(s)), which may lead to distinct character optimisations (see pages 103–106 in the

PAUP* manual for details, https://phylosolutions.com/paup-documentation/paupmanual.

pdf). Due to how the optimisation for polymorphic taxa is implemented in PAUP*, choosing the

’msTaxa=polymorph’ setting affects only tree length, not topology. This was the pattern found for

the Pardo et al. (2017) data matrix, with MPTs resulting from analyses where polymorphic taxa

were treated as such being 18 steps longer than analyses set to uncertainty (table 3.4). MrBayes

(Ronquist et al. 2012), on the other hand, always treats polymorphism as uncertainty (pages

11–12 and 85–87 in the manual, http://mrbayes.sourceforge.net/mb3.2_manual.pdf), and

thus no comparison to analysing polymorphism as variation is possible. Thus, while some software

packages offer multiple settings for the analysis of polymorphic taxa, these settings do not affect

topology and can be ignored when comparing analytical settings, the only exception being if

polymorphic taxa are coded as missing data (Nixon & Davis 1991).

A side note about analysing morphological/standard datasets in MrBayes is that, because

the programme implicitly partitions datasets by each characters’ highest possible score—i.e. if

a character’s highest score in the matrix is ’2’, the character is assumed to have three possible

states: 0, 1 or 2—it occasionally makes assumptions about character states (page 148 in the

manual). Also, when confronted with characters where the only numerical score present is zero,

MrBayes assumes that those characters are binary (0,1). This was the case for characters 61

and 244 in Pardo et al.’s (2017) matrix, because all taxa were coded as zero, missing or inapplicable
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FIGURE 3.4. Multidimensional scaling plot of the Bayesian posterior distribution of trees obtained
from an explicitly partitioned Pardo et al.’s (2017) matrix.

(0, ’?’ or ’-’). These assumptions can lead to MrBayes’s implicit partitioning scheme differing from

an explicit partitioning scheme based on the character descriptions. In fact, for the Pardo et al.

(2017) matrix the implicit partitioning analysis yielded a set of 1502 trees, while an analysis

with the same settings (see subsection 2.4.2) but with an explicit partitioning scheme, based

on the character descriptions, yielded 14871 trees, with an RF=3 between the two analyses’

MRCs. However, unlike the analysis with MrBayes’s implicit partition scheme, the set of trees

inferred with the explicitly partitioned matrix displays a clear underlying island structure

(Fig.3.4). Unfortunately, x-RF island extraction analyses had to be aborted due to memory

restrictions resulting from the size of the treefile. The less memory intensive clump analyses (see

Chapter 4), under a break-only approach, identified six clumps, with two recovering a restricted

Lissamphibia topology and four the extended Lissamphibia hypothesis. Given these results, it

may be worthwhile to run morphological datasets through MrBayes under implicit and explicit

partitioning schemes.

Returning to character coding, most characters in the Pardo et al. (2017) matrix have at

least one taxon scored as inapplicable and/or missing (186/345 characters with missing data

and 146/345 with missing and inapplicable data), with ≈ 2% and ≈ 25% of the matrix consisting,

respectively, of inapplicable and missing data. While these character scores are often treated as
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equivalent (e.g., Schoch et al. 2020, see below), they represent two different types of ’unknowns’.

Scoring characters as missing, commonly coded as ’?’, represents lack of knowledge/information.

An example of this would be that, due to taphonomic processes, only the cranium of an individual

is fossilised. Logic dictates that the organism had, at least, a vertebral column, but we cannot

score any postcranial characters because we are missing the necessary biological materials to

do so. Scoring characters as inapplicable (’-’), on the other hand, denotes a logical impossibility.

Using Maddison’s (1993) classic example of tail presence and colour, if we apply conventional

coding (Hawkins et al. 1997), sometimes referred as contingent coding (Forey & Kitching 2000)

or hierarchical characters (Hopkins & St. John 2021), we would need two characters to explain

the variation in tail colour: character A - tail present/absent, and character B - if present, tail

blue/red. Thus, character B would be inapplicable for any taxa without a tail, as a tail cannot

be both absent AND have colour. Such reconstructions can, however, occur during character

optimisation, affecting tree scores (e.g., Vignette 2 in Brazeau et al. 2019, Maddison 1993).

While there is still debate on how best to code variation that, just like the tail colour example,

is logically and/or biologically dependent (e.g., Hawkins et al. 1997, Hopkins & St. John 2021,

Maddison 1993, Wilkinson 1995a), it is sometimes suggested that, once a presence/absence

character has been defined, any new character that subdivides the original character’s ’presence’

state should be hierarchically/conditionally defined (e.g., Hawkins et al. 1997). In other words, if

character A is tail presence/absence, we should not define a new three-state character (C) as tail

absent, spotted tail, stripy tail, rather it should follow the same character definition as character B,

i.e. character C - if present, tail spotted/stripy. In Pardo et al.’s (2017) matrix, this suggestion was

not always followed resulting in multiple instances of logically inconsistent/impossible character

definitions and/or scores (table 3.5). These coding inconsistencies/impossibilities were rescored

based exclusively on the independent character(s) definition/scoring (except for character 314, see

table 3.5), no specimens were re-examined and, if a revision of character construction/definition

was warranted, dependent characters were rescored conservatively as either inapplicable (’-’) or

missing (’?’). When the inconsistent/impossible codings are corrected and the matrix re-analysed

under default settings, PAUP* yields 108 MPTs in two 1-TBR islands, all displaying the restricted

Lissamphibia hypothesis (table 3.4). These islands correspond to the 1-TBR islands-18 and -90 of

the original parsimony analysis (Fig.2.3ac).

Lastly, the presence of inapplicable data also raises the question of how best to analyse these

characters. PAUP* allows users to choose between treating inapplicable data as missing or as

a new character state (pages 40–41 in the manual), with the former as default. When Pardo

et al.’s (2017) matrix is analysed with ’GapMode=NewState’, PAUP* finds 351 MPTs in two

1-TBR islands (table 3.4). Interestingly, the new set of MPTs displays the restricted Lissamphibia

hypothesis, but with the clade nested in Stereospondyli not Dissorophoidea, which can also be

seen in island-72 of the default search (Fig.2.3b). This placement is found for both the original

and rescored matrices. Thus, as has been shown for other datasets (e.g., Brazeau et al. 2019,
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Maddison 1993), choice of how to treat inapplicable data clearly affects how many MPTs are

found, their length, and, even, the topologies found. However, for as long as systematists have

been debating how to code logically dependent characters, they have also been debating how to

analyse these characters once conventional coding has been applied (e.g., Hawkins et al. 1997,

Maddison 1993).

Recently, Brazeau et al. (2019) have developed and implemented an algorithm that is aware

of inapplicable data during character optimisation, and does not require the relationship between

hierarchical characters to be specified (unlike for example De Laet 2015, Goloboff et al. 2021).They

found that treating inapplicable data as ’missing’, ’new state’ or ’inapplicable’ often yields different

sets of MPTs, for the same dataset, but not a clear pattern in the results’ variation, i.e. no approach

always found the shortest trees, the most resolved SC, the broadest sampling of treespace, etc.

Analysing the original Pardo et al. (2017) matrix with Morphy v.0.2 (Brazeau & Desjardins

2020), with 1000 replicates and random addition sequence, yielded 585 MPTs (351 of which were

also found in the original analysis) that display the extended Lissamphibia hypothesis. Using

the xRFislands function from the islandNeighbours R package (Serra Silva & Wilkinson 2021),

identifies three island structure patterns for the Morphy MPTs. With an RF=2 threshold the

function identifies four islands (72, 108, 162 and 243 trees), at 4≤ RF ≤ 10 two islands (180 and

405 trees), and at RF=12 all MPTs are part of a single island. The primary topological differences

between the 10-RF islands are the placement of (Rileymillerus+Chinlestegophis+Gymnophiona)

within Stereospondyli and the internal relationships of Batrachia, patterns that can also be seen

in the 882 MPT set. Thus, the phylogenetic trees inferred from Pardo et al.’s (2017) matrix vary

greatly, not only between analyses under different optimality criteria, but also between analyses

where the treatment of inapplicable data and polymorphic taxa varies (table 3.4).

3.4.3 Differences between the Pardo et al. (2017) and Schoch et al. (2020)
datamatrices

When investigating the phylogenetic placement of the Triassic stem-salamander Triassurus

sixtelae, Schoch et al. (2020) used a matrix modified from the Pardo et al. (2017) matrix. They

bypassed the issues detailed in the previous subsection by rescoring all inapplicable and poly-

morphic states as missing (’?’), and further modified Pardo et al.’s (2017) matrix by adding 15

new characters, revising the scores for ten others, and adjusting taxonomic sampling to include a

chimaeric albanerpetontid, three lepospondyls (Brachydectes, Batropetes and Rhynchonkos) and

exclude 19 taxa across Temnospondyli (see supplemetary for Schoch et al. 2020). This 62 taxa and

360 character matrix yields two MPTs that display a restricted Lissamphibia in Dissorophoidea,

with albanerpetontids sister to Batrachia, and Chinlestegophis as sister to Rileymillerus, within

Stereospondyli (Fig.3.5). Resampling analyses find low to moderate support for the restricted

Lissamphibia hypothesis (bootstrap=77%, delete-half jackknife=59% and Farris jackknife=67%).

Bayesian inference analyses of this matrix were attempted with MrBayes, but they did not
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FIGURE 3.5. Stric consensus tree of the two most parsimonious trees yielded by analysis of the
Schoch et al. (2020) matrix, with higher order amphibian taxonomy highlighted.

converge (the longest attempt ran for 200 million generations).

Further parsimony analyses reveal that it is the 15 additional characters in Schoch et al.’s

(2020) matrix that are responsible for the recovery of the restricted Lissamphibia, since when

these characters are removed the extended Lissamphibia hypothesis is inferred. This occurs when

analysing either all 62 taxa in Schoch et al.’s (2020) original matrix, or just the 57 taxa shared

between Schoch et al.’s (2020) and Pardo et al.’s (2017) matrices. Additionally, while inapplicable

data is no longer coded as such (all ’-’ recoded as ’?’), character descriptions were not adjusted

and hierarchical relationships between characters are still present in the matrix (table 3.5). This

is confirmed by the analysis of the rescored matrix yielding fewer and shorter MPTs than the

original matrix (table 3.4), the same pattern found for Pardo et al.’s (2017) dataset. And, just

as with the latter dataset, the rescored 345 character matrix no longer recovers an extended

Lissamphibia, rather the inferred trees display a restricted Lissamphibia within Dissorophoidea.

In summary, despite stronger support for the restricted Lissamphibia hypothesis, minor changes

to Schoch et al.’s (2020) data matrix can still recover the extended Lissamphibia hypothesis

introduced by Pardo et al. (2017).
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3.5 Discussion

To date the presence and effects of tree islands have, primarily, been explored in the contexts

of tree search (e.g., Höhna & Drummond 2011, Lakner et al. 2008, Olmstead et al. 1993) and

consensus building (e.g., Maddison 1991, Serra Silva & Wilkinson 2021, Sharkey & Leathers 2001,

Sumrall et al. 2001). In the latter, the phenomenon of large island bias has lead to the recognition

that the MRC is often a poor summary of (multi)sets of trees, as the trees in the largest island(s)

drown the signal from trees in other islands. This insight urged workers to advocate either for the

use of the SC (Sumrall et al. 2001) or weighted consensuses (e.g., Serra Silva & Wilkinson 2021,

Sumrall et al. 2001) if a single summary is desired, or for island-partitioned consensuses (e.g.,

Maddison 1991, Serra Silva & Wilkinson 2021). This idea of summarising islands, or any such

subset, of trees individually rests on the assumption that there is more variation between islands

than within, and that "a single consensus may ignore information in the data" (Hendy et al. 1988,

p.358). And, as shown in Chapter 2, the "ignore[d] information" can greatly affect the conclusions

made about a group’s relationships and evolutionary history, with most MPTs inferred (under

PAUP*’s default settings) from the Pardo et al. (2017) dataset supporting a greatly extended

Lissamphibia while most islands supported the traditional restricted Lissamphibia. It is, thus,

not insensible to question whether the presence of islands, more specifically large island bias,

might also affect post-inference topology-based taxonomic instability tests.

The split frequency-based LS analyses above suggest that island bias is not an issue for the

identification of unstable taxa, but that analyses of the complete (multi)set and each of its islands

can be complementary. The results of the analyses on the Pardo et al. (2017) MPTs found that the

unpartitioned analyses identify the set of taxa whose placement changes between islands as the

least stable taxa (Lissamphibia+Chinlestegophis), whereas the partitioned-by-island analyses

pick up on locally unstable taxa (table 3.2, Figs.2.2b and 2.3). Thus, the unpartitioned analyses

find the taxa responsible for island structure, while partitioned analyses find the taxa responsible

for island size(s), i.e. locally unstable. While any taxon’s identification as unstable in either

the partitioned or unpartitioned analyses warrants further investigation, whether the aim is

to understand the causes of or decrease topological variation, the identification of a taxon as

unstable at the global AND local levels might be a sensible indicator for its removal.

The consensus optimisation-based RBIC analyses, on the other hand, did not find any comple-

mentarity between partitioned and unpartitioned analyses, but did yield a potential indicator for

the presence of islands, if these are not known a priori. RBIC’s default dropset is of one taxon,

however it was shown by Wilkinson & Crotti (2017) that this highly conservative parametrisation

can lead to the failure to identify all unstable taxa, particularly if they belong to an (internally-

stable) unstable clade. For the Pardo et al.’s (2017) MPTs, when the dropset is allowed to go up to

15 taxa, the RBIC identifies Lissamphibia+Chinlestegophis as the (group of) taxa whose removal

shows the greatest improvement to the SC resolution. This result is unsurprising given they are

the taxa driving island structure, but is interesting in that it suggests that the recovery of groups
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of unstable taxa, rather than single unstable taxa, might be indicative of island presence. As such,

while large island bias does not appear to affect topology-based instability analyses, the latter

can be used either to explore taxonomic instability within and between islands (if known), or as

an indicator for the possible presence of island structure. Using an RBIC-like method as a test for

the potential presence of islands also has the benefit of not requiring the extensive tree-to-tree

distance calculations needed to visualise tree space occupation, and thus island structure, with

multidimensional scaling (MDS, see figure 2.5).

Given that phylogenetic trees are special cases of phylogenetic networks (Huson et al. 2010),

and that with a 50% threshold a consensus network is also the MRC (Holland & Moulton 2003), it

is unsurprising that non-tree networks computed from split frequencies are also affected by large

island bias. With the two largest, and most topologically similar (Figs.2.2b and 2.3d), islands

making up ≈ 80% of all Pardo et al.’s (2017) MPTs, minor increments in split frequency threshold

result in major changes to the consensus networks. With the 20% threshold network displaying

a tree-like topology (Fig.3.1b), while the 10% threshold consensus consists almost entirely of

cycles/3-cubes, resembling an actual net (Fig.3.1c). Thus, in the presence of large island bias

consensus networks, and any reticulation network that uses them as input, can be uninformative

and, if the goal is to explore the different evolutionary hypotheses supported by the islands,

networks are not an effective alternative to partitioned consensus trees approaches. While the

networks computed in this chapter might not be representative of the data/island structure

underpinning the (multi)sets of trees commonly summarised with consensus networks, it may

be beneficial to, prior to any splits-based network analysis, use RBIC-like methods or MDS to

ascertain whether island structure is likely to be present.

Tree islands and its effects aside, the Pardo et al. (2017) dataset is particularly interesting

due to the myriad ways it can be analysed, even when restricted to heuristic parsimony tree

searches (table 3.4). Because the data matrix includes inapplicable data and polymorphic taxa

it raises the still open questions of how best to analyse these types of character scores (e.g.,

Brazeau et al. 2019, Nixon & Davis 1991). Even without addressing the inconsistent use of

conventional coding in character construction/descriptions (table 3.5), the very different sets of

MPTs recovered, when all (implemented) possible ways of parametrising inapplicable data and

polymorphism are compared, show that the existing matrix does not yield robust tree inferences

and it should not be used to make definitive statements about lissamphibian relationships. This

lack of robust inferences from morphological matrices is not restricted to Pardo et al.’s (2017)

data matrix, with Marjanović & Laurin (2019) finding that minor analytical changes to searches

on a carefully curated matrix (all characters and their scores revised) for early limbed vertebrates

does not yield robust topologies.

The Bayesian analyses of Pardo et al.’s (2017) matrix at first appeared to display less topo-

logical variation than the parsimony analyses, with multiple MRCs displaying the extended

Lissamphibia hypothesis. However, a closer look at the results of the analysis on the explicitly
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partitioned data matrix revealed that, much like in the parsimony analyses, Bayesian analy-

ses can recover more than one ’major’ topology from the Pardo et al. (2017) data. Additionally,

morphological analyses in MrBayes can only be run with the Mk or Mkv models (Lewis 2001)

and always treat polymorphism as uncertainty (pages 11–12 and 85–87 in the manual), which

restricts the analyses that can be performed to explore how polymorphic taxa and inapplicable

data affect the inferred trees, much as was done in the parsimony context. Also, the performance

of Bayesian inference vs. parsimony debate (e.g., Goloboff et al. 2017, Wright & Hillis 2014,

O’Reilly et al. 2016, Puttick et al. 2017) aside, recent works have contended that the Mk(v) model

is not adequate for analyses of morphological datasets (e.g., Goloboff et al. 2019, Goloboff &

Arias 2019), which raises the question of whether Bayesian inference on morphological datasets

amounts to an exercise in model misspecification. Yet, there are currently no other identifiable

and easily implementable models for morphological evolution available. Recently, Tarasov (2019)

proposed combining knowledge of ontology and developmental processes with structured (SMM,

Nodelman et al. 2002) and hidden Markov models (HMM, Beaulieu & O’Meara 2014) to address

the problems of inapplicable data and character construction subjectivity during tree inference.

However, its is unclear how scalable this SMM-based approach is, how differently do explicit Mk

models and SMMs that condense into a multistate Mk model behave, and how the models behave

with empirical data. Thus, there are still a lot of questions surrounding model-based inference of

morphological data.

As for character coding, while I looked exclusively at logic violations in the scoring of de-

pendent characters (table 3.5), a more thorough review of character construction and coding

(akin to the one seen in Marjanović & Laurin 2019) may yield yet another set of MPTs and

supported lissamphian relationships. Along with the ever present possibility of typographical

errors (see characters 216 and 314 in table 3.5) and the sometimes uncertain homology resulting

from bone loss/fusion (e.g., Maddin et al. 2016, Schultze et al. 2008) and nomenclatural variation

(e.g., Abel & Werneburg 2021, Schultze et al. 2008) across taxa, Schoch et al.’s (2020) recoding of

some character scores, and their reasons, suggests that there are at least some characters whose

scoring is not agreed upon by all workers. Also, it has been shown that palaeontologists and

neontologists approach character scoring differently (e.g., Harris 2005, and M Wilkinson 2018,

personnal communication, 16 October), which may again influence character scoring and tree

inference, given that extinct and extant taxa are present in the Pardo et al. (2017) and Schoch

et al. (2020) matrices. As such, a thorough revision of character construction and scoring of both

matrices, based on biological and logical criteria, may be warranted.

Thus, the effect of tree islands, particularly large island bias, on tree summaries and instabil-

ity analyses (and possibly branch support, although further work is needed to confirm this) is an

important consideration when exploring (multi)sets of trees and the evolutionary histories they

display. And, the drastic change in island structure/size seen between the various inferences on

Pardo et al.’s (2017) matrix are a reminder that phylogenetic analyses are only as good as their
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underlying data and that analytical settings are not one size fits all.

3.6 Data availability

The data, scripts and results for this chapter are available from the following repository:

• Figshare, https://doi.org/10.6084/m9.figshare.c.6050033.

61

https://doi.org/10.6084/m9.figshare.c.6050033




C
H

A
P

T
E

R

4
ON PARTITIONING SETS OF PHYLOGENIES WITH NON-IDENTICAL

LEAF SETS

4.1 Introduction

Confronted with (multi)sets of inferred phylogenetic trees, common practice in systematic

biology has been to represent them with a single consensus or supertree (Felsenstein 2004).

In contrast, several researchers have suggested that when sets of trees are not homogenous it

is better to partition the trees and summarise the subsets separately (e.g., Hendy et al. 1988,

Maddison 1991, Serra Silva & Wilkinson 2021, Sumrall et al. 2001). In practice, most methods

for discovering heterogeneity in and partitioning sets of trees have been developed for the special

case where the trees have identical leaf sets, the so called ’consensus case’ (e.g., Bonnard et al.

2006, Serra Silva & Wilkinson 2021, Stockham et al. 2002). However, sets of trees on non-identical

leaf sets are increasingly common, e.g. from genomic scale data. Thus, there is a need for methods

for interrogating (multi)sets of trees in this, more general, ’supertreee case’ and partitioning

them when they are found to be heterogeneous.

Sets of inferred trees may be heterogeneous due to real differences in evolutionary histories,

such as those produced by gene duplication and loss, incomplete lineage sorting, etc. (e.g., Chan

et al. 2020, Hahn 2007), or because of incorrect inferences, such as those produced by systematic

biases and/or stochastic and other errors (e.g., Léveillé-Bourret et al. 2017, Simmons et al. 2022).

