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Abstract

Human-Robot Collaboration (HRC) is a highly inter- and multidisciplinary, still
emerging, field of study. As technology develops and robot presence increases in
society, it is expected that the coexistence, interaction, and collaboration between
humans and robots will also increase. It is therefore important to investigate
what factors affect the collaboration between humans and robots. This research
explores the effect of robot characteristics, such as morphology and behaviour, on
human performance, while executing a collaborative assembly task in Virtual Re-
ality (VR). Three collaborative robots with different levels of anthropomorphism
are used as participating agents in the collaboration: Sawyer and Baxter, from
Rethink Robotics, and LBR iiwa, from Kuka. Both sequential and simultane-
ous collaboration are studied as distinct collaborative approaches. An interac-
tive VR simulation was conceptualised, designed and developed to reproduce
the collaborative assembly task’s conditions. Then, an experimental evaluation
was carried out with 36 participants. The participants’ eyes and pulse data were
collected using the VR system embedded eye-tracking and a pulse sensor. The
participants’ task completion times were also measured. Psychological data was
gathered through the Godspeed Questionnaire Series (GQS) and the VR Presence
Questionnaire (PQ), with the former reporting on how the participants perceived
the robots and the latter the participants’ sense of presence in the VR simulation.
The analysis of the results indicates that human performance is affected by the
type of robot and the collaborative approach used, where collaboration is most
efficient with Sawyer using a simultaneous approach. These results contribute to
understanding what factors influence human performance in HRC. Furthermore,
the designed and developed interactive VR simulation is shared, allowing future
HRC researchers to build upon the project and use it in future studies.
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Resumo

Colaboração humano-robô (CHR) é um campo de estudo emergente, altamente
inter- e multidisciplinar. À medida que a tecnologia evoluí e a presença de robôs
aumenta entre a sociedade, também é esperado que a coexistência, interação e
colaboração entre humanos e robôs aumente. Portanto, é importante investigar
os fatores que afetam a colaboração entre humanos e robôs. Esta pesquisa ex-
plora o efeito das características do robô, como morfologia e comportamento, no
desempenho humano, durante a execução de uma tarefa de montagem colabora-
tiva em Realidade Virtual (RV). Três robôs colaborativos com diferentes níveis de
antropomorfismo são usados como agentes participantes na colaboração: Sawyer
e Baxter, da Rethink Robotics, e LBR iiwa, da Kuka. Tanto a colaboração sequen-
cial como a simultânea são estudadas como abordagens colaborativas distintas.
Foi realizada a conceptualização, design e desenvolvimento de uma simulação
RV interativa para reproduzir as condições da tarefa de montagem colaborativa.
Em seguida, foi realizada uma avaliação experimental com 36 participantes. Os
dados dos olhos e do pulso dos participantes foram adquiridos usando o sen-
sor de monitorização ocular integrado do sistema VR e um sensor de pulso. Os
tempos de conclusão das tarefas também foram medidos. Os dados psicológicos
foram recolhidos através da Série de Questionários Godspeed e do Questionário
de Presença de RV, com o primeiro indicando a percepção dos participantes em
relação aos robôs e o segundo o indicando a sensação de presença dos partici-
pantes na simulação de RV. A análise dos resultados indica que o desempenho
humano é afetado pelo tipo de robô e pela abordagem colaborativa utilizada,
onde a colaboração é mais eficiente com o robô Sawyer usando uma abordagem
simultânea. Estes resultados contribuem para entender os fatores que influen-
ciam o desempenho humano em CHR. Além disso, a simulação de RV interativa
projetada e desenvolvida é partilhada, permitindo que futuros investigadores de
CHR desenvolvam o projeto e o usem em estudos futuros.

Palavras-Chave

Colaboração Humano-Robô, Realidade Virtual
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Chapter 1

Introduction

This chapter is divided into four sections. The first section explains the motiva-
tion of this work, the second section contextualises the work, and the third section
presents the objectives of this dissertation and its contributions. Finally, the last
section outlines the document structure.

1.1 Context and Motivation

We live in an era where technology dominates almost every aspect of our daily
lives. In the last two decades, the number of robots deployed in the most di-
verse applications has been increasing, from space exploration to elderly care
(Goodrich and Schultz, 2007). The increased robotic presence in society will even-
tually lead us to coexist, interact and collaborate ever more frequently with these
machines, but in different ways than how we interact with computers or smart-
phones, due to robots’ embodied nature.

Since a long time ago, humans have been fascinated and inspired by nature, at-
tempting to understand and simulate it in various forms. Robots are no excep-
tion, these are machines built to simulate and amplify human and animal capa-
bilities, and there have always been attempts at anthropomorphising robots, both
through their morphology and behaviour (Dautenhahn, 2007a; Mori et al., 2012).
Robots are continuously evolving along several dimensions and are increasingly
capable of highly complex behaviours. As the presence of robots increases in
society, so does the need for novel and adequate forms of interaction and collabo-
ration with these machines. In Human-Robot Collaboration (HRC) applications,
humans are in close proximity to robots, performing collaborative activities that
benefit from both human and robot qualities, thus improving productivity and
ergonomics (Dianatfar et al., 2021).

Although safety measures are implemented in robots designed to interact with
humans, there is a danger component that can not be ignored due to the intrin-
sic physicality involved in the interactions. The rapid evolution of Virtual Real-
ity (VR) technology, its potential and applications have also expanded (LaValle,
2020), including its use in the field of HRC (Dianatfar et al., 2021). The use of VR

1
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technology in HRC offers a more time and cost-efficient alternative to robotics
research and development, allowing the study and evaluation of prototype con-
cepts without compromising user safety (Badia et al., 2022).

In this dissertation, VR will be used to simulate a human-robot collaborative as-
sembly task with robots of different morphologies, using two collaborative ap-
proaches, sequential and simultaneous collaboration. This simulation is then
used to study aspects of human performance while interacting with robots. The
use of VR benefits this study by reducing costs, the development and evaluation
time, and decreasing human safety risks, as opposed to using real robots. Ad-
ditionally, human performance is evaluated in an HRC context by analysing hu-
mans’ responses to the stimuli presented. As human performance is directly tied
to productivity and ergonomics, the findings of this study may improve future
HRC research and applications.

This dissertation was developed in the context of the project Neurocobots: En-
hancing Human-Robot Collaboration1, which seeks to develop a brain-machine
interface to improve dynamic collaboration between humans and robots in a pro-
fessional context. Besides the University of Coimbra, the project is being devel-
oped by the Institute for Systems and Robotics, the University of Madeira, Ruhr-
University Bochum and other international partners in Germany and Estonia.

1.2 Objectives and Contribution

The main objective of this dissertation is to study the effect of different robot char-
acteristics and collaborative approaches on human performance. To approach
this research, the background and related work provided a useful understand-
ing of the fields and related work, some of the challenges they pose, and novel
proposed forms of dealing with those challenges.

A review of the current HRC real-world applications, the observation of a real-life
human-human collaborative assembly task and the analysis of existent VR simu-
lations supported the design and development phase of the interactive VR simu-
lation proposed as a solution to reproduce the previously conceptualised scenario
and task. In the final stages of the design and development phase, a pilot study
was carried out with seven participants to assess problems or inconsistencies in
the simulation and the evaluation procedures.

To evaluate human performance in HRC, the formal evaluation procedures were
established, and a final study with 36 recruited subjects was accomplished. The
participants’ physiological and psychological data were collected, processed and
analysed. The careful evaluation and interpretation of the obtained results are
shown and discussed in this dissertation.

This research contributes to better understand how human performance can be
affected by different types of robots and collaboration approaches while execut-
ing a collaborative assembly task through VR. The interactive VR simulation de-

1https://proactionlab.fpce.uc.pt/en/news-entry/neurocobots-enhancing-human-robot-collaboration
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signed and developed in the context of this dissertation is also shared as a contri-
bution to future research.

1.3 Document structure

This document is divided into seven chapters. The introduction chapter includes
the motivation, context, objectives and contribution of this research and also de-
scribes the structure of this document. The second chapter presents the back-
ground and related work concerning the research’s main topics, robots and human-
robot collaboration. The third chapter explains the research phases, the approach
followed, and the research and experimental tools used. Chapter four details
the conceptualisation, design and development of the interactive VR simulation.
Chapter five shows the evaluation measures and procedures, the test conditions,
the study participants’ descriptions, the data collection, description, processing
and analysis, and the results. The sixth chapter contains the study limitations,
results discussion and future work. Finally, the last chapter presents a conclusion
of this work.

The present chapter provided the necessary introduction for this research. The
following chapter introduces the background and related work of the two main
topics studied, robots and HRC.

3





Chapter 2

Background & Related Work

This chapter presents the background and related work regarding the main topics
of this dissertation. The first section presents the topic of robots, followed by a
brief overview of relevant subjects in Human-Robot Collaboration (HRC).

2.1 Robot Types and Uses

The term robot originated from the ancient Czech word robota, meaning corvée
or forced labour, and was coined by the Čapek’s brothers in the play R.U.R.,
“Rossum’s Universal Robots” (1920) to denote one of its fictional humanoid char-
acters. What humans consider robots to be at present might not be the same
things we will consider robots to be in the future; for now, we still call the au-
tonomous vacuum cleaners robots, but how long until it is assumed all vacuum
cleaners are autonomous and subsequently the lack of necessity to call them
robot vacuum cleaners and just vacuum cleaners. The concept of a robot is con-
stantly changing (Dautenhahn, 2013, 2018) primarily due to technological ad-
vancements, continuously expanding the boundaries for how robots can be con-
stituted and the settings in which they can act (Alenljung et al., 2017). According
to the International Federation of Robotics (IFR) and International Standards Or-
ganization (ISO), a robot is defined as “an actuated mechanism programmable
in two or more axes with a degree of autonomy, moving within its environ-
ment to perform intended tasks, while mechanisms that lack the number of pro-
grammable axes or that are fully teleoperated, end-effectors are called robotic de-
vices”. Software (“bots”, Artificial Intelligence (AI), Robotic Process Automation
(RPA)), remote-controlled drones, unmanned (aerial, ground and underwater)
vehicles, voice assistants, autonomous cars, Automated Teller Machine (ATM) or
cash machines, and smart washing machines are all examples that do not fit the
criteria of a robot. An article written on the website Robots from Institute of Elec-
trical and Electronics Engineers (IEEE) (Guizzo, 2020) presents 15 different types
of robots, as presented in table 2.1, which are categorised according to shared fea-
tures amongst robots. The IFR and ISO consider that drones, unmanned vehicles
and autonomous cars are not robots, as these do not fit their robot classification.
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Type of robot Description Examples

