
Mário Jorge Pinto Cristóvão

DESIGN OF A MULTI-SENSOR APPARATUS FOR
FORESTRY ROBOTICS

A CASE STUDY ON FOREST 3D MAPPING 

Dissertação no âmbito do Mestrado em Engenharia Física orientada
pelo Doutor David Bina Siassipour Portugal e co-orientada pelo

Engenheiro Afonso E. Carvalho e apresentada ao Departamento da
Física da Faculdade de Ciências e Tecnologia da Universidade de

Coimbra.

Fevereiro de 2023



Design of a Multi-Sensor Apparatus

for Forestry Robotics: A case study

on Forest 3D Mapping

Supervisor:

Doutor David Portugal

Co-Supervisor:
Eng. Afonso E. Carvalho

Jury:

Prof. Doutor Rui Paulo Pinto da Rocha

Prof. Doutor Pedro Mariano Simões Neto

Dissertation submitted in partial fulfillment for the degree of Master of Science in

Engineering Physics.

Coimbra, February 2023





Acknowledgments

The journey to complete this work was challenging, and the level of dedication and strug-

gle involved cannot be fully captured in these words. Without the support of several

individuals, I would not have been able to finish what I started back in 2016.

I am deeply grateful to my supervisor, Dr. David Portugal, whose guidance and

support were essential to my success. I also wish to thank Eng. Afonso Carvalho, who,

alongside Dr. Portugal, provided valuable feedback and insights that proved fundamental

to the successful completion of this dissertation. Special thanks go to Duda Andrada, for

helping me settle into ISR and for her willingness to offer assistance with any issue that

arose. I am also especially grateful to José Faria, who has been my personal mentor and

rubber duck throughout these years.

To all my friends, who are too numerous to name individually, thank you for studying,

partying, and debating with me through the years. I cherish your friendship and would

be lost without it.

To the friends I didn’t choose, my family, thank you for your unwavering support and

belief in me. Your presence and encouragement have meant more to me than words can

express, and I could not have asked for a better family.

To everyone who has helped me in any way, thank you. Your assistance has earned

my eternal gratitude, and I am here for you whenever you need me.

ii



Resumo

Nas últimas décadas, temos observado um aumento na área florestal ardida, uma realidade

que poderia ser melhorada com o aumento da manutenção florestal. A robótica tem

potencial para contribuir para a resolução deste problema. No entanto, para obter as

informações necessárias para desenvolver e testar algoritmos que permitam aos robôs

ajudar na manutenção florestal nem sempre é uma tarefa simples.

Neste trabalho, apresenta-se uma solução para este problema na forma de um dispos-

itivo multi-sensorial portátil capaz de adquirir conjuntos de dados relevantes para apoiar

atividades florestais, como mapeamento 3D, identificação de material inflamável, planea-

mento de rotas e limpeza da floresta. O aparelho aproveita várias tecnologias, como Laser

Imaging, Detection and Ranging (LiDAR), câmera de profundidade, uma câmera estéreo

e uma inertial measurement unit (IMU) para obter informações sobre o meio envolvente.

Adicionalmente, uma aplicação android é desenvolvida para adquirir informações do Sis-

tema de Navegação Global por Satélite (GNSS) durante a gravação de um dataset. Para

gravar todas as informações sensoriais, foi desenvolvida uma arquitetura modular em

torno do Robot Operating System (ROS) e Docker.

O sistema desenvolvido foi validado comparando diferentes implementações estado

da arte de localização e mapeamento simultâneo em ambiente florestal, conseguindo re-

sultados que comprovam a robustez do sistema. O trabalho apresentado fornece uma

base sólida para melhorias, com a capacidade de suportar futuros trabalhos no campo da

robótica florestal.

Palavras-chave: Robótica florestal, Aquisição de dados, Localização e Mapeamento

3D, ROS

iii



Abstract

In recent decades, we have seen an increase in the number of forest areas burned, a

circumstance that could be mitigated by increasing forest maintenance. This problem

could potentially be solved with the help of robotics. However, obtaining the necessary

information to develop and test algorithms that allow robots to help in forest maintenance

is not always a simple task.

In this work, a solution to this problem is presented in the form of a portable multi-

sensor apparatus capable of acquiring datasets of relevant information to support forestry

activities such as 3D metric-semantic mapping, flammable material identification, path

planning, and forest clearing. The apparatus takes advantage of several technologies such

as Laser Imaging, Detection and Ranging (LiDAR), a depth camera, a stereo camera and

an inertial measurement unit (IMU) to obtain information about its surroundings. Ad-

ditionally, an Android application is also developed to access Global Navigation Satellite

System (GNSS) information when recording a dataset. In order to collect all the sensory

information, a modular architecture was developed around the Robot Operating System

(ROS) and Docker.

The proposed apparatus has been validated through demonstration of its ability to

effectively collect the necessary data for simultaneous localization and mapping in a chal-

lenging forest environment. The work presented provides a solid foundation for improve-

ment and supports future efforts in the field of forestry robotics.

Keywords: Forestry robotics, Data Acquisition, 3D Localization and Mapping, ROS

iv





"Being challenged in life is inevitable, being defeated is optional.”

Roger Crawford

vi





Contents

Acknowledgements ii

Resumo iii

Abstract iv

List of Acronyms x

List of Figures xii

List of Tables xv

1 Introduction 2

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and Related Work 5

2.1 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 SLAM techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Filter-based SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Graph-based SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 SLAM Implementations in ROS . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Related Systems for Data Acquisition . . . . . . . . . . . . . . . . . . . . . 15

viii



3 Design and Implementation 22

3.1 Sensors and Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Mechanical Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Android Application . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 System Architecture for Dataset Recording . . . . . . . . . . . . . . 31

3.3.3 System Architecture to perform SLAM . . . . . . . . . . . . . . . . 32

4 Preliminary Tests and Experimental Design 35

4.1 Android Application Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 DEEC Building Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Heat Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Choupal National Woods Dataset . . . . . . . . . . . . . . . . . . . . . . . 48

5 Results and Discussion 51

6 Conclusion 61

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Bibliography 64

ix



List of Acronyms

ABS Acrylonitrile Butadiene Styrene

APE Absolute Position Error

BW Bandwidth

CAD Computer-aided Design

CPU Central Processing Unit

DBH Diameter at Breast Height

DEEC Departamento de Engenharia Eletrotécnica e de Computadores

EKF Extended Kalman Filter

eMMC embedded MultiMediaCard

FoV Field of View

GNSS Global Navigation Satellite System

GPS Global Position System

HDMI High-Definition Multimedia Interface

ICP Iterative Closest Point

IMU Inertial Measurement Unit

LiDAR Laser imaging, Detection, and Ranging

LOAM LiDAR Odometry And Mapping

LIO-SAM LiDAR Inertial Odometry via Smoothing and Mapping

x



MoSCoW Must, Should, Could, Won’t

MVVM Model View View-Model

ORB Oriented FAST and Rotated BRIEF

OS Operating System

PCIe Peripheral Component Interconnect express

PDF Probability Dense Function

PTFE Polytetrafluoroethylene

RAM Random Access Memory

RGB Red, Green, Blue

RGBD RGB and Depth

RMSE Root Mean Square Error

ROE Relative Orientation Error

ROS Robot Operating System

RTAB-Map Real Time Appearance Based Mapping

RTE Relative Translation Error

RPE Relative Position Error

SLAM Simultaneous Localization And Mapping

SSD Solid State Drive

UKF Unscented Kalman Filter

USB Universal Serial Bus

UV ultraviolet radiation

UWB Ultra-Wideband

xi



List of Figures

1.1 MoSCoW analysis of features to implement on the apparatus. Cards in

yellow represent the requirements that were not achieved in this work. . . . 4

2.1 Mapping taxonomy graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Topological vs metric map. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Robot mapping the environment with elevation map . . . . . . . . . . . . . 7

2.4 Resulting octree maps of an outdoor environments at 0.2 m resolution. . . 8

2.5 2D scan matching to estimate a robot’s pose. . . . . . . . . . . . . . . . . . 9

2.6 Simple flowchart of the Kalman Filter. . . . . . . . . . . . . . . . . . . . . 10

2.7 Robot moving and mapping the environment. . . . . . . . . . . . . . . . . 11

2.8 A pose-graph representation of SLAM. . . . . . . . . . . . . . . . . . . . . 12

2.9 High level system overview of Google’s Cartographer. . . . . . . . . . . . . 15

2.10 Backpack apparatus for dataset collection presented by Oveland et al. . . . 16

2.11 Apparatus introduced by Xiao et al. . . . . . . . . . . . . . . . . . . . . . . 17

2.12 Apparatus with a stick design by Proudman et al. . . . . . . . . . . . . . . 18

2.13 Yanjun et al. apparatus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.14 Multi-sensor apparatus designed by Sier et al. . . . . . . . . . . . . . . . . 19

2.15 Apparatus proposed by Jelavic et al. . . . . . . . . . . . . . . . . . . . . . 20

3.1 Collection of the apparatus’ sensors. . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Point cloud patterns of the Livox Mid-70 accumulated over an time ex-

tended period of time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 The small factor computer Udoo Bolt. . . . . . . . . . . . . . . . . . . . . 24

3.4 Diagram of the connections for the different system components in the

proposed apparatus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Complete apparatus with the backpack open. . . . . . . . . . . . . . . . . 26

xii



3.5 Mechanical structure of the apparatus, divided into the sensor box and

backpack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 Complete transform frame for all components of the apparatus. . . . . . . 28

3.8 Visual validation of the transformations between sensors. . . . . . . . . . . 29

3.9 Screenshots of the ROS Android Sensor application. . . . . . . . . . . . . . 31

3.10 Complete system architecture for recording datasets with the proposed

apparatus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.11 Base architecture to perform SLAM with the proposed apparatus. . . . . . 34

4.1 Trajectory conducted by the user in red. . . . . . . . . . . . . . . . . . . . 36

4.2 GNSS test results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Types of spaces present in the DEEC dataset. . . . . . . . . . . . . . . . . 39

4.4 Complete map produced by RTAB-Map with only RGBD odometry in the

DEEC dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Complete map produced by RTAB-Map with only Livox odometry in the

DEEC dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Amount of co-related features between initial and final position found in

the loop closure detected by RTAB-Map in the DEEC dataset. . . . . . . . 43

4.7 Complete map of the DEEC dataset generated with RTAB-Map with fused

odometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.8 Temperature of all the set-ups of the experiment. . . . . . . . . . . . . . . 45

4.9 Results with entire system running and the backpack open. . . . . . . . . . 46

4.10 Results with entire system running and the backpack closed. . . . . . . . . 47

4.11 An example space in the Choupal National Woods. . . . . . . . . . . . . . 50

4.12 Ground truth trajectory in the Choupal Dataset. . . . . . . . . . . . . . . 50

5.1 GNSS locations for the Choupal dataset. . . . . . . . . . . . . . . . . . . . 52

5.2 Number of GNSS satellites available at the time of the experiment . . . . . 52

5.4 3D plot of the odometry provided by every sensor. . . . . . . . . . . . . . . 53

5.6 3D plot of the localization estimated by the SLAM approaches. . . . . . . 55

5.8 The 2D map generated by Cartographer. . . . . . . . . . . . . . . . . . . . 55

5.9 3D map generated by RTAB-Map (top-down view). . . . . . . . . . . . . . 55

5.7 3D point cloud map generated by livox_mapping. . . . . . . . . . . . . . . 56

xiii



5.10 Superposition of the localizations generated by the SLAM implementations

with a map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.11 Complete octomap representation using the localization. . . . . . . . . . . 59

5.12 Illustration of relevant details, e.g. trees, using the localization provided by

RTAB-Map and Cartographer, with the Realsense D435i as the mapping

sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.13 Octomap Map ground consistency using the localization provided by RTAB-Map

and Cartographer, with the Realsense D435i as the mapping sensor. . . . . 60

5.14 RGBD map produced by RTAB-Map in Choupal National Woods. . . . . . 60

xiv



List of Tables

2.1 Comparison table between previously mentioned systems. . . . . . . . . . . 21

3.1 Specification table for the Udoo Bolt. . . . . . . . . . . . . . . . . . . . . . 24

4.1 Topics collected in the DEEC dataset. . . . . . . . . . . . . . . . . . . . . 40

4.2 Results for the different set-ups. . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Relative errors for the different SLAM approaches. . . . . . . . . . . . . . . 57

xv





1 Introduction

Portugal has seen an increase in the area affected by wildfires since 1980, in contrast to

other European countries [1, 2]. Effective forest maintenance is essential for preventing

wildfires, and the use of mechanization in forestry has significantly increased productivity,

leaving the human component as the bottleneck [3]. While the use of forestry robots is not

yet widespread, several prototypes have been developed for tasks such as forest monitoring

and preservation [4, 5, 6, 7], as well as planting, pruning, and harvesting [8, 9, 10]. These

robots often require localization or mapping information to carry out their tasks, but their

large size and lack of flexibility can make data acquisition slow.