Though I will not explore these, many important approaches to investigating heterogeneity focus

upon the underlying data from which trees are inferred (e.g., statistical binning, Bayzid et al.

(2015); ortholog enrichment, Siu-Ting et al. (2019)). Other approaches that focus on the trees

themselves without recourse to the underlying data have also been developed, almost exclusively

within the consensus context (e.g., islands of trees, Maddison (1991) and Serra Silva & Wilkinson
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(2021); families of trees, Hendy et al. (1988); k-medoids clustering, Tahiri et al. (2018); multipolar

consensus, Bonnard et al. (2006); consensus networks, Holland & Moulton (2003); tree alignment

graphs, Smith et al. (2013)). These can be broadly divided into those based on split compatibility

(e.g., multipolar consensus and tree alignment graphs) or on tree-to-tree distances, which seek to

produce either consensus networks or to partition (multi)sets of trees into more homogeneous

subsets (e.g., families and islands of trees, k-medoids clustering). Here, I present a novel, tree-to-

(super)tree distance based approach to partitioning any heterogeneous (multi)set of trees that

does not make use of underlying data and which can be applied in cases where the trees have

non-identical leaf sets.

Islands of trees are the disconnected components of a graph where vertices correspond to

trees and edges connect all trees within a fixed distance threshold (Maddison 1991, Serra Silva

& Wilkinson 2021). Trees within islands may be quite dissimilar provided they are ’connected’

by a series of sufficiently similar intermediates. Until recently, the fixed distance threshold

was restricted to NP-hard branch-rearrangement metrics, mostly limiting their discovery to

heuristic searches in parsimony analyses. By generalising the definition of islands to any tree-

to-tree distance metric Serra Silva & Wilkinson (2021) freed them from the shackles of branch-

rearrangement metrics, making possible the a posteriori partitioning of any (multi)set of trees

into islands in the consensus case. Given the increasing prevalence of sets of trees with non-

identical tips, further generalisation of tree set partitioning methods, such as islands, to the

supertree case is desirable.

A first step in generalising any tree-to-tree distance-based method for partitioning sets of trees

from the consensus to the supertree case is the generalisation of tree-to-tree distances, originally

defined in the consensus case, to pairs of trees with non-identical leaf sets. This generalisation

revolves, primarily, around how to make two distinct leaf sets identical, which can be achieved

by pruning or grafting leaves to one or both trees, so as to render their leaf sets identical. In

pruning, we use the intersection of the leaf sets to identify the subtrees induced by the shared

taxa, whereas with grafting, we seek the pairs of (most similar) trees that display the original

trees and the union of the leaf set (Cotton & Wilkinson 2007). However, both approaches have

difficulty dealing with trees with no or minimal overlap, which is particularly problematic for

partitioning methods that require exhaustive pairwise distance matrices, such as islands. Two

imperfect solutions are to either set the distance between non-overlapping trees to zero, which

can represent absence of conflict (e.g., Robinson-Foulds (RF, Robinson & Foulds 1981) and quartet

(QD, Estabrook et al. 1985) distances), or to treat these instances as non-applicable (NA), which

are generally dealt with by removal or replacement with imputed values (reviewed in Wagstaff

2004). Neither solution is well suited for methods like islands. Also, even when all distances are

defined, the search for islands can be derailed by insufficient overlap between trees because small

trees can be sufficiently similar to larger, highly disparate trees, thus placing the larger trees

in the same island and masking tree heterogeneity (Fig.4.1). Additionally, distances between
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FIGURE 4.1. Small tree problem. Three partially overlapping trees where the two larger trees
(T1 and T3) are maximally dissimilar under the RF distance, yet equidistant from T2. In this
scenario, despite having no splits in common T1 and T3 would be placed in the same RF-island.

different sized trees (can) break the triangle inequality, meaning that the tree-to-tree distances

will no longer be metrics. Here, I define a new partitioning strategy, more similar to families of

trees, that resolves the non-overlap problem by using a tree-to-supertree distance, eschewing

exhaustive pairwise comparisons and the within subset connectivity that characterise islands.

4.2 Defining clumps of trees

When dealing with (multi)sets of trees with the same leaf set it may be possible to identify

mutually exclusive and exhaustive subsets that correspond to alternative evolutionary histories

and/or analytical artefacts, which cause topological incongruence (e.g., Hendy et al. 1988, Mad-

dison 1991, Serra Silva & Wilkinson 2021). However, identifying those subsets in (multi)sets

of trees with non-identical leaf sets requires overcoming a number of methodological obstacles,

both universal (e.g., how to define distances between trees with no taxa in common) and method-

specific (e.g., small trees can place larger, very dissimilar, trees in the same island, Fig. 4.1). And,

while method-specific obstacles might be easily, if imperfectly, tackled/mitigated, they do not hold

the answer to the key question of how to effectively compare trees with no, or very little, overlap.

For example, akin to how removing trees that do not support a specified topology, have paralogous

sequences, or do not contain select taxa is used in various post-processing analyses (e.g., Hime

et al. 2021, Siu-Ting et al. 2019), filtering trees under a minimum leaf set size might prevent

highly disparate trees from being clustered into the same island of trees. However, filtering trees
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by size does not deal with pairs of non-overlapping trees, meaning that the question of how to

define tree-to-tree distance(s) between non-overlapping trees remains.

The issue of how to compare trees with no, or minimal, taxonomic overlap can be addressed

by using a clustering approach that relies on the distance from a pre-determined tree to all

trees in the (multi)set. One such strategy is the use of families of trees (Hendy et al. 1988),

where members of a subset are identified based on their distance to a tree T. If a (multi)set’s

supertree were set as T, it would ensure that, because all trees in the set partially overlap with

the supertree, there would be no undefined tree-to-(super)tree distances. Unfortunately, families

of trees lack an unambiguous formal definition, making it unclear not only how tree T is selected,

but also how clustering proceeds past the identification of the first family. To prevent potential

ambiguities while attempting to extend families of trees to sets of trees with non-identical leaf

sets, I define a new clustering approach called clumps of trees (a play on clump n.: 1.a. a compact

mass, 2.a. a cluster of trees and clump v.: 2.b. to make into a clump, Oxford English Dictionary

(OED)). I define clumps of trees as the sets that are sequentially extracted from a tree distribution,

with each subset containing all trees in a distribution within a selected distance of the input set’s

supertree, and any trees placed in a clump being removed from the partitionable distribution. In

set theory terminology, the partitionable tree distribution is the complement of the subset trees

(S C in the formal definition below), i.e. the trees not yet assigned to a clump.

Formally, given i) a set T of trees and its supertree TST , ii) a pairwise distance function

d : T ×TST → R+
0 , and iii) a threshold x ∈ R+

0 , I define a sequence of sets S , such that Sn =
{d(T ,TST ) ≤ x, x ∈ [dmin,+∞) and T = S C}. The tree clumps of (T , d, x) correspond to the

exhaustive subsets of the sequence of sets S . This definition allows for the threshold to be

changed at each clump identification iteration, meaning that individual clumps can be defined

on a different threshold distance to the supertree of the previous clump(s)’s S C. This flexibility

in setting the threshold means that no trees are ’unclumpable’, i.e. all trees will be placed in a

cluster. I propose that the threshold distance be set at the troughs, points at which the sign of the

first derivative of the density curve goes from negative to positive. Using histogram bin heights as

proxy for the density curve, this allows for two ’strict’ scenarios, one where every trough defines a

clump (strict trough), the other where a clump is defined only when y= 0 (breaks), and a ’loose’

scenario where the difference between the nearest peaks and troughs (∆amplitude) is used as a

guide of whether to partition the distance distribution (Fig.4.2). As in Serra Silva and Wilkinson’s

(2021) generalised tree island definition, I do not specify a tree-to-tree distance metric on which

to define clumps. As such, any tree-to-tree distance that can be applied to distributions of trees

with non-identical leaf sets can be used, and the choice of whether to work with (multi)sets and/or

branch lengths is left to the user.

Three special cases follow easily from the definition of clumps of trees: i) at least one supertree

corresponds to an input tree, ii) all supertrees correspond to input trees, and iii) if all input trees

have the same leaf set, the supertree will also be a consensus tree. While it is not immediately
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Oryzomyini, uRF tree distances, bin width=2 Oryzomyini, wRF tree distances, bin width=2

Oryzomyini, wRF tree distances, bin width=4

Δ
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FIGURE 4.2. Example of the histograms produced during the clump extraction pipeline (see
subsection 4.4.1), using Percequillo et al.’s (2021) Oryzomini dataset, under a) uncorrected
Robinson-Foulds distance (uRF, Robinson & Foulds 1981) and bin width of two, b) weighted RF
distance (wRF, see subsubsection 4.4.1.1) and bin width of two, and c) wRF and bin width of four.
In a) the dashed line illustrates the break (y=0) partitioning approach, the dotted line illustrates
the strict trough approach (after removal of the clump at RF=14), and the line segments illustrate
the user-defined ∆amplitude approach.

apparent how these special cases might affect clump identification, the choice of supertree (or

consensus) method will indubitably affect the identification of clumps, since the use of distinct

supertrees to identify clumps from the same tree distribution may yield different tree clump

numbers and/or structure.

Additionally, because clumps are defined on the distance to a single tree, like families of trees,

the clumps may not be mutually exclusive. While under identical analytical settings the same

trees will be placed into the same clumps, changing bin sizes may lead to slightly different clump

structures/make-ups being identified, and not necessarily by the process of clumps merging (as
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FIGURE 4.3. Stands of trees. Each concentric sphere (stand) contains trees that are within a
bounded distance of the focal tree, T0, and up to twice the stands’ radius of each other. For
example, the rhombuses are all within r5 and r5 − r4 of T0, but up to 2× r5 of each other.

is seen when island extraction thresholds are increased, see Chapter 2 section 2.4.3), see table

4.2. This will be of particular importance when dealing with sets of trees with non-identical leaf

sets, since, if using uncorrected distances, we expect the smaller subtrees to fit with multiple

clusters despite their expected placement within the first clump(s) to be extracted. However, as

stated above, trees with fewer than a selected number of leaves can be filtered from the initial

tree distribution, thus reducing the number of trees that might fit into multiple clumps.

An alternative to sequential clustering, which will not be tested here, might be to use the

density distribution, or histogram, generated by the first clump search to identify concentric areas

of trees in the (multi)set, with the bounds of each concentric sphere corresponding to a break or

trough in the tree-to-supertree distance distribution (Fig.4.3). To denote the static nature of the

identification of these subsets I refer to these as stands, from stand n.1.: 5.a. a state of checked

or arrested movement, 29. a standing growth spec. one of trees and stand v.: 40. of a process: to

remain stationary or unchanged (OED). However, it should be noted that such a snapshot of tree

space would yield subsets of increasingly different trees with increasing distance from the focal

tree (the supertree), as the maximum theoretical distance between trees within any stand will be

twice the largest tree(in the stand)-to-supertree distance.
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4.3 Examples

To test multiple aspects of clumping I will be using six distinct tree sets from studies that

represent, arguably, some of the more commonly used types of phylogenetic data and types of

studies these data are used in. The types of phylogenetic data used as the basis for the selected

tree distributions include discrete morphological characters, and molecular sequences obtained

using Sanger sequencing, target-capture, anchored hybrid enrichment (AHE), ultraconserved

element (UCE) enrichment and transcriptomics (table 4.1). These data were employed in stud-

ies interested in the phylogenetic placement of particular taxa, answering macroevolutionary

questions, and/or exploring how methodological choices affect inference analyses.

First, I will use Percequillo et al.’s (2021) AHE-based dataset to illustrate that clumping

analyses can and do identify differing evolutionary histories present in the treeset. Given the

supertree/supermatrix conflict they reported for oryzomyine rodents’ clade D (Fig. 1 in Percequillo

et al. 2021), I expect the clumping analysis to identify at least two major topologies in two clumps.

Since all trees in the set have at least 50% of the sampled taxa present, the effects of tree size

and complete non-overlap between trees on clumping cannot be addressed with this dataset.

I will be using a second AHE dataset (Hime et al. 2021), primarily, to test whether chang-

ing histogram bin width affects clump identification, for details on the analytical pipeline see

subsection 4.4.1. While all datasets were clumped under multiple bin widths, the Hime et al.

(2021) dataset was chosen specifically to test this analytical parameter for two reasons. First,

the dataset was originally used to explore deep-time relationships between Lissamphibia (the

least inclusive clade containing Gymnophiona, Caudata and Anura), and was shown to contain

at least three major topological variants, corresponding to distinct lissamphibian evolutionary

histories: i) Batrachia (Caudata+Anura), ii) Procera (Caudata+Gymnophiona), and iii) Acauda

(Anura+Gymnophiona), see figure 1.5. Secondly, of the selected datasets, Hime et al.’s (2021) has

the largest trees (table 4.1) and, thus, the widest range of possible RF distances between trees

(0–576). As such, by modifying the bin width parameter we can not only compare how the number

of clumps changes between analyses, but also which main topological variants are identified, and

how the proportion of clumps supporting each hypothesis changes between analyses.

Another type of anchored markers commonly used in phylogenetic analyses are UCEs, which

differ from AHEs by having shorter, less divergent sequences (Singhal et al. 2017). Because

of UCEs’ popularity I analysed two datasets that were used in studies attempting to resolve

recalcitrant branches in Microhylidae (Streicher et al. 2020) and Squamata (Streicher & Wiens

2017). The Squamata dataset will be used for the same purposes as the Percequillo et al. (2021)

rodent dataset, but looking at higher taxonomic levels and with every species represented by a

single tip. Because the largest tree(s) in the microhylid dataset do not exceed 77% taxon sampling

(the lowest observed maximum taxon sampling of all datasets), this dataset allows us to explore

how much non-effective overlap affects clumping analyses.

The final dataset based on a single type of molecular data I will test is Siu-Ting et al.’s (2019)
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transcriptome-based tree (sub)sets, which were originally used to explore the effects of paralog

inclusion on topological incongruence, branch support and divergence estimates on lissamphibian

relationships. This dataset, KST hereafter, is particularly interesting because it is made up

of multiple subsets of a larger tree distribution, which allows for the exploration of whether

the number of trees in a set affects clump identification, and might shed light on whether the

topologies most similar to a dataset’s summary tree are found in the largest clump(s), the most

clumps, or a combination of both. And, given that two of the subsets include quartet trees, we can

test the assumption that under uncorrected distances the smallest trees are indeed swept into

the first clump(s).

While each of the datasets above uses a single type of molecular data, there are also studies

that make use of multiple types of nucleotide data. One such study was Chan et al.’s (2020)

exploration of the phylogenetic relationships within Rhacophoridae, a family of Old World tree

frogs, which used a combination of target-captured exon-only and intron-only, UCE and Sanger

sequenced datasets obtained with the FrogCap probe design and pipeline (Hutter et al. 2021). This

dataset allows us to explore how common filtering parameters (taxon coverage and proportion of

parsimony informative sites) change the tree-to-supertree distance distributions for each type of

molecular marker and how this may inform post-processing of tree sets based on multiple types

of nucleotide data.

Lastly, the set of most parsimonious trees (MPTs) recovered from the morphological data

matrix used by Pardo et al. (2017) to place Chinlestegophis jenkinsi in a phylogeny of fossil

amphibians will be used to explore some of the special cases detailed in the previous section.

Particularly, how the change in supertree method might influence the clumps that are identified.

As one of the tree distributions used to illustrate Serra Silva and Wilkinson’s (2021, also Chapter

2) generalised definition of islands of trees, I will also compare the output of the clumping

analyses, under the strict trough and break scenarios, to the known 10- and 12-RF island sets.

4.4 Extracting clumps from distributions of trees with
non-identical leaf sets

4.4.1 clumpy Python pipeline

To facilitate the extraction of clumps, I wrote four Python 3.8 (Van Rossum & Drake 2009)

pipelines, all using the algorithm below, to identify and extract clumps from any distribution of

trees. The consensus pipelines, see section 4.5, can only be applied to trees on the same leaf set,

but the supertree pipelines can be applied to any set of trees with complete or partial leaf set

overlap. The latter currently uses Astral-III v.5.7.7 (Zhang et al. 2018) to compute the supertree,

but the pipeline can be modified to allow any Newick-compatible supertree building software

to be called instead of Astral. Also, to allow the pipeline to be used from text-only systems and

systems with graphic capabilities two versions of the supertree and consensus pipelines were
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written: one prints the tree-to-supertree histograms as text directly on the terminal, using the

plotille module (Ippen 2013); the other uses the Matplotlib module (Hunter 2007) to graph the

histograms. At this stage, only the latter version saves the histograms generated during the

clumping analyses and all pipelines unroot the input trees prior to analysis. The pipelines are

available from the GitHub repository: https://github.com/anaserrasilva/clumpy.

4.4.1.1 Weighted Robinson-Foulds distance

Clumps, much like islands and families of trees, can be defined on any tree-to-tree distance.

However, because we are dealing with trees with non-identical leaf sets care is required when

interpreting and/or using uncorrected tree-to-supertree distances, since they actually correspond

to the distance between each input tree and the subtree they induce on the supertree (Cotton

& Wilkinson 2007). This leads to situations where the same RF distance between two trees, of

different sizes, and the supertree may convey different levels of topological divergence (Fig.4.1).

For example, assuming binary trees, a maximally divergent tree-supertree pair with only four

shared tips will have an RF of 2, that same RF in any tree-supertree pair with over four tips

in common conveys the minimal non-zero topological divergence between trees. This means

that the differences in size between input trees and the supertree are not taken into account in

uncorrected tree-to-supertree distances.

Using the RF distance, due to its ease of implementation and interpretation, I propose a

modification of the uncorrected RF distance (uRF) that accounts for the theoretical maximum RF

for the supertree, I am calling this modification the weighted RF distance (wRF). The wRF is

computed using

wRF = uRF × splits in ST
splits in STp ∩T

,

where "splits in STp∩ T" is the intersection of splits in the pruned supertree ST and in tree

T. This calculation is implemented in the supetree-based clump extraction pipelines (see next

subsubsection and Fig.4.3) with ETE’s v.3.1.1 (Huerta-Cepas et al. 2010) RF calculator, where the

uRF is calculated directly and the wRF calculation uses the edge inclusion/exclusion information

outputted by the RF calculator. However, other modifications to the RF distance, specifically for

trees on non-identical leaf sets, are available (e.g., Llabrés et al. 2021, Tahiri et al. 2022).

4.4.1.2 Clump extraction algorithm

Given a tree distribution and bin width

While the distribution is non-empty:

Step 1:

Build supertree of the tree distribution

Step 2:

For each tree in distribution:
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Unroot tree

Compute distance to supertree (trees pruned to shared leaves)

Plot histogram of distances to supertree and choose distance threshold

Step 3:

Create a vector with the tree distribution’s length and all values set to property a

(Indices in the tree distribution and property vector have 1:1 correspondence)

Set the first instance of a to b

Find the trees within x-D of first tree and change them to property b in vector

For all but the first tree:

Find the trees within x-D of trees with property b:

Set corresponding vector indices to b

Remove all trees with property b from tree distribution and write to clump file

Step 3 of this pipeline (see Fig.4.3 for a graphical depiction of the pipeline) is a modification of

the algorithm used to extract tree islands available through the islandNeighbours R package

(Serra Silva & Wilkinson 2021, see also section 2.4 in this thesis). As noted above, the pipeline

accepts any Newick-formatted tree file but unroots trees prior to analysis. In addition to the RF

distance parameter, users can also set their desired histogram bin width (although any integer is

accepted, even numbers are recommended when using RF distances).

4.4.2 Clump extractions

Before delving into the biological patterns identified by the clumping of each dataset, it is

worth noting that, for the majority of the analyses, as the number of extracted clumps increases

so does the dissimilarity between the trees in the clumps and the supertree of all input trees

(STall), with many of the clump supertrees displaying complete breakdown of ingroup monophyly

(from species to class). Also, while results for the uRF analyses will not be shown, they confirmed

my conjecture that, under an uncorrected tree-to-supertree distance, all quartet trees are placed

into the first clump (not the case with the wRF). I did not, however, explore up to what size tree

this remains true. A breakdown of the number of clumps extracted from each tree distribution,

under wRF and multiple bin widths, can be found in table 4.2 and all the files resulting from the

analyses are available in the Figshare Repository https://doi.org/10.6084/m9.figshare.c.

6050033. Lastly, while the pipelines were designed to allow the users to choose the threshold, and

thus which of the suggested approaches to clump identification to use (Fig.4.2a), unless stated

otherwise, all results below correspond to the strict trough approach with bin width of two.