Aerospace Includes all sorts flying robots but also robots that can operate in space. SmartBird, Mars rovers
Consumer Average consumer can buy and use, either for fun or to help with tasks. Aibo, Roomba
Disaster response Dangerous jobs like searching for survivors in the aftermath of an emergency. Packbots
Drones Unmanned aerial vehicles, exist in different sizes and levels of autonomy. DJI Phantom, Global Hawk
Education Aimed at teaching and learning, for use at home or in classrooms. Sets from Lego, EMYS
Entertainment Designed to evoke an emotional response. RoboThespian
Exoskeletons Physical rehabilitation and for aiding paralysed patient’s to walk again. Ironhand, EksoVest
Humanoids Robots that resemble humans in appearance and sometimes in behaviour. Asimo, Geminoid series
Industrial Repetitive tasks, also includes collaborative factory robots. Unimate, Baxter
Medical Healthcare applications, also bionic protheses and exoskeletons. da Vinci, bionic prostheses
Military & Security Scout for explosive devices, carrying heavy gear, surveillance. PackBot, BigDog, Cobalt
Research Conduct research in universities and research laboratories. Emys, Baxter
Self-Driving Cars Autonomous vehicles that can drive themselves around. Tesla, Waymo
Telepresence Allow humans to be present somewhere without actually being there. Double 3, Kubi, Ava
Underwater Robots whose primary deployment environment is water. Aquanaut, Ocean One

Table 2.1: Types of robots according to the IEEE Robots website (Guizzo, 2020).

Since forever, humans have been fascinated and curious by nature, and since
then, we also have been attempting to understand it and simulate it, inspired
by nature’s processes and, particularly ourselves, human beings. This made us
build machines that attempt to simulate nature’s appearance and behaviour, from
a simple robotic articulated arm, based on humans, as depicted in figure 2.1; to
RoboBee, a small flapping-wing robot inspired by the biology of a fly, as depicted
in figure 2.2a; to even humanoid robots which are built as similar as possible to
humans’ likeness, as depicted in figure 2.2b (Dautenhahn, 2007b; Fong et al., 2003;
Mori et al., 2012; Terveen, 1995).

Figure 2.1: A comparison between robot and human movement.

Robots are ever more present in today’s world and society (Bieller, 2021); as ex-
pressed previously, technological achievements are the primary propellant for the
evolution of the robotics field, and as technology evolved, so evolved the latter
(Alenljung et al., 2017; Demir et al., 2019). Although the industry is still the most
prominent application area for robots, other areas are increasing in popularity,
e.g. the area of service has seen an increase in the presence of both professional
and personal/consumer robots (Bieller, 2021). Furthermore, recently there has
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(a) RoboBee (b) Ameca

Figure 2.2: Different types of robots inspired by nature.

been an increase in the number of socially interactive robots in human environ-
ments, and their level of participation in everyday activities is becoming more
sophisticated (Dautenhahn, 2007b; Thrun, 2004). Robots are very complex and
can vary along multiple dimensions, e.g., appearance, kinematics, behaviour, me-
chanical structure, etc.; and more specifically in Human-Robot Interaction (HRI),
e.g., task type and criticality, morphology, interaction roles, autonomy level, etc.,
(Yanco and Drury, 2004) and its the multitude of dimensions that make it cumber-
some to classify robots generally, hence they are frequently categorised according
to their intended application(s) and area of application(s). In the next subsection,
different applications will be presented to the main groups of robot development.

2.1.1 Application Areas

Most robot deployments fit into two main categories, based on their application
area: industrial and service (professional and personal) areas (Alenljung et al.,
2017; Bieller, 2021; Thrun, 2004). The service area has the highest expected growth
rate in society (Alenljung et al., 2017; Bieller, 2021). A robot application is de-
scribed as how the robot is intended to be used and its purpose. However, this
does not mean all robots from an application category are equal, it means that
robots inside the same category possess similar capabilities or functionalities. Ac-
cordingly, in table 2.1, Aibo and Roomba are both consumer service robots, yet
they serve completely different purposes, Aibo is a robotic companion dog, while
Roomba is a robotic vacuum cleaner. These two main areas of robot development
are presented in further detail below.

Industry Robots

The industry is one of the primary areas of robots application, where the global
average of robot density in the manufacturing industry, the ratio between hu-
mans and robots, has grown by 12%, with a total of 384000 industrial robot in-
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stallations in 2020 (Bieller, 2021). The IFR defines multipurpose industrial robot as
an :

Automatically controlled, reprogrammable, multipurpose, manipulator that is
programmable in at least three axes, either fixed in place or mobile and
intended for and typically used in industrial automation applications.

The IFR classifies industrial robot types according to their mechanical structure,
which also dictates the robot kinematics i.e. the robot’s motion; different me-
chanical structures allow for different types of movement, which also translates
in different coverage ranges and reach; specific applications may benefit from a
specific type of mechanical structure and movement, e.g. parallel robots allow
for very fast part handling due to most of the mechanisms being fixed, most com-
monly in a ceiling. Figure 2.3 presents different types of robots based on their
mechanical structure and the IFR classification:

• Articulated: a robot whose arm has at least three rotary joints;

• Cartesian (linear/gantry): a robot whose arm has three prismatic joints and
whose axes are correlated with a cartesian coordinate system;

• Cylindrical: a robot whose axes form a cylindrical coordinate system;

• Parallel: a robot whose arms have concurrent prismatic or rotary joints;

• SCARA: a robot which has two parallel rotary joints to provide compliance
in a plane;

• Others: robots not covered by one of the above classes;

(a) Articulated robot (b) Cartesian robot (c) Cylindrical robot

(d) Parallel robot (e) SCARA robot

Figure 2.3: Different types of robots classified by their mechanical structure.

Most often, industrial robots are deployed to completely replace the human part
in dangerous, dirty, dull or dear settings or jobs: dangerous jobs are self-explanatory
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they impose risks for human life, and therefore are safer to conduct these jobs
with robots, e.g. bomb disposal and space exploration. Dirty jobs are activities
that most people don’t know or don’t think about but need to be done, sometimes
they present health hazards, e.g. sewer reconnaissance and mine exploration.
Dull jobs are tedious and repetitive tasks where human capabilities would be go-
ing to waste e.g. handling and cleaning or disinfecting. Lastly dear jobs are sim-
ply activities in which using robots would be more efficient, either economically
or timely (Demir et al., 2019; Marr, 2017).

According to the IFR statistics from World Robotics 2021, the more prominent
worldwide industry areas for robot deployment are electronics, automotive, metal
and machinery, plastic and chemical products, food and lastly, others/unspecified.
Regarding specific applications within these areas, handling, welding, assem-
bling, clean rooms, dispensing and processing are amongst the most common,
among which handling applications take the lead with over 150000 units of robots
installed worldwide for three years in a row (Bieller, 2021). The table in 2.2 sum-
marises the main differences between typical industrial robots and collaborative
industrial robots. Having provided an overview of industrial robots, the next
section focuses on service robots.

Characteristic Industrial robots Collaborative industrial robots

Role Replace worker Assist worker
Human interaction Commands, and

programming assigning
locations movements and
gripping.

Intelligent interaction:
gesture recognition, speech
recognition, and anticipating
operator moves.

Camera and Computer
Vision

External camera, and
external system, when exists.

Built -in standard (as part of
the cobot), coupled with
artificial intelligence.

Workspace Separate safe workspace for
robots and operators.
Usually fenced.

Sharing the same workspace.
No fencing.

Re-programming Rare Frequent
Physical disruptions Mostly hazardous. Setup

required for re-initiation.
Safe, with easy re-initiation.

Agility Rapid motions Slow motions
Payload May be heavy Not heavy
Dynamic environment No Yes

Table 2.2: The major differences between industrial robots and collaborative
robots. Adapted from (Cohen et al., 2021).

Service Robots

The service area is the second biggest area with immense opportunity for robot
implementation and use (Bieller, 2021). As previously mentioned, professional
and personal service robots have the highest expected growth rate in society. The
IFR defines a service robot as:
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“A robot which operates semi- or fully autonomously to perform services use-
ful to the well-being of humans and equipment, excluding manufacturing
operations.”

The main difference between service robots and industrial robots is the environ-
ment or settings in which the robots operate, and while industrial robots are
deployed in industrial settings to replace humans in tasks, service robots act
mainly outside of industrial environments to assist humans (Alenljung et al.,
2017; Thrun, 2004).

(a) Freight (b) PackBot (c) Da Vinci

Figure 2.4: Different types of professional service robots. Freight (a) is used for
transportation in warehouses; PackBot (b) is used for military dangerous mis-
sions; Da Vinci (c) is used as a remote surgical robot.

(a) Vector
(b) Humman Support
Robot (HSR)

(c) Emys

Figure 2.5: Different types of consumer service robots. Vector (a) is used as a
companion robot; HSR (b) is used to watch family members and fetch objects;
Emys (c) is used in education to teach foreign languages to kids.

Accordingly to Thrun, professional service robots are defined as robots designed
to assist humans in achieving professional goals, e.g. nuclear waste cleanup (Fal-
ter et al., 1995), and abandoned mines navigation and mapping (Thrun et al.,
2003). Examples of professional service robots and their applications are pre-
sented in figure 2.4. Although personal service robots are also designed to pro-
vide humanitarian assistance and are capable of providing entertainment, they
differ by being employed in domestic settings, e.g. vacuum cleaners, elderly care
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and therapy (Thrun, 2004), as opposed to the deployment in professional settings
with the professional service robots. Examples of personal service robots and
their applications are presented in figure 2.5. According to the IFR statistics from
World Robotics 2021 (Bieller, 2021), in 2020, there were over 130000 new pro-
fessional service robots and over 19 million new consumer service robots. The
primary applications, in terms of unit sales, are transportation and logistics, pro-
fessional cleaning, medical robots, hospitality and agriculture; also presented in
these statistics were the top application trends for service robots, which include
autonomous mobile robot (AMR) and delivery robots, medical and rehabilitation,
partially due to Covid-19, cleaning and disinfection, social robots, i.e. telepres-
ence, and lastly automated restaurant, i.e. staff support and reducing human
contact.