To address this, the development of a lightweight and portable multi-sensory appa-

ratus with an onboard computer for localization and mapping of forest environments is

proposed. This apparatus combines multiple sensing technologies, such as 3D Laser imag-

ing, Detection, and Ranging (LiDAR), depth cameras, infrared spectroscopy and Inertial

Measurement Unit (IMU). The apparatus shall be used to collect datasets from forest

environments, thus helping to acquire the necessary information to develop and advance

the state of the art of several forestry operations, such as metric-semantic 3D mapping,

flammable material identification, path planning and forest clearing. Aside from designing

the apparatus, this work proposes to integrate, test, and then compare state-of-the-art 3D

simultaneous localization and mapping techniques based on the Robot Operating System

(ROS) middleware.

1.1 Objectives

The primary objectives of this work are:

• Developing a lightweight and portable multisensory apparatus with an onboard

computer for localization and mapping of forest environments;

2



• Collecting datasets to support forestry robotics research, e.g. metric-semantic 3D

mapping, combustible material identification, and forest cleaning;

• Integrating, testing, and comparing state-of-the-art 3D localization techniques based

on the ROS middleware using the collected dataset;

• Evaluating the system’s performance in localization and mapping in a forest envi-

ronment;

• Summarizing the work’s success and identifying lessons learned and potential im-

provements.

1.2 System Requirements

A Must, Should, Could, Won’t (MoSCoW) analysis is used to clarify the importance of

features and prioritize which features to implement in this work. The MoSCoW analysis

for this work is presented in Figure 1.1.

Multiple sensors and cameras must be used to achieve the proposed goals. A Xsens

Inertial Measurement Unit (IMU) will provide angular velocity and linear acceleration,

while an Intel Realsense D435i RGB and Depth camera, which has an integrated IMU,

will primarily provide RGB, depth, and infrared information. Both a Livox LiDAR and

a Mynt Eye camera are used to extract 3D depth information from the surrounding

environment.

1.3 Dissertation Structure

The document is structured as follows. In Chapter 2, essential background concepts

and related works are reviewed. In Chapter 3, a detailed description of the design and

implementation of the multi-sensor apparatus is provided, including the materials used

and the rationale behind design choices. The different steps required to implement the

complete system are also outlined. Chapter 4 details the preliminary tests performed as

well as the experimental design of the dataset collected in a real-world forest environment.

Chapter 5 examines the system’s performance while mapping several forest environments.

3



Finally, in the last Chapter, the work’s successes and key lessons learned are summarized,

and opportunities for improvement are identified.

All Software integrated
within ROS

Xsens IMU

Orientation @ 100Hz
Linear Acceleration @ 100Hz
Angular Velocity @100Hz
Magnetometer @100Hz

Livox 3D LiDAR

Point Clouds @ 10Hz

Use a small factor
onboard computer

Continuously function
during a time period of

at least 2hours

Restrict all sensors to a fixed
position, keeping the geometrical

relationship between them
constant

Employ a cooling solution that
ensures the sensors do not go

beyond their maximum operating
temperature

Needs to withstand
temperatures of 60ºC

Must

MoSCoW Analysis

Intel RealSense D435i

RGB Image @ 12Hz
Depth Image @ 12Hz
InfraRed Image @ 12Hz
Camera intrinsic parameters 
@0.1 Hz
Angular Velocity @200Hz
Linear Acceleraton @63Hz

Mynt Eye

Depth Image @ 12Hz
InfraRed Image @ 
12Hz
Camera intrinsic 
parameters @0.1 Hz
Angular Velocity 
@100Hz
Linear Acceleration 
@ 100Hz

Should

Be comfortable and safe for
the operator to handle during
an extended amount of time Be modular, easy to

add/swap/remove sensors
or processing nodes

Easy to replace the battery

Notify the user in the event
of a sensor malfunction at

startup

Could

Easy access to the
SSD memory

Have a dedicated
space to place the

user's Android device

Allow the change of
yaw orientation of at
least one camera.

Provide visual
feedback

Won't
Be weather

resistant
Process heavy

algorithms in real time

Acquire GNSS information

Figure 1.1: MoSCoW analysis of features to implement on the apparatus. Cards in yellow

represent the requirements that were not achieved in this work.

4



2 Background and Related Work

From the beginning of civilization, mapping the surroundings has been a key concept for

navigating an environment. In essence, the problem our ancestors faced is being tackled

in Robotics in the last decade: How do we map the environment and know our location

within it? This is a fundamental problem to tackle and of extreme importance to achieve

full robot autonomy. In a simple approach, a depth sensor in a static platform is enough

to represent the surroundings in a map, this is the base platform of the taxometry chart

presented in Figure 2.1. At this level retrieving localization is trivial, but the amount

of uses in real world are narrowed down to a few. The next level presents the localiza-

tion component, which feeds information into the mapping thus supporting incremental

mapping. If the localization information is correct, precise and error free this would be

enough to generate an accurate map. However, this scenario is not realistic since every

sensor measurement has an error associated with it. The more complex level presents a

two way interaction between the mapping and localization module, this is often refered

as Simultaneous Localization And Mapping (SLAM). SLAM is the challenge of mapping

the local environment perceived by a moving entity (e.g. robot) and updating the map

and localization simultaneously and continuously as the entity moves through space.

5



Localization

Mapping

Mapping

Localization

Mapping

C
om

pl
ex
ity

Figure 2.1: Mapping taxonomy graph.

2.1 Mapping

Maps in robotics are usually represented either metrically or topologically [11], both rep-

resentation are shown in Figure 2.2. The information on topological maps is presented in

the form of a graph that contains important landmarks. There are many advantages to

topological maps, such as space efficiency, but they are often more difficult to construct in

large environments if sensory information is suboptimal and landmarks are hard to iden-

tify [11]. A metric map can be represented with raw sensor measurements, or occupancy

grids, the latter being more common. In occupancy grids, each cell holds the probability

that the space in that cell is occupied. As the cell value increases, the likelihood of that

space being occupied also increases. The resolution of the map will be determined by

the size of the grid, therefore to generate a precise map, one must have large dedicated

memory space. While metric maps are easy to build and mantain, they tend to be space

consuming [11]. To combat the large amount of space needed to store metric maps, some

alternatives have been proposed in the literature.

Elevation maps, introduced in [16], are a more efficient way to display a 3D metric map

by showing only the highest Z value in the grid, as shown in Figure 2.3. This means that

any grid point below the highest Z value is unknown. For example, a wall and a bridge

have the same representation in elevation mapping although it is possible to walk under

6



(a) Example of topological map [12]. (b) Example of a 2D metric map [13].

Figure 2.2: Topological vs metric map.

Figure 2.3: Robot mapping the environment with elevation map [14].

the bridge. Octomap is a popular 3D mapping framework to generate occupancy grids

based on depth information [15] (see Figure 2.4). Octomap uses octrees1 to help reduce

the memory space of rendering a map since large spaces with equal values represented by

a single parent node.

1An octree is a tree data struture in which each internal node is subdivided in eight children until the

structure resolution is met.

7



Figure 2.4: Resulting octree maps of an outdoor environments at 0.2 m resolution [15].

2.2 Localization

To fully determine the location of an object in 3D space at a given time, its 6 degrees

of freedom (pose) must be known: x, y, z (position) and roll, pitch, yaw (orientation).

Localization can take two forms: absolute or relative. On one hand, absolute localiza-

tion estimates the pose of the agent in a global reference. New estimates provided by

absolute localization can be viewed independently of previous poses estimates. Absolute

localization can be provided by technologies such as Global Navigation Satellite System

(GNSS) or Ultra-Wideband (UWB). On the other hand, relative localization establishes

a relative relationship between the current pose and previous poses, usually determined

by consecutive states.

The procedure of estimating a change in pose over time by using sensory information

is called odometry. Classical odometry is computed from motion sensors such as IMU

or wheel encoders, but it is also possible to use cameras as an input to acquire odometry,

this is called visual odometry. Feature matching algorithms (identifying and relating the

same features of an object from different perpectives) such as SURF [17] or ORB [18] are

at the core of many visual odometry algorithms. Recently, Liu et al. [19] developed a

Visual Odometry algorithm based on a Deep Learning technique.

It is also possible to use LiDAR to acquire odometry, whereas scan matching algo-

rithms like Iterative Closest Point method (ICP) are often used. Scan matching takes

two pointclouds or 2D LiDAR scans and finds the transformation that produces the least

amount of error between points. Simply put, it tries to compute the transform that leads

to the overlap of both scans, the transform is then applied to estimate the robots location,

8



Figure 2.5: 2D scan matching to estimate a robot’s pose [20].

as is shown in Figure 2.5. Both scan matching and feature matching can be used to find

a transform to update the localization of the robot.

When computing relative localization, in each iteration odometry information is com-

bined with the previous pose, both of which are subject to uncertainty. Over time, the

cumulative error of the robot will increase significantly. One way to improve the estimate

and reduce the error in measurements is to merge sensory information from different

sources, which can be made with Kalman Filters.

Kalman Filter

The Kalman filter is an iterative process based on Bayes Theorem that uses consecutive

data input to converge to the true value [21]. It involves calculating three values at each

iteration: the Kalman gain, the current estimate, and its uncertainty (see Figure 2.6).

The Kalman gain can be thought of as a variable that represents the confidence in the

observations and predictions made. One limitation of the Kalman filter is that it assumes

the system is linear, so it may not perform well in nonlinear scenarios. The Extended

Kalman Filter (EKF) method addresses this by using a first-order Taylor expansion to ap-

proximate nonlinear functions as locally linear [22]. A more accurate method for nonlinear

systems is the Unscented Kalman Filter (UKF), which uses an Unscented transformation2

2The Unscented transform picks a few points from the distribution of the input (sigma points), then

it passes them through the nonlinear function and computes the mean and standard deviation of the

output.

9



Initial Error
Estimate Initial Estimate

New Data InputError in
Estimate

Compute
Kalman Gain

Error in data
(measurement)

Calculate
current

Estimate

Compute new
uncertainty in

estimate

Updated
Estimate

Previous
estimate

Input

Output

Legend

Figure 2.6: Simple flowchart of the Kalman Filter.

instead of locally linearizing the original function. However, all Kalman filter approaches

assume that noise follows a Gaussian distribution, which may not be true.

2.3 SLAM techniques

Now that both localization and mapping were reviewed, the techniques to use them to-

gether for SLAM can be presented. Figure 2.7 offers a visual representation of a robot

performing SLAM. As mentioned before, sensors capture information from the real world

with uncertainty associated with each measurement. Even when algorithms are imple-

mented to mitigate these errors, they never vanish entirely. When performing SLAM, a

moving robot’s perception and performance can be severely affected by these inaccuracies

as they accumulate and become increasingly large.

2.3.1 Filter-based SLAM

Filtering based SLAM uses the prevously referred filtering techniques. The EKF SLAM

is one way to solve the SLAM problem using the Extended Kalman Filter. As it uses

the EKF, each map and pose must be linearly dependent of the previous iteration and

this is major shortcome. If the robot moves at a constant speed, the change in pose

10



Figure 2.7: Robot moving and mapping the environment [23].

can be assumed linear. This will not be the case as the robot often accelerates. Yet, if

the acceleration is not abrupt the nonlinear system will be successfully approximated to

linear. The biggest drawback is the implied assumption of a static map. Moving entities

in the environment will obviously not produce a close to linear dependency in successful

iterations, therefore the first order Taylor expansion will not yield appropriate results.

The FastSLAM algorithm [24] uses particle filters to estimate the change in pose of

the robot. By using Particle Filters, FastSLAM can handle nonlinear robot motion but it

is more computational intensive. Another advantage of using a Particle Filter to estimate

the motion is the multiple system states that are kept in memory through the resampling

process, that only discards the low probability states. There are also implementations

which replace the EKF with the UKF method to update the landmarks [25], that produce

more accurate results but are usually more computational intensive.