Starting with the rodent dataset, before clump supertrees start displaying extensive non-

monophyly (c. clump 14) the differences in topology between the clumps are mostly restricted to

the taxa in clade D (see figure 1 in Percequillo et al. (2021)), particularly Cerradomys, Lundomys

and Sooretamys, which are also the taxa driving the supertree/supermatrix incongruence reported

by Percequillo et al. (2021). While clades A and B display some instability, it is the taxa in clade C
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FIGURE 4.4. Clumping pipeline. Graphical depiction of the algorithm in subsubsection 4.4.1.2.

that are the most unstable after those in clade D, with at least three clump supertrees displaying

C paraphyletic with D. From a clump identification standpoint, this is an interesting dataset

since the first clump is composed of a single tree that is not topologically identical to STall, yet the

supertree of clump-2 is identical to STall. Moreover, this pattern was found both with the uRF and

wRF analyses. Thus, while the first clump contains those trees that are the most similar to STall,

the clump summary that best matches STall may not correspond to that of the first clump. When

bin width is increased, very little information can be gleaned from the outputted clumps. With a

bin width of four, two clumps are still recovered that show clade D’s instability in comparison to

the other oryzomyine clades. But, at higher bin width values, apart from a single clump whose

supertree matches STall, only clumps exhibiting a combination of rooting and non-monophyly

of all/most Oryzomyini clades are identified. As such, for this dataset the most informative bin

width setting is bin=2.

Unlike the previous dataset, none of the analyses on the Hime et al. (2021) data yielded a

clump with its supertree identical to STall. For the default analysis (bin width=2), the summary

trees most similar to STall correspond to those of clumps five and eight, yet their distance to
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TABLE 4.2. Number of clumps identified for each dataset under the strict trough approach using
the wRF distance. The bin# column names refer to the histogram bin width used for each analysis.

Dataset bin2 bin4 bin6 bin8 bin10 bin12 bin14

Percequillo et al. (2021) 26 12 9 7 7 5 1

Hime et al. (2021) 41 21 15 13 6 6 11

Streicher et al. (2020) 20 3 1 1 1 1 1

Streicher & Wiens (2017) 10 2 1 1 1 1 1

KST2656 38 5 2 2 1 1 1

KST2019 52 15 4 2 1 1 1

KST768 24 2 2 1 1 1 1

KST348 22 7 1 1 1 1 1

KST2656-KST2019 33 3 1 1 1 1 1

KST2656-KST768 69 12 4 4 1 1 1

KST2656-KST348 20 6 2 2 1 1 1

KST2019-KST348 59 15 17 6 1 1 1

Chan all 18 5 2 1 1 1 1

Chan legacy 13 9 3 7 3 2 2

Chan exon unf 10 4 2 1 1 1 1

Chan intron unf 11 2 2 2 1 1 1

Chan UCE unf 15 13 3 1 1 1 1

Chan exon 75tax 14 2 1 1 1 1 1

Chan intron 75tax 13 1 1 1 1 1 1

Chan UCE 75tax 12 3 2 1 1 1 1

Chan exon 50pars 14 3 1 1 1 1 1

Chan intron 50pars 7 1 1 1 1 1 1

Chan UCE 50pars 14 2 1 1 1 1 1

the supertree is of 40 RF. In the analysis with bin width of 4, the minimum distance between

the supertrees of the clumps and STall is 12 RF and corresponds to clump-2. The analyses with

the lowest distance between a clump supertree and STall are those under bin widths 12 and 14,

where the supertree of the first clump is 4 RF away from STall, with the difference between the

supertrees revolving around the relationship between Nyctibatrachidae and Ceratobatrachidae.

Another major difference between the analyses with bin widths two and four is the nearly halved

number of identified clumps when the histogram bin width is doubled, see table 4.2. Interestingly,

when the clumps with outgroup rooting, extensive ingroup non-monophyly and taxon sampling

issues are ignored the default analysis yields a breakdown of clumps supporting Batrachia,
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Procera or Acauda similar to that reported by Hime et al. (2021), though the proportions are not

an exact match to Hime et al.’s 2021 analysis. They identified a proportion of trees supporting

Batrachia:Procera:Acauda of approximately 2:1:1, and the default clumping analysis yielded a

proportion of 3:1:1. I should note that this discrepancy in the proportitions might be partly due to

the fact that I kept all gene trees for the clumping analyses, while Hime et al. (2021) filtered out

all trees that could not be used to test the relationship between lissamphibian orders. In the bin

width=4 analysis, ignoring clumps without major topological issues, no clumps support Acauda,

a single clump supports Procera and nine Batrachia. In both the bin=2 and bin=4 analyses,

Gymnophiona is the most internally stable amphibian order, the majority of trees that include

Sirenidae and Cryptobranchoidea have the latter as sister to all other caudates, and most of the

intraorder taxonomic instability is found within Anura, specifically Neobatrachia. At larger bin

widths, the initial clumps all recover Batrachia, but any clump supporting Procera or Acauda has

Amniota nested within Lissamphibia and Latimeria as sister to it. Unlike the rodent dataset, the

non-monophyly of the ingroup (Lissamphibia) is mostly due to paraphyly with the outgroups, not

to para- and polyphyly of the ingroup’s lower taxa.

The two UCE-only datasets behaved quite differently under the default clump analyses, likely

due to their distinct taxon sampling ranges. The Squamata dataset, which had a sampling range

of c.48–92%, yielded 10 clumps, with the supertree of the fourth and fifth clumps being identical

to STall. That two adjacent clumps have the same supertree suggests that they should be treated

as a single clump and that the strict trough approach might overpartition tree distributions.

The supertrees of clumps 1–3 do not have the full complement of taxa, and all three display

different topologies within Lacertoidea. In fact, all clump supertrees (except four and five) display

alternative topologies for Gekkota and/or Lacertoidea, consistent with the low branch support

values reported by Streicher & Wiens (2017). Interestingly, unlike the other analyses reported

here, only one clump supertree (clump-8) shows extensive non-monophyly of Squamata named

groups. For the analyses with increased bin width, only the bin width=4 yielded more than a

single clump, with the first clump having a supertree whose only difference from STall is the

non-monophyly of Dibamidae and clump-2 showing alternate topologies for Gekkota, Lacertoidea

and Anguimorpha, and having Dibamidae as sister to Toxicofera.

The microhylid dataset (sampling of 37.5%–76.5%) on the other hand, yielded 20 clumps,

under the bin width=2 analysis, with RF=28 being the minimum distance between a clump

supertree, with all 64 taxa, and STall. Most clump supertrees exhibit extensive non-monophyly

at the subfamily level, which is likely the result of poor effective overlap within clumps, this is

congruent with the large number of low support branches in the STall (figure 2.B in Streicher

et al. 2020) and the supertree/supermatrix incongruence reported in the original paper. Given

that no tree in this dataset exceeded a taxon sampling of 77%, the lowest maximum observed

sampling of all analysed datasets, it is not unreasonable to think that this is the parameter

causing the clumping pipeline’s inability to identify ’major’ topologies. The uRF analysis of this
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dataset yielded similar results, but found only 9 clumps, a minimum distance to STall of 14, and,

more importantly, a considerably lower proportion of unresolved clump summary trees (wRF=0.8,

uRF≈0.4). The latter suggests that poor effective overlap within clumps is indeed the culprit of

the patterns identified in the wRF analysis, since the numbers of unresolved clump supertrees

greatly decreased when clump size increased (uRF). This is further cemented by the recovery of

three large clumps (> 300 trees) whose summaries display primarily monophyletic microhylid

subfamilies when the bin width is increased to four and a minimal distance to STall of 24 RF,

although any further increase in bin width leads to the recovery of a single clump.

The KST datasets broadly follow the patterns reported by Siu-Ting et al. (2019) for their

supertree analyses, with the majority of clump supertrees (that do not have extensive outgroup

rooting, non-monophyly and/or taxon sampling issues) supporting the same hypothesis of amphib-

ian relationships as the STall of each dataset. In other words, most clump supertrees from KST348

and KST2019 support Batrachia, and those for KST768 and KST2656 support Procera. Two

things of note that can be found in all analyses of the KST datasets are that Anura is the most

internally unstable amphibian clade, and that the supertree of clump-2 is either identical or the

most similar to STall. For KST2019 and KST2656, the latter observation can be explained by 50%

of the first clump consisting of quartet trees, which leads to increased topological instability. For

KST348 and KST768, the reason is not as clear, though that the proportion of small trees (6-tip)

is higher for clump-1 than for clump-2 may contribute to the lower resolution and topological

changes compared to STall. The analyses of the dataset complements showed similar results

to those of the original datasets, but it is worth noting that for KST2019-348 the number of

clumps supporting Procera just edges out Batrachia, with both KST2019 and KST348 supporting

Batrachia. As for the non-default bin width analyses, they revealed a pattern similar to Hime et

al.’s (2021), but from a bin width of 10 all datasets recovered a single clump (table 4.2).

The Chan et al. (2020) datasets display multiple trends detailed above, starting with the

first clump’s supertree not corresponding to the STall, due to the clump consisting of small trees

with poor effective overlap or to it including very few trees (or both, unfiltered UCE dataset).

The latter is particularly well illustrated by the 75% taxon sampling datasets, where for the

non-UCE datasets the supertree of the first clump is also that of all trees, but for the UCE

dataset, whose first clump contains only three trees, it is the second clump’s supertree that

matches STall. Most analyses recover the majority of clump supertrees exhibiting extensive

non-monophyly issues concentrated toward the tail end of the identified clumps, except for the

small tree-rich first clumps. Across all analyses, and prior to breakdown of generic monophyly,

instability is concentrated on the three nodes identified by Chan et al. (2020) as the foci of

topological instability. However, the topologies of the clump supertrees are not restricted to the

five alternatives depicted in their figure 1, rather most are intermediate topologies (for example,

one tree with N1 from T4 and N3 from T1). But, apart from the Sanger dataset, at least one

clump supertree matching one of Chan et al.’s (2020) observed topologies is identified before
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intermediate topologies. Lastly, while all non-Sanger datasets behave similarly, with the initial

wRF histograms showing nearly continuous uni- or bimodal distributions with small peripheral

peaks, the histogram for the Sanger dataset shows multiple small discontinuous peaks. This

is due to the very small number of trees (30) in the Sanger dataset, the wide range of possible

RF values (0–94) and the topological incongruence between trees, it is, thus, improbable that it

could yield a continuous and/or tight distribution of wRF values. As such, we might expect this

pattern to be repeated in other instances where clumps are used to cluster small tree sets. Similar

patterns are found in the analyses with bin widths greater than four that do not immediately

drop to a single clump.

Overall, the results show that clumping can extract some of the major topologies found in

(multi)sets of trees, but the effects of a set’s maximum tree size on the analyses need to be

explored further. Additionally, (multi)set size is of greater import to the clustering analyses than

the methodological sources of the data underpinning the tree sets. But perhaps more importantly,

clump informativeness can be manipulated by varying the histogram bin width, with some

datasets benefiting from wider bins, like the microhylid trees, whereas others benefit from narrow

bins, much like the Oryzomyini tree set.

4.5 Special cases

In the section describing clumps of trees, I introduced a number of special cases that are

expected to occur in clumping analyses. The Pardo et al. (2017) MPTs allow us to explore two of

those, the case where most supertrees correspond to input trees and the use of consensus trees.

The latter also helps to illustrate how changing the supertree method may change the clumps

identified. Additionally, because the tree-to-supertree distance histogram for all MPTs shows a

distribution made of two connected peaks and a third disconnected peak, this dataset is ideal

to illustrate the differences between using the strict trough and break approaches to identify

clumps. Under the break approach the clumpy pipeline that computes the supertrees using

Astral identifies four clumps that correspond to the four 12-RF islands reported in Serra Silva &

Wilkinson (2021). The trough analysis, however, identified the three smallest 10-RF islands as

clumps, but the two largest clumps do not map onto the two largest 10-RF islands. Thus, while

providing information similar to that of islands, regarding major hypotheses for evolutionary

histories, clumps of trees on the same leaf set are not always identical to tree islands. However,

as seen in Chapter 3, with large tree distributions clump identification is less memory intensive

than island extraction analyses.

4.5.1 Using a majority-rule consensus as the supertree

Using the majority-rule consensus (MRC, Margush & McMorris 1981) as the supertree,

computed with DendroPy v.4.5.2 (Sukumaran & Holder 2010), one immediate change between
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the MRC and Astral results is the right-displacement of the distance distributions. This is due to

the MRC not being one of the input trees, unlike most of the summary trees computed by Astral,

thus increasing the minimum distance between the ’supertree’ and all input trees. As for what

clumps are identified, under the break approach the four 12-RF islands are recovered once more,

though the distance thresholds differ between the Astral and MRC analyses. The trough analysis

yields five clumps, with the three smallest corresponding to the smallest 10-RF islands, but the

two largest clumps do not match the two largest 10-RF islands, much like in the supertree case

above. Additionally, the make-up of the two largest clumps is distinct from those obtained in the

Astral+trough analysis. Thus, by changing the supertree method we can change the number and

size of the clumps that are identified from the same dataset.

4.6 Discussion

There is a long history of post-processing (multi)sets of phylogenetic trees to find the most

informative summary for these sets by clustering and/or building consensus trees (e.g., Bonnard

et al. 2006, Hendy et al. 1988, Maddison 1991, Serra Silva & Wilkinson 2021, Stockham et al.

2002). Many post-processing approaches focus on sets of trees with completely overlapping leaf

sets, but with the increased use of phylogenomic datasets comes the need for tools that can be

applied to sets of trees with non-identical leaf sets. First, since supertrees are an extension of

consensus methods (Gordon 1986), in the context of trees with non-identical leaf sets we may

consider them to fulfil the same role as consensus methods do when dealing with sets of trees

on the same leaf set. A non-supertree ’consensus’ method that may at first appear enticing

and would allow for the identification of a set of relationships/taxa present in all input trees is

computing the maximum agreement subtree (MAST, Amir & Keselman 1997, Finden & Gordon

1985). However, as the number of input trees and/or polytomies increases, the complexity of

computing the MAST for a set of trees becomes NP-hard (reviewed in Deepak et al. 2014), making

this approach suboptimal when dealing with large tree distributions, which many phylogenomic

datasets are. This makes clustering approaches the better option to post-process sets of trees

with non-identical leaf sets.

However, clustering methods are not without challenges. While some of the main considera-

tions for methods to cluster (multi)sets of trees on the same leaf set might entail rootedness and

the presence of duplicate trees, for trees with non-identical leaf sets it is also necessary to take

the presence of small trees (triplets/quartets), and of trees with little to no taxonomic overlap

into account.

The presence of small trees is an important consideration seeing as two trees with highly

disparate topologies, supporting distinct evolutionary histories (e.g., T1 supports Batrachia and

T2 supports Acauda), might still display shared quartet/triplet trees. In island-like clustering

methods, these quartets/triplets have the capacity to cluster highly disparate trees into the same
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subset, since the small distances between the quartet/triplet and the larger trees artificially lower

the ’connectedness’ threshold between the large trees (Fig.4.1). By implementing a sequential

clustering approach, we need not worry about quartet trees affecting the clustering process, since,

when using uncorrected distances, they were always placed in the first cluster(s) to be identified.

However, further work is required to check up to what size tree we can expect to find the same

pattern exhibited by the quartet trees, and whether size filtering prior to clustering changes the

number of clumps identified. If using a corrected distance, like the wRF, quartet trees will be

more widely distributed across clumps, provided more than one clump is identified, but each

clump will only contain those quartet trees that perfectly match their input supertrees.

An interesting phenomenon that may occur with clumping is the identification of first clumps

whose summary tree differs from the STall, followed by a second clump whose summary tree is

identical to the STall. From the trough-based analyses I identified two distinct scenarios for the

occurrence of this phenomenon. One scenario consisted of a small clump followed by a break and

a large second clump, and the other scenario of a large first clump followed by a trough and a

second large clump. The former was identified from the rodents dataset, where the first clump

consisted of a single, large tree that was not identical to the STall, but the summary tree of the

second, larger clump (90 trees) did match the STall. The latter scenario was found in many of

the KST datasets, where the summary tree of a large first clump was highly unresolved, yet

the summary of the second clump matched the STall. In this case, the first clump consisted of

many (100s–1000s) trees, which had considerably fewer tips than the STall with poor effective

overlap between them resulting in a highly unresolved summary tree. For both scenarios, it may

be sensible to collapse the first two clumps into a single clump, and, more broadly, it may be

sensible to collapse any clumps whose input supertrees are identical.

With the exception of the microhylid dataset, under a bin width of two all analyses yielded a

collection of clumps from which biological information can be gleaned. For example, from the KST

and Hime et al. (2021) datasets it was possible to identify clumps that support the Batrachia,

Procera or Acauda hypotheses of amphibian relationships. However, in all analyses a large num-

ber of clumps exhibits outgroup non-monophyly, which hinders the identification/interpretation

of the summary trees’ and the biological information they display, whether it be at the order

or genus level, and renders the clumps uninformative. This pitfall might be avoided either by

filtering out those unrooted trees without monophyletic outgroups, similar to the filtering used

by Hime et al. (2021), or by using ingroup-only trees as input and rooting the clump summary

trees with an a posteriori method (e.g., MAD, Tria et al. 2017).

The microhylid dataset presents its own set of pitfalls. While not unexpected, given the

incongruence between the topologies recovered by the supermatrix and supertree analyses

reported by Streicher et al. (2020), the level of dissimilarity between the summary tree of each

clump and both the supertree of all trees and the supertree of each complement (S C) cannot be

explained entirely by the presence of small trees, nor by outgroup non-monophyly. Rather, that
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no tree in the set has a taxon sampling of over 77% suggests that there is extensive non-effective

overlap between the trees in each clump. Especially, given that when bin width is increased,

fewer and larger clumps are identified, with resolved and informative clump supertrees. Thus,

while more testing will be required, it appears that, though clumping does not require datasets

where at least some trees have 100% taxon sampling, it might have an optimal lower bound for

the maximum observed taxon sampling, and that choice of bin width is an important analytical

parameter. Additionally, the choice of supertree method may also be a consideration, since, as

shown by the analyses on the Pardo et al. (2017) MPTs, different supertrees can yield different

clump assortments. It is thus possible that if a different supertree method had been used, clump

summaries might have imparted more information on alternate microhylid topologies.

While I did not present results, I also tested a fixed threshold clumping method (exclusively

under a bin width of two), but the clumps were not informative. While the fixed threshold

approach identifies the minimum threshold required to find a clump and the maximum threshold

before all trees are placed in a single clump, the clumps themselves are not informative. This is

due to the method relying solely on the chosen threshold value, thus yielding clumps that either

do not capture a whole peak, capture multiple discontinuous peaks, or a combination of these.

Also, the information this method does provide can also be extracted from the histograms plotted

by the variable threshold approach(es). However, if a fixed threshold approach is desired the

sequence of sets S , from the clump definition given in section 4.2, can be redefined such that

Sn = {d(T,TST )≤ x and T =S C}. Beyond the drawbacks above, the use of a single threshold to

identify all clumps will also lead to instances where the set of remaining trees are unpartitionable,

and will thus be unclumpable under x-D. Although, an intermediate approach between fixed

threshold and histogram-based threshold selection might eschew the pitfalls of both threshold

setting approaches (the possibility of trees not being placed into clumps and the need for constant

user input, respectively). Setting a minimum threshold that can be dynamically increased to

the minimum tree-to-supertree distance found for each clump extraction iteration would ensure

that all trees can be assigned to a clump. However, an extra step would be necessary to merge

sufficiently similar clumps, just as was suggested above for successive clumps whose input set

supertrees are identical.

Despite the myriad pitfalls described above, variable threshold clumping can and does yield

relevant and useful information of the distinct evolutionary histories encoded in (multi)sets of

trees. While the choices of supertree method, partitioning strategy and histogram bin width can

influence the clumps identified, this new partitioning strategy has the benefit of not requiring

data alignments nor phylograms (e.g., Smith et al. 2020), meaning that it can be applied to

any (multi)set of trees. Additionally, by relying on a tree-to-supertree distance the tree order in

the input file will not affect the analyses, unlike some of the currently available methods for

post-processing trees with non-identical leaf sets (e.g., Smith et al. 2013). However, further work

is required to identify the optimal minimum observed taxon sampling and outgroup monophyly
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parameters for the method.

While I used a modified RF distance for the analyses, there is a push to develop tree-to-tree

distances specifically designed to deal with trees with non-identical leaf sets (e.g., leaf removal,

Chauve et al. (2017); completion based RF, Bansal (2020)), which may either lead to other

partitioning strategies or to a refinement of the definition of clumps based on the novel tree

distance measures, which may in turn make the choice of partitioning scheme and/or histogram

bin widths unnecessary. Recently, Tahiri et al. (2022) extended the single vs. multiple consensus

debate to the supertree context with their proposed extension of k-means clustering to a pruning-

based normalised RF distance. However, despite highly promising results, their method is unable

to address the issue of distances between trees with two or fewer tips in common. While k-means

are less robust than other clustering approaches like k-medoids (Arora et al. 2016), Tahiri et al.’s

(2022) work is a huge step in the post-processing of sets of trees with non-identical leaf sets, and

may soon lead to a proliferation of generalised clustering approaches and other methods to rival

the breadth of tools available for post-processing of trees on the same leaf set.

Lastly, with small alterations to the pipeline using the appropriate supertree and/or consensus

software and a corresponding distance measure, the existing clump extracting pipelines can be

extended to deal with (multi)sets of rooted trees and of internally labelled trees. The latter might

consist of phylogenetic trees with branch labels corresponding to higher taxonomy, thus allowing

for trees at distinct taxonomic levels to be compared (e.g., MultiLevelSupertree, Berry et al. 2012),

or they might consist of the node-labelled mutation trees commonly used in cancer phylogenetics

(e.g., Aguse et al. 2019).