2.1.2 Robot Morphology

There are many different robot morphologies, and as mentioned previously, most
of them are inspired by nature. Each robot has unique aesthetic features, ranging
from size, shape, axis, degrees of freedom (DOF), materials, etc. Thus, when
it comes to robot morphology, most robots are categorised as anthropomorphic,
i.e., human-like, zoomorphic, i.e. animal-like or mechanic, i.e. machine-like. The
figures 2.6, 2.7 and 2.8 display different robot morphologies, from human-like to
animal-like and machine-like.

(a) Asimo (b) Geminoid DK (c) Kismet

Figure 2.6: Robots whose appearances resemble humans or human-like.

However, robots are frequently classified on a scale that relates their appearance
with anthropomorphism, i.e. attribution of human characteristics, in this scale,
robots can be classified from machine-like, robotness or productness to human-
like or humanness (Kwak, 2014). In this classification scale, a traditional indus-
trial robot whose body consists of an articulated arm is categorised as a product-
oriented robot, and a humanoid social robot, whose appearance resembles that
of a human, is categorised as a human-oriented robot. According to Di Salvo, a
machine or product-oriented robot appearance is designed to comply with the
robot’s functionalities, while on the other end, a human-oriented robot is de-
signed to resemble a human’s appearance (DiSalvo et al., 2002).

Research on robot morphology has shown that robots’ appearance influence how
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(a) ACM-R5H (b) Aibo (c) Paro

Figure 2.7: Robots whose appearances resemble animals or animal-like.

humans perceive the robots and their capabilities (Fong et al., 2003; Goetz et al.,
2003; Gray and Wegner, 2012). Fong et al. state that appearance biases interaction
and that a robot’s morphology should match its intended function. The uncanny
valley theory, proposed by Mori et al., discusses a feeling of uncanniness that
human beings, and other living beings, exhibit when interacting with entities
whose appearance resembles their own (Mori et al., 2012). The uncanny valley
theory is presented in further detail in subsection 2.1.4.

(a) UR cobots (b) Perseverance (c) Quattro

Figure 2.8: Robots whose appearance is mechanical or machine-like.

DiSalvo et al. (2002), surveyed a robot’s heads appearance to measure people’s
perception of humanness and the importance of facial features presence such as a
nose, a mouth, eyes and eyelids and in (Goetz et al., 2003) where the authors stud-
ied the effect of matching appearance and behaviour to improve human-robot
cooperation. Statistical analysis showed a systemic relation between a robot’s ap-
pearance and people’s perception of the robot, as well as people’s willingness to
comply with the robot’s instructions. The authors also state the importance of a
robot’s morphology and behaviour towards developing better personal service
robots.

Also worth mentioning is the research by Gray and Wegner (2012), where robots
with higher anthropomorphic levels, or more human-like, are perceived as hav-
ing a mind. Lastly, (Kwak, 2014) studied the effect of different appearances on
the perceived social presence, sociability and service evaluation and concluded
that human-like robots performed better in human-robot social interaction.
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2.1.3 Robot Behaviour

Industrial robots are mostly categorised as fully autonomous robots, requiring
very minimal or no human intervention, usually even having their operational
space separated from humans. In these scenarios, the majority of interfaces used
are programming languages and graphical simulation tools, with some robots
learning by demonstration (Thrun, 2004). On the other end of the spectrum, the
area with the largest expected growth, there is the service robots area and more
specifically social robots, which are defined as robots capable of social interac-
tion, not only human-robot interaction but also robot-robot interaction in indi-
vidualised societies (Fong et al., 2003); as social robots are deployed in the same
social and spatial settings as humans, the requirements regarding the quality of
the interaction between humans and robots increases (Lindblom and Cort, 2016).

A robot’s behaviour can be described as the set of actions the robot is able to
perform; from low-level actions, like turning an actuator on and off, to high-
level actions, such as contouring an object, inverse kinematics or speech output.
As previously mentioned, for a long time, humans have been trying to simulate
nature’s processes, particularly human beings, not only morphologically but also
behaviourally. Weistroffer et al. investigated the acceptability of HRC regarding,
amongst others, the robot’s movement profile. Two profiles were used, machine-
like and human-like. The authors concluded that motion perception is influenced
by the robot’s morphology, where human-like motion was preferred in industrial
robots but not on humanoids (Weistroffer et al., 2013).

Most of the actions mentioned have to be pre-programmed in the robot’s soft-
ware, but machine learning and AI have allowed for big developments in regard
to what is considered the robot’s ‘mind’. Dautenhahn presents two important
phases regarding the evolution of socially intelligent robots as well as its con-
tributing factors: the first phase of research was focused on the simulation of
specific isolated human activities such as playing chess or proving theorems; al-
though in the second phase, with the emergence of AI, a similar paradigm was
followed, research was more focused on the ‘mind’ instead of only one or few
human activities, which proved to be a bigger challenge than expected (Dauten-
hahn, 2007b). Goodrich and Schultz state that every robot application requires
some form of interaction, either remote or proximate, from teleoperation, where
the interaction might be more evident, i.e. the operator controlling the robot re-
motely through dedicated interfaces to a fully autonomous robot, where the in-
teraction can be high-level supervision and direction of the robot, i.e. monitor-
ing the robot behaviour through observation or even programming its behaviour
through software (Goodrich and Schultz, 2007).

2.1.4 Uncanny Valley

The uncanny valley is a theory presented by Masahiro Mori in 1970 and depicted
in figure 2.9. “I have noticed that, in climbing toward the goal of making robots
appear human, our affinity for them increases until we come to a valley, which I
call the uncanny valley” (Mori et al., 2012).
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Figure 2.9: The graph depicts the uncanny valley, the proposed relation between
the human likeness of an entity and the perceiver’s affinity for it (Mori et al.,
2012).

The term “uncanny valley” is frequently used in the field of robotics, but it also
has its place amongst computer-generated imagery, e.g., in video games, films
and animations (Gee et al., 2005; MacDorman et al., 2009). As previously men-
tioned, in (DiSalvo et al., 2002) research was done on robots’ faces, the more facial
features a robot has, meaning eyes, nose, mouth, et cetera, the more human-like
it was perceived. In their research, the authors concluded that facial features,
such as the nose, eyelids and mouth were deemed of great importance when
it came to human likeness ratings. The head shape is also an important factor,
for the more square the head is, the less human-like it was perceived. Varied
chin length and forehead height were also studied, and the authors found that
a shorter chin made the eyes appear larger, causing kindchenschema (cuteness)
(Powers and Kiesler, 2006). (Rosenthal-von der Pütten and Krämer, 2014) claim
that in the same sense that attractive people are also rated more positively in other
aspects holds true for “virtual” agents (robots) as well.

The expected cognitive capabilities of a robot and its expected behaviour are
linked to its appearance, and human-like robots prompt attributions of mind to
the robots (Gray and Wegner, 2012). People systematically preferred robots for
jobs when the robot’s human–likeness matches the sociability required in those
jobs (Goetz et al., 2003). With the development of technology and the recent ad-
vancements of AI, some people defend the existence of an uncanny response con-
cerning the “mind” (Stein and Ohler, 2017). However, Mori’s theory has also been
criticised for being simple and because its dimensions are not well defined since
they are themselves complex dimensions (Bartneck et al., 2009a). The uncanny
valley theory is also criticised for neglecting relevant factors besides the char-
acteristics of the robots, such as participants’ age, culture, religion or previous
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experiences (Gee et al., 2005). Lastly, most studies around this theory only focus
on the facial features instead of the agent’s full body.

Although the human feeling of uncanniness can be related to appearance, re-
searchers cannot fully pinpoint which appearance traits are responsible for it
(Rosenthal-von der Pütten and Krämer, 2014). Furthermore, Gee et al. defend
that this theory serves as an indicator that it is easier to detect discrepancies in
movement rather than in appearance, which means that humans feel more uncan-
niness due to the movement rather than the appearance (Gee et al., 2005). In the
following section, the background and related work concerning HRC is shown,
presenting definitions for interaction and collaboration, different types of collabo-
rative approaches, and lastly, the safety and user experience components in HRC.

2.2 Human-Robot Collaboration (HRC)

HRI and HRC are both challenging, inter- and multidisciplinary fields that com-
prise knowledge from study fields such as psychology, cognitive science, social
sciences, artificial intelligence, computer science, robotics, engineering, human-
computer interaction, etc. (Bauer et al., 2008; Dautenhahn, 2007a). Having started
to emerge in the mid-1990s both fields of HRI and HRC are considered to be in
their infancy. The main contributions for the fields have originated from scientific
meetings frequented by people from different scientific communities, and also
incentives in the form of competitions, where a goal is defined and the scientific
community attempts to achieve it (Goodrich and Schultz, 2007).

2.2.1 Interaction and Collaboration

The terms interaction and collaboration, are very frequent in the fields of HRI and
HRC, still it is important to understand what they entail to avoid semantics er-
rors. According to the Oxford Advanced Learner’s Dictionary, interaction is de-
fined as “two things having an effect of each other”, while collaboration is de-
fined as “the action of working with someone to produce something” (Oxford
Advanced Learner’s Dictionary, 2022a). However, in the Cambridge Dictionary
interaction is defined as “an occasion when two or more people or things commu-
nicate with or react to each other”, while collaboration is defined as “the situation
of two or more people working together to create or achieve the same thing”
(Cambridge Dictionary, 2022a). Considering these definitions, it can be inter-
preted that interaction requires two or more entities to occur, as well as mutual
action, influence or communication; and that collaboration requires the existence
of a shared or common goal between two or more working entities.

According to Goodrich and Schultz, interaction can be split into two broad cate-
gories: remote interaction and proximate interaction. In remote interaction, hu-
mans and robots are not co-located, they are separated spatially or even tempo-
rally (Goodrich and Schultz, 2007). For e.g., Perseverance, one of NASA’s rovers,
is separated both in space and time, the figure 2.8b depicts the rover. In proxi-
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mate interaction, humans and robots are co-located, as it happens, for example,
when social service robots are deployed in elderly care centres, where the robots
will be close to humans.