2.3.2 Graph-based SLAM

The graph-based SLAM technique, initially proposed by Lu and Milios et al. [26], uses a

graph-based approach, in which nodes represent poses or landmarks, while edges represent

constraints between nodes, typically obtained from odometry or loop closure techniques,

as illustrated in Figure 2.8. Unlike the filtering approach, the graph-based technique

maintains knowledge on all gathered data and uncertainties are encoded in the graph. This

approach divides SLAM into two main problems: graph construction e.g., building the

11



Figure 2.8: A pose-graph representation of SLAM. The circles represent the robot’s poses,

the solid lines are constrains derived from odometry and the dotted lines are from scan

matching constrains [26].

graph from sensory information (commonly known as front-end) and graph optimization,

i.e., analysing and estimating the most likely global configuration of poses given the

constraints (also known as back-end).

Every new pose introduces a new node into the graph with multiple constraints associ-

ated, the constrains can be divided into weak links provided by odometry data and strong

links obtained from scan or feature matching algorithms. These links can be viewed

as elastic springs with different elastic constants [26], the global graph optimizer will

then find the lowest energy solution to the system. The back-end searches for the best

configuration of nodes that minimizes the error of all the constraints in the graph [27].

Some examples of state-of-the art graph optimization software are g2o [28], GTSAM [29]

and Ceres [30]. To put it simply, the front-end is responsible for generation of accurate

submaps, while the back-end ensures they are consistently correlated.

Loop Closure

The capacity of the system to detect previously visited locations is designated as loop

closure. Loop closure identifies a previously mapped landmark and through feature or scan

matching algorithms updates the robot location. Loop closure detection can significantly

reduce the error in localization, since the cumulative error in pose is revoked. One can

12



think of loop closure as a reset of the pose uncertainty whenever the robot passes through

a previously known location. However, an inaccurate detection of a loop closure will

introduce a large error in both the mapping and robot’s localization, properly identifying

the landmarks is of major importance.

2.4 ROS

To materialize an effective robotics project one must have a common framework that

integrates sensors and processes. This task can be carried out by the Robot Operating

System (ROS) [31].

Although the name suggests that ROS is an operating system, this is not the case. ROS

is a middleware for robotic applications. The system provides a communication channel

where messages can be subscribed, published and distributed, allowing quick integration

between systems and components. Moreover, it provides features such as debugging,

visualization, testing, logging, and configuration right out of the box. The basic execution

file in ROS is called rosnode, via launch files it is possible to start multiple rosnodes

with a single command. It is common to store the information circulating in ROS in a

rosbag, a file containing all the messages of the selected topics in an ordered form, so that

the given experiment can be later reproduced. Additionally, ROS includes a number of

useful community developed packages for essential basic robotic tasks such as navigation,

perception, and manipulation. The ROS community is also constantly evolving with the

most recent developments in robotics, so libraries are constantly being added to ROS.

Many of these libraries are open-source implementations of previously described SLAM

techniques, some of them being reviewed and compared in this dissertation.

2.5 SLAM Implementations in ROS

There are a multitude of open source implementations of SLAM. Since one of the Must

requirements presented in the MoSCoW analysis of Section 1 is a well integrated system

within the ROS platform, only ROS implementations will be reviewed.

One of the most popular implementations of SLAM is Real Time Appearance Based

Mapping (RTAB-Map) [13]. RTAB-Map is a graph-based SLAM system that uses a loop

closure detector and offers several options for the back-end, namely GTSAM (default)

13



[29], g2o [28] and TORO [32]. The loop closure detector uses a bag-of-words approach

to determine the likelihood that a new image was taken from a previous location or a

new location. It supports several modalities, namely LiDAR, RGB-D and stereo cameras.

It can estimate odometry from IMU and wheel encoders but it also supports Visual and

LiDAR odometry as optional odometry sources. In order to ensure online3 SLAM, RTAB-

Map has a memory manager that keeps control of the amount of locations and landmarks

used in the loop closure. Additionally, when executing the loop closure, RTAB-Map will

reuse the features that were previously matched in Visual or LiDAR Odometry, this also

contributes to improve performance. RTAB-Map can generate both 2D and 3D Occupancy

grids with Octomap [15].

Several LiDAR-based method derive from LiDAR Odometry And Mapping, commonly

known as LOAM. Implementations based on LOAM usually use LiDAR to obtain both

odometry and mapping. Although it can create highly accurate maps, it usually per-

forms poorly in places with few landmarks, like long corridors. LeGO-LOAM [33] add

two additional modules to the LOAM technique: pointcloud segmentation and loop clo-

sure. These extra components allow an improvement in computing performance and drift

reduction over long distances but does not improve the results when used in a featureless

enviroment. LeGO-LOAM uses the naive ICP algorithm to perform loop closure, but

a more robust approach, based in a point cloud descriptor is implemented in the SC-

LeGO-LOAM [33, 34]. To help improving the performance in low features environment,

researchers added an IMU to the system in a tighly coupled approach [35, 36, 37]. Due

to the computational intensive task of fusing and processing all sensory data, the authors

in [38] sugested the LiDAR Inertial Odometry via Smoothing and Mapping (LIO-SAM).

Cartographer is Google’s implementation to solve the SLAM challenge [39]. It is

another LiDAR based graph SLAM divided into two main components: local SLAM (the

front end) and global SLAM (the back-end), shown in Figure 2.9. This approach takes

input of range finding sensor, like LiDAR, and applies a bandpass filter to the input data.

IMU can also be used to help figuring out the robot rotation and to provide information

on gravity direction, that is used in the 3D variant.

3In literature, real-time SLAM is referred to as online SLAM and computationally intensive imple-

mentations that are not meant to run in real-time are referred as offline SLAM

14



Figure 2.9: High level system overview of Google’s Cartographer.

2.6 Related Systems for Data Acquisition

In the past, some portable and light sensors designed to collect data from the environment

around us have already been proposed. There are several proprietary solutions available

on the market for gathering sensory information for SLAM, but they tend to be expensive

[40, 41]. Additionally, there are some research papers that report similar systems to the

one proposed here. Considering that the methodology and results of these studies are

readily available, these have been selected for further analysis below.

With the objective of measuring the Diameter at Breast Height (DBH), Oveland et

al. [42] compared the performance of three different ground LiDAR scanning implemen-

tations, namely, Handeld LiDAR, Backpack LiDAR (composed by two LiDAR perpen-

dicular to each other) and terrestial LiDAR. The authors compared the measurements of

DBH to conclude that while the terrestial LiDAR Scanners (a fixed system) is the most

accurate, it fails to detect ocult areas. According to the authors the handheld LiDAR

scanner has issues in detecting smaller trees. Even though the backpack LiDAR has the

highest number of false trees, the authors still aknowledge it as the most efficient method

since it presents the highest amount of trees detected and a low Root Mean Square Error

15



Figure 2.10: Backpack apparatus for dataset collection presented by Oveland et al. [42].

(RMSE) of 0.022m.

Recently, Kui Xao developed a dual LiDARs system, an IMU, and GPS for performing

SLAM in indoor and outdoor applications [43]. To increase the vertical Field of View

(FoV), one of the LiDARs was placed in the XY plane while the other was positioned

with a pitch angle of −77.94◦. A timestamp synchronization algorithm helped the authors

merging the 3D scans from both LiDARs. Secondly, the LiDAR data is tightly coupled

with the IMU data in order to reduce noise caused by the inaccuracy of LiDAR-based

odometry. In outdoor tests, the IMU calibration is improved by loosely coupling GPS to

the IMU. To review the performance of the proposed system, the authors used the Relative

Translation Error (RTE) metric. In this instance, RTE gives the relative error between

the initial and final position which are assumed to be equal. While their framework

outperformed the LeGO-LOAM and LIO-SAM in indoor enviroment it failed to produce

any meaningful diference in an outdoor setup. In forest environments, on the other hand,

it can be expected to show a slight improvement due to the detection by the vertical

LiDAR of the high trees, adding additional features.

Proudman et al. designed a portable system with the purpose of estimating DBH [44].

Based on an Ouster OS0-128 LiDAR and a RealSense D435i, both with an integrated

IMU, the system is able to perform online SLAM and generate a map to estimate the

DBH with a RMSE of 0.07m not considering outliers and 0.14m with outliers. While their

application has the benefit of having a built-in display that allows real-time visualization

16



Figure 2.11: Apparatus introduced by Xiao et al. [43].

of data, one of its major drawbacks is the way they build their apparatus, opting for a

metal stick rather than a backpack type of design. As the authors acknowledge, user

fatigue may lead to excessive variations in stick position, resulting in unintelligible and

uncontrolled movements, damaging the performance of the apparatus. This would not be

an issue if a more ergonomic structure was used. The errors due to user fatigue can be

slightly mitigated by performing SLAM in several sessions instead of one, allowing the

user to rest between shorter sessions. After recording multiple sessions, GPS information

is used to assemble the multiple sessions’ map into a single map.

Yanjun Su et al. [45] developed an accurate backpack with dual LiDAR positioned

orthogonally for estimating DBH and tree height. This system consists of two Velodyne

Puck VLP-16 LiDARs, an IMU, and a display for viewing the generated point clouds in

real time. The system was designed to not be GPS dependent. Using an open-source

Python package, the researcher claims to have achieved an RMSE of 0.02m, a value

slightly lower than Proudman’s. Due to its vertical LiDAR, the system was also able to

estimate the height of trees, obtaining a RMSE of 1.9m.

Sier et. al [46] designed a very complete apparatus with the objective to compute

ground truth for agent trajectories in GNSS denied environments. The apparatus features

six different LiDAR, with both spinning and solid state technologies and a stereo fish eye

17



Figure 2.12: Apparatus with a stick design by Proudman et al. [44].

Figure 2.13: Apparatus designed by Yanjun et al. [45].

camera. To calibrate the several LiDAR the authors used the same methodology as in [47].

Essentially, the transformation between LiDARs was obtained by trying to minimize the

distance error between projected points. The authors compare different state of the

art LiDAR based SLAM with different LiDAR configurations to assess the best overall

combination. Using the Absolute Position Error (APE), a metric introduced in [48], the

authors concluded that the most robust combination is the FAST-LIO [36] implementation

using the more precise OS0 and OS1 spinning LiDARs. Also, on outdoor environments the

solid state LiDARs had a similar performance against the more expensive counterparts.

This is to be expected as the number of features in outdoor environments is considerably

18



Figure 2.14: Multi-sensor apparatus designed by Sier et al. [46].

larger.

A robot system developed by Jelavic et al. performs precision harvesting missions [5].

The entire workflow begins with a human mapping the desired location with a sensor

module. Afterwards, a human expert indicates which trees need to be cutdown with

the autonomous vehicle. With the sensor module attached to the robot, a planning

algorithm determines the most efficient path and pose to reach the next tree. Once

the pose proposed in the previous step has been reached, the tree is grabbed and cut.

In many ways, their sensor module is similar to the one proposed in this dissertation.

The system uses a RealSense T265 tracking camera, an Ouster OS-1 LiDAR, an IMU,

and a FLIR camera model BFS-U3-04S2M-CS, valued at approximately $10500 dollars.

Google’s Cartographer was used to create the 3D map of the forest environment, with the

LiDAR being used for mapping and cameras for obtaining visual odometry. Only one of

the cameras can be used at a time to obtain visual odometry. As the design is similar to

[44], the stick module may lead to user fatigue as discussed previously.

Table 2.1 presents a comparison between the several apparatus reviewed. As one is

able to see, the apparatus focused in forest aplication inventory and other applications do

not compare multiple SLAM implementations, being particularly focused in determing the

DBH of trees. Some of the forest focused apparatus send the recorded footage to a cloud

base system, such as GeoSLAM Hub4 to perform offline SLAM. Of all the implementations
4GeoSLAM Hub is a SLAM cloud provider, producing a map based on 3D data received. The SLAM

19



Figure 2.15: Apparatus proposed by Jelavic et al. [5].

discussed only one uses a RGB-D camera, a critical component to perform flammable

material identification, as well as trees species and objects identification. Having reviewed

the relevant literature, current state of the art of the field and similar solutions to aquire

data, the necessary conditions to present the implementation and design chapter were

met. In the following chapter, a detailed description of the proposed apparatus will be

presented, including the trade-offs and decisions made during the design process.

algorithm used is not described

20



Table 2.1: Comparison table between previously mentioned systems.