4.7 Data and software availability

The data, scripts and results for this chapter are available on the following repository:

• Figshare, https://doi.org/10.6084/m9.figshare.c.6050033.

The clumpy Python pipeline is available from:

• GitHub, https://github.com/anaserrasilva/clumpy.
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DEALING WITH NON-EFFECTIVE OVERLAP IN LARGE-SCALE

PHYLOGENETICS

An earlier version of the alignments used in this chapter, restricted to nucleotide data available

in GenBank (Benson et al. 2008) on June 27th, 2020, was used as the basis for the Gymnophiona

phylogenetic trees in a masters thesis co-supervised by ASSilva:

Battye, S. (2020), Biogeography, life history and conservation of caecilians. MSc Thesis, School of

Sciences, University of Wolverhampton, UK.

5.1 Introduction

As systematists continue their efforts to infer the Tree(s) of Life (e.g., Hime et al. 2021, Frost

et al. 2006, Shen et al. 2013, Hellemans et al. 2022, Simões & Pyron 2021), they have been beset

by the continued identification of recalcitrant nodes (e.g., Cai et al. 2021, Kulkarni et al. 2021,

Wurdack & Davis 2009). This taxonomic instability can be caused by data incongruence (e.g.,

Cannatella et al. 1998, Chan et al. 2020, Hahn 2007), missing data (e.g., Simmons & Goloboff

2014, Roure et al. 2012), and/or analytical artefacts (e.g., Léveillé-Bourret et al. 2017, Simmons

et al. 2022). Approaches to summarise the tree (multi)set heterogeneity that often accompanies

these recalcitrant nodes have been explored in previous chapters (e.g., islands of trees (Chapter

2, Maddison 1991, Serra Silva & Wilkinson 2021), clumps of trees (Chapter 4)), but methods

targeting the causes behind taxonomic instability are also widely available. Multiple tools have

been developed to identify and mitigate the effects of data incongruence due to reticulate events—

such as the ABBA-BABA test (Patterson et al. 2012), multispecies coalescent co-estimation and

summary methods (Bouckaert et al. 2014, Zhang et al. 2018), and phylogenetic networks (Huson

et al. 2010, see Chapter 3 for additional references)—and, as briefly alluded to in Chapter 3,
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so too have approaches to deal with the effects of missing data (e.g., safe taxonomic reduction

(STR, Wilkinson 1995b); gene sampling sufficiency (Steel 2016)), which I will be focusing on

here. The amount and (non-random) distribution of missing data have both been implicated in

taxonomic instability (e.g., Roure et al. 2012, Simmons 2012, Wiens & Morrill 2011), and it has

often been suggested that mitigating the negative effects of missing data is as simple as adding

more data to the matrix, particularly loci or characters (e.g., Wiens 2003, this thesis: Chapter 3,

subsection 3.4.3). However, untargeted increase of taxa and/or loci sampling may not be feasible

(e.g., financial concerns, access to rare and/or extinct taxa), and methods that favour targeted

sampling might prove more efficient solutions.

A mathematical concept that has garnered renewed attention in the last decade, particularly

as it relates to missing data in large-scale phylogenetic analyses, is that of phylogenetically

decisive taxon coverage (Sanderson et al. 2010, Steel 2016, Steel & Sanderson 2010), also referred

to as effective taxonomic overlap (Wilkinson & Cotton 2006). Where, given a tree T and a taxon

coverage pattern S, S is decisive for T if T is the unique supertree of the subtrees induced by S

(Dobrin et al. 2018, Sanderson et al. 2010, Steel & Sanderson 2010), figure 5.1. In other words, if

the subtrees induced by S are ((A,B),C) and ((A,D),B), S is decisive because T=((A,D),B),C), but

not if the subtrees are ((A,B),C) and ((A,B),D) since T={(((A,B),C),D); ((A,B),(C,D)); (((A,B),D),C)}.

Thus, decisive taxonomic coverage reflects the pattern, not amount of overlap. This concept

informs methods that seek to minimise the negative effects of missing data on tree inference,

both on the taxon (e.g., STR and its heuristic extension: Concatabominations, Siu-Ting et al.

2015) and locus sampling fronts (e.g., gene sampling sufficiency).

For partitioned matrices, the (non-)effective overlap across a matrix can also be identified

by testing for the presence of tree terraces. These are areas of tree space where trees are all

topologically different, yet have exactly the same optimality score and display the same set of

subtrees (Sanderson et al. 2011, 2015). These terraces are (sub)sets of 1-NNI islands of trees

(Maddison 1991, Serra Silva & Wilkinson 2021), and like them can negatively influence tree

search and lead to topological uncertainty (Sanderson et al. 2011, 2015). Tree terraces arise

when data partitions (individual characters in parsimony analyses) induce subtrees that do

not have a unique parent tree (supertree), meaning that the matrix’s taxon coverage is not

decisive. Additionally, for terraces to form in maximum likelihood analyses, branch length

optimisation must be independent between partitions (edge-unlinked models), and they never

form during Bayesian inference analyses (Sanderson et al. 2015). However, because branch

length optimisation models are seldom reported, recent explorations of the presence/prevalence of

terraces in published datasets tested for the terraces that would have, theoretically, arisen under

maximum parsimony or edge-unlinked maximum likelihood analyses (discussed in Dobrin et al.

2018). Thus, recovering the worst case scenarios of taxonomic instability driven by non-effective

overlap.

Here, I will be comparing two methods that rely on effective overlap to inform decisions on
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FIGURE 5.1. Patterns of overlap for three sets of subtrees (or data partitions in the supermatrix
case). In a) the pattern of overlap is effective, i.e. the taxon coverage is decisive, because the
two subtrees induced encode a unique supertree, while in b) the induced subtrees encode three
unique supertrees, illustrating non-effective overlap (non-decisive taxon coverage). In c) extreme
non-effective overlap with complete loss of topological information is illustrated.

how data should be added to a matrix to minimise taxonomic instability, one focused on taxa

and another on loci. I will use a caecilian phylogeny to test whether, with a jackknife approach,

Concatabominations—originally developed for morphological datasets but successfully applied to

matrix representations (MR) of supertrees (e.g., Akanni et al. 2015, Cardillo et al. 2004)—can be

used to identify target loci for increased taxonomic sampling, not just which taxa are unstable. I
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will then compare this jackknife approach to the gene sampling sufficiency method, using both

the caecilian phylogeny and a selection of the datasets used by Dobrin et al. (2018) to explore the

prevalence of terraces in multilocus datamatrices.

5.2 Materials and methods

5.2.1 Gymnophiona

Gymnophiona is the least speciose of the three amphibian orders, with 214 currently valid

species in 10 families (AmphibiaWeb 2019, Frost 2022). Caecilians are easily distinguished from

frogs and salamanders due to their elongated, annulated and limbless morphology (San Mauro

et al. 2014). Caecilians are found primarily in tropical and subtropical environments, with most

species being fossorial, except for the secondarily aquatic Typhlonectidae (Kamei et al. 2012,

San Mauro et al. 2014). Because of their geographic distribution and habitat(s), caecilians are

not easily found or collected, leading to many species being known from a single specimen

(e.g., Amozops amozops Wilkinson et al. 2021). This means that caecilians are a prime taxon

to test targeted taxon/locus sampling. In fact, they have been previously used to explore an

information-based approach (Goldman 1998, Goldman et al. 2000) that identifies both the most

informative loci and the areas of the tree that would benefit the most from increased taxon

sampling (San Mauro et al. 2009, 2012).

5.2.1.1 Data collection and processing

All caecilian nucleotide data available in GenBank (Benson et al. 2008) on March 14th, 2022

were downloaded. To filter synonyms from the downloaded data, the taxonomic information

provided by Genbank was checked using the Amphibian Species of the World v.6.0 database

(Frost 2022). Unless included in previous comprehensive phylogenetic analyses (e.g., San Mauro

et al. 2014), sequences identified to the species level that included aff., cf., or sp. in their updated

taxonomy were discarded, as were loci with data for fewer than three caecilian species (e.g.,

tyrosinase). This resulted in a dataset made up of 96 caecilian taxa, 88 currently valid, and 24

loci. These consisted of 15 mitochondrial (12S rRNA, 16S rRNA, ATP6, ATP8, COX1, COX2,

COX3, CYTB, ND1, ND2, ND3, ND4, ND4L, ND5, ND6) and 9 nuclear loci (18S rRNA, 28S rRNA,

BDNF, CXCR4, H3A, NCX1, RAG1, SIA, SLC8A3).

From the filtered sequence data, only one sequence was selected per species per locus, except

for Gymnopis multiplicata, as the most recent comprehensive Gymnophiona-focused phylogenetic

study found this species to be paraphyletic with Dermophis mexicanus (San Mauro et al. 2014).

The criteria for within species sequence selection were, in order: i) one voucher specimen - multiple

loci, ii) sequence length, iii) most recent sequence, and iv) valid taxon (not synonym) in sequence

description. Data was also downloaded for the following outgroups: the sarcopterigians Latimeria

chalumnae and Protopterus annectens; the amniotes Mus musculus, Anolis carolinensis and
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Gallus gallus; the caudates Lyciasalamandra atifi, Andrias davidianus and Ranodon sibiricus;

and the anurans Leiopelma archeyi, Bombina orientalis and Xenopus laevis. For GenBank

accession numbers, see table 5.1 for nuclear loci (nucDNA), and table 5.2 for mitogenomes and

mitochondrial loci (mtDNA).

All loci were aligned using the MAFFT v.7.450 (Katoh & Standley 2013) plugin for Geneious

Prime v.2022.0.2 (https://www.geneious.com, Kearse et al. 2012), under automatic algorithm

selection. To remove hyper-variable regions and trim ragged ends, all multiple sequence align-

ments were all run through Gblocks v.0.91b (Castresana 2002) under the settings: “minimum

number of sequences for a flank position” = n
2 +1, where n is the total number of sequences in the

alignment, “maximum number of contiguous non-conserved positions” = 10, “minimum length of

a block” = 5, and “allowed gap positions” = “with half”. This resulted in the following alignment

sizes: 757 base pairs (bp) for 12S rRNA, 1229bp for 16S rRNA, 684bp for ATP6, 157bp for ATP8,

1540bp for COX1, 688bp for COX2, 784bp for COX3, 1141bp for CYTB, 963bp for ND1, 1035bp for

ND2, 343bp for ND3, 1368bp for ND4, 297bp for ND4L, 1781bp for ND5, 492bp for ND6, 1775bp

for 18S rRNA, 697bp for 28S rRNA, 713bp for BDNF, 644bp for CXCR4, 328bp for H3A, 1304bp

for NCX1, 1509bp for RAG1, 432bp for SIA and 1121bp for SLC8A3. The taxon coverage density

(i.e. the average of the per locus taxon coverage, see equation in 5.2.2) for this dataset was 0.47,

with 16S rRNA having the highest (0.94) and BDNF and SIA the lowest (0.12) proportions of

taxonomic coverage.

5.2.1.2 Phylogenetic analyses

Nucleotide substitution models were fitted using jModelTest v.2.1.7 (Darriba et al. 2012), with

number of substitution models set to 3. The best-fit models were HKY+I+G for CXCR4, GTR+I

for SIA, GTR+G for 18S rRNA and H3A, and GTR+I+G for all other loci. Gene trees were inferred

under MrBayes v.3.2.6 (Ronquist et al. 2012), the analyses were set to two independent runs with

four chains and 10 million generations, sampled every 1000 generations with a relative burn-in

of 25%, and summarised with the majority-rule consensus (MRC, Margush & McMorris 1981).

Run convergence was checked using an average standard deviation of split frequencies (ASDSF)

≤ 0.01, and a potential scale reduction factor (PSRF) of 1.00, if either measure was not met the

analyses were run for an additional 10 million generations. A supermatrix analysis was also

run under the same settings as the gene tree analyses, with the genes set as partitions. Codon

positions were not taken into account due to the use of Gblocks.

The supertree was obtained by using the MRCs of the inferred gene trees as input to the

quartet-based summary method Astral-III v.5.6.3 (Zhang et al. 2018). The MRC trees were chosen

over the highest posterior probability tree in each gene tree analysis to ensure that the supertree

recovered a conservative estimate of caecilian relationships and, because the primary aim of this

chapter is to compare two methods whose aim is to identify and minimise non-effective overlap

between loci, increase the chances of recovering a partially resolved supertree. If the aim of the
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5.2. MATERIALS AND METHODS

analyses were to infer the most accurate summary tree possible, an MRC tree with minority

components (i.e. greedy consensus) should be used instead (Mirarab 2019). Particularly, since

collapsing poorly supported branches (< 5−20%) increases the accuracy of the summary trees in-

ferred by Astral, but collapsing moderately supported branches (< 50−75%) increases topological

errors (Mirarab 2019, Zhang et al. 2018).

5.2.1.3 Testing for taxonomic instability with tree jackknifing

To test the supertree for taxonomic instability caused by non-effective overlap the inferred

gene trees were run though the Concatabominations pipeline (Siu-Ting et al. 2015), and visualised

with Cytoscape v.3.7.1 (Demchak et al. 2014). Because the pipeline was developed to look for

instability in morphological datamatrices, the gene trees used as input for the supertree analysis

were converted to their MR using p4 v.1.2.0 (Foster 2004) prior to running the pipeline.

To test whether the Concatabominations pipeline might be used to inform decisions of which

gene trees are the best candidates for increased taxonomic sampling in order to solve issues

of non-effective overlap, the MR was subjected to a "tree jackknife". In other words, one gene

tree was removed from the MR, and the ensuing matrix run through Concatabominations, with

the procedure being repeated for each gene tree. If the removal of a gene tree from the matrix

increases the amount of instability recovered by the Concatabominations pipeline, then that tree

is considered a "stabilising" tree, and the locus is a candidate for a targeted increase in taxonomic

sampling.

5.2.1.4 How does Concatabominations work

The Concatabominations pipeline is a heuristic extension of the STR approach to identifying

unstable taxa, as mentioned above, and uses compatibility methods (e.g., Meacham & Estabrook

1985) to test whether chimaeric taxa (concatabominations) that combine pairs of "potential

taxonomic equivalents that are asymmetric both ways" might increase homoplasy in a dataset,

and thus taxonomic instability (Siu-Ting et al. 2015). These pairs of taxa, originally defined in

Wilkinson (1995b) and referred to as D pairs in Siu-Ting et al. (2015), consist of taxa that share

some identical character states, but both have characters that are scored in one taxon and missing

from the other. Borrowing Siu-Ting et al.’s (2015) example, if taxon x = ??0111 and taxon y =

0001??, then they are "potential taxonomic equivalents that are asymmetric both ways", and form

the concatabomination x+y = 000111. For an explanation on other types of taxonomic equivalence

please see Siu-Ting et al. (2015) and Wilkinson (1995b) Any taxon that contributes to multiple

concatabominations without increasing homoplasy then becomes a candidate for safe removal,

i.e. its removal does not affect the relationships of the remaining taxa. In the context of MR, the

D pairs correspond to taxa sampled for a limited number of loci, and any taxon identified as a

candidate for safe removal, based on its inclusion in chimaeric taxa, to an instance of instability

due to non-effective overlap.
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On a more practical level, the networks outputted by the Concatabominations pipeline can

be visualised and manipulated in Cytoscape. This provides an easily interpretable graphical-

depiction of the (unstable) relationships between taxa, and allows users to explore what happens

to their dataset as unstable taxa are removed, without the need to infer a new tree each time.

However, because Concatabominations is a heuristic method it should be noted that there may be

instances where it identifies unstable taxa whose removal will affect the relationships between

the remaining taxa (Siu-Ting et al. 2015)—i.e. taxa that cannot be ’safely’ removed. Thus, despite

the exploratory capabilities of the network visualisation, if the goal is to decrease taxonomic

instability by taxon removal, the latter should be removed from the matrix individually and the

new matrix (or matrices) rerun through the pipeline to check that only taxa that can be safely

removed have been removed.

5.2.2 Comparison of tree jackknifing and gene sampling sufficiency

To illustrate that tree jackknife is a method that can inform targeted data acquisition, I

reanalysed a selection of the datasets used by Dobrin et al. (2018) to explore the theoretical

terrace space occupied by a variety of phylogenomic datasets, see table 5.3. Datasets that passed

gene sampling sufficiency or were terminated in Dobrin et al.’s (2018) analyses were not re-

analysed here. Re-analyses of the bat (Shi & Rabosky 2015) and primate (Springer et al. 2012)

datasets were abandoned because each tree jackknife run was taking over two weeks to complete,

due to the size of the matrices in both datasets (all loci matrix sizes: 815 taxa by 3415 characters

for bats; 372 taxa by 10692 characters for primates). To allow the selected datasets to be run

through the tree jackknife protocol, individual loci were extracted from the concatenated matrices

and all loci with fewer than four taxa (minimum number of taxa required to infer an unrooted

tree) were removed from the selected datasets. Gene trees were obtained with RAxML v.8.2.12

(Stamatakis 2014), with the multiple tree search set to 1000 runs without bootstrap and with

GTR+I+G as the substitution model for all gene trees, and the best trees were used as input for

the Astral analysis.

Gene sampling sufficiency (ζ) was calculated for all reanalysed datasets and for the caecilian

matrices, following Dobrin et al. (2018) and Steel (2016). In order to compute sampling sufficiency,

it is first necessary to calculate a theoretical minimum number of loci, kmin, that must be sampled

to ensure that taxon coverage, S, would be decisive for tree T. The kmin calculation assumes

random taxon coverage, and need not be computed if any locus has been sampled for all taxa,

since that is the sufficient condition for S to be decisive (Sanderson et al. 2010, Steel 2016). To

calculate kmin, I need to first compute the taxon coverage density for the dataset (d), or the

average proportion of taxon sampling, with:

d=
∑ nl

n
k

,

where nl is the number of taxa sampled in a locus, n is the total number of sampled taxa, and k the
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number of sampled loci. Following Dobrin et al. (2018), I calculated kmin using the approximation:

kmin ≈
log n3

6p

−log(1−d4)
,

where the new term p is the desired confidence level on the decisiveness of S (i.e. the ’p-value’).

The latter was set to 0.05 for all analyses, to allow for direct comparison between the results below

and Dobrin et al.’s (2018). With d and kmin computed, we can finally calculate gene sampling

sufficiency with:

ζ=−ln
k

kmin
.

A value of ζ≥ 0 means enough loci have been sampled to achieve taxon coverage decisiveness,

and ζ< 0 means that more loci must be sampled.

I also explored the theoretical terrace space associated with the supertrees of the reanalysed

datasets and the caecilian trees with terraphy (Zwickl 2014). While neither of the phylogenetic

analyses in this chapter meet the conditions to form terraces (Bayesian inference is not susceptible

to terraces (Sanderson et al. 2015), RAxML’s default branch length parameters are linked across

partitions (Dobrin et al. 2018, Stamatakis 2014), and concatenated alignments were not used for

tree inference), I wanted to compare the theoretical terrace sizes for the filtered and unfiltered

matrices of the datasets analysed by Dobrin et al. (2018). This also allowed for the comparison

of the resolution of the supertree (branches with a quartet score, QS, bellow 50%, including

indeterminate scores (’?’) were collapsed) and the strict consensus (SC, Sokal & Rohlf 1981) of

the theoretical terraces.

5.3 Results

5.3.1 Phylogenetic analyses

The pre-jackknife supertree analysis yielded a mostly well-resolved phylogeny (Fig.5.2), with

the family-level relationships broadly congruent with recent molecular studies (Jetz & Pyron

2018, Pyron 2014, Pyron & Wiens 2011, Roelants et al. 2007, San Mauro et al. 2014). However,

the split between Scolecomorphidae and the other Terasomata, recovered by Jetz & Pyron (2018),

Kamei et al. (2012), Pyron (2014), and San Mauro et al. (2012, 2014), collapses resulting in the

following polytomy ((Chikilidae, Herpelidae), (Scolecomorphidae, (Typhlonectidae, Caeciliidae),

other Terasomata)), consistent with the low support found for this split in Pyron & Wiens (2011)

and San Mauro et al. (2009). As in Acosta-Galvis et al. (2019), the supertree recovered Siphonopi-

dae as paraphyletic due to the placement of Microcaecilia nicefori, and Brasilotyphlus nested

within Microcaecilia. The latter was also recovered in Maciel et al. (2009) and Maciel et al. (2019).

As in San Mauro et al. (2014), Gymnopis multiplicata is paraphyletic with the genus Dermophis.

Additionally, unlike Maciel et al. (2019), the supertree does not support the (Siphonops, Luetkeno-

typhlus) split. At the intrafamily-level, within Grandisoniidae (formerly Indotyphlidae, Dubois
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et al. 2021, Frost 2022), Hypogeophis and Grandisonia are recovered as paraphyletic in relation

to each other (polytomy prevents unambiguous identification of which is the paraphyletic genus),

which is consistent with previous work on the Seychelles caecilian radiation (Maddock et al.

2018). Additionally, the phylogenetic placement of Hypogeophis montanus is recovered as indeter-

minate (quartet score = ?) in relation to all other grandisoniids. And in the Typhlonectidae family,

Potomotyphlus was nested within Typhlonectes. Lastly, Rhinatrema, Ichthyophis, Boulengerula,

Caecilia, Gegeneophis and Luetkenotyphlus display intrageneric polytomies.