Bauer et al. define interaction as any action that involves humans and robots, not
implying profit for one of the parts, while collaboration is defined as working with
someone or something to achieve a common goal; interaction is then considered
to be a more general term that includes collaboration (Bauer et al., 2008). In a
review paper by Matheson et al., four different interaction types are presented:
(i) coexistence, when the human and the robot are in the same environment but
don’t interact; (ii) synchronised, when the human and the robot work in the same
environment at different times; (iii) cooperation, when the human and the robot
work on separate tasks but are in the same environment at the same time; and
lastly (iv) collaboration, when the human and the robot work on the same task,
in the same environment, and simultaneously (Matheson et al., 2019). These defi-
nitions present a good base for differentiating both concepts and to be applied to
the fields of HRI and HRC. The relationships between the previously presented
terms becomes clearer in an illustration, as seen in figure 2.10 that synthesises the
framework by Castro et al., and which will guide the work of this dissertation.

Coexistence

Interaction

No Collaboration Collaboration No Interaction

Figure 2.10: Relations between different concepts regarding humans and robots.
Adapted from (Castro et al., 2021).

Communication

Communication is another crucial concept related to the above-mentioned defini-
tions, where its absence can significantly impact the effectiveness of human-robot
interaction and collaboration, leading to low confidence or trust, which nega-
tively impacts the interaction and the collaboration (Freedy et al., 2007; Kolbeins-
son et al., 2019; Weiss et al., 2021).

When applied to a human-human context, communication can take different
forms related to our five sensory organs, i.e. eyes, ears, skin, nose, and mouth,
allowing humans to exchange information bi-directionally through various in-
terfaces, mainly speech, vision and touch. According to Yanco and Drury, and
Goodrich and Schultz, in HRI and HRC, communication is dependent on the
communication medium and the communication format, with the media being
transmitted through:

• visual displays, as Graphical User Interface (GUI), AR/VR interfaces;
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• gestures, hand and facial movements, and communication of intention based
on movement, intent signalling;

• speech and natural language, non-speech audio, frequently used in alerting;

Additionally, the format of the communication varies across the previously pre-
sented mediums e.g. sound can be exchanged in the form of auditory cues and in
the form of speech (Goodrich and Schultz, 2007; Yanco and Drury, 2004). The au-
thors Castro et al. also present different types of communication interfaces used
in HRC and the respective sensors responsible that serve as interfaces or com-
munication channels: (i) directly encoded orders, in the form of graphical user
interfaces or terminal instructions; (ii) gestures and motion, in the form of visual
and depth cameras, LIDAR and inertial sensors, accelerometers and gyroscopes;
(iii) voice, through a microphone; (iv) haptics and contact, in the form of tactile
arrays and load cells that convert force into electrical signals; and lastly (v) mus-
cular and brain activity, through electromyography, and electroencephalography,
analysing muscle’s and brain’s electrical activity (Castro et al., 2021).

In the work of Bauer et al., communication is approached as communication of
intentions and is divided into two types: explicit and implicit. Explicit commu-
nication of intention, which is deliberate and used to ensure that the receiving
end gets information about the intentions, e.g. speech, gesture and haptics. Im-
plicit communication of intention is communicated implicitly and unconsciously,
mostly through actions, and requires a lot of interpretation by the receiving end,
e.g. emotion, and physiological signals. The authors also state that intentions
communicated and interpreted correctly lead to joint intentions, which in turn
leads to the joint actions required for efficient collaboration (Bauer et al., 2008).
The main ways of communicating intention are summarised in table 2.3.

Communication of Intention

Speech Gesture Action Haptic
Signal

Physiological
Signal

Explicit
Information Emotion Head/

Eyes
Communicative

Gesture
Manipulative

Gesture
Proactive

Task Execution
Force/
Torque

Angles/
Orientation

Approval/
Arousal

Facial
Express.

Eye
Gaze Pointing Signs Motion Object

Usage
Heart
Rate

Brain
Activity

Muscle
Activity

Table 2.3: Main ways of communicating intentions, explicit communication un-
marked and implicit communication marked in grey. Adapted from (Bauer et al.,
2008).

Interaction Roles

Building upon Norman’s model for Human-Computer Interaction (HCI), Scholtz
introduced a taxonomy of different interaction roles that can be attributed to HRI,
thereafter presented by several authors (Goodrich and Schultz, 2007; Scholtz,
2003; Yanco and Drury, 2004). According to Scholtz, and Yanco and Drury, there
are five different roles: supervisor, operator, teammate, mechanic/programmer,
and bystander. Goodrich and Schultz then added the roles of mentor and infor-
mation consumer. Table 2.4 provides an overview of the different applications,
and their possible corresponding interaction roles, a brief description of each role
is presented afterwards.
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Application area Interaction Role Example

Military Remote Human is information
consumer

Dangerous reconnaissance
information

Education Proximate Robot is mentor Classroom assistant
Entertainment Proximate Robot is teammate/peer Social companion
Domestic Proximate Human is supervisor Robotic vacuum

Table 2.4: Examples of different roles humans and robots can assume in different
application areas. Adapted from (Goodrich and Schultz, 2007).

Supervisor, characterised as monitoring or observation, there is no need for di-
rect control;

Operator, characterised by requiring some interaction, e.g. teleoperation or
changing the robot’s behaviour;

Teammate/peer, characterised by team/peer work with a robot to accomplish a
task;

Mechanic/programmer, characterised by physically altering the robot’s soft-
ware or hardware;

Bystander, characterised by the human requiring understanding of the situation
but not requiring interaction;

Mentor, characterised by the robot being in a teaching or leadership role;

Information consumer, characterised by the user receiving information without
controlling the robot.

2.2.2 Levels of Collaboration

Collaboration means to work together, to achieve a goal or produce something;
automation and collaboration are fundamentally different in that automation ac-
tively seeks to remove the human from the task being performed, whereas the
latter tries to maximise both human and robot capabilities through collaboration.
To address collaboration in HRC, it is necessary to keep in mind the context, sce-
nario, goal of the activity, tasks, etc., and specify which humans are involved,
what kind of robots, and what kind of collaboration (Kolbeinsson et al., 2019).
Types or levels of collaboration are a form of classification meant to distinguish
different levels of collaboration that can occur between humans and robots, just
like there are classifications for different robot automation levels.

The IFR states that in the industry area, there are five admissible collaboration
levels, described in table 2.5 and illustrated in figure 2.11, and that out of those
five proposed levels, most collaborative applications in industrial environments,
as of today, are of the coexistence and sequential or synchronised collaboration
type.
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Level of
collaboration Cell Coexistence Sequential

collaboration Cooperation Responsive
Collaboration

Requirement
for intrinsic
safety features
vs. external
sensors

Fenced
Robot

No fence and
no shared
workspace

Robot and
worker both
active in the
workspace but
movements are
sequential

Robot and
worker work on
the same part at
the same time -
both in motion

Robots respond
in real-time to
movement of
workers.

Table 2.5: Levels of collaboration between industrial robots and humans. As the
level of collaboration increases (left to right), so does the Requirement for intrin-
sic safety measures vs external sensors. Source: IFR Position Paper (IFR, 2020)
adapted from (Wilhelm et al., 2016).

Cell Coexistence Synchronised Cooperation Collaboration

Figure 2.11: Different levels of collaboration as proposed by Wilhelm et al. and
IFR. Adapted from (Wilhelm et al., 2016).

2.2.3 Safety in Human-Robot Collaboration

In HRI and HRC, particularly in industrial contexts, there is a concern regard-
ing human safety. Industrial robots are usually separated physically from work-
ers with fences due to the danger they pose to humans. However, collabora-
tive robots are meant to be deployed in scenarios where close proximity (without
fences or a cage) between robots and workers should not be a problem, meaning
that robots should be equipped with various sensors that allow them to perceive
their surroundings (Badia et al., 2022; Matheson et al., 2019).

As mentioned in table 2.5, the higher the collaboration level, the higher the need
for safety measures. As an effort to protect operators in industrial settings, the
technical committee, ISO/TC 299 Robotics (2016), has presented techniques de-
veloped with safety regulations regarding the operation of collaborative robots,
where these techniques can be used in conjunction or independently (Shea, 2016):

Safety-Rated Monitored Stop (SMS), the robot stops moving when the opera-
tor enters the workspace and resumes motion after the operator leaves the
workspace, e.g. loading and unloading parts to the end-effector and inspec-
tions;
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Hand Guiding (HG), the robot is controlled manually via a hand-operated de-
vice that transmits motion, e.g. lift assist and diverse applications where
the robot acts like a manual tool;

Speed and Separation Monitoring (SSM), the robot adjusts its motion velocity
accordingly to its distance from the operator, the further the operator is,
the faster the robot is going to move, also includes a minimum separation
distance that when surpassed makes the robot stop, e.g. simultaneous tasks;

Power and Force Limiting (PFL), the robot operation is restricted in both power
and force, this allows for intentional and unintentional physical contact be-
tween the robot and the human, e.g. applications where physical contact is
necessary or tolerable.

Although these techniques provide safer forms of collaboration between humans
and robots, the safe operation of collaborative robots must always be assessed
properly and take into account multiple factors such as the space, task, robot,
end-effector, payload, et cetera. Matheson et al. state that early studies were fo-
cused on SSM and PFL approaches and that in more recent studies SMS and HG
approaches started to emerge, with particular emphasis on HG, due to enabling
unskilled users to interact with the robot, by moving its end-effector towards de-
sired interest points and having the robot replicate the transmitted movement
(Matheson et al., 2019). However, safety is not only a major concern in industrial
collaborative applications where the risk may be higher due to the physicality
involved, but also in interaction with service robots, humanoids can also pose
safety problems. Dautenhahn further explains that even in applications involv-
ing education, therapy or elderly support safety, safety is of critical importance
due to the nature of the applications and the vulnerability of the users involved
(Dautenhahn, 2007a).

2.2.4 User Experience in Human-Robot Collaboration

Social robots can be approached from three different perspectives: robot-centred
view, robot cognition-centred view and human-centred view; however, the human-
centred view approach has not been given the same attention as the other two
approaches (Dautenhahn, 2007b). Although human-robot interaction is different
from human-human interaction, human-animal interaction, and human-computer
interaction (Dautenhahn, 2018), various researchers suggest that there is a neces-
sity for methods and techniques for systematically designing and evaluating var-
ious aspects of the human-robot interaction, suggesting the use of methods and
techniques from the fields of HCI and User Experience (UX) (Alenljung et al.,
2017; Dautenhahn, 2007a; Lindblom and Cort, 2016). According to Oxford Ad-
vanced Learner’s Dictionary definition, UX is described as the overall experience
of a person when using a particular product, such as a website, e.g. how easy or
pleasant it is to use. According to Cambridge Dictionary definition, UX refers to
the experience of someone using a product, system, or service, e.g. whether they
find it enjoyable.