Implementations Oveland et al. [42] 2018 Xiao et al. [43] 2022 Proudman et al. [44] 2021 Su et al. [45] 2021 Sier et al. [46] 2022 Jelavic et al. [5] 2021

Inputs

Stereo No No No No No Yes

RGBD No No Yes No No No

IMU Yes Yes Yes Yes Yes Yes

LiDAR Yes Yes Yes Yes Yes Yes

GNSS Yes Yes Yes No Yes No

Display No Yes Yes Yes No No

Structure Type Backpack Backpack Stick Backpack Wheel Cart Stick

SLAM used GeoSLAM Hub
LeGO-LOAM,

LIO-SAM, HSDLIO

Graph-based

SLAM
N.A

LeGo-LOAM, FAST-LIO

Livox-Mapping, LIO-LIVO
Cartographer

Localization Error (m) N.A 0.026m (RTE) N.A N.A 0.092 (APE) 0.41m

Forestry Application Yes No Yes Yes No Yes

21



3 Design and Implementation

The purpose of this sytem is to support current and future projects in forest environments.

To accomplish this, the apparatus must have sensors that meet the system requirements

drawn in Section 1.2, as well as software to ensure that all sensors function and operate as

intended. It is also important to have a robust mechanical structure that holds all com-

ponents securely and is resistant to high ambient temperatures and the heat generated

by the components. User safety should also be considered in the design of the mechan-

ical structure. Finally, all the necessary software must be integrated or implemented so

that the recording process is as simple as turning on the system and executing a single

command.

3.1 Sensors and Components

The apparatus is equipped with multiple sensors that allow it to meet the requirements

proposed. Figure 3.1 illustrates the four main sensors included in the proposed apparatus.

The Xsens MTi is a IMU (Figure 3.1a), which can measure linear acceleration, gyroscopic

and magnetic information. The Mid-70 Livox, shown in Figure 3.1b, is a 3D solid-state

LiDAR that can publish point clouds at a frequency of 50 Hz. While it has precision for

close objects and a maximum range of 260 m, it has a small FoV of 70.4◦. In addition,

this LiDAR produces a sparse point cloud (see Figure 3.2).

A Mynt Eye S1030 stereo camera (see Figure 3.1c) is included to increase the FoV

degrees for mapping. It has a large FoV of 146◦ and can also provide linear acceleration

and gyroscopic information from an inbuild IMU. The Mynt Eye does not provide RGB

image, but two monocolor images able to detect light in the infrared spectrum. The

apparauts also includes an Intel Realsense D435i camera, which provides additional depth

information and serves as the single source of RGB and infrared information, useful for

22



(a) Xsens MTi IMU. (b) Livox LiDAR Mid-70.

(c) Mynt Eye S1030. (d) Intel Realsense D435i.

Figure 3.1: Collection of the apparatus’ sensors.

Figure 3.2: Point cloud patterns of the Livox Mid-70 accumulated over an time extended

period of time [49].

identifying flammable material.

The Udoo Bolt is the small factor computer chosen, shown in Figure 3.3. Some of Udoo

Bolt specifications are outlined on Table 3.1. One of the PCIe slots is used for connecting

an SSD with 1TB of storage, which is extremely useful for dataset recording. The Udoo

Bolt runs the Linux Operating System with the Ubuntu 20.04 focal distribution. The

entire system is powered by a 14.8V Turnigy battery with 10000mAh, which can provide

more than 4 hours of continuous system operation. A diagram showing how the various

modules are powered can be seen in Figure 3.4.

23



Figure 3.3: The small factor computer

Udoo Bolt.

Table 3.1: Specification table for the

Udoo Bolt.

Components Quantity

AMD Ryzen V1202B dual-core 1x

USB 3.1 Type-A 2x

USB 3.1 Type-C 2x

HDMI ports 2x

32GB eMMC 5.0 1x

Arduino Leonardo 1x

PCIe M.2 slots 3x

Turnegy 14.8V 
10.000mAh Battery

Step-up 19V Step-down 5V Step-down 12V

Fans
Livox 

LiDAR

USB Hub

Host 
Computer

Mynt Eye 
S1030

Xsens IMU

U
S

B
 3

.1
ty

p
e
 A

Sensor Box

Realsense 
D435i

U
S

B
 3

.1
typ

e
 C E
th

e
rn

e
t

Backpack

5V 12V

14.8V

19V

USB 3.1
type A

Figure 3.4: Diagram of the connections for the different system components in the pro-

posed apparatus.

24



The structure was divided into two distinct components: the sensor box, which houses

all the cameras and sensors, and the backpack, which houses the computer, battery, the

step-ups and step downs.

3.2 Mechanical Structure

In the literature reviewed, it has been demonstrated that the handheld design of sensor

systems can lead to user fatigue. The handheld design offers high maneuverability for

the sensors, making it easy for the user to direct it towards specific locations or objects.

Despite its advantages, the handheld design imposes a physical strain on the user, as

it requires the use of one or both hands to hold the apparatus, thereby making it less

practical.

Since the host computer can reach high temperatures, the structure inside the back-

pack was made of Acrylonitrile Butadiene Styrene (ABS), which can withstand tempera-

tures of about 80◦C without significant degradation [50]. Although ABS is heat resistant,

it is not resistant to ultraviolet radiation (UV), which may become an issue in the future,

as it is expected to operate outdoors for several hours along its lifecycle. The alternative

is to use Polytetrafluoroethylene (PTFE), a material that is heat resistant up to 60◦C

and has better UV resistance, which may be considered in the future. To mitigate po-

tential thermal issues in the sensor box, several fans were set up to blow fresh air into

the cameras, which tend to heat up after long periods of operation. A heat sink was also

attached to back of the Realsense D435i camera to improve heat dissipation. The Livox

LiDAR was mounted on top so that it could be easily upgraded to a 360◦ LiDAR in the

future. Since the main purpose of the Mynt Eye is to increase the FoV of the mapping,

the mount that holds it in place was designed to allow easy rotation around the yaw axis.

In this way, the extent to which the Mynt Eye point cloud overlaps with the rest can be

tuned to the user’s application. The complete apparatus is shown is Figure 3.6.

25



Figure 3.6: Complete apparatus with the backpack open.

The reference frame in the apparatus is set to the bottom shelf, as Figure 3.5 shows, any

sensor transformation is referenced to this location, Figure 3.7 shows the complete trans-

form tree for the apparatus. Almost all sensor poses are known from the Computer-aided

Design (CAD), with the exception of the Mynt Eye, where the yaw angle is adjustable

by the user at will. Sensor registration is done manually using transformations provided

by CAD. Once the yaw of the Mynt Eye is set, the pose is manually adjusted by visually

comparing the intersection of the different point clouds. Figure 3.8a illustrates the dif-

ferent point clouds in the scenario of Figure 3.8b, as seen by the Realsense D435i RGBD

camera. The overlap of the different point clouds appears to be accurate enough for this

application. However Figure 3.8c shows that there is room for improvement in extrinsic

calibration of sensors.

26



(a) Sensor Box.

(b) CAD design of the Sensor Box with ref-

erences of parent frames for each sensor.

(c) Backpack base. (d) CAD design for the Backpack base.

Figure 3.5: Mechanical structure of the apparatus, divided into the sensor box and back-

pack.

27



Figure 3.7: Complete transform frame for all components of the apparatus.

28



(a) Overlap of the different point clouds. LiDAR point cloud in blue, Mynt

Eye point cloud in red and D435i point cloud in RGBD.

(b) RGB image of the experimental sce-

nario.

(c) Side view of point clouds of a rubber

duck from the several depth sensors.

Figure 3.8: Visual validation of the transformations between sensors.

29



3.3 Software

To operate the apparatus effectively, the integration of several software components is

required. First and foremost, a software solution must be implemented that can gather

GNSS data from Android devices. In addition, a software to launch the system is also

necessary to initiate the apparatus and enable data recording and storage. Lastly, it is

important to devise an architecture that can compare various SLAM implementations.

3.3.1 Android Application

It is extremely useful to have a source for absolute localization, especially when perform-

ing localization in unknown environments. Although there are various solutions on the

market, nowadays almost every cell phone receives GNSS information. The possibility

of using a smartphone to localize the user was investigated by reviewing some Android

applications that establish communication with ROS. Almost all applications currently

on the market [51, 52] do not allow transmitting data from Android sensors such as GNSS,

gyroscope and accelerometer to the ROS channel. The only application that allows such

communication is the Android Sensors Driver [53], which has not been maintained since

2012, meaning that it does not work with current Android versions, as features such

as access permission to GNSS information have changed drastically over the years. For

this reason, a new Android application was designed and created, named ROS Streaming

Sensors5. This novel application allows streaming sensor data, such as GNSS to a ROS

system. The application follows a Model View View-Model (MVVM) architecture to fa-

cilitate maintenance and development of new features. To send messages to ROS, the

application establishes websocket communication with a ROS Bridge [54] node running

on the host computer to which multiple devices can be connected simultaneously.

The application allows the user to configure parameters such as the publication rate,

the websocket address, and the ROS topic name (see Figure 3.9a). The user can also view

all the previous runs it made and sort them by date, time, distance and average speed

as Figure 3.9b illustrates. When starting a new test run, the user is shown a map with
5The full application documentation is available at https://mjpc13.github.io/SensorStreamer/

and an alpha version is available for download at https://github.com/mjpc13/SensorStreamer/

releases

30

https://mjpc13.github.io/SensorStreamer/
https://github.com/mjpc13/SensorStreamer/releases
https://github.com/mjpc13/SensorStreamer/releases


(a) Settings option. (b) List of runs. (c) Current Run.

Figure 3.9: Screenshots of the ROS Android Sensor application.

his/her current location and the option to stop and finish the current run (see Figure

3.9c). Lastly, the user has access to global statistics like average speed and total distance

travelled.

3.3.2 System Architecture for Dataset Recording

In this dissertation there are advantages in containerizing the multiple software used.

Isolating the different components leads to a bigger modularity and Docker is a popular

tool that helps containerizing software [55]. A Docker container can be seen as an almost

independent computer running inside the host machine. As it is isolated, the software in a

container is independent of other softwares in the computer, making version dependency

easy to manage. What this isolated container shares with the host computer depends on

the configuration, for the work of this dissertation all docker containers share the host

networking and are able to access I/O devices. This essentially means that containers

are free to comunicate with each other and with the host while also communicating freely

with I/O devices. Since Docker allows developers to create containers that include all

31



the software and dependencies that an application needs in order to run, the application

can run consistently across different environments, such as different operating systems

or across multiple machines, which do not even need to have ROS natively installed.

Through the years, it has become popular to pair ROS with Docker [56].

In this work, the use of Docker is critical as some of the sensor drivers were created for

different, not fully cross-compatible versions of ROS. Therefore, the full architecture for

the recording process, shown in Figure 3.10, is designed around Docker, with six different

containers used: a ROS Master (running ROS Noetic), ROS Melodic, ROS Noetic, a ROS

Bridge, a recording container, and a diagnostic container.

The ROS Master is the first container launched, and the remaining containers connect

to it. Since all containers use the host networking to receive and send packets, the ROS

master running is also accessible to the host computer. Because of the different versions

of Python used in ROS Melodic (Python 2.7) and Noetic (Python 3), software developed

for one version is usually incompatible with the other. While the drivers for Realsense

D435i and the Livox LiDAR run on ROS Noetic, the drivers for the Mynt Eye and Xsens

depend on ROS Melodic or older versions. To manage the incompatibility between ROS

Melodic and Noetic, a container is created for each version. Then there is a container

running a ROS bridge server that exposes port 9090 on the host computer to receive GNSS

information from the Android Sensor ROS application. There is also another container to

write the dataset to a rosbag and a ROS debugging node that records a separate rosbag

with various debug information, such as topic frequencies and temperatures of the CPU.

3.3.3 System Architecture to perform SLAM

To validate the dataset and compare different implementations, an architecture to per-

form SLAM, shown in Figure 3.11, was designed. Most implementations of SLAM require

odometry as input, so there must be a ROS node that converts the several sensory in-

formations into odometry data. Then the desired odometry must be fused with the IMU

measurements and optionally with GNSS in a sensor fusion node. Some of the SLAM

implementations used can also accept IMU and GNSS inputs directly. robot_localization

[57] is the package used for the sensor fusion node, an approach based on Kalman filters.