5.3.2 Tree jackknife analyses

The Concatabominations analysis, including all Gymnophiona gene trees, found most taxa to

be stable (64 singletons and 11 dyads), except for a cluster of instability with 17 taxa anchored by

the Seychelles caecilian H. montanus, which was identified as candidate for safe a priori deletion

(Fig.5.3). Taxa are safe to remove if their omission does not affect the relationships between the

remaining species (Wilkinson 1995b). Along with H. montanus, Boulengerula changamwensis,

Brasilotyphlus guarantanus, Caecilia thompsoni, Chthonerpeton viviparum, Dermophis parviceps,

Epicrionops parkeri, Ichthyophis biangularis, Ichthyophis longicephalus, Ichthyophis nguyenorum,

Ichthyophis orthoplicatus, Indotyphlus battersbyi and Scolecomorphus kirkii were also identified

as candidates for safe deletion. These taxa are recovered by Concatabominations as part of dyads,

which correspond to sister leaves in the supertree, except for I. battersbyi, which is part of the

cluster of unstable taxa anchored by H. montanus. If the goal of running the taxonomic instability

analysis is simply to identify taxa whose deletion increases tree resolution, then deleting H.

montanus from the Concatabominations network, as well as from the MR, results in a decrease

of taxonomic instability, with only singletons and dyads left in the instability network. Inspection

of the taxonomic complement of the gene trees confirms that H. montanus’ instability is due to

non-effective overlap, as the taxon is present in only one of 24 gene trees (BDNF), whith the four

Hypogeophis species included forming a polytomy (tables 5.1 and 5.3).

The tree jackknife procedure identified six gene trees which, when removed, lead to increased

taxonomic instability, making them candidate trees for a targeted increase of taxon sampling

(table 5.3). These candidate loci are 12S and 16S rRNA, COX1, CYTB, H3A and ND1, with

removal of the 16S gene tree showing the largest increase in taxonomic instability (i.e. the best

candidate locus). While it might be expected that all candidate loci correspond to the most taxon

rich loci (true for four of the six candidate loci), RAG1 and ND2 both have higher taxon sampling

than ND1, and H3A is one of the least taxon-rich loci (25 of 105 taxa). Thus, taking the existing

taxon sampling into account, only four of the candidate loci are realistic targets for increased

sampling: 12S and 16S rRNA, COX1 and CYTB. With 16S rRNA being the most promising

candidate for increased taxon sampling.

Preliminary sequence alignments revealed a series of Hypogeophis spp. DNA sequences

(MH055413–MH055428, Maddock et al. 2018) labelled as 12S rRNA that aligned poorly with
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FIGURE 5.2. Supertree of the caecilian gene trees inferred with MrBayes prior to taxonomic
instability analyses. All branches with quartet support (QS) below 50% collapsed. Circles denote
branches with 100% QS, squares denote 90% ≥ QS < 100% and triangles 75% ≥ QS < 90%. Scale
bar represents coalescent units.
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FIGURE 5.3. Concatabominations network of the Gymnophiona supertree with 64 stable, uncon-
nected taxa omitted. Candidates for safe a priori deletion are underlined.

the other 12S rRNA sequences, which led me to remove these sequences from the 12S rRNA

alignment. However, upon further inspection it was revealed that the sequences were in fact

mislabelled 16S rRNA sequences (confirmed with BLAST (Altschul et al. 1990) and by S Maddock

2019, personal communication, 11 December), with MH055425–MH055428 corresponding to

Hypogeophis montanus sequences. Thus, through serendipitous means, there was available

sequence data for the target taxon/locus pair identified by the tree jackknife analyses.

After the addition of data for H. montanus, the 16S rRNA alignment had a length of 1142bp

and the Concatabominations pipeline yielded a network made-up entirely of singletons and

dyads (again consisting of cherries), meaning that all, or most, taxa are taxonomically stable.

Additionally, tree resolution (ρ) increased (no H. montanus 16S rRNA, ρ = 0.95; with H. montanus

16S rRNA, ρ = 0.96), showing that the effects of non-effective overlap were successfully mitigated

(Fig.5.4). Following Dobrin et al. (2018), ρ is defined as the ratio of the splits in a tree and the

splits in a binary tree of equal size. While the absolute increase in internal branches is one, there
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TABLE 5.3. Concatabominations with tree jackknife results, number of edges excludes self-loops.
Candidate loci for targeted taxon sampling highlighted in bold text.

MR Taxa in
network

Edges in
network

Taxa in jackknifed
locus

All loci 105 59 NA
All loci, no

Hypogeophis montanus
104 46 NA

no 12S rRNA 105 61 84

no 16S rRNA 103 135 99

no 18S rRNA 105 59 10

no 28S rRNA 105 59 19

no ATP6 105 59 53

no ATP8 105 59 53

no BDNF 104 25 13

no COX1 105 71 86

no COX2 105 59 53

no COX3 105 59 53

no CXCR4 105 59 33

no CYTB 104 63 81

no H3A 105 61 25

no NCX1 105 59 34

no ND1 105 63 54

no ND2 105 59 55

no ND3 105 59 53

no ND4 105 59 53

no ND4L 105 59 53

no ND5 105 59 53

no ND6 105 59 53

no RAG1 105 59 65

no SIA 105 59 13

no SLC8A3 105 59 32
aa with 16S rRNA for aa

H. montanus
105 23 NA

are some notable differences between the Gymnophiona supertree inferred pre- and post-tree

jackknife analyses.

In the post-jackknife supertree, the split between Scolecomorphidae and the other Terasomata

105



CHAPTER 5. DEALING WITH NON-EFFECTIVE OVERLAP IN LARGE-SCALE
PHYLOGENETICS

is now recovered (with the same topology as Kamei et al. 2012, San Mauro et al. 2014), albeit

with very low support (QS=50.2%). Within the Seychelles clade, H. montanus is recovered as

sister to Hypogeophis brevis (also recovered by Maddock et al. 2018), and, while Hypogeophis

and Grandisonia remain paraphyletic, two distinct clades can now be seen—one comprised of

Hypogeophis pti, Grandisonia larvata and Grandisonia sechellensis and another made up of

Grandisonia alternans, Hypogeophis rostratus, H. brevis and H. montanus. However, in Siphonop-

idae+Dermophidae the branch leading to M. nicefori collapsed. Small intragenus changes in

extremely short and poorly supported branches were also found between the two supertrees, but

these are not easily discernible. While these intragenus areas of instability (e.g., Ichthyophis)

were not explored, they may result from "incomplete" non-effective overlap, i.e. they cannot be

unambiguously placed in relation to their putative closest relatives, but their presence in at least

one of the "stabilising" gene trees is masking their instability in the Concatabominations analyses.

Also, given that several taxa in these localised areas of instability are taxa with partial gene

sequences, they may benefit from more complete locus sequences, rather than from increased

taxon/locus sampling. However, the increased resolution within Grandisoniidae after the addition

of H. montanus data to the 16S rRNA alignment shows that tree jackknifing is a useful tool for

identifying taxa with poor overlap between loci, as well as which loci contribute the most to the

inferred (supertree) topology.

5.3.3 Gene sampling sufficiency and terraces

In this subsection and any subsequent discussions, I will be ignoring the results for the

Ficus and scincids datasets (which were not altered from the versions available at https://

github.com/BDobrin/data.sets), because there are discrepancies between the taxon coverage

density (d), kmin and gene sampling sufficiency (ζ) reported by Dobrin et al. (2018) and those

recalculated by me (table 5.4). Since these values rely only on the number of taxa and loci in

each dataset, and the same calculations (d, kmin, ζ) were consistent between the two studies for

other unedited datasets (Chameleons and Rosaceae), all results discussed below assume that the

correct formulae were programmed into Microsoft Excel (Office 365 v.2204) and that the matrices

provided in the data repository may have been edited prior to Dobrin et al.’s (2018) analyses. Also,

how significant figures were treated, and any resulting rounding errors, cannot be discarded as a

contributing factor for at least some of the calculations, see the Gymnophiona entries in table 5.4.

5.3.3.1 Taxon coverage and gene sampling sufficiency

The removal of loci with fewer than four taxa (minimum required for inference of unrooted

trees) from the matrices used in Dobrin et al. (2018), resulted in increased taxon coverage density

for all datasets (Fig.5.5a). Except for the Chameleons, Ficus and Rosaceae datasets, where there

was no change, and in the Scincids dataset, where ∆d =−0.07, but as noted above the Ficus and

Scincid, while reported, will not be discussed. This increase in taxon coverage density in turn
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FIGURE 5.4. Supertree of the caecilian gene trees inferred with MrBayes after taxonomic in-
stability analyses. All branches with quartet support (QS) below 50% collapsed. Circles denote
branches with 100% QS, squares 90% ≥ QS < 100% and triangles 75% ≥ QS < 90%. Scale bar
represents coalescent units.
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FIGURE 5.5. Change in a) taxon coverage density and b) gene sampling sufficiency between
Dobrin et al. (2018) and this study.

lead to an improvement of the gene sampling sufficiency scores (Fig.5.5b), although no dataset

was found to have met the ζ≥ 0 requirement for taxon coverage decisiveness (assuming a 5%

confidence level, table 5.4). This is in broad agreement with Dobrin et al.’s (2018) results. And

like them, the recalculated minimum loci needed for decisiveness (kmin) were in the hundreds to

thousands of loci, despite many datasets having terraces with fewer than ten trees (Chameleons,

Iris, Ranunculus, Rhododendron and Syzygium).This discrepancy was also found by Dobrin et al.

(2018), again confirming that Sanderson et al.’s (2010) and Steel’s (2016) assumption of random

uniform taxon sampling is not necessarily reflected by empirical datasets.

5.3.3.2 Tree jackknife vs. gene sampling sufficiency

Along with terrace size, the sampling sufficiency values are also unexpectedly high compared

to the supertree resolution for the majority of datasets (table 5.5); with two datasets having

fully resolved supertrees, yet having a kmin > 1000 loci. For the Gymnophiona datasets, where

kmin was 308 pre-jackknife and 307 post-jackknife, with a sampling sufficiency of -2.55 (for

both), despite having one locus with ≈ 94% taxon coverage and both inferred supertrees being

highly resolved (ρ ≥ 0.95). This contrasts with the tree jackknife analyses, which identified six

"stabilising" loci, with four strong candidates for increased taxon sampling, and one unstable

taxon (H. montanus). While the addition of a single H. montanus sequence to the 16S rRNA

alignment lead to an increase in supertree resolution and to Concatabominations no longer

finding unstable taxa, in the sampling sufficiency analyses this only lead to kmin decreasing by

one locus.

For the datasets used in Dobrin et al. (2018), tree jackknife analyses yield results similar to

those reported for caecilians, although the effects of targeted increased taxon sampling were not

tested for these. However, unlike the hundreds to thousands of loci identified by gene sampling

sufficiency, tree jackknifing identified a maximum of four candidate loci for increased taxon
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CHAPTER 5. DEALING WITH NON-EFFECTIVE OVERLAP IN LARGE-SCALE
PHYLOGENETICS

sampling (table 5.5). Additionally, no more than three unstable taxa were identified per dataset,

except for Rosaceae, which had twice as many taxa as the next most speciose dataset and the

lowest taxon coverage density of all analysed datasets. While unstable taxa were identified for

some datasets with binary supertrees, they corresponded to taxa that were present in a single

gene tree, usually with low taxon coverage, similar to the H. montanus case. An example of this

is the Eucalyptus dataset, where Eucalyptus lehmannii, the most unstable taxon, is sampled only

in the rbcL gene tree, which consists of a quartet tree. Much like in the caecilian alignments,

none of the reanalysed datasets included a locus with full taxon coverage and the stabilising loci

are not a one-to-one match to the most taxon-rich loci. Thus, tree jackknifing again identifies

reasonable numbers of loci and taxa that can be targeted for increased sampling, which are one

to three orders of magnitude smaller than the calculated minimum number of loci required for

decisiveness.

5.3.3.3 Terraces

As mentioned in section 5.2.2, the analytical parameters of the tree searches in this chapter

are not conducive to the formation of terraces, thus the results detailed below are a theoretical

exercise rather than a reflection of the ’true’ terrace space associated with the concatenated

alignments. Also trees with resolution ≥ 99% are treated as binary for the following discussion. As

in Dobrin et al.’s (2018) original analyses, terrace size ranged over multiple orders of magnitude,

from 1×100 to over 2×1022 trees. However, unlike taxon coverage density and gene sampling

sufficiency, there was not a uniform trend in the direction of change for terrace size. While three of

the datasets whose terrace size increased after reanalysis yielded polytomous supertrees (Allium,

Caryophyllaceae and Euphorbia), what unites them with the fourth dataset, Eucalyptus, is that

all four have at least one taxon that is sampled for only one locus (Allium triquetum is sampled

in two loci, but one has only six taxa). The presence of polytomies is also not synonymous with

larger terrace sizes. The supertrees for Primula, Rosaceae and Solanum are all partially resolved,

yet terrace size decreased for all three datasets, even though their trees were fully resolved

for Dobrin et al.’s (2018) analyses. Interestingly, the addition of a single DNA sequence to the

caecilian dataset (H. montanus’ 16S rRNA) led to a two order of magnitude decrease in terrace

size (although less drastic than the difference in size between the sets of all possible resolved

trees for each Gymnophiona supertree, pre-jackknife = 203 = 8000 and post-jackknife = 43 = 64).

5.4 Discussion

The increased focus on large-scale phylogenetics, whether in numbers of taxa (e.g., Bininda-

Emonds et al. 2007, Pyron & Wiens 2011, Wächter & Melzer 2020) or loci (e.g., Chan et al. 2020,

Siu-Ting et al. 2019, Streicher et al. 2020), has re-ignited the debates of how best to infer trees
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5.4. DISCUSSION

TABLE 5.5. Tree jackknife results and supertree resolution (ρST) for each reanalysed Dobrin
et al. (2018) dataset.

Dataset ρ ST Candidate
loci Unstable taxa

Allium 0.80 rbcL, matK
Allium siculum, Allium textile,

Allium triquetum

Asplenium 0.98 rbcL Dicksonia sellowiana

Caryophyllaceae 0.91
ITS, matK,

t-RNAs
Spergularia marina

Chameleons 1.00 All None

Eucalyptus 0.99 None Eucalyptus lehmannii, Eucalyptus rodwayi

Euphorbia 0.96
ITS, matK,

t-RNAs
Euphorbia silvifolia, Euphorbia polyacantha

Ficus 0.95
ITS, matK,

rbcL, t-RNAs
Ficus trigonata, Ficus bullenei,

Ficus asperula

Iris 0.99 All None†

Primula 0.97
matK, rbcL,

t-RNAs
Primula veitchiana

Ranunculus 1.00 ITS, matK None†

Rhododendron 0.99 matK, t-RNAs Rhododendron micranthum

Rosaceae 0.95
18S, matK,
t-RNAs, ITS

Aphanes microcarpa, Crataegus columbiana,
Amelanchier alnifolia, Rubus arizonensis,

Rosa orientalis, Rosa corymbifera,
Geum macrophyllum, Geum aleppicum,

Rubus discolor
Scincids 0.99 All None

Solanum 0.96
ITS, matK,

rbcL, t-RNAs
Solanum erianthum

Syzygium 0.99 All None†

†Some taxa in triads or rhombi, but their removal does not affect tree resolution.

(e.g., de Queiroz & Gatesy 2007, Gatesy et al. 2002, Von Haeseler 2012)1 and also of how to

deal with missing data in these large matrices (e.g., Molloy & Warnow 2017, Roure et al. 2012,

Streicher et al. 2016). As seen in Chapter 3, many approaches to dealing with missing data focus

on identifying and removing unstable taxa in order to increase tree resolution (e.g., Aberer et al.

2012, Thorley & Wilkinson 1999, Wilkinson 1995b) and/or remove long branches (Mai & Mirarab

2018). This focus on taxa and sequence removal, however, may preclude the inclusion of poorly

sampled, rare, or recently extinct taxa from otherwise comprehensive phylogenetic studies.

1While I did not explore the supertree vs. supermatrix debate, I will note that the decision to use supertrees in
this chapter was driven exclusively by the need to compute gene trees for the tree jackknife approach.
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In contrast, gene sampling sufficiency is an approach that aims to test whether, given a

taxon coverage pattern, there are enough sampled loci in a partitioned matrix to ensure taxon

coverage decisiveness, i.e. all subtrees induced by the data partitions have the same parent tree

(Sanderson et al. 2010, Steel 2016, Steel & Sanderson 2010), and if not, it yields a minimum

number of loci that needs to be sampled to ensure decisiveness (Dobrin et al. 2018, Parvini et al.

2021, Steel 2016). This approach was developed to counteract the formation of terraces during

tree inference. These are areas of tree space, more specifically of islands of trees sensu Maddison

(1991), that are made up of trees with exactly the same optimality score, and which arise (partly)

due to non-effective taxonomic overlap between data partitions (Sanderson et al. 2011, 2015).

Unfortunately, gene sampling sufficiency assumes uniform random taxon sampling of infinite and

equally informative loci (Dobrin et al. 2018, Sanderson et al. 2010), which are either a biological

impossibility (infinite loci) or unlikely to be met in empirical datasets (random taxon sampling).

One more, indirect, assumption is that there is one unique binary phylogenetic tree for any set of

taxa, and thus penalises gene tree-species tree discordance and hard polytomies. Additionally,

because gene sampling sufficiency looks at the amount, not the pattern, of overlap, it can lead

to instances where sampling is inferred to be insufficient, even though a fully resolved, and

reasonably well supported, tree is inferred. This can be seen for the Ranunculus dataset, where

even though the inferred supertree is binary, gene sampling is insufficient (ζ=−5.20), and 1802

loci need to be sampled for decisiveness (Tables 5.4 and 5.5).

On a more practical level, the high numbers of loci needed for taxon coverage decisiveness (as

calculated by gene sampling sufficiency) also runs into the problem of how to increase sampling

for hard to collect and rare taxa, even if advances in museomics is making it possible to extract

molecular data from previously inaccessible specimens (e.g, Colella et al. 2020, Raxworthy &

Smith 2021). The large number of ’sufficient’ loci also does not take into account the financial

costs of undirected loci-rich sequencing approaches (Zaharias et al. 2020), which might deter work

in non-model taxa. A potentially less costly approach to mitigating the effects of non-effective

overlap due to missing data is to target specific taxa and/or loci for sampling. Goldman (1998)

and Massingham & Goldman (2000) proposed an information-based approach to identify the

most informative loci in a dataset, as well as areas of a phylogeny that might benefit from

increased taxon sampling (i.e. targeted sampling). However, this method did not gain traction

and was seldom used with empirical datasets. An exception being San Mauro et al.’s (2009, 2012)

application of Goldman’s (1998) method to caecilian phylogenetics; where in the 2009 paper they

found the Terasomata split to be a candidate for targeted taxon sampling and that the tRNAs and

rRNAs were the most informative loci, which they subsequently tested, and confirmed, in their

2012 study. And, while the likelihood and Bayesian supermatrix analyses of San Mauro et al.

(2012, 2014) and Kamei et al. (2012) fully supported the split between Scolecomorphidae and the

other terasomatans, my supertree analyses only supported this split after the tree jackknifing

analyses, and then only very weakly (QS=50.2%). This suggests that the deep-time terasomatan
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5.4. DISCUSSION

divergences are not robust to changes in inference method, although the omission of tRNAs might

also have contributed to the decreased support for this split. However, despite San Mauro et al.’s

(2009, 2012) encouraging results, Goldman’s (1998, 2000) approach need for hypothetical taxa to

test which areas of a tree would benefit from increased taxon sampling, while easily manageable

for a 9-tip tree (San Mauro et al. 2009), can prove daunting for more taxon-rich datasets. The

Concatabominations with tree jackknifing approach, proposed here, aims to be a middle ground

between the data-only gene sampling sufficiency approach (Steel 2016) and the experiment-based

approach from Goldman (1998), by relying only on the set of inferred gene trees, but having the

capacity to identify which of those trees approach decisiveness and which contribute noise to the

topology.

Since their publication STR and Concatabominations have been more or less successfully

applied to identify unstable taxa in morphological datasets (e.g., Moon 2019, Wilson 2002), and

also in supertree studies that employed MR-based methods to infer phylogeny (e.g., Cardillo et al.

2004, Davis & Page 2008), or where MR was used solely for the purpose of rogue taxa identification

(Akanni et al. 2015). In these studies, once the unstable taxa were identified, all those taxa that

could be safely deleted, i.e. their removal would not affect the inferred relationships between

the remaining taxa, were removed from the datasets in order to decrease or even eliminate

taxonomic instability. However, as noted above my aim was to decrease taxonomic instability

caused by missing data without removing taxa, but also without having to increase loci sampling

by multiple orders of magnitude, as suggested by the gene sampling sufficiency results (table

5.4). To achieve this, I adapted the idea behind taxon-jackknifing (Lanyon 1985, see Chapter 3

for example of application) to the MR of trees and Concatabominations. In other words, if we can

identify which taxa are adding instability to the matrix by sequential removal of taxa, might we

be able to identify which gene trees are adding/decreasing instability by sequential removal of

trees from the MR?