20



Background & Related Work

HCI and UX are both concerned with the pragmatic and the hedonic aspects of in-
teractive products (Hassenzahl and Roto, 2007; Hassenzahl and Tractinsky, 2006):
the pragmatic quality is related to fitting user’s behavioural goals or “do-goals”,
i.e. the usability component of UX, including effectiveness, efficiency, satisfac-
tion, ease-of-use, and learnability; and the hedonic quality, also named “be-goals”,
is related to the user’s emotional response when interacting with a product, i.e.
personal growth or autonomy (Alenljung et al., 2017; Hassenzahl and Tractinsky,
2006; Lindblom and Cort, 2016).

Positive UX is not a part of the product per-se, but a part of the result of the in-
teraction between the user and the product. In this way, UX is dependent on the
user, on the product and also on the specific circumstances in which the interac-
tion occurs (Hassenzahl and Tractinsky, 2006); thus it is not feasible to have equal
user experiences, since these vary highly from individual to individual, as well as
with case-specific circumstances (Lindblom and Cort, 2016). Lindblom and Cort
also presented relevant challenges regarding the evaluation of user experience in
HRI such as the need for an iterative UX design process in HRI; the need to use
UX goals to achieve positive UX; and finally, the need of knowledge regarding
UX evaluation amongst robot developers (Alenljung et al., 2017; Lindblom and
Cort, 2016).

This chapter presented a review of the background and related work, concern-
ing the two main topics of this dissertation, robots and HRC. It allows to better
understand the subjects underlying this work, some of the challenges they pose,
and ways of overcoming those challenges. The following chapter introduces the
approach followed by this research, the research phases, and the hardware and
software tools used.
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Research Methodology

This chapter presents and describes the main research phases and methods that
guided and were used in this dissertation, as well as the research and experimen-
tal hardware and software tools utilised.

3.1 Research Phases and Approach

This research aims to understand how human performance is affected when ex-
ecuting a collaborative assembly task with robots of different anthropomorphic
levels and two distinct collaboration approaches, sequential and simultaneous.
Related to human performance, the uncanny valley effect response during the
collaborative assembly task is also studied. The research approach followed in
this research is divided into four distinct but related phases: background and re-
lated work, conceptualisation and design, iterative and incremental development
and, lastly, formal evaluation, as detailed in the diagram in figure 3.1.

The background and related work is the phase where the necessary literature for
the research was studied. The two significant issues examined were (i) robots,
with an emphasis on application areas, morphologies, behaviours and the un-
canny valley effect; and (ii) human-robot collaboration, with an emphasis on the
differences between interaction and collaboration, different levels of collabora-
tion, human safety and user experience in human-robot collaboration. This phase
had a duration of approximately three months and was crucial for the overall re-
search since it allowed important insight regarding the primary research issues
and the knowledge needed for the context to be defined in the next phase.

The conceptualisation and design phase defines potential scenarios and tasks
to integrate into the interactive Virtual Reality (VR) simulation to be developed.
A review of the existent collaborative robots and their use cases (a summary ta-
ble of this review can be seen in Appendix A) is conducted alongside what was
apprehended in the first phase through drawings, schematics and storyboards,
allowing to establish a concept and a preliminary design. This phase lasted ap-
proximately five months.
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Background and
related work

Conceptualisation
and design

Storyboarding

Real-life
collaborative

scenarios
observation

 IVRS 
design

Iterative and
incremental

development

IVRS
development

Formal evaluation

Expert review Pilot study

Analysis of results

Protocol
definition

Analysis of
existent IVRS

solutions

Participant
recruitment

Scenario and task
definition

Testing and data
collection

Robots

Collaboration

Virtual reality

Uncanny valley

Figure 3.1: A diagram with the research phases and their relations represented by
the arrows. IVRS stands for Interactive Virtual Reality Simulation.

The observation and analysis of a real-life human-human collaborative assembly
task are carried out to further understand how humans collaborate when per-
forming a similar task to the one later implemented, which consists of a scenario
with interlocking building blocks. Lastly, the final scenario and task are defined
based on what was gathered from the previous stages. In short, this phase served
to identify, conceptualise, contextualise and design a solution for the presented
research problem to later proceed with developing the solution itself. In addi-
tion, the different test conditions to which participants will be exposed are de-
termined in conjunction with the dependent variables and preliminary tests are
done to ease implementation in the development phase of the synchronised data
collection from the multiple sensors used.

The physiological measures to consider are the participants’ pulse Beats per Minute
(BPM) and Inter Beat Interval (IBI); pupil size, blink rate, and gaze fixation du-
ration on the robots, these are measured with the OpenBCI Cyton pulse sensor
and the HTC Vive Pro Eye embedded eye-tracking. The psychological measures
are the participants’ perception of robots’ anthropomorphism, animacy, likeabil-
ity, intelligence and safety, and participants’ sense of presence in the interactive
virtual reality simulation, these are measured with the Godspeed Questionnaire
Series (GQS) and the VR Presence Questionnaire (PQ). Additionally, the task com-
pletion time is also measured. The independent variables are robot anthropo-
morphism, with three robots of low to moderate anthropomorphic levels and the
presence of gaze through a monitor screen for two of the robots. The participants
perform the same collaborative assembly task with every robot, Kuka LBR iiwa,
Baxter and Sawyer, and both types of collaboration: sequential and simultaneous.
Thus, the most appropriate experimental design to implement in this study is a
within-subjects design, where every participant is subjected to every condition.

The iterative and incremental development phase is where the interactive VR
simulation is developed in the Unity Real-Time Development Platform as a way
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to present visual, auditory and haptic stimuli to the participants. In the early
stages of this phase, existent and related interactive virtual reality simulation so-
lutions are analysed to identify potential challenges and better understand the re-
quired functionalities. The development phase had a duration of approximately
six months. An iterative and incremental approach is followed to develop the
interactive simulation, meaning there is a repeating cycle of design, development
and evaluation by experts through regular meetings, where new functionalities
are implemented and later reviewed. In the last stage of the development phase
and as preparation for the next phase of the work, a pilot study is done with pre-
viously recruited subjects to evaluate the interactive VR simulation by receiving
feedback and identifying and correcting the inconsistencies detected.

The final phase, the formal evaluation, had a duration of approximately five
months and is the phase where the definitive test protocol is determined after
analysing the pilot study’s feedback, followed by the recruitment of the subjects,
the participants are submitted to the tests, and the tests data is collected. To pro-
cess the participants’ data, the Python programming language is used with the
software libraries Matplotlib, NumPy, Pandas and SciPy Signal. After process-
ing the data, the Jamovi software is used to analyse it and to obtain the final re-
sults through statistics measures, such as repeated measures analysis of variance
(ANOVA) for the physiological data and arithmetic averages of the scores of the
questionnaires for the psychological data. Additionally, to compare the physio-
logical data with the GQS data, scatterplot diagrams are made to find patterns in
the data. The obtained results are evaluated and interpreted and then presented
and discussed.

This work was subjected to two instances of formal evaluation, for which was
necessary to write and prepare a formal document and a presentation. The first
instance, in February of 2022, was an intermediate milestone and the second,
in January of 2023, the final milestone. The Gantt chart in figure 3.2 displays
the work schedule of the above-mentioned phases, including the documentation
phase.

Participants and Ethical Considerations

The study obtained ethical approval from the Ethics and Deontology Committee
for Research (CEDI) of the Faculty of Psychology and Educational Sciences of the
University of Coimbra: CEDI/FPCEUC:64/1, 22/06/2022. The recruitment of 39
participants was made through email invitations, the test sessions began by pro-
viding a summary of the test and asking for the participant’s informed consent,
ensuring the data collected were anonymous and confidential. The final tests
and data collection with the recruited participants were accomplished, excluding
three participants for not being able to finish the test session. In section 5.3, the
subjects who participated in this research are further detailed.
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2021 2022 2023
Dissertation

Review
Background and related work literature review

Practical work
Hardware and software familiarisation

Multiple source synchronised data collection

Conceptualisation and Design
Collaborative robot applications review

Human-human Lego assembly video review

Drawings, Schematics, Storyboards

Scenario and task design

Iterative and Incremental Development
Analysis of existent IVRS solutions

Task Logic, Data Logging, Unity LTS

IK, URP, Kuka and Sawyer Integration

Preliminary Evaluation
Expert review

Evaluation procedures, measures, test conditions

Evaluation
Pilot study

Full-scale study

Data processing and analysis

Documentation
Intermediate dissertation writing

Final dissertation writing

Figure 3.2: Work schedule.
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3.2 Research and Experimental Tools

3.2.1 Hardware Tools

Virtual Reality (VR) system

The presented study was conducted in a VR environment, hence the need for the
users to use VR hardware equipment to realise the tests. The VR system used
is the HTC Vive Pro Eye1, along with the lighthouses and the two controllers,
as depicted in figure 3.3. This VR solution has a built-in eye-tracker capable
of analysing gaze origin and direction, pupil position and size, and eye open-
ness. The system is also capable of sound output through built-in adjustable
headphones. In this VR system, the users’ mobility is limited due to the need
for a physical connection to a computer and the system requiring a direct, un-
obstructed line of sight to the lighthouses, which themselves only allow for five
squared meters room-scale. The participants were positioned in the centre of the
room to avoid system tracking failures negatively impacting the experiment and
the user experience. The use of a VR system in this study allows for safe inter-
action and collaboration with the robots since there is no physicality involved, as
well as faster development and evaluation of the interactive VR simulation.

Figure 3.3: HTC Vive Pro Eye VR system, the Head Mounted Display (HMD) in
the centre, the two lighthouses in the back and the two controllers in front.

Eye-tracking

The eye-tracking sensor used is embedded into the VR system1, more precisely
in the HMD and is powered by Tobii. This eye-tracking system is capable of a
maximum binocular data output frequency of 100 Hz, it has an accuracy of 0.5°-
1.1° degrees within a Field of View (FOV) of 20° and also a trackable FOV of
110°. The interface utilised to integrate the eye-tracking system is the HTC Vive
SRanipal SDK and, more specifically, in the case of Unity, the SRanipal Unity
SDK. The eye-tracking system’s purpose is to track and record different types
of eye data, such as gaze origin and direction, pupil position and size, and eye
openness. In this study, the analysis of the acquired eye data served to obtain

1https://www.vive.com/us/product/vive-pro-eye/specs/
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information about the pupils’ response through the average pupil diameter, the
blink rate and the time spent looking at different scenario locations.