This package allows both the EKF and UKF options and it can have multiple IMUs and

odometry as inputs. For the SLAM node, one of the following packages is used:

32



Port 9090Record

Noetic Melodic

Ros Bridge

Host

Ros Master
(Noetic)

Web Socket

Intel 
Realsense 

D435i

USB C

Livox Mid 70
LiDAR

Ethernet

Mynt Eye 
S1030

USB A

Xsens IMU
USB A

Sensor 
Streamer

Left Rect @20Hz
Right Rect @20Hz

Depth @20Hz

Point
Cloud @50Hz

RGB @30Hz
Infra @30Hz

Depth @30Hz
Accel @63Hz
Gyro @200Hz

Accel @100Hz
Gyro @100Hz
Temp @100Hz
Mag @100Hz

android

System 
Diagnostic

Sensor

Docker Container

Figure 3.10: Complete system architecture for recording datasets with the proposed ap-

paratus.

• RTAB-Map [13];

• Google’s Cartographer [39];

• livox_mapping, a LOAM-based implementation6.

The livox_mapping library is chosen due to its optimizations designed specifically for

Livox’s solid-state LiDARs, considered the most accurate and reliable sensor available

in the apparatus. However, this library is based on LOAM and does not incorporate

loop closure, which is a crucial aspect of SLAM. On the other hand, Cartographer and

RTAB-Map, the two alternative graph-based approaches, both possess the ability to per-

form loop closures. Despite having similar goals, these two approaches have distinct

methodologies and philosophies when it comes to SLAM. Cartographer, for instance,

can process multiple point clouds inputs, leveraging the various depth sensors available,

but does not utilize the RGB channel of the Realsense D435i. Conversely, RTAB-Map

can only only detects loop closures based on images, not on LiDAR. Furthermore, while

Cartographer heavily relies on the performance of the IMU, RTAB-Map is not dependent

on the performance of the IMU and can operate without one. RTAB-Map also has the
6The livox_mapping package can be found at https://github.com/Livox-SDK/livox_mapping

33

https://github.com/Livox-SDK/livox_mapping


D435i RGBD

Livox LiDAR

Mynt Eye Point
Cloud

Mynt Eye
Stereo

RGBD Odom
Node

ICP Odom
Node

Stereo Odom
Node

Sensor Fusion
Node

GNSS

Xsens IMU

Madgwick Filter
Node

SLAM
Node

Legend:

- Sensor Input

- ROS Node    

- Optional Connection

Fused
Odom

Livox Odom

D435i Point
Cloud

Livox Point
Cloud

Mynt Eye Point
Cloud

Figure 3.11: Base architecture to perform SLAM with the proposed apparatus.

advantage of displaying the map in three dimensions, using the Octomap package [15].

The differences between the approaches make them worthy of consideration for this work.

34



4 Preliminary Tests and

Experimental Design

This chapter describes preliminary tests that have been conducted and the performance

metrics associated with each test. These tests have been defined to verify if the several

individual components work as expected before integrating them in a final experiment to

generate a robust dataset.

4.1 Android Application Test

This test aims to validate the functionality of an Android application and its ability to

publish data to ROS. Additionally, the practicality and effectiveness of the application will

be assessed through a comparison of positional estimates generated by multiple Android

devices against a ground truth map. The objectives of this study are:

• Validation of the functionality of the Android application and the successful trans-

mission of data from the Android device to ROS.

• Assessment of the practicality and effectiveness of the application through a com-

parison of the positional estimates generated by multiple Android devices against a

known map.

Experimental Design

This experiment was performed in the Choupal National Woods (40◦13′13.3′′N ; 8◦26′38.1′′W )

in Coimbra, Portugal. The user performed two circular loops around the smaller square

and a lemniscatory7 trajectory (see Figure 4.1), amounting to a total distance of around
7A lemniscate is any trajectory that resembles the infinite symbol (∞).

35



Figure 4.1: Trajectory conducted by the

user in red.

Figure 4.2: GNSS test results. Position

tracking of the Xiaomi Mi 9T and the

Xiaomi Mi Mix 3 is displayed in blue and

orange, respectively.

2000m. During the entire run, the user held two android devices (a Xiaomi Mi 9T and

a Xiaomi Mi Mix 3) side by side in their hands. The experiment was performed dur-

ing a sunny day without clouds in the sky at around 15:30h. The Android application

fused GNSS data with cellphone tower localization and broadcasted the information as a

sensor_msgs/NavSatFix ROS message. The devices were connected to a common ROS

Node Bridge, which facilitated the publication of the GNSS messages to a designated

topic. The resulting data was recorded in a rosbag and subsequently visualized in Figure

4.2 through plotting.

Results and Discussion

The results of the experiment revealed that the Xiaomi 9T demonstrated inadequate

performance and precision, making it unsuitable for this work. The Mi Mix 3 on the

other hand offers localization that is sufficiently representative of the actual trajectory,

thus it will be used in future testing. Both devices were tested under the same conditions,

36



and the main difference between them, as per their specifications8, is that the chip in the

Xiaomi 9T is older, which could be the reason for its degraded performance compared to

the Xiaomi Mi Mix 3.

4.2 DEEC Building Dataset

This study serves as a preliminary step towards the main dataset collection. In this

study, the various components of the apparatus described in previous chapters are tested

in a challenging environment in order to identify any potential issues. The aims of this

experiment are:

• Evaluation of the comfort and usability of the apparatus for the user.

• Assessment of the mechanical durability and stability of the apparatus.

• Confirmation that all topics are being recorded at the desired frequency.

• Acquisition of a preliminary dataset to initiate the integration of the SLAM strate-

gies outlined in the preceding chapter.

• Determination of the feasibility of performing SLAM with the recorded data.

• Identification of any potential malfunctions of the device prior to collecting a dataset

in a forest setting.

Performance Metrics

Performance metrics are critical in measuring performance and discussing results. To

evaluate the apparatus presented in this dissertation, the following metrics are the ones

considered.

Relative Topic Frequency - The ratio between the measured frequency and target

frequency:

RTF = fmeasured

ftarget

, (4.1)

8The specification for the Xiaomi 9T and Xiaomi Mi Mix 3 can be found at https://xiaomiui.net/

smartphones/xiaomi-mi-9t/, https://xiaomiui.net/smartphones/xiaomi-mi-mix-3/ respectively

37

https://xiaomiui.net/smartphones/xiaomi-mi-9t/
https://xiaomiui.net/smartphones/xiaomi-mi-9t/
https://xiaomiui.net/smartphones/xiaomi-mi-mix-3/


where the target frequency is the frequency one should expect from the sensor. This metric

highlights the disparity between the anticipated frequency and the actual frequency for

a given topic. In the context of this research, values above 0.95 denote an optimally

functioning sensor.

Relative Translation Error (RTE) - The relative error between the start and final

position:

RTE =
√

σ2
x + σ2

y + σ2
z , (4.2)

where σi is the module of the difference between final and starting value:

σi = |ifinal − istart|, (4.3)

Given that the user begins and concludes his/her path in the same position, the value

of RTE should equal 0 and the closer it is to 0, the more optimal it is. However, this

metric may not effectively measure drift as loop closures identified between the initial

and final positions will reduce the accumulated drift error. The RPE and APE are two

commonly used metric in the literature to measure drift, however these metrics demand

a ground truth, something that this work lacks.

Relative Orientation Error (ROE) - The relative error between the start and final

orientation:

ROE =
√

σ2
roll + σ2

pitch + σ2
yaw (4.4)

This metric is similar to the previous one, but for the orientation.

Experimental Design

The dataset was collected on the second and third floors of the Departamento de Engen-

haria Eletrotécnica e de Computadores (DEEC) building at the University of Coimbra.

This localization was chosen primarly because it provides both spaces with several of fea-

tures9 (see Figure 4.3a) and spaces with few features (see Figure 4.3b) while being close

to the development location.
9Spaces with several of features generally contain several objects with different colors, textures and

shapes.

38



(a) Corridor with features. (b) Featureless staircase.

Figure 4.3: Types of spaces present in the DEEC dataset.

In this experiment, the user performs a circular loop trajectory over two floors of the

building with the apparatus on their back in a run of 4:45s. Since the experiment takes

place in an indoor environment, the GNSS information was intentionally omitted. All the

recorded ROS topics and their corresponding publishing frequency can be seen in Table

4.1.

39



Table 4.1: Topics collected in the DEEC dataset.

Topic Message Type (sensor_msgs/*) Frequencies (Hz) RTF

/imu/data IMU 99.86 1.00

/imu/mag MagneticField 99.86 1.00

/imu/temperature Temperature 99.86 1.00

/livox/lidar PointCloud2 50.03 1.00

/mynteye/left/camera_info CameraInfo 19.83 0.66

/mynteye/left/image_raw CompressedImage 19.83 0.66

/mynteye/right/camera_info CameraInfo 19.83 0.66

/mynteye/right/image_raw CompressedImage 19.83 0.66

/realsense/accel/sample Imu 63.29 1.00

/realsense/gyro/sample Imu 198.39 0.99

/realsense/aligned_depth/camera_info CameraInfo 26.54 0.88

/realsense/aligned_depth/image_raw CompressedImage 26.54 0.88

/realsense/color/camera_info CameraInfo 28.88 0.96

/realsense/color/image_raw CompressedImage 28.88 0.96

/realsense/infra1/camera_info CameraInfo 16.88 0.56

/realsense/infra1/image_rect_raw CompressedImage 16.88 0.56

In this dataset only the RTAB-Map node was used to perform SLAM, but with three

different set-ups:

• RGBD odometry from the Realsense D435i fused with the Xsens IMU in robot_localization

• Livox odometry odometry fused with the Xsens IMU in robot_localization

• RGBD odometry from the Realsense D435i and Livox odometry fused with the

Xsens IMU in robot_localization

Results and Discussion

The apparatus proved to be robust during the test experiment as the several sensors were

firmly secure before and after the experiment. In this 5 minute test run the user also did

not report any significant disconfort.

According to Table 4.1, the relative topic frequency of the Realsense D435i’s in-

frared and aligned_depth topics are too low. The aligned_depth compression was set

too high and the computer did not have the capability of compressing and recording the

40



Table 4.2: Results for the different set-ups.

SLAM Sensor Fusion
Input for Sensor

Fusion
RTE (m) ROE (rad)

RTAB-Map robot_localization
IMU;

RGBD odom
52.5 0.32

RTAB-Map robot_localization
IMU;

Livox odom
28.8 3.3

RTAB-Map robot_localization
IMU,

RGBD odom,

Livox odom

0.05 0.14

messages at the desired rate. The drop in frequency of the infrared topic does not share

the same explanation, as subsquent tests showed that reducing the compression rate did

not affect the topic frequency. An alternative hypothesis for this phenomenon is that the

Udoo Bolt CPU board does not have enough air circulation in the backpack, causing it

to reach the thermal threshold and start throttling the CPU. This hypothesis is tested

in the next preliminary test.

In this experiment, the performance of two individual sensors, the Realsense D435i

and the Livox, was evaluated as sources of odometry. The Realsense D435i odometry is

computed with an ORB based algorithm and the Livox uses the sensor registration from

livox_mapping to compute the odometry. Both sensor odometry estimates are then fused

with an IMU with an UKF, outputing the fused odometry used in this experience. The re-

sults from Table 4.2 revealed that the individually odometry from both sensors performed

poorly and produced inconsistent maps, as seen in Figures 4.4 and 4.5. The odometry

from Realsense D435i struggled in low-feature environments, such as staircases, leading

to an incoherent map. Despite the implementation of a matching planes algorithm in the

scan registration, the Livox odometry also failed to produce a coherent map, introducing

large errors in pitch caused by poor plane matching, which resulted in the rotation of

sections of the map (Figure 4.5) and large error in ROE.

To address these issues, the odometry from both sensors was fused. The integration

of the RGBD odometry significantly reduced the large errors in pitch present in the Livox

odometry. Meanwhile, the Livox odometry helped to reduce the positional drift from the

41



Figure 4.4: Complete map produced by

RTAB-Map with only RGBD odometry in

the DEEC dataset.

Figure 4.5: Complete map produced by

RTAB-Map with only Livox odometry in

the DEEC dataset.

RGBD odometry in low-feature sections of the trajectory, resulting in a more consistent

map. The improved consistency of the map allowed RTAB-Map to identify both local

and global loop closures, as seen in Figure 4.6 and Figure 4.7.

However, the overall quality of the generated map was not optimal, with some sec-

tions of the straight corridors appearing distorted, as illustrated by Figure 4.7. This was

attributed to the presence of low-feature sections in the trajectory, which still introduced

large errors in pose estimation. Despite these limitations, the integration of both sensors

demonstrated improved results compared to the use of each sensor odometry individually.

In order to obtain a more consistent map, new features need to be added to the staircase

or a different sensor should be used, for example, a precise precise 360◦ LiDAR would

improve significantly the plane matching algorithm.