As seen from the caecilian analyses (Figs. 5.3 and 5.4, table 5.), Concatabominations with

tree jackknifing does indeed identify not only unstable taxa (candidates for increased locus

sampling), but also the gene trees that would contribute the most to reduce taxonomic instability

by increasing their taxon sampling. In other words, which taxa and gene trees would lead to

the biggest increase in effective overlap by adding the least possible data. While taxon coverage

might be considered a proxy for how good a gene tree would be at reducing non-effective overlap

(underpinning of decisiveness, Sanderson et al. 2010, Steel & Sanderson 2010) were data added to

it, the analyses show that that alone is insufficient. The tree jackknifing analyses identified 12S

and 16S rRNA, COX1, CYTB, H3A and ND1 as the gene trees where increased taxon sampling

would be most effective at reducing non-effective overlap, yet the ND2 and RAG1 trees have

greater taxon coverage than the latter two. Furthermore, that the addition of a single nucleotide

sequence (16S rRNA for H. montanus) resulted in increased topological resolution raises the

possibility that, by targetting those taxa missing one or more of the "stabilising" loci, resolution
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Ichthyophis asplenius

Ichthyophis nguyenorum

Ichthyophis biangularis

Ichthyophis tricolor

Ichthyophis supachaii

Ichthyophis kohtaoensis Ichthyophis multicolor

Ichthyophis cardamomensisIchthyophis larutensis

Ichthyophis chaloensis

Ichthyophis catlocensis

FIGURE 5.6. Cluster of within genus instability between Ichthyophis species identified after
jackknifing of the tree for 16S rRNA.

can be further increased at a fraction of the cost required to sequence all taxa for all loci selected

for analysis, or for the large kmin yielded by the gene sampling sufficiency calculations. This

would be especially cost effective when dealing with datasets containing hundreds or thousands

of loci (Zaharias et al. 2020). However, this strategy is not guaranteed to result in a fully

resolved topology, as the jackknifing is targeting non-effective overlap, not data incongruence

resulting from evolutionary history. In fact, resolved trees may be biologically unwarranted

if events such as explosive radiations or hybridisation occurred anywhere along the tree (e.g.,

Olave et al. 2015, Stolzer et al. 2012). Evolutionary histories aside, targeted sampling guided

by Concatabominations with tree jackknifing can and does minimise the number of polytomies

resulting from poor taxon/sequence sampling.

While data generation was beyond the scope of this study, it is worth noting that additional

areas of instability recovered by Concatabominations during tree jackknifing (Fig.5.6), may be

indicative of "incomplete" non-effective overlap (i.e. taxa whose overlap is effective for the full

complement of sampled loci, but not for certain subsets of loci) and might benefit from ensuring

they are sampled for all "stabilising" loci. It is also possible that, because Concatabominations is a

heuristic method, not all unstable taxa are identified (Siu-Ting et al. 2015), and that by removing

trees from the MR, the compatibility scores change drastically between analyses, and thus the set

of identified unstable taxa. As such, studies that aim to increase taxon and/or sequence sampling

may benefit from using the output of the jackknifed runs not just to test for changes in overall

taxonomic stability, but to find taxa that change from stable to unstable between analyses, and

might therefore benefit from the addition of sequence data. And, while the exact relationship

between terrace size and taxon coverage in empirical datasets remains elusive (Dobrin et al.

2018, this chapter), directed increases in taxon coverage may also result in datasets with decisive
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taxon coverage, thus preventing the occurrence of terraces.

Thus, Concatabominations with tree jackknifing is a promising approach to tackling taxonomic

instability caused by non-effective overlap by identifying those taxa that would benefit from

increased locus sampling, as well as the best loci to sample. Thus providing a cost-effective, and

biologically realistic, alternative to gene sampling sufficiency. However, further work is needed

to investigate up to what matrix size (taxa and loci) this approach can be efficiently and/or

effectively used.

5.5 Data availability

The data, scripts and results for this chapter are available on the following repository:

• Figshare, https://doi.org/10.6084/m9.figshare.c.6050033.
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COMPARING BRANCH SUPPORT ACROSS PHYLOGENIES

Some of the treefiles used in this chapter were generated for:

Wilkinson, M. and Serra Silva, A. ’Large island bias in Bayesian phylogenetic inference and

bootstrapping’, Systematic Biology. Invited to resubmit.

6.1 Introduction

Phylogenetic trees inferred from empirical data are seldom reported without branch support

values, which often consist of frequentist (e.g., bootstrap (Felsenstein 1985); jackknife (Lanyon

1985)) or posterior predictive (e.g., Bayesian analyses) probability methods. Although rarely used

outside parsimony, there are non-probabilistic branch support measures, like Bremer’s (1988)

decay index, and the strict consensus (SC, Sokal & Rohlf 1981) might also be considered a support

measure, albeit one that is only interested in plenary support (Nixon & Carpenter 1996). More

important than the method used to calculate branch support is what those values can tell us.

Poorly supported branches are often indicators of topological incongruence, which can be due

to missing data (e.g., Wiens 2003, Wilkinson 1996), analytical artefacts (e.g., Léveillé-Bourret

et al. 2017, Simmons et al. 2022) and/or reticulation events (e.g., Chan et al. 2020, Hahn 2007).

However, some of the phenomena that lead to poor branch support can also lead to artefactually

high, or inflated, support (e.g., Simmons 2012, Simmons & Freudenstein 2011, Simmons &

Norton 2013). Thus, level of support per se may not be informative, but, much like the (non-)

effective overlap discussed in Chapter 5, the non-random distribution of very poorly (or very

highly) supported branches might be indicative of issues in the underlying datamatrices. To my

knowledge, branch support has not been approached under this rationale, except for work dealing

with long branch attraction (e.g., Huelsenbeck 1997, Lartillot et al. 2007), and even then the
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CHAPTER 6. COMPARING BRANCH SUPPORT ACROSS PHYLOGENIES

focus was on branch lengths and their causes.

While most parsimony and maximum likelihood inference software include bootstrap analyses,

there are multiple algorithms implemented for the standard bootstrap (reviewed in Simmons

& Norton 2013), with many software packages offering their own versions of ’fast’ bootstrap

searches (e.g., rapid bootstrap, Stamatakis et al. (2008); ultrafast bootstrap, Minh et al. (2013)).

Because all these implementations have their own analytical artefacts, this can lead to different

software packages finding different levels of support for trees inferred from the same matrix. This,

combined with the fact that bootstrap results can be projected onto a best likelihood tree (e.g., tree

search with multiparametric bootstrap in RAxML (Stamatakis 2014)), a majority rule consensus

(MRC, Margush & McMorris 1981) of the best likelihood trees (e.g., IQTree, Nguyen et al. 2015)

or of the bootstrap trees (e.g., PAUP* Swofford 2003), means that often branch support has to be

compared across trees with different topologies. However, what is often done is to project multiple

support values onto a single tree topology (e.g., San Mauro et al. 2009, 2012, Taboada et al. 2020),

and then compare topologies based on tree-to-tree distances (e.g., Robinson-Foulds distance (RF),

Robinson & Foulds 1981) or visual inspections. Unfortunately, the former can tell us only how

different trees are not where they differ, and the latter is increasingly harder to do the larger the

trees being compared. For example, comparing the topologies of the caecilian trees inferred in

Chapter 5 by eye is feasible, but the same would no longer hold for a Tree of Life of Caudata, the

next largest order of amphibians with over 770 valid species (Frost 2022). Thus, a tool that allows

for the direct comparison of support values across tree distributions would be highly desirable.

In this chapter, I introduce a permutation-based analysis to test for non-random distribution

of probabilistic support values across a tree, and a Python (Van Rossum & Drake 2009) script to

extract splits and their associated branch support values from collections of Newick-formatted

trees on the same leaf set, and discuss possible extensions to trees on non-identical leaf sets.

6.2 Testing for non-random distribution of branch support
values

As mentioned throughout the previous chapters, there are multiple causes for topological

uncertainty and the resulting poorly resolved branches, and thus for poor split support. However,

as seen in Simmons and Freudenstein (2011) and Simmons and Norton (2013), the phenomena

causing poor branch support can also artificially inflate support values. Thus, if we are interested

in searching for patterns of non-random distribution of branch support, we must search for both

very high and very low support. To do this we must know both the location and magnitude of

changes in support. In other words, we want to know if and where there are large differences

in support between adjacent branches. We can achieve this by calculating the sum of absolute

differences in support between adjacent branches (for all branches, except the root), see figure 6.1

for example. These sums provide the magnitudes of support changes, and we can logically expect
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Σ|iv| = |100 - 94| = 6

Sums of absolute branch support differences

FIGURE 6.1. Example of how the sum of absolute branch support differences for adjacent
branches.

that the more similar the support values are across the tree, the closer the sum of magnitudes

will get to zero (independent of tree size). Using the magnitude of changes means that we test for

both poor and inflated branch support. Permuting the support values and recalculating the sum

of magnitudes give us the ’location’ of the support changes, i.e. are they clustered, overdispersed

or randomly distributed. This magnitude-based (permutation) test of branch support distribution

is implemented in the supportDistribution script described below.

6.2.1 supportDistribution script

Given a binary tree with probabilistic support values and number of permutations (n)

Root trees and set the root’s support to ’NA’

Standardise probabilistic support values to S ∈ [0,100]

Compute patristic distance between all branches and export tab delimited distance matrix

Permute support values (except root’s) n times and export tab delimited permutation table

Calculate average branch support across tree

For each branch:

Identify branch adjacencies from distance matrix

Calculate the sum of absolute support value differences between adjacent branches

For dispersion test:

Calculate sum of sums of absolute differences, plot its histogram and save histogram to file

Calculate z-score

Calculate one- and two-sided p-values

Calculate number of sum of sums in the permuted data that exactly matches input tree

Write z-score, p-values, average branch support and number of exact matches to text file
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The script is implemented in Python v.3.8 (Van Rossum & Drake 2009), and currently requires

fully resolved Newick-formatted trees. The dispersion test was based on Martin Hughes’ (2015)

Parsimony_conv R v.3.2.0 (R Core Team 2015) script to test for the non-random distribution

of convergent events in a phylogenetic tree (used by the present author in de Almeida Serra

Jorge da Silva 2016). Following the original script, the z-scores were multiplied by -1, so that

positive scores correspond to overdispersion of large changes in support values, and negative

scores to underdispersion (Cooper et al. 2008). The newly added two-sided p-value calculation

uses Kulinskaya’s (2008) and Kulinskaya and Lewin’s (2009) conditional p-value, which works on

symmetric and non-symmetric distributions. For symmetric distributions the two-sided p-values

will be twice the one-sided p-value. The script has a default number of permutations (999), but

users have the ability to select a different number of permutations.

6.2.2 Example

Running two published taxon-rich amphibian trees (Jetz & Pyron 2018, Pyron 2014) shows

the possible usefulness of the supportDistribution script. The Pyron (2014) tree was inferred,

under maximum likelihood, from a matrix with 3310 taxa, a maximum length of 12,809 base

pairs (bp), and an average 20% completeness. Given the large amount of missing data, and the

presence of branches with bootstrap proportions (BP) < 50%, this is an ideal tree to test for

non-random distribution of branch support, and because it was inferred under likelihood it fulfils

the script’s binary tree requirement. The script found the support in Pyron’s (2014) tree to be

significantly overdispersed (z-score = 2.478; p-value: one-sided = 0.005 and two-sided = 0.010), a

pattern that can be seen in the histogram of the sums of absolute differences for the permuted

data (Fig. 6.2a).

The second tree tested, Jetz and Pyron’s (2018) tree, was inferred in two stages. First, a tree

was inferred under maximum likelihood from a concatenated matrix with 4062 taxa and 15 loci

(length of matrix and amount of missing data not provided). Then, 3177 amphibian taxa were

added to the inferred backbone based on a taxonomic classification, generating a megaphylogeny

sensu Smith et al. (2009). Running only the inferred backbone tree through supportDistribution

again finds the sum of sums of differences to be significantly overdispersed (z-score = 2.690;

one-sided = 0.005 and two-sided = 0.010), see figure 6.2b. This result was not unexpected, since

the Jetz and Pyron (2018) concatenated matrix built on Pyron’s (2014) matrix.

6.3 Comparing probabilistic support across collections of trees

Comparison of branch support across summary trees (consensus or supertrees) often consists

of projecting support values onto a single topology (e.g., San Mauro et al. 2009, 2012, 2014), or

of side-by-side visual comparison of trees (e.g., caecilian supertrees in Chapter 5). However, for

the former strategy different inference software packages and/or optimality criteria can recover
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a) b)

FIGURE 6.2. Histograms resulting from the supportDistribution script permutation-based disper-
sion for a) Pyron’s (2014) and b) Jetz and Pyron’s (2018) amphibian phylogenies. The red vertical
line shows the empirical sum of sums of absolute branch support differences.

different (multi)sets of trees, and thus different summaries. This means that branches that

are strongly supported in one summary tree might be absent from another (e.g., Mahony et al.

2022, Roberto et al. 2022). As for the second approach, the more taxa are added to trees the

harder they are not only to visualise, but also the harder it is to identify the splits present in the

trees and their associated support values. And even though there are a few dedicated tools for

side-by-side comparison of large phylogenetic trees (e.g., Phylo.io, Robinson et al. 2016), these are

often restricted to pairwise comparisons. It may, thus, be useful to have a tool that allows for the

comparison of (multi)sets of summary trees, both the splits that are present and their associated

support values.

6.3.1 splitSupport script

Given a treefile with a pointer taxon

Create a ’Translation table’ (akin to those in Nexus files) with the pointer taxon as 1

(There is a 1:1 correspondence between taxa in a split and taxa in the translation table)

Standardise pointer taxon across all trees and unroot them

Extract slits and attached support from trees:

If first split:

Add split to array as the first row and its attached support value to column two

If split present:

Add split support to column corresponding to the tree’s index

If new split:

Add split as new row, fill columns before tree index with zeros

Standardise probabilistic support values to S ∈ [0,100]

Calculate number and frequency of trees each split is present in

Calculate number (and percentage) of splits present in all trees
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Calculate mean, standard deviation, median and mode support for each tree

Save translation, splits and summary statistic tables to tab delimited text file

This small Python 3.8 script extracts the splits present in a collection of trees as a dot-star

matrix, their associated support values, and, for probabilistic support measures, calculates

a number of summary statistics (see Fig.6.4 for example output). Earlier Python 3 versions

can be used, but the script has to be edited to use the statistics.mode function rather than

statistics.multimode, since the latter is only supported from Python v.3.8. Thus, if using earlier

Python 3 versions, trees whose support distribution is multimodal will cause the script to abort

with an error. The current script accepts only Newick-formatted tree files (rooted or unrooted)

and the desired outgroup, or pointer taxon, must be the first taxon on the treefile’s opening tree.

If a set of trees with no support values is provided the script will generate only the translation

table and a table of splits similar to those outputted by PAUP* (Swofford 1991) for bootstrap

analyses or the MRC. At present, the script can only work with (multi)sets of trees on the

same leaf set and non-probabilistic support values, like decay indices, are treated as if they

were proportions/frequencies and any comparisons to probabilistic support measures (and the

summary statistics using them) should be interpreted very cautiously.

6.3.2 Example

To illustrate the usefulness of the splitSupport script, I will use a set of summary trees

inferred from multiple analyses on a data matrix modified from the one used by Wilkinson (1996)

to illustrate the effect of unstable taxa (taxon X) on branch support measures, table 6.1. The new

matrix was modified to encode for two islands of 1-TBR trees (Maddison 1991, Serra Silva &

Wilkinson 2021, and Fig.6.3), through the addition of three taxa to one end of the (caterpillar)

tree and two characters supporting their placement, but scored as missing for the unstable taxon

X. In order to generate multiple trees to use as input for the splitSupport script, eleven inference

and/or support analyses were run on the matrix (order of analysis descriptions is the same as the

trees listed in Fig.6.4).

Starting with PAUP* (Swofford 1991), three bootstrap searches were run under default

heuristic parsimony settings, with 100 replicates each, and with one analysis set to save a single

tree per replicate and the others to save multiple trees (’MulTrees’ option). A MrBayes v.3.2.6

(Ronquist et al. 2012) analysis was run under the Mkv+G model, set to two independent runs with

four chains for 10 million generations, sampled every 1000 generations with a relative burn-in

of 25%. Run convergence was checked using an average standard deviation of split frequencies

(ASDSF) ≤ 0.01, and a potential scale reduction factor (PSRF) of 1.00, and the analyses were

summarised with the MRC. Three IQ-Tree v.1.6.10 (Nguyen et al. 2015) analyses were run: two

nonparametric bootstrap searches, with 100 and 1000 replicates, and an ultrafast bootstrap

(Minh et al. 2013) search with 1000 replicates. All analyses were run with the JC2+G+ASC, which

is equivalent to the Mkv+G model, and the bootstrap proportions projected onto the MRC. Lastly,
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TABLE 6.1. Binary character patterns in the hypothetical data. The data matrix used for analyses
contained five copies of each character pattern for a total of 65 characters. All incongruence and
uncertainty in these data are concentrated in the single unstable taxon X.

Taxon Site patterns

O 0 0 0 0 0 0 0 0 0 0 0 0 0

A 1 1 1 1 1 1 0 0 0 0 0 0 0

B 1 1 1 1 1 0 0 0 0 0 0 0 0

C 1 1 1 1 0 0 0 0 0 0 0 0 0

D 1 1 1 0 0 0 0 0 0 0 0 0 0

E 1 1 0 0 0 0 0 0 0 0 0 0 0

F 1 0 0 0 0 0 1 0 0 0 0 0 0

G 1 0 0 0 0 0 1 1 0 0 0 0 0

H 1 0 0 0 0 0 1 1 1 0 0 0 0

I 1 0 0 0 0 0 1 1 1 1 0 0 0

J 1 0 0 0 0 0 1 1 1 1 1 0 0

K 1 0 0 0 0 0 1 1 1 1 1 1 0

L 1 0 0 0 0 0 1 1 1 1 1 1 1

M 1 0 0 0 0 0 1 1 1 1 1 1 1

X 1 1 1 1 1 1 1 1 1 1 1 ? ?

four analyses were run on RAxML v.8.2.10 (Stamatakis 2014), two rapid bootstrap searches

(Stamatakis et al. 2008) with 100 and 1000 replicates, and two multiparametric bootstrap

searches also with 100 and 1000 replicates. All analyses were run under the BIN+G model with

the Lewis ascertainment bias correction, and the bootstrap proportions were projected onto the

best likelihood tree.

Running the collection of trees resulting from the analyses above through the splitSupport

script shows they recover trees from the two 1-TBR islands (Figs.6.3 and 6.4), trees 1–3 correspond

to the small singleton island and trees 4–11 to trees in the large island. However, from the table

of splits and support (Fig.6.4) we can see that for tree 8 (RAxML rapid bootstrap, 100 replicates),

the best supported topology is not that onto which the bootstrap proportions have been projected.

The splitSupport script also shows that tree 4, the tree inferred from the Bayesian analysis, has

the highest average support. This shows that unlike most of the other analyses, there is likely

to have been extreme island bias during tree search. However, the purpose of this chapter is

not to explore the existence of large island bias in bootstrap and Bayesian analyses, rather to

introduce tools that allow for comparison of support values across multiple trees, and to test for

their non-random distribution in one tree.

123



CHAPTER 6. COMPARING BRANCH SUPPORT ACROSS PHYLOGENIES

C

L

B

E

M

X

J

F

H

A

I

K

O

G

D

I

C

M

G

H

L

E

X

K

J

D

B

A

FO

J

F

X

K

I

D

A

L

M

B

C

E

H

O

G

D

H

G

X

F

C

A

O

M

I

K

L

B

J

E

G

F

H

O

C

K

I

L

M

A

J

E

D

B

X

I

G

X

J

L

D

K

B

F

A

E

M

H

O

C

H

K

G

M

A

L

X

F

I

D

B

J

C

E

O

E

X

M

L

G

H

I

K

D

F

B

O

C

A

J

Large island

FIGURE 6.3. The eight trees encoded by the hypothetical data matrix and their 1-TBR island
structure.

6.4 Discussion

Phylogenetic analyses are often not considered to be complete without the calculation of

branch support values, whether they are an integral part of the inference analysis (e.g., posterior

predictive probabilities in Bayesian inference) or whether they require additional analyses

(e.g., parsimony or likelihood bootstrap searches). These support values, particularly those from

resampling analyses, are measures of how robust to perturbation the inferred tree’s underlying

data are, and are used as guides for how robust any inferred relationship is (Felsenstein 2004).

There are, however, many possible causes for the topological instability that leads to low support

values, from missing data (e.g., Wiens 2003, Wilkinson 1996) to reticulate events (e.g., Chan

et al. 2020, Hahn 2007), often compounded by inference software packages not allowing for hard

polytomies (e.g., RAxML). Interestingly, many analytical artefacts, beyond long branch attraction,

can lead to inflated support values (e.g., Simmons & Freudenstein 2011, Simmons & Norton

2013). Thus, because both low and high support values can be problematic we may want to focus

not on the values alone, but on areas of the tree where drastic shifts in support occur and on how

these are distributed across a tree. This is similar to testing the patterns of missing data, i.e.