Pulse sensor and Cyton biosensing board

The pulse sensor2 is a Photoplethysmography (PPG) sensor that uses light and a
photosensor to measure variations in the blood circulation volume, as displayed
in figure 3.4a. The pulse sensor can be used with micro-controllers such as an Ar-
duino or, in the case of this study, with a biosensing board, such as the OpenBCI
Cyton3, which is also Arduino-compatible, as shown in figure 3.4b. The pulse
sensor can be placed either on a fingertip or the earlobe, and it should not be
strapped either too tightly or too loose, as this can cause noise that will interfere
with the measurement. A three-wired cable is used to connect the pulse sensor
to the Cyton board, the red wire takes power from the board, the black wire is
the ground, and the purple wire transmits an analogue input in the form of an
electrical signal in millivolts to the board. The Cyton board has a power supply
of four AA batteries, and the data transmission to the computer is done via the
Bluetooth USB dongle. Initially, it was thought that Bluetooth would confer a de-
gree of portability to the whole apparatus, thus allowing users to carry the board
themselves. Still, after some tests, it was concluded that the participants’ move-
ments also caused the board to move and introduce noise to the pulse data. This
issue was solved by fixing the board on a surface and extending the pulse sensor
cable so the participants did not need to carry the board.

(a) Pulse Sensor
(b) Cyton board and USB dongle

Figure 3.4: In (a) the backside of the pulse sensor; (b) on the left, its USB pro-
grammable dongle for Bluetooth communication and on the right, the Cyton
board.

2https://docs.openbci.com/ThirdParty/Pulse_Sensor/Pulse_Sensor_Landing/
3https://docs.openbci.com/Cyton/CytonLanding/
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3.2.2 Software Tools

Unity Real-Time Development Platform

Unity4 is a cross-platform game engine used not only for game development but
also as a tool for research activity. The software has a large support community,
especially regarding compatibility with third-party software. The present study
uses the Unity platform to create and develop a three-dimensional interactive VR
simulation that fundamentally presents different types of visual, auditory and
tactile stimuli to the human in junction with the HTC Vive VR system. The initial
Unity version used for the development was Unity 2019.2.8 f 1. Still, to assure and
ease future compatibility and the development of the project, it was later updated
to the Long-term support (LTS) release Unity 2020.3.30 f 1 version.

SRanipal Runtime and Software Development Kit (SDK)

The SRanipal5 Runtime is required to enable eye-tracking capability and is mainly
used to verify the eye-tracking system status. The SRanipal Unity SDK is used to
integrate eye-tracking features directly in the Unity project, namely eye-tracking
data recording and collection.

Lab streaming layer (LSL)

The Lab Streaming Layer (LSL)6 is a system used for multiple source data col-
lection; the system handles networking, time-synchronisation, and collection of
the data itself with disk storage. This study uses LSL to stream the pulse sensor
readings from OpenBCI to Unity and record and store the pulse data at the same
frequency as the remainder of the acquired physiological data.

OpenBCI

The OpenBCI Graphical User Interface (GUI)7 is a software tool for visualising,
recording, and streaming data from the OpenBCI Boards, such as the one used
in this study and previously mentioned in 3.2.1. The software is used to monitor
pulse data in real-time to verify if there was noise in the received signals and to
stream the data from the pulse sensor, pulse BPM and IBI to Unity using LSL, to
keep the collection of data synchronised with the remaining sources.

4https://unity.com/
5https://developer-express.vive.com/resources/vive-sense/

eye-and-facial-tracking-sdk/
6https://labstreaminglayer.readthedocs.io/info/intro.html
7https://docs.openbci.com/Software/OpenBCISoftware/GUIDocs/
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Open Broadcaster Software (OBS)

The OBS8 is an open-source, cross-platform software for video recording and live
streaming. OBS was used to record the computer screen and sound of both the
pilot study tests and the final study tests conducted. In addition, the test ses-
sions were recorded to keep a registry and, in case of necessity, to allow future
examinations.

Python software libraries: Matplotlib, NumPy, Pandas & SciPy Signal

Matplotlib9, NumPy10, Pandas11 and SciPy 12 Signal are software libraries for the
Python programming language used in data processing and analysis. Matplotlib
was used to visualise the data results through graphs; NumPy was used for its
implementation of high-level mathematical functions; SciPy Signal was used to
process the biological signals data, namely, noise reduction through signal fil-
tering, and signal peak detection; Pandas was used to organise, structure and
manipulate all the data.

Jamovi

The Jamovi13 software is an open statistical platform that provides a range of sta-
tistical analyses. Jamovi was utilised to conduct the repeated measures analysis of
variance (ANOVA) of the physiological data and, additionally, the analysis of the
psychological data obtained from the two questionnaires used in this research,
the Godspeed Questionnaire Series and the Virtual Reality Presence Question-
naire. (Gallucci, 2019; R Core Team, 2021; The jamovi project, 2022)

This chapter presented and described the phases, approach, hardware, and soft-
ware tools employed in this research. The following chapter introduces the con-
ceptualisation, design and development of the interactive virtual reality simula-
tion as the proposed solution to answer the research questions.

8https://obsproject.com/
9https://matplotlib.org/

10https://numpy.org/
11https://pandas.pydata.org/
12https://scipy.org/
13https://www.jamovi.org/
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Interactive Virtual Reality
Simulation

The fourth chapter is divided into three sections that cover the conceptualisation,
design and development of the interactive Virtual Reality (VR) simulation. The
first section is dedicated to presenting the conceptualisation and design of the
interactive simulation, namely the scenario, the environment, the collaborative
assembly task, and the interlocking building blocks. The following section covers
the development stages of the interactive VR simulation using the research tools
described in section 3.2.

4.1 Conceptualisation and Design of the Interactive
VR Simulation

4.1.1 Learning from real-life collaborative scenarios observation

A collaborative assembly task presumes collaboration between the participating
agents, working together to achieve a common goal and assembly, i.e. putting to-
gether parts of a whole. In preparation for the conceptualisation of the interactive
simulation scenario, a review of Human-Robot Collaboration (HRC) real-world
applications was made, with close attention to the collaborative robot used, the
type of collaboration and task-specific details, to attempt to identify possible so-
lutions to implement as a collaborative assembly task. A summary of the review
can be seen in Appendix A.

The review of possible scenarios determined that an assembly application fits this
study the most because of its wide variety of potential implementations and due
to being one of the most common industrial applications. Discussion regarding
the assembly component also concluded that the assembly task should be simple
enough so that it did not require special instructions and background knowledge
or contextualisation regarding the assemblage as required in the assembly of me-
chanical or electric parts.
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The assembly task needed to be simple not only to be feasible to design, develop
and integrate with the virtual robots but also to be robust enough to allow for fur-
ther complexity and scalability for this research to be future-proof. After brain-
storming possible solutions and pondering on their strengths and caveats, the
research team decided to use Lego as the basis for the scenario; i.e. the scene
would feature Lego-like interlocking building blocks to perform the collabora-
tive assembly task.

Lego-like interlocking building blocks are used to perform the collaborative as-
sembly task due to the advantages the latter present for this research study. Inter-
locking building blocks are universal, and their affordances are clear and easily
understood by the users. Task scalability is also an option due to the large num-
ber of different types of blocks that exist, allowing for an immense number of
building block combinations and multiple variations of task complexity. Another
benefit to using interlocking building blocks in the interactive VR simulation is
the non-necessity to overwhelm the users with having to dwell and learn about
specific tools or assembly tasks. Furthermore, the learning curve of the build-
ing blocks is almost non-existential when compared to the industrial assembly
of electronic components or intricate mechanical components, thus assisting in
time management of the planned test session saving time by not having to teach
users about task-specific details. Furthermore, the building blocks can also serve
as a simplified representation of various industrial assembly tasks. The motives
presented above help improve the overall assembly task, namely the user per-
formance, by minimising task errors and the user experience using objects with
well-known and straightforward affordances.

Figure 4.1: Two agents using interlocking building blocks collaboratively in an
assembly task.

To build an understanding of the use of interlocking building blocks for the col-
laborative assembly task, two persons were asked to assemble a building block
structure collaboratively, as seen in figure 4.1. Both participating agents were told
to assemble a building block structure collaboratively, shown the final assembled
structure, and each was given half of the necessary building blocks to assemble
the structure. The human-human building block assembly collaborative task was
video recorded and later analysed by team members involved in the research, one
expert in Human-Computer Interaction (HCI), another expert in VR and the other
expert in Human Movement Science and Collaborative Robotics. In addition to
naked-eye video observation, a more detailed analysis of the gestures was done
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with the software OpenPose1, to detect the agents’ hand key points. The analysis
of the video recordings showed that one of the agents tends to wait for the other
to finish inserting the current building block before inserting the next building
block due to not being able to insert it simultaneously and requiring the first lev-
els of the structure to be assembled before being able to proceed to the next levels.
While the agents took turns inserting the building blocks, it was possible to ob-
serve the communication of intention occurring mostly through gestures and eye
gaze.

After having determined a starting point for the scenario and the task, sketches
helped to conceptualise the scenario and the structure to be assembled, depicted
in figure 4.2. A storyboard of a collaborative assembly task was also created to
represent the task step by step, depicted in figure 4.3. These allowed for exploring
possibilities using low-fidelity prototypes.

Figure 4.2: Concept sketches of the scenario on the left and of a building block
structure on the right.

John needs to assemble Legos faster. 
He is struggling to do it alone, so he is 
going to be helped by Baxter, a cobot.

This is Baxter, the cobot that is going 
to help John.

After John finishes reading instructions
about the assembly, the work begins.

Baxter looks to the Legos and begins to
move his end-effector towards them.

John notices Baxter’s head gesture,
interprets it as communication of intention
and waits for Baxter to nish moving.

Baxter finishes inserting his building block. John then proceeds to insert his 
interlocking building block.

1 2 3 4

5 6 7 8

Figure 4.3: Storyboard of a collaborative assembly task.

1https://github.com/CMU-Perceptual-Computing-Lab/openpose
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4.1.2 Scenario and Task Design

After determining the central scenario and task concepts for the interactive VR
simulation, decisions on the types of collaborative robots and types of collabora-
tion also had to be made, as explained in the following sections.