42



Figure 4.6: Amount of co-related features between initial and final position found in the

loop closure detected by RTAB-Map in the DEEC dataset.

Figure 4.7: Complete map of the DEEC dataset generated with RTAB-Map with fused

odometry.

43



4.3 Heat Test

This experiment was designed to provide further insight of the problematic frequencies

discussed in the previous section. The main purpose of this test is:

• Verify if the Udoo Bolt computer starts to thermal throttling and verify if this is

the cause of the unsteady acquisition frequencies observed during the preliminary

experiences.

Experimental Design

The experiment includes four different scenarios:

• Computer with only the rosnode to record temperatures running

– Backpack open

– Backpack closed

• Entire recording architecure running

– Backpack open

– Backpack closed

In each scenario, the computer is left running for one hour, with measurements of

temperature, CPU frequency, and topics frequencies extracted at 1-second intervals. The

two scenarios where the computer is only running the rosnode to check the temperature

are the control scenarios of the experiment.

Results and Discussion

The results displayed in Figure 4.8 suggest that the temperature of the Udoo Bolt is

higher in the control configuration with a closed backpack, with an average temperature

of 39.07◦C and 39.87◦C for the open and closed backpack respectively. Both of the

temperatures of the control are lower than the configuration with the entire recording

architecure running.

The experiment with the open backpack and the recording system running shows

that the temperature stabilizes at about 46◦ Celsius (see Figure 4.8). Although there

44



0 1000 2000 3000 4000 5000 6000
Message number

30

35

40

45

50

55

60

65

70

75

Te
m

pe
ra

tu
re

 (°
C)

System Running Open
System Running Closed
Control Open
Control Closed

Figure 4.8: Temperature of all the set-ups of the experiment.

is no significant frequency drop throughout the experiment, the infrared image from the

Realsense D435i was not published at all and the frequency of publication of the depth

image appears to slowly decrease over time (see Figure 4.9). In contrast, in the closed

backpack experiment, there does not appear to be enough air circulation to stabilize the

temperature, reaching the close to the Udoo Bolt critical temperature of 75◦ Celsius,

causing the CPU to throttle, (as shown in Figure 4.10). There is a significant drop

in the frequency of the Mynt Eye streams that appears to correlate with temperature,

thus supporting the original hypothesis. However, this hypothesis does not explain the

increase in Realsense D435i frequency after the system begins to throttle, or why the

infrared channel does publish data regardless of the configuration.

One hypothesis that could explain the results obtained is that the Udoo Bolt does

not have enough bandwidth to pass all the information over the bus, since all USB ports

share the same bus. This might explain the absence of the Realsense D435i’s infrared

channel, and why reducing the frequencies of the Mynt Eye camera leads to an increase

in the Realsense D435i’s depth frequency. To test if the Udoo bolt has enough bandwidth

45



35
40
45
50
55
60
65
70
75

Te
m

pe
ra

tu
re

 (°
C)

Temperature

0 1000 2000 3000 4000 5000 6000
Message number

0
3
7

10
13
17
20
23
27
30

Fr
eq

ue
nc

y 
(H

z)

Mynt Eye Depth Frequency
Mynt Eye Left Frequency
D435i Depth Frequency
Realsense Infra Frequency

Figure 4.9: Results with entire system running and the backpack open.

(BW) to use all sensors simultaneously, one can make a simple estimate of the amount

of information going over the bus and check the maximum bandwidth available. All USB

ports in the Udoo Bolt share a single bus, with 16 PCIe lanes (Gen3). This means that,

according to the specification of PCIe Gen3, the theoretically available bandwidth of the

bus is 15.8GB/s in total, 7.877GB/s to each direction.

BWUSB→CP U ≈ 7.877GB/s (4.5)

The sensors that transmit more information are the cameras and LiDAR (note that the

LiDAR is connected via Ethernet, which does not use the same bus) and the bandwidth

46



35
40
45
50
55
60
65
70
75

Te
m

pe
ra

tu
re

 (°
C)

Temperature

0 1000 2000 3000 4000 5000 6000
Message number

0
3
7

10
13
17
20
23
27
30

Fr
eq

ue
nc

y 
(H

z)

Mynt Eye Depth Frequency
Mynt Eye Left Frequency
D435i Depth Frequency
Realsense Infra Frequency

Figure 4.10: Results with entire system running and the backpack closed. The purple

area painted under the curve is caused by the Mynt Eye ocasionally not publishing any

message during the time windows used to compute the frequency, this led to a value of

-1.

that each sensor requires is the size of the data times the sensor frequency:

BW = Datasize × f. (4.6)

The amount of data in each message from a camera can be estimated as the product

of the image array size (W × L) with the size of each element (dlen) and the number of

channels (Nchannels) in the image:

Datasize = W × L × Nchannels × dlen. (4.7)

The Mynt Eye provides streams such as depth, rect and disparity, but these streams

are computed in the host computer, the only images that pass through USB are the left

47



and right images:

BWMynt Eye = 2 × (752 × 480 × 1 × 1byte) × 20Hz × 10(−9) ≈ 0.0144GB/s (4.8)

The Realsense D435i does not compute the images on the host computer, so all streams

must be considered, namely RGBD, right infrared and left infrared.

BWD435i = 6 × (640 × 480) × 30Hz × 10(−9) ≈ 0.0555GB/s (4.9)

The total bandwidth required by the cameras is only 69.9MB/s, which is two orders

of magnitude below the theoretical maximum, so it is unlikely that the issue is due to a

bandwidth issue.

It has also been hypothesized that the Mynt Eye is taking over the bus controller and

starving other devices. Alternatively, it could be that the CPU does not have enough

processing power to process all the information and record the topics into a rosbag or

that the Udoo Bolt cannot provide the necessary power to operate the two cameras at

the same time. These three hypotheses are not tested in this dissertation. However, they

are mentioned as Future Work in the last chapter, along with suggestions for profiling

the problem.

4.4 Choupal National Woods Dataset

This section outlines the main objectives for the main dataset of the dissertation, the

performance metrics used to evaluate the apparatus in chapter 5, and the experimental

design conditions for recording the dataset.

The objectives of this experiment are:

• Test the confort for the user during long experiments;

• Test the mechanical robustness of the apparatus;

• Produce a dataset that can be used by the community to test several forest opera-

tions;

• Have a complete dataset that enables to integrate several SLAM algorithms;

• Validate the performance of the apparatus in a forest environment.

48



Performance Metrics

The performance metrics utilized in this study will be consistent with those presented

in Section 4.2. Given the absence of a highly precise ground truth system, such as a

high-precision GNSS system, a set of qualitative metrics will be employed to draw con-

clusions. These metrics include the overlay of the generated localizations onto maps from

O-solutions [58], a professional cartography business, in which the accuracy of the map is

not publicly accessible.

Several visual comparisons of the map generated by the SLAM implementations are

also reviewed, with details such as global map consistency, amount of features and ground

consistency.

Experimental Design

A dataset10 was collected at the Choupal National Woods (40◦13′13.3′′N ; 8◦26′38.1′′W ).

As it shares resemblence to a forest environment (see Figure 4.11) and this is the main

dataset used to validate the work.

In this study, a dataset was collected during a partly clouded day in a forest en-

vironment, where the user performed two circular loop laps amounting to a distance of

approximately 800m (as depicted in Figure 4.11) with a duration of 24 minutes and 26 sec-

onds. The environment is rich in features, including tree trunks, trees, bushes, and leaves.

To evaluate the performance of different SLAM approaches, three different methods were

compared:

• livox_mapping, with LiDAR data as the only input;

• RTAB-Map, odometry from robot_localization fusing the IMU, RGBD and Livox

odometry together. The only sensor used to map the enviroment was the Realsense

D435i camera;

• Cartographer, with raw IMU data and odometry from robot_localization by fusing

the IMU, RGBD and Livox odometry together. The only input to map was the

Livox LiDAR.
10The main dataset is available for download at https://home.mycloud.com/action/share/

36a0bad2-a4cc-43f0-b358-7cf97601f30b

49

https://home.mycloud.com/action/share/36a0bad2-a4cc-43f0-b358-7cf97601f30b
https://home.mycloud.com/action/share/36a0bad2-a4cc-43f0-b358-7cf97601f30b


RTAB-Map requires RGB information in order to detect loop closures, making the

utilization of the Realsense D435i camera essential. Although it is possible to use multiple

depth sensors in RTAB-Map, using the Livox LiDAR did not produce any significant

change, and using the Mynt Eye deprecated the map consistency, introducing errors,

specially in the time windows where the Mynt Eye was failing to publish data.

Cartographer algorithm can take several point clouds as inputs. However, using either

of the Realsense D435i or Mynt Eye cameras with the high precision LiDAR is not feasible

due to the sparse point cloud produced by the LiDAR, which would be lost in the dense

and noisy data from either the Mynt Eye or the Realsense D435i. The next chapter

presents a detailed discussion on the performance of the apparatus in this experiment.

Figure 4.11: An example space in the

Choupal National Woods.

Figure 4.12: Ground truth trajectory in

the Choupal Dataset, using the map pro-

vided by [58].

50



5 Results and Discussion

The objectives of this chapter are to analyze and interpret the results obtained from the

research study, and to discuss the implications of these findings.

As the experiment progressed, the apparatus demonstrated its robustness as the trans-

formations between the sensors remained relatively unchanged. However, the user re-

ported some discomfort during extended use of the apparatus, which was attributed to

the uneven and off-center design of the backpack and its weight. Aligning the pole with the

center of the user’s back may help to alleviate these issues by improving weight distribu-

tion and reducing lateral movement (which reduces the cameras motion blur). Therefore,

this should be considered and implemented in an improved version of the backpack.

Unlike previously reported in the preliminary tests, the results show that the GNSS

information provided by the Xiaomi Mi Mix 3 device was unreliable, with large errors

in the positioning data (as seen in Figure 5.1). The reason for this could be the limited

number of satellites available to the device at the time of the experiment. However, Figure

5.2 indicates that eight GNSS satellites were available when the cut-off was set at 45%. It

is possible that the decreased precision was a result of the phone being carried in a pocket

during the experiment, which could have impacted its performance. This issue will be

further addressed in the future work.

In the absence of GNSS data, only a relative sources of localizations are available.

The results of the different odometry methods are displayed in Figures 5.3 and 5.4. An

analysis of these results reveals that two of the odometry sources, acquired using the Mynt

Eye camera, do not provide accurate enough results. The low frame rate of Mynt Eye

messages is considered the cause for the inconsistency of the Mynt Eye odometry sources.

On the other hand, the Realsense D435i, which performs well in environments rich in

features, shows a satisfactory performance, although it still experiences a substantial drift

in the Z-axis. Similarly, the sparse but high-precision LiDAR shows adequate results in

51



Figure 5.1: GNSS locations for the

Choupal dataset. The small red cir-

cles are the several positions received

during the experiment, and the semi-

transparent red circle is the uncertainty

radius of one of the positions.

Sky plot

Lat: 40.22031°

Lon: -8.44416°

Height: 0 m

Cutoff: 45°

From: Sun, 18 Dec 2022 12:00:00 UTC+00:00

To: Sun, 18 Dec 2022 18:00:00 UTC+00:00

330°

300°

270°

240°

210°

180°

150°

120°

90°

60°

30°

0°

E07

G24

R10

C45

R08

E27

C21

G12

Dec 18th, 12:00 PM Dec 18th, 06:00 PMDec 18th, 02:30 PM

Dec 18th, 12:00 PM Dec 18th, 01:30 PM Dec 18th, 03:00 PM Dec 18th, 04:30 PM Dec 18th, 06:00 PM

© 2023 Navmatix s.r.o.

SkyPlot - Mission planning http://gnssmissionplanning.com/App/Skyplot

1 of 1 1/31/23, 12:17

Figure 5.2: Number of GNSS satellites

available at the time of the experiment

according to [59]. The satellites outside

the red circle (a 45◦ cut-off) are not con-

sidered as visible.

the initial stages of the experiment but experiences degradation in performance half way

through the second lap.

52



Figure 5.3: 2D plot of the odometry provided by every sensor.

Figure 5.4: 3D plot of the odometry provided by every sensor.

The different localizations for the SLAM approaches are shown in Figure 5.5 and

5.6. Although the livox_mapping library, which is based on LOAM, appears to produce

53



Figure 5.5: 2D plot of the localization estimated by the SLAM approaches.

less drift during the first lap, it cannot perform loop closure. Consequently, the drift

that occurs is never corrected, ultimately causing the failure to complete the second lap.