(non-)effective overlap, not its amount.
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FIGURE 6.4. Example output for the splitSupport script using the summary trees of the
(multi)sets inferred from the table 6.1 data matrix.

The distribution of shifts in branch support, though not their direction, can be tested with

the supportDistribution script. The results for the two tested phylogenies, Pyron’s (2014) and

Jetz and Pyron’s (2018) amphibian trees, found their shifts in support values to be significantly

overdispersed. This means that there are multiple areas of the tree where poorly and highly

supported relationships are in close proximity, but these are not clustered, as might be expected

if shifts to low support were due to, for example, incomplete lineage sorting (ILS). The shifts

are, however, more broadly distributed than might be expected from chance alone. While it is

clear that significant clustering of shifts in support value reduces confidence on the inferred trees,

since the clustering is likely linked to either extensive missing data or ILS/reticulate events,

the causes for large absolute differences in support values are not clear, and might be linked to

the number of shifts not their underlying causes. Thus, while the identification of significantly

clustered support value shifts warrants a thorough revision of the data matrix, further work is

needed to understand what causes overdispersion of large changes in support values.

A major methodological gap when dealing with support measures is how to compare them
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across multiple trees on the same leaf set. While there are tree visualisers like Phylo.io (Robinson

et al. 2016) that allow for the direct comparison of phylogenetic trees, they are often restricted

to two input trees. With trees of increasingly larger leaf sets being inferred, visual comparison

between trees, particularly branch topology and associated support values, becomes increasingly

more challenging. To mitigate this challenge, the splitSupport script prints a list of the splits

present in all input trees (on the same leaf set) and the support for each split in all trees. From

figure 6.4 it is clear that two distinct topologies were inferred from the hypothetical data matrix

in table 6.1. While this was expected a priori for this dataset, if other sets of input trees display

similar trends of inferring more than one topology, it may be indicative of the presence of islands

and the user would be advised to check the inferred (multi)sets for island structure. Additionally,

the script also identifies two trees with very different support values from the other trees in

the set. First, the Bayesian analysis has an average branch support of 88.25%, which is 20–30%

higher than most other trees, which is not unprecedented given that multiple studies have found

that posterior probabilities are often higher than bootstrap proportions for trees inferred from the

same matrix (e.g., Simmons et al. 2004, Suzuki et al. 2002). It does, however, call into question

the results of the Bayesian analysis, particularly because the dataset encodes for two 1-TBR

islands.

The other tree with very different support levels is tree 8, which was inferred with RAxML

and the support values were obtained with a rapid bootstrap search. Contrary to the Bayesian

analysis, this tree displays lower average support (BP = 36.5%) than the other trees, which is

probably due to the low number of bootstrap replicates (100) and stochasticity. Because in RAxML,

bootstrap proportions are projected onto the best likelihood tree, the most likely explanation for

the support values on tree 8 is that the bootstrap favours trees from the singleton island, whereas

the tree search identified a tree from the largest island as the optimal tree. This discrepancy

between tree and bootstrap searches can be explained by how the rapid bootstrap algorithm works.

First, each bootstrap replicate uses the tree found by the previous replicate as a starting tree, and

every tenth bootstrap uses a starting tree that is encoded by the original alignment (Stamatakis

et al. 2008). Thus, if the tree from the singleton island is drawn from the original alignment more

often than a tree from the largest island, the bootstrap distribution can be skewed toward the

smallest island simply due to stochasticity. As such, by printing the splits and support values for

multiple trees side-by-side the splitSupport script allows for the identification of major topologies

found by distinct inference analyses, and if trees with very different support values are present,

it can direct users to the trees that should be reanalysed or whose analytical parameters/settings

need to be revised/rethought. And, while the script outputs only summary statistics, the split

support table is exported in a format where it can be extracted and manipulated for further

statistical tests.

Despite its current utility, the splitSupport script might be further modified to deal with

partially resolved trees and with trees on non-identical leaf sets, as it is sometimes necessary
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to compare topological and support changes between trees inferred before and after increased

taxon sampling. For the former, it will first be necessary to choose whether to treat polytomies as

hard (real multifurcations) or soft (topological uncertainty). If dealing with hard polytomies, we

might want to test for the non-random distribution of support values and polytomy occurrence,

with the latter being achieved by permuting the number of children any branch/node has. Soft

polytomies, on the other hand would need to be expanded and a support of 33.33% assigned to

each possible resolution, in order to compare them to any other trees where one of the resolutions

is present. As for comparing trees on non-identical leaf sets, while there is a preliminary script

to extract partial splits, these cannot yet be compared except to search for exact matches, and

the extracted support values are thus not necessarily informative. In order to compare partial

splits, it will be necessary to implement a pruning, or grafting, step to convert all pairs of trees

into trees on the same leaf set (e.g., Bansal 2020, Wilkinson et al. 2005), and from there compare

branch support values. However, if grafting is chosen over pruning, branch support values will

either need to be imputed, or a classification system will be required, similar to those proposed

by Bininda-Emonds (2003) and Wilkinson et al. (2005), to allow for the comparison of branches

present in some, but not all, trees.

In summary, while the scripts introduced in this chapter address a methodological gap (testing

for non-random distribution of support values, and comparing support values across multiple

trees with the same leaf set), they can be further expanded to polytomous trees and sets of trees

with non-identical leaf sets, but careful consideration is required to achieve these modifications.

6.5 Data and software availability

The data, scripts and results for this chapter are available on the following repository:

• Figshare, https://doi.org/10.6084/m9.figshare.c.6050033.
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CONCLUSION AND FUTURE WORK

7.1 General conclusion

With this thesis I attempted to tackle two problems: how to identify and summarise tree

(multi)set heterogeneity, and how to identify and mitigate topological incongruence caused by

non-effective overlap. While I explored, generalised, and proposed methods to deal with these

topics, in the age-old tradition of scientific enquiry, new questions arose with each step forward

(or sideways). What I hope was made clear in this work is that, although there is no perfect

data and evolutionary phenomena can and do lead to topological incongruence, by trying to

understand the patterns of incongruence and their causes, we might eventually be able to

efficiently summarise these patterns. We might even one day be capable of restricting all inferred

topological incongruence to that caused by processes of evolution, without having to worry about

incongruence caused by missing data and analytical artefacts. To be able to do so, however,

further work on the topics covered here is needed. Below I leave some of the new questions, and

possible research avenues, that arose from the work detailed in the previous chapters.

7.2 Future work

7.2.1 Islands and clumps of trees

In Chapters 2 and 4, I briefly mentioned that the development of generalised tree-to-tree

distances, which account for minimal or no overlap between leaf sets, might allow us to extend

islands of trees (Maddison 1991, Serra Silva & Wilkinson 2021) to the supertree context, and the

use of tree-to-tree distances for internally labelled trees means that islands and clumps might be

applicable in cancer phylogenetics. There are, however, many more questions/applications to be
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explored. Starting with islands, the work in this thesis focused only on tree sets inferred from

morphological data (and one hypothetical dataset, Chapter 6), but how prevalent are islands

throughout empirical datasets? Are they more common in parsimony, likelihood or Bayesian

searches? Do they, in fact strongly affect resampling analyses, and thus support measures? Is any

commonly used bootstrap implementation particularly prone to island bias? Beyond analytical

aspects, we may want to explore going one step further than multidimensional scaling (MDS)

plots to depict island structure, and instead project islands in three-dimensions (3-D). These 3-D

plots might identify gaps in the sampled topologies, particularly when dealing exclusively with

(multi)sets of optimal trees. Also, while the concepts of island size, mass and density were defined

in Chapter 2, other measures of between and within island dissimilarity might be devised. For

example, island diameter, or the greatest within-island tree-to-tree distance, might be a proxy for

how many areas of local instability occur in any given island.

As for clumps, beyond the work necessary to establish what the best analytical parameters

are, simulation studies, where the causes of topological incongruence are known, might give a

better understanding of the biological information being relayed by the set of identified clumps.

Might a visualising tool with the capacity to plot within and between clump distances, which

does not require imputation of the distance between trees with minimal/no overlap, be developed

to project the tree space occupied by (multi)sets of trees with non-identical leaf sets in two- or

three-dimensions? How might we measure within and between clump dissimilarity, other than

relying on comparisons of clump supertree topologies? Much like islands, there is a breadth of

possibilities to explore what information clumps relay, their prevalence in phylogenomic data, etc.

7.2.2 The Chinlestegophis conundrum

As mentioned in Chapter 3, a thorough revision of character construction and scoring, of both

the Pardo et al. (2017) and Schoch et al. (2020) matrices, is warranted. Particularly in regards to

the logically and biologically dependent characters present in both matrices. However, given the

uncertainty surrounding the relationships between tetrapod lineages (reviewed in Marjanović

& Laurin 2019), we may expect that this will be done incrementally as more fossils are found,

which can either reduce the amount of missing data in the existing matrices or increase taxon

sampling.

7.2.3 Mitigating non-effective overlap in molecular datasets

Further work on the Concatabominations with tree jackknifing approach should focus, first, on

testing it with other empirical datasets, and also on testing the hypothesis that sampling taxa for

as many ’stabilising’ loci as possible will decrease the overall incongruence caused by non-effective

overlap. Another avenue might be to test whether matrix representations (MR) other than MR of

splits (reviewed in Wilkinson et al. 2004) might be used to yield smaller Concatabominations-

compatible input matrices, while retaining the capacity to identify instances of non-effective

130



7.2. FUTURE WORK

overlap. If such MRs can be encoded, the smaller matrices would lower the computational

requirements on the Concatabominations pipeline and the tree jackknifing approach might be

efficiently run on matrices larger than those tested in Chapter 5.

7.2.4 Comparison of branch support between trees with non-identical leaf
sets

Lastly, beyond the generalisation to trees on non-identical leafs sets discussed in Chapter

6, further work on branch support comparison across trees might focus on exploring how well

the existing scripts perform with trees inferred from empirical datasets and on optimising the

runtimes of the existing scripts, thus increasing their usefulness.

131





A
P

P
E

N
D

I
X

A
LIST OF ABBREVIATIONS

Abbreviation Meaning Page

c. circa: approximately
e.g. exempli gratia: for example
i.e. id est: that is
vs. versus
ILS Incomplete lineage sorting 2

MPT Most parsimonious tree 9
RF Robinson-Foulds tree-to-tree distance 11

NNI Nearest-neighbour interchange 11
SPR Subtree prune-regrafting 11
TBR Tree bisection-reconnection 11
QD Quartet distance 22

MDS Multidimensional scaling 24
BIC Bayesian Information Criterion 25
NJ Neighbour-joining 26

UPGMA unweighted pair group method with arithmetic mean 26
HGT Horizontal gene transfer 28
LS Leaf stability 31

RBIC Relative bipartition information content 32
MRC Majority-rule consensus 32
STR Safe taxonomic reduction 32
SC Strict consensus 33

RNR RogueNaRok 33
LSmax Maximal leaf stability 33
LSdi f f Difference between highest split frequencies leaf stability 33
LSent Entropic leaf stability 33
RC Reduced consensus 36
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APPENDIX A. LIST OF ABBREVIATIONS

Abbreviation Meaning Page

SMM Structured Markov model 60
HMM Hidden Markov model 60

NA Non-applicable 64
AHE Anchored hybrid enrichment 69
UCE Ultraconserved element 69
KST Siu-Ting et al. (2019) 71
uRF Uncorrected Robinson-Foulds distance 72
wRF Weighted Robinson-Foulds distance 72
STall Supertree of all input trees 73
MAST Maximum agreement subtree 79
MAD Minimal ancestor deviation 80
MR Matrix representation 85

nucDNA Nuclear DNA 87
mtDNA Mitochondrial DNA 87

bp Base pairs 87
ASDSF Average standard deviation of split frequencies 87
PSRF Potential scale reduction factor 87

QS Quartet support 101
BP Bootstrap proportion 120
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Symbol Usage Meaning Page

= x = y x equals y
∼ ∼ x Approximately x
≈ x ≈ y x is approximately equal to y
> x > y x is greater than y
< x < y x is less than y
≥ x ≥ y x is greater than or equal to y
≤ x ≤ y x is less than or equal to y

|x| The absolute value of x∑ ∑
x Sum of all values of x

x Average of x
∈ x ∈ S x is an element of set S
C SC The complement of set S
∩ X ∩Y The intersection of sets X and Y
→ f : A → B Function with domain A and codomain B, read as: f

from A to B
R+

0 The set of non-negative real numbers
ρ Tree resolution (ratio of observed to theoretical

branches in a tree)
4

∆ ∆x Change in x 44
ζ Gene sampling sufficiency 100

kmin Theoretical minimum number of loci to sample 100
d Taxon coverage density 100

135





BIBLIOGRAPHY

Abel, P. & Werneburg, I. (2021), ‘Morphology of the temporal skull region in tetrapods: research

history, functional explanations, and a new comprehensive classification scheme’, Biological

Reviews 96(5), 2229–2257.

Aberer, A. J., Krompass, D. & Stamatakis, A. (2012), ‘Pruning rogue taxa improves phylogenetic

accuracy: an efficient algorithm and webservice’, Systematic Biology 62(1), 162–166.

Acosta-Galvis, A. R., Torres, M. & Pulido-Santacruz, P. (2019), ‘A new species of Caecilia

(Gymnophiona, Caeciliidae) from the Magdalena valley region of Colombia’, ZooKeys 884, 135–

157.

Adams, E. N. (1986), ‘N-trees as nestings: complexity, similarity, and consensus’, Journal of

Classification 3(2), 299–317.

Agnolin, F. L., Motta, M. J., Brissón Egli, F., Lo Coco, G. & Novas, F. E. (2019), ‘Paravian phylogeny

and the dinosaur-bird transition: an overview’, Frontiers in Earth Science 6, 252.

Aguse, N., Qi, Y. & El-Kebir, M. (2019), ‘Summarizing the solution space in tumor phylogeny

inference by multiple consensus trees’, Bioinformatics 35(14), i408–i416.

Akanni, W. A., Siu-Ting, K., Creevey, C. J., McInerney, J. O., Wilkinson, M., Foster, P. G. & Pisani,

D. (2015), ‘Horizontal gene flow from Eubacteria to Archaebacteria and what it means for our

understanding of eukaryogenesis’, Philosophical Transactions of the Royal Society B: Biological

Sciences 370(1678), 20140337.

Alexander, A. M., Su, Y.-C., Oliveros, C. H., Olson, K. V., Travers, S. L. & Brown, R. M. (2017),

‘Genomic data reveals potential for hybridization, introgression, and incomplete lineage sort-

ing to confound phylogenetic relationships in an adaptive radiation of narrow-mouth frogs’,

Evolution 71(2), 475–488.

Allen, B. L. & Steel, M. (2001), ‘Subtree transfer operations and their induced metrics on

evolutionary trees’, Annals of Combinatorics 5(1), 1–15.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990), ‘Basic local alignment

search tool’, Journal of Molecular Biology 215(3), 403–410.

137



BIBLIOGRAPHY

Amir, A. & Keselman, D. (1997), ‘Maximum agreement subtree in a set of evolutionary trees:

metrics and efficient algorithms’, SIAM Journal on Computing 26(6), 1656–1669.

AmphibiaWeb (2019), AmphibiaWeb: Information on amphibian biology and conservation, Am-

phibiaWeb. Available from: https://amphibiaweb.org/index.html (Accessed 15 March 2022)

Anderson, J. S., Reisz, R. R., Scott, D., Fröbisch, N. B. & Sumida, S. S. (2008), ‘A stem batra-

chian from the Early Permian of Texas and the origin of frogs and salamanders’, Nature

453(7194), 515–518.

Arora, P., Deepali & Varshney, S. (2016), ‘Analysis of k-means and k-medoids algorithm for big

data’, Procedia Computer Science 78, 507–512.

Assenov, Y., Ramírez, F., Schelhorn, S.-E., Lengauer, T. & Albrecht, M. (2007), ‘Computing

topological parameters of biological networks’, Bioinformatics 24(2), 282–284.

Balakrishnan, V. (1997), Schaum’s Outline of Graph Theory: Including Hundreds of Solved

Problems, McGraw Hill, London.

Bansal, M. S. (2020), ‘Linear-time algorithms for phylogenetic tree completion under Robinson-

Foulds distance’, Algorithms for Molecular Biology 15(1), 1–15.

Baum, B. R. & Ragan, M. A. (2004), ’The MRP method’. In Bininda-Emonds,O. R. P. (ed.),

Phylogenetic supertrees: combining information to reveal the tree of life’, Kluwver Academic

Publisher, Dordrecht, pp. 17–34.

Bayzid, M. S., Mirarab, S., Boussau, B. & Warnow, T. (2015), ‘Weighted statistical binning: en-

abling statistically consistent genome-scale phylogenetic analyses’, PLoS One 10(6), e0129183.

Beaulieu, J. M. & O’Meara, B. C. (2014), ’Hidden Markov models for studying the evolution of

binary morphological characters’. In Garamszegi, L. Z. (ed.) Modern phylogenetic comparative

methods and their application in evolutionary biology, Springer, Berlin, Heidelberg, pp. 395–

408.

Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. (2008), ‘Genbank’,

Nucleic Acids Research 37(suppl_1), D26–D31.

Berry, V., Bininda-Emonds, O. R. P. & Semple, C. (2012), ‘Amalgamating source trees with

different taxonomic levels’, Systematic Biology 62(2), 231–249.

Bininda-Emonds, O. R. (2003), ‘Novel versus unsupported clades: assessing the qualitative

support for clades in MRP supertrees’, Systematic Biology 52(6), 839–848.

138

https://amphibiaweb.org/index.html


BIBLIOGRAPHY

Bininda-Emonds, O. R., Cardillo, M., Jones, K. E., MacPhee, R. D., Beck, R., Grenyer, R., Price,

S. A., Vos, R. A., Gittleman, J. L. & Purvis, A. (2007), ‘The delayed rise of present-day mammals’,

Nature 446(7135), 507–512.

Bonnard, C., Berry, V. & Lartillot, N. (2006), ‘Multipolar consensus for phylogenetic trees’,

Systematic Biology 55(5), 837–843.

Bordewich, M. & Semple, C. (2005), ‘On the computational complexity of the rooted subtree prune

and regraft distance’, Annals of Combinatorics 8(4), 409–423.

Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M. A., Rambaut,

A. & Drummond, A. J. (2014), ‘Beast 2: a software platform for Bayesian evolutionary analysis’,

PLoS Computational Biology 10(4).

Brazeau, M. D., Guillerme, T. & Smith, M. R. (2019), ‘An algorithm for morphological phylogenetic

analysis with inapplicable data’, Systematic Biology 68(4), 619–631.

Brazeau, M. & Desjardins, C. (2020), ‘Morphy’.

Bremer, K. (1988), ‘The limits of amino acid sequence data in angiosperm phylogenetic recon-

struction’, Evolution 42(4), 795–803.

Brown, E. K. & Day, W. H. E. (1984), ‘A computationally efficient approximation to the nearest

neighbor interchange metric’, Journal of Classification 1(1), 93–124.

Bryant, D. (2003), ‘A classification of consensus methods for phylogenetics’, In Janowitz, M. F.,

Lapointe, F.-J., McMorris, F. R., Mirkin, B. & Roberts, F.S. (eds.), Bioconsensus: DIMACS series

in discrete mathematics and theoretical computer science, Vol. 61, American Mathematical

Society, Providence, Rhode Island, 61, 163–184.

Bryant, D. (2004), ‘The splits in the neighborhood of a tree’, Annals of Combinatorics 8(1), 1–11.

Cai, L., Xi, Z., Lemmon, E. M., Lemmon, A. R., Mast, A., Buddenhagen, C. E., Liu, L. & Davis, C. C.

(2021), ‘The perfect storm: gene tree estimation error, incomplete lineage sorting, and ancient

gene flow explain the most recalcitrant ancient angiosperm clade, Malpighiales’, Systematic

Biology 70(3), 491–507.

Cannatella, D. C., Hillis, D. M., Chippindale, P. T., Weigt, L., Rand, A. S. & Ryan, M. J. (1998),

‘Phylogeny of frogs of the Physalaemus pustulosus species group, with an examination of data

incongruence’, Systematic Biology 47(2), 311–335.

Caparros, M. & Prat, S. (2021), ‘A phylogenetic networks perspective on reticulate human

evolution’, iScience 24(4), 102359.

139



BIBLIOGRAPHY

Cardillo, M., Bininda-Emonds, O. R., Boakes, E. & Purvis, A. (2004), ‘A species-level phylogenetic

supertree of marsupials’, Journal of Zoology 264(1), 11–31.

Castresana, J. (2002), ‘Gblocks: selection of conserved blocks from multiple alignments for their

use in phylogenetic analysis’, Version 0.91 b. Copyrighted by J. Castresana, EMBL.

Chan, K. O., Hutter, C. R., Wood Jr, P. L., Grismer, L. L. & Brown, R. M. (2020), ‘Target-

capture phylogenomics provide insights on gene and species tree discordances in Old World

treefrogs (Anura: Rhacophoridae)’, Proceedings of the Royal Society B: Biological Sciences

287(1940), 20202102.