Types of Collaborative Robots

Considering the types of collaborative robots, the task is performed with three
distinct robots: Kuka LBR iiwa, as shown in figure 4.4, is a one-armed collabo-
rative robot; Rethink Robotics Baxter, as shown in figure 4.5, is a two-armed col-
laborative robot with an animated face and Rethink Robotics Sawyer, as shown
in figure 4.6, is a one-armed collaborative robot with an animated face. Despite
the robots’ differences, they all have been designed and projected for collabora-
tive industrial applications, which makes them suitable candidates to perform
the previously introduced collaborative assembly task.

Figure 4.4: Kuka LBR iiwa robot as seen in the interactive virtual reality simula-
tion

Figure 4.5: Baxter robot as seen in the interactive virtual reality simulation

The three robots used in this research purposely have different levels of anthro-
pomorphism. The less anthropomorphic robot is Kuka LBR iiwa due to being a
single-armed industrial-looking robot. The most anthropomorphic robot is Bax-
ter due to its humanoid body characteristics such as its torso, two arms and mon-
itor display that behaves like a head with animated facial expressions. On the
anthropomorphic scale, Sawyer is in the middle of the two robots previously pre-
sented, Kuka LBR iiwa and Baxter, because he is a single-armed robot, like Kuka
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Figure 4.6: Sawyer robot as seen in the interactive virtual reality simulation

LBR iiwa, but has a monitor display that serves as a head with animated facial ex-
pressions, like Baxter. Both Baxter’s and Sawyer’s monitor display act as a head
with eyes and expressions that can be either turned on, when the robots’ head
follows the end-effector position, displaying the robots’ animated eyes, or turned
off, where the robots’ head does not move and shows an empty black screen. All
three robots communicate motion intention with sound by producing two high-
pitched beeps before moving. In the case of Baxter and Sawyer, when their head
is active, the robots’ head and eyes will move to follow their end-effector posi-
tion, which fits in the head gestures category of the intention of communication,
as previously shown in subsection 2.2.1. The movement of the robots’ arms is
similar across the three robots because all use the same inverse kinematics solu-
tion with equal parametrisation.

Sequential and Simultaneous Collaboration

Two distinct collaborative approaches are employed in the task performed, se-
quential collaboration and simultaneous collaboration. In the sequential approach,
as detailed on the activity diagram 4.7, the human is responsible for beginning
the task, i.e. picking and assembling the first interlocking building block. The
robots only move to pick and assemble their building block after the human in-
serts his building block, leading to a sequential assembly of the structure where
each agent takes turns performing their own part of the task. Although the hu-
man participant is free to move and has the capability to perform the task at his
own pace, he is still dependent on his peer, the robot, to proceed to the follow-
ing structure layer, just as the robot is dependent on the human to progress in
the assembly task. In the simultaneous approach, as documented on the activity
diagram displayed in figure 4.8, both parties participating in the task can start
picking and assembling building blocks when the test begins. The participating
agents should perform their actions simultaneously since each can work on his
part of the structure to assemble. However, similarly to the sequential collabo-
rative approach, there is still the necessity to wait for each participating agent to
finish inserting their building block in the current structure layer being assembled
to advance to the next structure layer.
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Human grabs and
inserts building block

Robot communicates intention,
grabs and inserts building block

more building blocks?
yes

Figure 4.7: Sequential collaborative approach

Human grabs and
inserts building block

Robot communicates intention,
grabs and inserts building block

more building blocks?
yes

Figure 4.8: Simultaneous collaborative approach
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Collaborative Assembly Task

The collaborative assembly task occurs in the virtual workplace shown in figure
4.9. The main idea for the VR environment was that it should be kept simple and
free of distractions, only including the essential objects for the agents to perform
the task. This design option primarily prevents the human participants’ gaze
from getting lost in superfluous artefacts and interfering with the data obtained
through eye-tracking. Besides the room walls and door, the ceiling light and a
screen display placed on the front wall to indicate the name of the current collab-
orative robot at the beginning of the task, the virtual environment comprises the
following objects:

• Robot, Kuka LBR iiwa, Rethink Robotics Baxter and Sawyer

• Workspace, the grid to insert the interlocking building blocks, the table,
the conveyor belt, the building blocks spawners and assembled structure
receiver, and a display with a stopwatch timer.

• Interlocking building blocks, one for each of the two participating agents,
the human and the robot

(a) Workspace top-view (b) Workspace perspective-view

Figure 4.9: The workspace in the VR simulation where task participating agents
perform the collaborative assembly task.

The table where the shared workspace is located has a length of 200 cm by a width
of 80 cm. The table’s width is large enough to guarantee that the robot is kept at
a minimum safety distance from the human but also sufficiently narrow to al-
low both task participants to reach the shared workspace where the collaboration
takes place. The interlocking building block spawners, the final assembled struc-
ture receiver, and the conveyor belt were not initially present in the scenario. Still,
as mentioned in subsection 4.1.2, to minimise task error and improve the sce-
nario’s realism, the spawners were introduced to deliver the interlocking build-
ing blocks one by one to the agents and to deliver the building base where both
agents insert the building blocks. The receiver was introduced as an end-point to
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the conveyor belt so that the final assembled structure could be removed from the
table to give place for the new building base. Before the collaborative assembly
task test begins, instructions are given verbally to the users and through demon-
stration by allowing participants to practice the assembly task inside a specific
VR training scene that serves the purpose of an interactive tutorial. This scene is
introduced before the tests with data collection, so as not to distract the partici-
pants during the collaborative assembly task. The participants perform several
trials in the practice stage and proceed to the collaborative assembly task with a
given robot only after pressing a green button placed by their side. Figure 4.10
displays an overall view of the practice scene.

Figure 4.10: Scene where participants can practice for the assembly task.

The task consists of assembling an interlocking building block structure in con-
junction with three separate collaborative robots and two distinct collaborative
approaches. The assembling with building blocks is accomplished by interlock-
ing the building blocks on the building base grid, side by side, in an alternated
pattern. There are interlocking building blocks of two colours, blue and red, each
associated with a unique task participant. The red building blocks are manipu-
lated by the robots, and the blue building blocks are manipulated by the humans.
The structure is assembled layer by layer, and both parties must insert the same
building blocks per the structure’s layer.

To achieve the joint goal of the task, which is to assemble the ordered structure
of building blocks, both task parties, human and robot, must finish their subtasks
accordingly. To inform the users after a successful insertion and interlock of a
block, they receive haptic and auditory feedback, a light vibration paired with
the characteristic click sound that occurs when Lego-like or interlocking building
blocks snap together. In each assembled structure layer, the insertion order of the
building block is alternated. The collaborative assembly task goal is to build an
ordered structure of interlocking building blocks.

To increase the complexity and the dynamics of the collaborative task, the in-
sertion of the building blocks on the grid is done alternately between the agents
as depicted in figure 4.11, the position in which the agents need to insert their
building block changes throughout the layers of the structure.
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1 2 3 4 5 6
Figure 4.11: Task alternated assembly pattern, the numbers indicate the layer
number and the arrow the assembly order.

The task participants cannot insert their building block in any slot other than
the one highlighted in their respective colour. The reasoning behind this deci-
sion is that if humans were allowed to insert their building block in whatever
insertion slot they wanted, participants would perform the task unorderly and
differently from each other, thus influencing the results to be acquired. Also, the
robots would need to adapt to the different participants’ building block place-
ment, which would need to be implemented in the task logic. To further improve
task ease and minimise unnecessary errors, instead of providing the agents with
all the necessary building blocks to assemble the structure from the beginning of
the assembly task, these are instead delivered one by one after each agent fin-
ishes inserting his building block, the next one is provided; therefore the agents
do not need to think about where each building block goes. The figure in 4.12
displays a participant inserting an interlocking building block in the interactive
VR simulation.

Figure 4.12: A participant inserting an interlocking building block.
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4.2 Development of the Interactive VR Simulation

The development phase of the interactive VR simulation began in the middle
of February and ended in the middle of May, having lasted approximately three
months. The interactive VR simulation was developed using the Unity Real-Time
Development Platform as presented in section 3.2, using an iterative and incre-
mental approach. Throughout the development phase, the project was consis-
tently discussed and evaluated on a weekly basis by members of the Neurocobots
team, one whose main area of expertise is HCI, another whose main area of ex-
pertise is VR, and another whose main area of expertise is Collaborative Robotics.
In total, 129 versions23 of the Unity project were built and tested throughout the
development period. The following sections introduce and explain the main de-
velopment stages and the main changes between stages.

4.2.1 Analysis of Previous Work

The first stage was dedicated to analysing and understanding the previous Unity
project developed by Branco and Bermúdez I Badia 4, in Unity version 2019.2.8 f 1.
This project included an implementation of the robots Baxter and Kuka LBR iiwa,
with an inverse kinematics solver that allowed control of the robot’s movement
but lacked functionalities, such as collision avoidance and realistic movement
profiles. The three-dimensional model of the Kuka LBR iiwa robot was simple,
its colours were different from the original robot, and it was missing one joint
and a proper end-effector, i.e. a robotic device grip tool, but it sufficed to test
the crucial components necessary to progress the development. Furthermore, the
initial project lacked the logic required to perform the interlocking building block
collaborative assembly task with the robots, as well as the different types of col-
laboration defined for the task, sequential and simultaneous collaboration, which
are directly tied to how the assembly task is performed. The environment and the
workspace were also not implemented, i.e. the table, timer, interlocking build-
ing blocks and spawners and receiver for the grid and the building blocks. The
following subsections introduce the main development phases and the primary
advances at each phase.

4.2.2 Task Logic, Data Logging, Unity LTS

The first version of the project was focused on implementing the basic elements
required for the task to be performed, such as a workspace that consisted of a
table, a grid to insert the interlocking building blocks and an interlocking build-
ing block. The initial versions set the foundation for the development of the task
logic, which included task progression, i.e. advancing experimental trials and
blocks, and task validity to ensure the task is performed accordingly to the task

2(not publicly accessible) https://github.com/eduardosaraujo/EHRCtVRS
3Key:F85Hd2%qmNPH https://github.com/eduardosaraujo/EHRCtVRS-BUILD/releases
4(not publicly accessible) https://github.com/DiogoAABranco/DarkEnv
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requirements. Lastly, the implementation of different types of collaboration to
perform the collaborative task took place. In sequential collaboration, the robot
only moves after the user inserts his building block. In simultaneous collabo-
ration, the robot moves independently from the participant. Attention is given
to allow parameterisation of the task. The parameters required for the assembly
task, such as task settings, i.e. the number of building blocks needed, test tri-
als and blocks, type of robot, type of collaboration and robot movement settings,
can be modified and loaded through an external configuration file in Comma-
separated values (CSV) format.