Further investigation revealed that the failure of livox_mapping was due to the overlapping

of points from the first and second lap, leading to incorrect matches and clusters of false

points, as demonstrated in Figure 5.7. In order to test this hypothesis, a subsequent

experiment was performed using only the second lap, which confirmed the initial claim.

54



Figure 5.6: 3D plot of the localization estimated by the SLAM approaches.

Figure 5.8: The 2D map generated by Car-

tographer.

Figure 5.9: 3D map generated by

RTAB-Map (top-down view).

55



Figure 5.7: 3D point cloud map generated by livox_mapping.

In the evaluation of various SLAM implementations, it was found that RTAB-Map

was the only method to successfully achieve loop closure detection, as demonstrated in

Figure 5.9. The results of this approach, as presented in Table 5.1, indicate a significant

reduction in both RTE and ROE errors. To provide a comparison of the drift produced by

RTAB-Map and Cartographer, an experiment with loop closure disabled was conducted.

The disparity between the results of both RTAB-Map experiments highlights the crucial

role of loop closure in correcting drift error. While some discrepancies were observed

in the results produced by Cartographer when compared to reality, this can partially be

attributed to the metrics used, which do not fully encompass the details of the experiment.

However, for the present study, the chosen metrics are considered the most relevant for

the proposed apparatus.

Although Cartographer has the ability to add loop closure constraints to the generated

map, it was unable to find them in the experiment with the set of parameters used. Fine-

tuning of the local SLAM parameters was necessary to achieve a desirable mapping result,

as illustrated in Figure 5.8. During the tuning process, the parameter that establishes

how much Cartographer can change the orientation of the prior observation (information

from odometry and IMU) was significantly decreased as it was causing heavy warping of

the map. As the Livox LiDAR was the only sensor utilized for mapping, the number of

56



Table 5.1: Relative errors for the different SLAM approaches.

livox_mapping RTAB-Map
RTAB-Map

without loop Closure
Cartographer

σx (m) 103.5 0.14 12.5 13.8

σy (m) 49.2 0.10 34.7 25.5

σz (m) 13.0 0.26 5.8 18.6

RTE (m) 115.4 0.31 37.4 34.4

σroll (rad) 0.38 0.12 0.13 0.05

σpitch (rad) 0.14 0.01 0.09 0.08

σyaw (rad) 1.47 0.0002 0.43 0.45

ROE (rad) 1.52 0.12 0.45 0.46

accumulated point clouds required for adding a new constraint for the local SLAM was

also adjusted. To strike a balance between map consistency and localization update rate,

the parameter was set to 20 point clouds. With the Livox operating at its maximum

frequency of 50Hz, this means that the localization is updated at most every 0.4 seconds.

Decreasing this value would lead to poor results as the point cloud would become too

sparse to compute the scan matching algorithm successfully.

RTAB-Map is the approach that yields the best results according to Table 5.1. The

livox_mapping implementation has the greatest error, as expected since it did not manage

to complete the second lap. Table 5.1 also illustrates that the performance of Cartographer

is comparable to that of RTAB-Map with loop closure disabled. This finding suggests that

further refinement of both local and global SLAM parameters could lead to substantial

improvement in the results generated by Cartographer. Cartographer’s errors in pitch

and roll angles are also minimal, which is beneficial because correcting drift in translation

is relatively easy, while correcting large drifts in orientation can be very challenging,

reforcing the ideia that a better tunned integration of Cartographer has the potential to

yield better results.

Additionally, the validity of the results is also assessed by comparing the localization

generated by each method to a known map (refer to Figure 5.10). As the accuracy of

the maps is unknown, a quantitative inference regarding their proximity to reality is

57



Figure 5.10: Overlaying the path generated by the SLAM on the map adapted from [58].

challenging. However, the localizations generated by each SLAM approach were found to

overlap well with the map depicted in Figure 5.10, suggesting a relatively high level of

accuracy in the localization obtained by the apparatus, specially by RTAB-Map.

The quality of the maps generated by Octomap using the localization from each SLAM

algorithm was analyzed and depicted in Figure 5.11. The Realsense D435i depth cam-

era was utilized to provide depth information to Octomap. Due to the low publishing

frequency of the localization provided by Cartographer, the resulting map was found to

be less dense, as Octomap was unable to determine the position of the incoming point

clouds between locations. This has significant implications on the overall map quality

produced by Cartographer. Both localizations were capable of mapping the various trees

encountered throughout the trajectory in close proximity to the apparatus. The absence

of a functional Mynt Eye resulted in a significantly reduced mapping area in both cases.

Ground consistency and density are crucial characteristics of a map for effective path

planning and identification of flammable materials. The ground generated by RTAB-Map

was found to be unexpectedly dense and well-connected between successive point cloud

measurements, appearing to consistently reside on the same plane, as shown in Figure

5.13a. On the other hand, Cartographer, as illustrated in Figure 5.13b, did not produce

58



(a) RTAB-Map. (b) Cartographer.

Figure 5.11: Complete octomap representation using the localization provided by

RTAB-Map and Cartographer, with the Realsense D435i as the mapping sensor.

(a) RTAB-Map. (b) Cartographer.

Figure 5.12: Illustration of relevant details, e.g. trees, using the localization provided by

RTAB-Map and Cartographer, with the Realsense D435i as the mapping sensor.

similarly accurate results, which can be attributed to the previously discussed low fre-

quency of localization and consequent low update rate of the map. Figure 5.14 presents

a RGBD section of the map produced by RTAB-Map, where several trees are mapped.

This is also a good example of the ground consistency obtained with this approach, as it

is easy to differentiate the path from the green ground foliage.

In conclusion, the findings of this study offer valuable insights into the potential per-

formance of the proposed apparatus when utilizing different SLAM implementations, as

well as the challenges associated with these approaches. The results indicate that the ap-

paratus is robust, as the localization and mapping produced by RTAB-Map are accurate

enough to support further experimentation in the field.

59



(a) RTAB-Map. (b) Cartographer.

Figure 5.13: Octomap Map ground consistency using the localization provided by

RTAB-Map and Cartographer, with the Realsense D435i as the mapping sensor.

Figure 5.14: RGBD map produced by RTAB-Map in Choupal National Woods.

60



6 Conclusion

In this dissertation, a new modular and portable multisensory apparatus for the localiza-

tion and mapping of forest environments has been presented. The apparatus has been

implemented and evaluated in real-world conditions, demonstrating its capability to record

necessary information to extract localization and generate accurate estimates of its sur-

roundings. This dissertation work produced the following contributions:

• A portable apparatus that can be used to support future research on forestry robotics

at the ISR.

• A free, open-source Android application that is publically available. The app fills a

gap in the field by transmitting data from Android devices into ROS.

• A multimodal sensing dataset in a forest environment with the potential of helping

advancing knowledge in the field of forestry robotics openly shared with the robotics

community.

• A comparison of state-of-the-art SLAM implementations using a multi sensor ap-

paratus in a forest environment.

In this work, a mechanical robust structure was developed and paired with a modular

recording architecture based in ROS and Docker. An independent Android application

was also developed to facilitate communication between a smartphone and the Robot

Operating System (ROS). An architecture to implement several SLAM methods in the

recorded dataset was also inegrated into the work. Finally, the SLAM methods were com-

pared against each other, acheiving results that supported the viability of the apparatus

developed.

Even though, the majority of the requirements outlined in the MoSCoW analysis of the

work were successfully fullfield, three requirements were not fully satisfied. The publishing

61



rate of Mynt’s Eye relevant topics was insufficient to meet the expected requirements.

Although not as important, the lack of a dedicated space for the Android device and live

visual feedback were also noted as limitations. The latter was not feasible due to the high

CPU utilization required for visual representation.

6.1 Future Work

This study highlights several areas for potential improvement in the current system. Fur-

ther experimentation is required to fully understand the source of the Mynt Eye perfor-

mance issue. Initial analysis indicates that a high utilization of CPU may be responsible

for this issue, as a significant drop in CPU utilization is observed. To diagnose this issue,

an experiment can be designed to run the system without recording rosbags, as this opera-

tion heavily stresses the CPU. If this is the case, a patch can be implemented in the Mynt

Eye driver to reduce computational demands. Another possibility is that the Udoo Bolt is

unable to sufficiently power all cameras simultaneously, which can be further investigated

using Linux utilities such as usb-devices and powertop. The possibility of the Mynt Eye

requesting the USB controller to itself, starving the Realsense D435i also requires further

investigation. A possible solution to this issue is to use an additional board to receive

data from the Mynt Eye and transmit it to the Udoo Bolt via Ethernet.

The acquisition of an absolute localization sensor with high-precision GNSS, e.g. a

GPS-RTK base station, is also identified as a potential improvement for assessing the

robustness of the apparatus, as it could be used as a source for positioning ground truth.

Furthermore, the findings of Chapter 3 indicate a need for enhancing the registration of

the various sensors and implementing software to determine the sensor transforms auto-

matically. This software should be designed to maintain the modularity of the system,

and should be implemented independently of the recording architecture. The Android

application developed in this study could also be improved by incorporating the capabil-

ity to send raw GNSS and orientation data. The experiments done to test the Android

Applications together with the apparatus should be repeated to confirm that the de-

creased precision was due to the positioning of the device inside the user’s pocket. To

improve SLAM performance, all sensors should be integrated into the mapping process.

However, as the messages from the different sensors arrive at different instants of time, a

62



synchronization software should be used to address timing issues. Additionally, since the

publishing rate of the multiple sensors can greatly differ and exceed the map update rate,

a software to estimate the pose at any given timestamp should be developed, especially

for the Livox LiDAR.

From a mechanical perspective, the sensor box could be re-engineered to incorporate

PTFE material, which is more resistant to UV radiation. Additionally, a designated slot

for Android devices could be integrated into the revised design of the sensor box. Further

experimentation is necessary to confirm the superiority of the backpack design in terms of

user comfort. Additionally, a design that offers the user the option of carrying the sensor

box by hand or using the backpack could also be considered for future improvement. The

cooling solution of the backpack should also be re-evaluated.

63



Bibliography

[1] M. Turco, J. Bedia, F. Di Liberto, P. Fiorucci, J. von Hardenberg, N. Koutsias,

M.-C. Llasat, F. Xystrakis, and A. Provenzale, “Decreasing Fires in Mediterranean

Europe,” PLOS ONE, vol. 11, p. e0150663, Mar. 2016.

[2] European Commission. Joint Research Centre., Forest Fires in Europe, Middle East

and North Africa 2020. LU: Publications Office, 2021.

[3] R. Parker, K. Bayne, and P. Clinton, “Robotics in forestry,” New Zealand Journal of

Forestry, vol. 60, pp. 8–14, Feb. 2016.

[4] M. S. Couceiro, D. Portugal, J. F. Ferreira, and R. P. Rocha, “SEMFIRE: Towards

a new generation of forestry maintenance multi-robot systems,” in 2019 IEEE/SICE

International Symposium on System Integration (SII), pp. 270–276, Jan. 2019. ISSN:

2474-2325.

[5] E. Jelavic, D. Jud, P. Egli, and M. Hutter, “Towards Autonomous Robotic Precision

Harvesting: Mapping, Localization, Planning and Control for a Legged Tree Har-

vester,” Tech. Rep. arXiv:2104.10110, arXiv, Nov. 2021. arXiv:2104.10110 [cs, eess]

type: article.

[6] T. L. Lam and Y. Xu, “A flexible tree climbing robot: Treebot - design and imple-

mentation,” in 2011 IEEE International Conference on Robotics and Automation,

pp. 5849–5854, May 2011. ISSN: 1050-4729.

[7] G. Notomista, Y. Emam, and M. Egerstedt, “The SlothBot: A Novel Design for a

Wire-Traversing Robot,” IEEE Robotics and Automation Letters, vol. PP, pp. 1–1,

Feb. 2019.

64



[8] Milrem Robotics, “Multiscope Forester Planter.” https://milremrobotics.com/

product/robotic-forester-planter/.

[9] J. Molina and S. Hirai, “Aerial pruning mechanism, initial real environment test,”

Robotics and Biomimetics, vol. 4, no. 1, p. 15, 2017.

[10] C. Zhang, L. Yong, Y. Chen, S. Zhang, L. Ge, S. Wang, and W. Li, “A Rubber-

Tapping Robot Forest Navigation and Information Collection System Based on 2D

LiDAR and a Gyroscope,” Sensors (Basel, Switzerland), vol. 19, p. E2136, May 2019.