Chauve, C., Jones, M., Lafond, M., Scornavacca, C. & Weller, M. (2017), ’Constructing a consensus

phylogeny from a leaf-removal distance’ (Extended abstract). In Fici, G., Sciortino, M. &

Venturini, R. (eds.) International symposium on string processing and information retrieval,

Springer, Cham, pp. 129–143.

Chernomor, O., Minh, B. Q. & von Haeseler, A. (2015), ‘Consequences of common topological

rearrangements for partition trees in phylogenomic inference’, Journal of Computational

Biology 22(12), 1129–1142.

Coiffard, C., Mohr, B. A. & Bernardes-de Oliveira, M. E. (2013), ‘Jaguariba wiersemana gen. nov.

et sp. nov., an Early Cretaceous member of crown group Nymphaeales (Nymphaeaceae) from

northern Gondwana’, Taxon 62(1), 141–151.

Colella, J. P., Tigano, A. & MacManes, M. D. (2020), ‘A linked-read approach to museomics:

higher quality de novo genome assemblies from degraded tissues’, Molecular Ecology Resources

20(4), 856–870.

Cooper, N., Rodríguez, J. & Purvis, A. (2008), ‘A common tendency for phylogenetic overdis-

persion in mammalian assemblages’, Proceedings of the Royal Society B: Biological Sciences

275(1646), 2031–2037.

Cotton, J. A. & Wilkinson, M. (2007), ‘Majority-rule supertrees’, Systematic Biology 56(3), 445–52.

Darlu, P. & Guénoche, A. (2011), ‘TreeOfTrees method to evaluate the congruence between gene

trees’, Journal of Classification 28(3), 390–403.

Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. (2012), ‘jModelTest 2: more models, new

heuristics and parallel computing’, Nature Methods 9(8), 772–772.

Darwin, C. (1859), On the origin of species by means of natural selection, or, The preservation of

favoured races in the struggle for life, first edn, London : John Murray, London.

140



BIBLIOGRAPHY

DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J. & Zhang, L. (2000), On computing the near-

est neighbor interchange distance. In Du, D.-Z., Pardalos, P. M. & Wang, J. (eds.) Discrete

mathematical probelms with medical applications: DIMACS series in discrete mathematics

and theoretical computer science, Vol. 55, American Mathematical Society, Providence, Rhode

Island, pp. 125–142.

Davis, K. E. & Page, R. D. (2008), ‘Reweaving the tapestry: a supertree of birds’, PLoS Currents 6.

de Almeida Serra Jorge da Silva, A. L. (2016), ’Convergent evolution in Anguilliform elongation’,

Master’s thesis, Department of Life Sciences, Imperial College London, London.

De Laet, J. (2015), ‘Parsimony analysis of unaligned sequence data: maximization of homology and

minimization of homoplasy, not minimization of operationally defined total cost or minimization

of equally weighted transformations’, Cladistics 31(5), 550–567.

de Lamarck, J.-B. d. M. (1809), Philosophie zoologique, ou Exposition des considérations relatives

à l’histoire naturelle des animaux..., Vol. 1, Paris: Dentu.

de Queiroz, A. & Gatesy, J. (2007), ‘The supermatrix approach to systematics’, Trends in Ecology

& Evolution 22(1), 34–41.

Deepak, A., Fernández-Baca, D., Tirthapura, S., Sanderson, M. J. & McMahon, M. M. (2014),

‘EvoMiner: frequent subtree mining in phylogenetic databases’, Knowledge and Information

Systems 41(3), 559–590.

Degnan, J. H. & Rosenberg, N. A. (2009), ‘Gene tree discordance, phylogenetic inference and the

multispecies coalescent’, Trends in Ecology & Evolution 24(6), 332–340.

Demchak, B., Hull, T., Reich, M., Liefeld, T., Smoot, M., Ideker, T. & Mesirov, J. P. (2014),

‘Cytoscape: the network visualization tool for genomespace workflows’, F1000Research 3.

Dobrin, B. H., Zwickl, D. J. & Sanderson, M. J. (2018), ‘The prevalence of terraced treescapes in

analyses of phylogenetic data sets’, BMC Evolutionary Biology 18(1), 46.

dos Santos, C. M. & Falaschi, R. L. (2007), ‘Missing data in phylogenetic analysis: comments on

support measures’, Darwiniana 45(Sup), 25–26.

Dubois, A., Ohler, A. & Pyron, R. A. (2021), ‘New concepts and methods for phylogenetic taxonomy

and nomenclature in zoology, exemplified by a new ranked cladonomy of recent amphibians

(Lissamphibia)’, Megataxa 5(1), 1–738.

Elworth, R. A. L., Ogilvie, H. A., Zhu, J. & Nakhleh, L. (2019), ’Advances in computational methods

for phylogenetic networks in the presence of hybridization’. In Warnow, T. (ed.) Bioinformatics

and phylogenetics , Springer, Cham, pp. 317–360.

141



BIBLIOGRAPHY

Estabrook, G. F., McMorris, F. & Meacham, C. A. (1985), ‘Comparison of undirected phylogenetic

trees based on subtrees of four evolutionary units’, Systematic Zoology 34(2), 193–200.

Farris, J. S., Albert, V. A., Källersjö, M., Lipscomb, D. & Kluge, A. G. (1996), ‘Parsimony jackknifing

outperforms neighbor-joining’, Cladistics 12(2), 99–124.

Felsenstein, J. (1985), ‘Confidence limits on phylogenies: an approach using the bootstrap’,

Evolution 39(4), 783–791.

Felsenstein, J. (2004), Inferring phylogenies, Sinauer Associates, Sunderland, Massachusetts.

Finden, C. & Gordon, A. (1985), ‘Obtaining common pruned trees’, Journal of Classification

2(1), 255–276.

Forey, P. L. & Kitching, I. J. (2000), ’Experiments in coding multistate characters’. In Scotland,

R. & Toby Pennington, R. (eds.) Homology and systematics: coding characters for phylogenetic

analysis, CRC Press, London, pp. 54–80.

Foster, P. G. (2004), ‘Modeling compositional heterogeneity’, Systematic Biology 53(3), 485–495.

Frost, D. R. (2022), ‘Amphibian species of the world: an online reference, version 6.0’. Available

from: http://research.amnh.org/vz/herpetology/amphibia (Accessed 15 March 2022)

Frost, D. R., Grant, T., Faivovich, J., Bain, R. H., Haas, A., Haddad, C. F. B., De SÁ, R. O.,

Channing, A., Wilkinson, M., Donnellan, S. C., Raxworthy, C. J., Campbell, J. A., Blotto, B. L.,

Moler, P., Drewes, R. C., Nussbaum, R. A., Lynch, J. D., Green, D. M. & Wheeler, W. C. (2006),

‘The amphibian tree of life’, Bulletin of the American Museum of Natural History 297, 1–291.

Fürbringer, M. (1888), Untersuchungen zur Morphologie und Systematik der Vögel: zugleich ein

Beitrag zur Anatomie der Stütz-und Bewegungsorgane, Vol. 15, T. van Holkema, Amsterdam.

Gardner, J. D. (2001), ‘Monophyly and affinities of albanerpetontid amphibians (Temnospondyli;

Lissamphibia)’, Zoological Journal of the Linnean Society 131(3), 309–352.

Gatesy, J., Matthee, C., DeSalle, R. & Hayashi, C. (2002), ‘Resolution of a supertree/supermatrix

paradox’, Systematic Biology 51(4), 652–64.

Goldman, N. (1998), ‘Phylogenetic information and experimental design in molecular systematics’,

Proceedings of the Royal Society of London. Series B: Biological Sciences 265(1407), 1779–1786.

Goldman, N., Anderson, J. P. & Rodrigo, A. G. (2000), ‘Likelihood-based tests of topologies in

phylogenetics’, Systematic Biology 49(4), 652–670.

Goloboff, P. A. (2008), ‘Calculating SPR distances between trees’, Cladistics 24(4), 591–597.

142

http://research.amnh.org/vz/herpetology/amphibia


BIBLIOGRAPHY

Goloboff, P. A. & Arias, J. S. (2019), ‘Likelihood approximations of implied weights parsimony can

be selected over the Mk model by the Akaike information criterion’, Cladistics 35(6), 695–716.

Goloboff, P. A., De Laet, J., Ríos-Tamayo, D. & Szumik, C. A. (2021), ‘A reconsideration of

inapplicable characters, and an approximation with step-matrix recoding’, Cladistics 37(5), 596–

629.

Goloboff, P. A., Pittman, M., Pol, D. & Xu, X. (2019), ‘Morphological data sets fit a common

mechanism much more poorly than DNA sequences and call into question the Mkv model’,

Systematic Biology 68(3), 494–504.

Goloboff, P. A., Torres, A. & Arias, J. S. (2017), ‘Weighted parsimony outperforms other methods

of phylogenetic inference under models appropriate for morphology’, Cladistics .

Gordon, A. D. (1986), ‘Consensus supertrees: the synthesis of rooted trees containing overlapping

sets of labeled leaves’, Journal of Classification 3(2), 335–348.

Govek, K., Sikes, C. & Oesper, L. (2018), ’A consensus approach to infer tumor evolutionary histo-

ries’. In Proceedings of the 2018 ACM international conference on bioinformatics, computational

biology, and health informatics, Association for Computing Machinery, New York, New York,

pp. 63–72.

Graham, S. W., Kohn, J. R., Morton, B. R., Eckenwalder, J. E. & Barrett, S. C. H. (1998), ‘Phylo-

genetic congruence and discordance among one morphological and three molecular data sets

from Pontederiaceae’, Systematic Biology 47(4), 545–567.

Guénoche, A. (2013), ‘Multiple consensus trees: a method to separate divergent genes’, BMC

Bioinformatics 14(1), 46.

Gunnell, G. F., Smith, R. & Smith, T. (2017), ‘33 million year old Myotis (Chiroptera, Vespertilion-

idae) and the rapid global radiation of modern bats’, PloS One 12(3), e0172621.

Haeckel, E. (1874), Anthropogenie oder Entwickelungsgeschichte des Menschen: gemeinver-

ständliche wissenschaftliche Vorträge über die Grundzüge der menschlichen Keimes-und

Stammes-Geschichte, Wilheml Engelmann, Leipzig.

Hahn, M. W. (2007), ‘Bias in phylogenetic tree reconciliation methods: implications for vertebrate

genome evolution’, Genome Biology 8(7), 1–9.

Harris, S. R. (2005), ’Character construction in morphological phylogenetics and the affinities of

turtles’, PhD thesis, School of Earth Sciences, University of Bristol, Bristol.

Hawkins, J. A., Hughes, C. E. & Scotland, R. W. (1997), ‘Primary homology assessment, characters

and character states’, Cladistics 13(3), 275–283.

143



BIBLIOGRAPHY

Hellemans, S., Wang, M., Hasegawa, N., Šobotník, J., Scheffrahn, R. H. & Bourguignon, T. (2022),

‘Using ultraconserved elements to reconstruct the termite tree of life’, Molecular Phylogenetics

and Evolution p. 107520.

Hendy, M. D., Little, C. H. C. & Penny, D. (1984), ‘Comparing trees with pendant vertices labelled’,

SIAM Journal on Applied Mathematics 44(5), 1054–1065.

Hendy, M. D., Steel, M. A., Penny, D. & Henderson, I. M. (1988), ’Families of trees and consensus’.

In Block, H. H. (ed.) Classification and related methods of data analysis, Elsevier, New York,

New York, pp.355–362.

Hennig, W. (1966), Phylogenetic systematics, University of Illinois Press, Urbana and Chicago,

Illinois.

Hibbett, D. S. & Donoghue, M. J. (2001), ‘Analysis of character correlations among wood decay

mechanisms, mating systems, and substrate ranges in homobasidiomycetes’, Systematic Biology

50(2), 215–242.

Hime, P. M., Lemmon, A. R., Lemmon, E. C. M., Prendini, E., Brown, J. M., Thomson, R. C.,

Kratovil, J. D., Noonan, B. P., Pyron, R. A., Peloso, P. L. et al. (2021), ‘Phylogenomics reveals

ancient gene tree discordance in the amphibian tree of life’, Systematic Biology 70(1), 49–66.

Hitchcock, E. (1840), Elementary geology, J. S. & C. Adams, Amherst.

Höhna, S. & Drummond, A. J. (2011), ‘Guided tree topology proposals for Bayesian phylogenetic

inference’, Systematic Biology 61(1), 1–11.

Holland, B. & Moulton, V. (2003), ’Consensus networks: A method for visualising incompatibilities

in collections of trees’. In Benson, G. & Page, R.D.M. (eds.) International workshop on algorithms

in bioinformatics, Springer, Berlin, Heidelberg, pp. 165–176.

Hopkins, M. J. & St. John, K. (2021), ‘Incorporating hierarchical characters into phylogenetic

analysis’, Systematic Biology 70(6), 1163–1180.

Huber, K. T., Oxelman, B., Lott, M. & Moulton, V. (2006), ‘Reconstructing the evolutionary history

of polyploids from multilabeled trees’, Molecular Biology and Evolution 23(9), 1784–1791.

Huelsenbeck, J. P. (1991), ‘When are fossils better than extant taxa in phylogenetic analysis?’,

Systematic Biology 40(4), 458–469.

Huelsenbeck, J. P. (1997), ‘Is the Felsenstein zone a fly trap?’, Systematic Biology 46(1), 69–74.

Huerta-Cepas, J., Dopazo, J. & Gabaldón, T. (2010), ‘ETE: a Python environment for tree explo-

ration’, BMC Bioinformatics 11(1), 1–7.

144



BIBLIOGRAPHY

Hunter, J. D. (2007), ‘Matplotlib: A 2D graphics environment’, Computing in Science & Engineer-

ing 9(3), 90–95.

Huson, D. H. & Bryant, D. (2006), ‘Application of phylogenetic networks in evolutionary studies’,

Molecular Biology and Evolution 23(2), 254–267.

Huson, D. H. & Kloepper, T. H. (2007), ’Beyond galled trees-decomposition and computation of

galled networks’. In Speed, T., Huang, H. (ed.) Research in computational molecular biology

RECOMB 2007, Springer, Berlin, Heidelberg, pp. 211–225.

Huson, D. H., Klöpper, T., Lockhart, P. J. & Steel, M. A. (2005), ’Reconstruction of reticulate

networks from gene trees’. In Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A. &

Waterman, M. (eds.) Research in computational molecular biology RECOMB 2005, Springer,

Berlin, Heidelberg, pp. 233–249.

Huson, D. H., Rupp, R. & Scornavacca, C. (2010), Phylogenetic networks: concepts, algorithms

and applications, Cambridge University Press, Cambridge.

Hutter, C. R., Cobb, K. A., Portik, D. M., Travers, S. L., Wood Jr., P. L. & Brown, R. M. (2021),

‘FrogCap: A modular sequence capture probe-set for phylogenomics and population genetics for

all frogs, assessed across multiple phylogenetic scales’, Molecular Ecology Resources 22(3), 1100-

1119.

Ippen, T. (2013), ‘plotille’, https://github.com/tammoippen/plotille.

Jetz, W. & Pyron, R. A. (2018), ‘The interplay of past diversification and evolutionary isolation

with present imperilment across the amphibian tree of life’, Nature Ecology & Evolution

2(5), 850–858.

Jombart, T. (2008), ‘adegenet: a R package for the multivariate analysis of genetic markers’,

Bioinformatics 24(11), 1403–1405.

Kamei, R. G., Mauro, D. S., Gower, D. J., Van Bocxlaer, I., Sherratt, E., Thomas, A., Babu, S.,

Bossuyt, F., Wilkinson, M. & Biju, S. D. (2012), ‘Discovery of a new family of amphibians from

northeast India with ancient links to Africa’, Proceedings of the Royal Society B: Biological

Sciences 279(1737), 2396–2401.

Katoh, K. & Standley, D. M. (2013), ‘MAFFT multiple sequence alignment software version 7:

improvements in performance and usability’, Molecular Biology and Evolution 30(4), 772–780.

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper,

A., Markowitz, S., Duran, C. et al. (2012), ‘Geneious Basic: an integrated and extendable

desktop software platform for the organization and analysis of sequence data’, Bioinformatics

28(12), 1647–1649.

145

https://github.com/tammoippen/plotille


BIBLIOGRAPHY

Keynes, J. (1921), A Treatise on Probability, Macmillan and Co. Ltd., London.

Kulinskaya, E. (2008), ‘On two-sided p-values for non-symmetric distributions’, arXiv preprint

arXiv:0810.2124 .

Kulinskaya, E. & Lewin, A. (2009), ‘Testing for linkage and Hardy-Weinberg disequilibrium’,

Annals of Human Genetics 73(2), 253–262.

Kulkarni, S., Kallal, R. J., Wood, H., Dimitrov, D., Giribet, G. & Hormiga, G. (2021), ‘Interrogating

genomic-scale data to resolve recalcitrant nodes in the spider tree of life’, Molecular Biology

and Evolution 38(3), 891–903.

Lakner, C., van der Mark, P., Huelsenbeck, J. P., Larget, B. & Ronquist, F. (2008), ‘Efficiency

of Markov chain Monte Carlo tree proposals in Bayesian phylogenetics’, Systematic Biology

57(1), 86–103.

Lanyon, S. M. (1985), ‘Detecting internal inconsistencies in distance data’, Systematic Zoology

34(4), 397–403.

Lartillot, N., Brinkmann, H. & Philippe, H. (2007), ‘Suppression of long-branch attraction arte-

facts in the animal phylogeny using a site-heterogeneous model’, BMC Evolutionary Biology

7(1), 1–14.

Lemmon, A. R., Brown, J. M., Stanger-Hall, K. & Lemmon, E. M. (2009), ‘The effect of ambiguous

data on phylogenetic estimates obtained by maximum likelihood and Bayesian inference’,

Systematic Biology 58(1), 130–145.

Lewis, P. O. (2001), ‘A likelihood approach to estimating phylogeny from discrete morphological

character data’, Systematic Biology 50(6), 913–925.

Lipschutz, S. (1998), ‘Schaum’s outline of set theory and related topics’, McGraw Hill, London.

Llabrés, M., Rosselló, F. & Valiente, G. (2021), ‘The generalized Robinson-Foulds distance for

phylogenetic trees’, Journal of Computational Biology 28(12), 1181–1195.

Léveillé-Bourret, t., Starr, J. R., Ford, B. A., Moriarty Lemmon, E. & Lemmon, A. R. (2017), ‘Re-

solving rapid radiations within angiosperm families using anchored phylogenomics’, Systematic

Biology 67(1), 94–112.

Maciel, A. O., de Castro, T. M., Sturaro, M. J., Silva, I. E. C., Ferreira, J. G., dos Santos, R., Risse-

Quaioto, B., Barboza, B. A., Oliveira, J. C., Sampaio, I. et al. (2019), ‘Phylogenetic systematics of

the neotropical caecilian amphibian Luetkenotyphlus (Gymnophiona: Siphonopidae) including

the description of a new species from the vulnerable Brazilian Atlantic Forest’, Zoologischer

Anzeiger 281, 76–83.

146



BIBLIOGRAPHY

Maciel, A. O., Mott, T. & Hoogmoed, M. S. (2009), ‘A second species of Brasilotyphlus (Amphibia:

Gymnophiona: Caeciliidae) from Brazilian Amazonia’, Zootaxa 2226(1), 19–27.

Maddin, H. C., Jenkins Jr, F. A. & Anderson, J. S. (2012), ‘The braincase of Eocaecilia micropodia

(Lissamphibia, Gymnophiona) and the origin of caecilians’, PLoS One 7(12).

Maddin, H. C., Piekarski, N., Sefton, E. M. & Hanken, J. (2016), ‘Homology of the cranial vault in

birds: new insights based on embryonic fate-mapping and character analysis’, Royal Society

Open Science 3(8), 160356.

Maddison, D. R. (1991), ‘The discovery and importance of multiple islands of most-parsimonious

trees’, Systematic Zoology 40(3), 315–328.

Maddison, W. (1989), ‘Reconstructing character evolution on polytomous cladograms’, Cladistics

5(4), 365–377.

Maddison, W. P. (1993), ‘Missing data versus missing characters in phylogenetic analysis’, Sys-

tematic Biology 42(4), 576–581.

Maddock, S. T., Wilkinson, M. & Gower, D. J. (2018), ‘A new species of small, long-snouted

Hypogeophis Peters, 1880 (Amphibia: Gymnophiona: Indotyphlidae) from the highest elevations

of the Seychelles island of Mahé’, Zootaxa 4450(3), 359–375.

Mahony, M. J., Hines, H. B., Bertozzi, T., Mahony, S. V., Newell, D. A., Clarke, J. M. & Donnellan,

S. C. (2022), ‘A new species of Philoria (Anura: Limnodynastidae) from the uplands of the

Gondwana Rainforests World Heritage area of eastern Australia.’, Zootaxa 5104(2), 209–241.

Mai, U. & Mirarab, S. (2018), ‘TreeShrink: fast and accurate detection of outlier long branches in

collections of phylogenetic trees’, BMC Genomics 19(5), 23–40.

Margush, T. & McMorris, F. (1981), ‘Consensus n-trees’, Bulletin of Mathematical Biology

43(2), 239–244.
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