[11] S. Thrun, “Learning metric-topological maps for indoor mobile robot navigation,”

Artificial Intelligence, vol. 99, pp. 21–71, Feb. 1998.

[12] G. Lozenguez, L. Adouane, A. Beynier, A.-I. Mouaddib, and P. Martinet, “Punctual

versus continuous auction coordination for multi-robot and multi-task topological

navigation,” Autonomous Robots, vol. 40, pp. 599–613, Apr. 2016.

[13] M. Labbé and F. Michaud, “RTAB-Map as an open-source lidar and visual simultane-

ous localization and mapping library for large-scale and long-term online operation,”

Journal of Field Robotics, vol. 36, pp. 416–446, Mar. 2019.

[14] P. Fankhauser, M. Bloesch, and M. Hutter, “Probabilistic terrain mapping for mobile

robots with uncertain localization,” IEEE Robotics and Automation Letters (RA-L),

vol. 3, no. 4, pp. 3019–3026, 2018.

[15] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap:

an efficient probabilistic 3D mapping framework based on octrees,” Autonomous

Robots, vol. 34, no. 3, pp. 189–206, 2013. Publisher: Springer Science and Busi-

ness Media LLC.

[16] I.-S. Kweon, M. Hebert, E. Krotkov, and T. Kanade, “Terrain mapping for a roving

planetary explorer,” in IEEE International Conference on Robotics and Automation,

pp. 997–1002, IEEE, 1989.

[17] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded Up Robust Features,”

in Computer Vision – ECCV 2006 (A. Leonardis, H. Bischof, and A. Pinz, eds.),

vol. 3951, pp. 404–417, Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. Series

Title: Lecture Notes in Computer Science.

65

 https://milremrobotics.com/product/robotic-forester-planter/ 
 https://milremrobotics.com/product/robotic-forester-planter/ 


[18] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative

to SIFT or SURF,” in 2011 International Conference on Computer Vision, pp. 2564–

2571, Nov. 2011. ISSN: 2380-7504.

[19] H. Liu, D. D. Huang, and Z. Y. Geng, “Visual Odometry Algorithm Based on Deep

Learning,” IEEE, 2021.

[20] J. Konecny, P. Kromer, M. Prauzek, and P. Musilek, “Scan Matching by Cross-

Correlation and Differential Evolution,” Electronics, vol. 8, no. 8, p. 856, 2019. Pub-

lisher: MDPI AG.

[21] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. Intelligent robotics and

autonomous agents, MIT Press, 2005.

[22] S. Huang and G. Dissanayake, “Convergence and consistency analysis for extended

kalman filter based slam,” IEEE Transactions on robotics, vol. 23, no. 5, pp. 1036–

1049, 2007.

[23] D. Portugal, M. E. Andrada, A. G. Araújo, M. S. Couceiro, and J. F. Ferreira, “ROS

Integration of an Instrumented Bobcat T190 for the SEMFIRE Project,” in Robot

Operating System (ROS) (A. Koubaa, ed.), vol. 962, pp. 87–119, Cham: Springer

International Publishing, 2021. Series Title: Studies in Computational Intelligence.

[24] S. Thrun, M. Montemerlo, D. Koller, B. Wegbreit, J. Nieto, and E. Nebot, “Fast-

SLAM: An Efficient Solution to the Simultaneous Localization And Mapping Problem

with Unknown Data Association,” p. 48.

[25] X. Wang and H. Zhang, “A UPF-UKF Framework For SLAM,” IEEE, 2007.

[26] F. Lu and E. Milios, “Globally Consistent Range Scan Alignment for Environment

Mapping,” Autonomous Robots, vol. 4, no. 4, pp. 333–349, 1997. Publisher: Springer

Science and Business Media LLC.

[27] A. Juric, F. Kendes, I. Markovic, and I. Petrovic, “A Comparison of Graph Op-

timization Approaches for Pose Estimation in SLAM,” in 2021 44th International

Convention on Information, Communication and Electronic Technology (MIPRO),

(Opatija, Croatia), pp. 1113–1118, IEEE, Sept. 2021.

66



[28] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “G2o: A

general framework for graph optimization,” in 2011 IEEE International Conference

on Robotics and Automation, (Shanghai, China), pp. 3607–3613, IEEE, May 2011.

[29] F. Dellaert, R. Roberts, V. Agrawal, A. Cunningham, C. Beall, D.-N. Ta, F. Jiang,

lucacarlone, nikai, J. L. Blanco-Claraco, S. Williams, ydjian, J. Lambert, A. Me-

lim, Z. Lv, A. Krishnan, J. Dong, G. Chen, K. Chande, balderdash devil, DiffDeci-

sionTrees, S. An, mpaluri, E. P. Mendes, M. Bosse, A. Patel, A. Baid, P. Furgale,

matthewbroadwaynavenio, and roderick koehle, “borglab/gtsam,” May 2022.

[30] S. Agarwal, K. Mierle, and T. C. S. Team, “Ceres Solver,” 3 2022.

[31] M. Quigley, “Ros: an open-source robot operating system,” in IEEE International

Conference on Robotics and Automation, 2009.

[32] G. Grisetti, C. Stachniss, and W. Burgard, “Nonlinear Constraint Network Optimiza-

tion for Efficient Map Learning,” IEEE Transactions on Intelligent Transportation

Systems, vol. 10, pp. 428–439, Sept. 2009.

[33] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-optimized lidar odom-

etry and mapping on variable terrain,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 4758–4765, IEEE, 2018.

[34] G. Kim and A. Kim, “Scan Context: Egocentric Spatial Descriptor for Place Recog-

nition Within 3D Point Cloud Map,” IEEE, 2018.

[35] H. Ye, Y. Chen, and M. Liu, “Tightly coupled 3d lidar inertial odometry and map-

ping,” in 2019 IEEE International Conference on Robotics and Automation (ICRA),

IEEE, 2019.

[36] W. Xu and F. Zhang, “FAST-LIO: A Fast, Robust LiDAR-Inertial Odometry Package

by Tightly-Coupled Iterated Kalman Filter,” IEEE Robotics and Automation Letters,

vol. 6, no. 2, pp. 3317–3324, 2021. Publisher: Institute of Electrical and Electronics

Engineers (IEEE).

[37] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “FAST-LIO2: Fast Direct LiDAR-

inertial Odometry,” Tech. Rep. arXiv:2107.06829, arXiv, July 2021. arXiv:2107.06829

[cs] type: article.

67



[38] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and R. Daniela, “Lio-sam:

Tightly-coupled lidar inertial odometry via smoothing and mapping,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pp. 5135–5142,

IEEE, 2020.

[39] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-Time Loop Closure in 2D LI-

DAR SLAM,” in 2016 IEEE International Conference on Robotics and Automation

(ICRA), pp. 1271–1278, 2016.

[40] “LiBackpack C50-GreenValley International.”

[41] “LiBackpack DGC50-GreenValley International.”

[42] I. Oveland, M. Hauglin, F. Giannetti, N. Schipper Kjørsvik, and T. Gobakken, “Com-

paring Three Different Ground Based Laser Scanning Methods for Tree Stem Detec-

tion,” Remote Sensing, vol. 10, no. 4, p. 538, 2018. Publisher: MDPI AG.

[43] K. Xiao, W. Yu, W. Liu, F. Qu, and Z. Ma, “High-Precision SLAM Based on the

Tight Coupling of Dual Lidar Inertial Odometry for Multi-Scene Applications,” Ap-

plied Sciences, vol. 12, p. 939, Jan. 2022.

[44] A. Proudman, M. Ramezani, and M. Fallon, “Online Estimation of Diameter

at Breast Height (DBH) of Forest Trees Using a Handheld LiDAR,” Tech. Rep.

arXiv:2108.01552, arXiv, Aug. 2021. arXiv:2108.01552 [eess] type: article.

[45] Y. Su, Q. Guo, S. Jin, H. Guan, X. Sun, Q. Ma, T. Hu, R. Wang, and Y. Li, “The

Development and Evaluation of a Backpack LiDAR System for Accurate and Efficient

Forest Inventory,” IEEE Geoscience and Remote Sensing Letters, vol. 18, no. 9,

pp. 1660–1664, 2021. Publisher: Institute of Electrical and Electronics Engineers

(IEEE).

[46] H. Sier, L. Qingqing, Y. Xianjia, J. P. Queralta, Z. Zou, and T. Westerlund, “A

Benchmark for Multi-Modal Lidar SLAM with Ground Truth in GNSS-Denied En-

vironments,” Tech. Rep. arXiv:2210.00812, arXiv, Oct. 2022. arXiv:2210.00812 [cs]

type: article.

68



[47] J. Jeong, Y. Cho, Y.-S. Shin, H. Roh, and A. Kim, “Complex Urban LiDAR Data

Set,” in 2018 IEEE International Conference on Robotics and Automation (ICRA),

(Brisbane, QLD), pp. 6344–6351, IEEE, May 2018.

[48] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for

the evaluation of RGB-D SLAM systems,” in 2012 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, (Vilamoura-Algarve, Portugal), pp. 573–580,

IEEE, Oct. 2012.

[49] Livox, “Mid-70 User Manual.” https://www.livoxtech.com/mid-70/downloads,

2021.

[50] B. Tiganis, L. Burn, P. Davis, and A. Hill, “Thermal degradation of acrylonitrile–

butadiene–styrene (abs) blends,” Polymer degradation and stability, vol. 76, no. 3,

pp. 425–434, 2002.

[51] N. Rottmann, N. Studt, F. Ernst, and E. Rueckert, “Ros-mobile: An android appli-

cation for the robot operating system,” arXiv preprint arXiv:2011.02781, 2020.

[52] S. Chitta, E. Marder-Eppstein, W. Meeussen, V. Pradeep, A. Rodríguez Tsouroukdis-

sian, J. Bohren, D. Coleman, B. Magyar, G. Raiola, M. Lüdtke, and E. Fernán-

dez Perdomo, “ros_control: A generic and simple control framework for ros,” The

Journal of Open Source Software, 2017.

[53] C. Rockey, “Ros android driver.” https://github.com/ros-android/android_

sensors_driver, 2012.

[54] C. Crick, G. Jay, S. Osentoski, B. Pitzer, and O. C. Jenkins, “Rosbridge: Ros for

non-ros users,” in Robotics Research, pp. 493–504, Springer, 2017.

[55] D. Merkel, “Docker: lightweight linux containers for consistent development and

deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

[56] R. White and H. Christensen, “Ros and docker,” in Robot Operating System (ROS),

pp. 285–307, Springer, 2017.

[57] T. Moore and D. Stouch, “A generalized extended kalman filter implementation for

the robot operating system,” in Proceedings of the 13th International Conference on

Intelligent Autonomous Systems (IAS-13), Springer, July 2014.

69

 https://www.livoxtech.com/mid-70/downloads 
 https://github.com/ros-android/android_sensors_driver 
 https://github.com/ros-android/android_sensors_driver 


[58] Rafael Miguel, “O-Solutions - Choupal.” https://o-solutions.pt/wp-content/

uploads/2020/11/17_Choupal-Coimbra-2019_10_05_RM.png, 2019.

[59] Navmatix, “GNSS Mission Planning .” https://www.gnssmissionplanning.com/,

2017.

70

https://o-solutions.pt/wp-content/uploads/2020/11/17_Choupal-Coimbra-2019_10_05_RM.png
https://o-solutions.pt/wp-content/uploads/2020/11/17_Choupal-Coimbra-2019_10_05_RM.png
 https://www.gnssmissionplanning.com/ 

	Acknowledgements
	Resumo
	Abstract
	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Objectives
	1.2 System Requirements
	1.3 Dissertation Structure

	2 Background and Related Work
	2.1 Mapping
	2.2 Localization
	2.3 SLAM techniques
	2.3.1 Filter-based SLAM
	2.3.2 Graph-based SLAM

	2.4 ROS
	2.5 SLAM Implementations in ROS
	2.6 Related Systems for Data Acquisition

	3 Design and Implementation
	3.1 Sensors and Components
	3.2 Mechanical Structure
	3.3 Software
	3.3.1 Android Application
	3.3.2 System Architecture for Dataset Recording
	3.3.3 System Architecture to perform SLAM


	4 Preliminary Tests and Experimental Design
	4.1 Android Application Test
	4.2 DEEC Building Dataset
	4.3 Heat Test
	4.4 Choupal National Woods Dataset

	5 Results and Discussion
	6 Conclusion
	6.1 Future Work

	Bibliography