After having a solid implementation of the task logic, other features were added,
such as animations, interlocking building block snapping, and objects like the
spawners for the building blocks, the spawner and receiver for the building block
base grid, a conveyor belt, ceiling lights and lastly a floor signal indicating where
the user should stand during the assembly task. These changes contribute to
minimising task error, immersion, and overall realism of the simulation. Another
critical feature implemented was physiological and task data logging. Record-
ing and storing physiological data from various channels, such as the eyes and
the pulse, as well as some pertinent task data, such as the current trial, the cur-
rent type of robot, the current type of collaboration, and timestamp markers to
indicate the occurrence of stimuli and facilitate data analysis. Lastly, the initial
development phase is also important due to the migration of the whole project
from Unity version 2019.2.8 f 1 to Unity LTS version 2020.3.30 f 1, thus allowing
for the project to be more future-proof with higher compatibility and support.
This last change also enabled the project to use Universal Render Pipeline (URP)
ready materials, as explained in the next section.

4.2.3 Inverse Kinematics, Universal Render Pipeline Materials,
Kuka LBR iiwa and Rethink Robotics Sawyer Integration

The biggest improvement in the third development phase, and most likely in this
entire project, was the introduction of the new inverse kinematics solver, BioIK,
developed by Sebastian Starke at the University of Hamburg as a part of his Mas-
ter of Science thesis (Starke et al., 2017a, 2016, 2017b). The usage of BioIK enabled
more complex and realistic robot movements, with collision detection, joint angle
restrictions and other valuable features such as different weight inputs for differ-
ent goals or collision elements. The addition of URP Unity materials increased
the realism and fidelity of the overall visual dimension of the VR simulation,
leading to an increase in the sense of presence and immersion. The new three-
dimensional model for the Kuka LBR iiwa robot was also a notable improvement
for the project since the old three-dimensional model of the Kuka LBR iiwa robot
had a low fidelity and lacked an end-effector, i.e. a gripper robotic device that
serves as a hand for the robot. Alongside the new Kuka LBR iiwa robot model,
the addition of the new robot, Sawyer, from Rethink Robotics, was also a good
complement to the project since it introduced a new type of robot with a monitor
screen, like Baxter, but single-armed, like Kuka LBR iiwa. The model used for
the Rethink Robotics Baxter was provided in the first version of the project, ex-
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plained in section 4.2.1. The Kuka LBR iiwa model published by Bornemann and
the Rethink Robotics Sawyer model published by Malawey were downloaded
from the GrabCAD Community website. Besides the above-mentioned changes,
other notable mentions for the third development stage are the integration of the
Godspeed Questionnaire Series (GQS) in the interactive VR simulation and of
the task practice scene to allow participants to practice for the task without the
presence of the robots.

Answering the questionnaire in VR allowed for the procedure to be more eas-
ily and pleasantly conducted and experienced since it became unnecessary to
repeatedly remove and equip the Head Mounted Display (HMD) to answer the
questionnaires after going through each different test condition. This further con-
tributed significantly to reducing the overall duration of a test session due to
the time spent equipping, adjusting and removing the HMD, as well as the re-
quired eye-tracker re-calibration every time the HMD was equipped or adjusted.
Adding a task practice scene allowed the participants to rehearse the task with-
out a robot, improving their familiarity with the movements required to perform
the task, the surrounding space and the necessary objects before committing to
the collaborative assembly task with the robots.

More changes were made after a pilot study with seven participants, which were
of critical importance:

• Controlling the execution of the eye-tracker sensor calibration, since the
users do not need to remove the HMD during the simulation, there was no
need to execute the eye calibration protocol for each test condition. The eye-
tracking sensor was only required to be calibrated at the beginning of the
test since the participants did not remove or adjust the HMD throughout
the test.

• Participants’ handedness, initially, the simulation only included a building
block spawner on the right side of the workspace, but later an option was
added to change the building blocks spawner position, left or right side,
thus enabling both left-handed and right-handed participants to perform
the task with ease.

• Logic and variable resetting after each test condition, thus avoiding restart-
ing the simulation for each independent condition. This caused ruptures in
the participants’ immersion and was also time-consuming, contributing to
reducing the duration of the test session.

• Detection of gaze focus directly within Unity with the SRanipal Runtime
and Software Development Kit (SDK), and subsequently recording and stor-
ing this data, allowing to easily and quickly infer where the participants
were looking on the task scene.

• Graphical glitch when transitioning from the collaborative assembly task
scene to the GQS scene, causing discomfort and a bad experience for the
test participants.
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• Screen with a timer was added to the environment to incentivise the par-
ticipants to perform the collaborative assembly task as quickly as possible.

The work presented in this chapter contributed to developing a higher fidelity in-
teractive VR simulation, thus providing a solid solution for evaluating the HRC
through the latter. The next chapter presents the evaluation measures and proce-
dures, the study participants’ descriptions, the data collection and analysis, and
its results.
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Evaluation of Human-Robot
Collaboration

This chapter describes the evaluation of human-robot collaboration, with a focus
on human performance, through the previously developed interactive virtual re-
ality simulation. The first two sections present the evaluation measures, the pro-
cedures and the test conditions. The next section describes the study participants,
followed by the data collection and analysis section and finally, the results.

5.1 Evaluation Measures and Test Conditions

The main research question of this study is how human performance is impacted
when executing a collaborative assembly task in the interactive VR simulation
with robots of different anthropomorphic designs. This includes three robot mod-
els, Baxter and Sawyer having their eye and face animations on and off, and Kuka
LBR iiwa. Two distinct collaboration approaches, sequential and simultaneous,
are also evaluated. Secondarily, the uncanny valley effect on emotional response
is studied to understand its possible impact on human performance. The primary
data types collected and analysed to answer the research questions are physio-
logical and behavioural data. Following this approach allows for this research to
offer a multi-faceted insight into human factors related to HRC.

Physiological Measures Collected

To measure and analyse the effect of the interaction on human performance, par-
ticipants’ physiological data was acquired, namely from the eyes and the pulse.
From the eye data, it was possible to obtain, amongst others: eye data validity
(a proxy for blink rate), pupil dilation diameter in millimetres, and gaze fixa-
tion location, i.e. the location at which the user is looking during the simulation.
Pupil dilation and blink rate allow for inferring whether the participants are un-
der a lower or higher cognitive load and awareness. Additionally, it is possible
to identify what objects participants spend more time looking at while perform-

45



Chapter 5

ing the collaborative assembly task. From the pulse data, two different measures
are obtained and analysed, the pulse rate, in beats per minute (Beats per Minute
(BPM)), and the pulse inter-beat interval (Inter Beat Interval (IBI)), in millisec-
onds. These pulse measures make it possible to infer whether the participants
were more or less stressed in different test conditions.

Psychological Measures Collected

Psychological measures were collected through two standard questionnaires, as
described next.

The Godspeed Questionnaire (GQS) (Bartneck et al., 2009b), which comprises five
question groups corresponding to the dimensions that reflect users’ perception
of the robot, such as anthropomorphism, animacy, likeability, intelligence and
safety. The questionnaire implements semantic differential scales, and it has been
translated into seventeen languages, a semantic differential scale uses dichoto-
mous pairs of adjectives to allow the participants to answer each question. In this
study, the questionnaire was employed in two languages, English and European
Portuguese. After each test condition was presented, the GQS was answered in-
side the interactive VR simulation.

The VR Presence Questionnaire (PQ) (Witmer et al., 2005) was used as a tool to
measure the degree of the participants’ sense of presence in the interactive VR
simulation. This questionnaire measures different domains of the VR experience,
allowing for an understanding of what factors contributed to the overall sense of
presence. This questionnaire is comprised of 24 questions answered on a seven-
point Likert scale to assess VR experience factors such as realism, possibility to
act and to examine, sounds and haptics. The PQ was answered on a digital form
using a computer immediately after the participants finished all the test condi-
tions and unequipped the HMD and the pulse sensor.

Test Conditions

The experimental procedure comprised five different test conditions, as sum-
marised in table 5.1. All participants were subjected to all five test conditions,
and the order in which the test conditions were presented to the participants was
randomised to not interfere with the results. By order of importance, the inde-
pendent variables manipulated in this research are: (i) the type of robot, (ii) the
type of collaboration and (iii) the face/eyes display state, which only applies to
the robots Baxter and Sawyer.

Table 5.1 also presents the control variables. The robot’s distance represents the
distance at which the robot is placed from the participant, which, in this study,
is equal for all the robots. The maximum velocity of the robot and its target cor-
respond to the maximum velocity parameter set in Unity’s BioIK. Although the
value is set to 2 m s−1 due to BioIK’s realistic movement profile being enabled, the
robots never reached this velocity. To add randomness to the movement delays
and reduce the subject tendency to act automatically, an option to enable/disable

46



Evaluation of Human-Robot Collaboration

the delay of robot movements as a variation of more or less 0.5 s. The timer
limit represents the time it takes for the timer screen to change from the stan-
dard black colour to the colour red, thus indicating to the participants that they
have surpassed the time limit to perform the task. Even though the timer screen
colour changes, the task does not end until the participating agents insert the last
interlocking building blocks, and the stopwatch timer keeps counting the time
passed. The number of grids represents the number of final assembled structures
the task participants need to finish to complete a test condition. The number of
grid columns and the number of grid rows represents the number of columns
and rows of the structure, respectively. Each structure column corresponds to a
test trial, thus having a total of 32 trials per type of robot and 16 trials per type of
collaboration per robot.

Test #1 Test #2 Test #3 Test #4 Test #5
Type of robot Kuka LBR iiwa Baxter Sawyer
Type of collaboration 50% sequential, 50% simultaneous (grids) per test
Robot monitor state - Off On Off On
Distance of robot 1 m
Maximum velocity of
robot and robot’s target 2 m s−1

Enable/disable robot’s
movement delay 1.0 ± 0.5 s

Timer limit 50.0s/grid
Number of grids 4 2
Number of grid columns 8
Number of grid rows 2

Table 5.1: The five test conditions with the independent variables highlighted in
bold and the control variables not highlighted.

5.2 Evaluation Procedures

The study received ethical approval from the Ethics and Deontology Committee
for Research (CEDI) of the Faculty of Psychology and Educational Sciences of the
University of Coimbra: CEDI/FPCEUC:64/1, 22/06/2022. The two researchers
followed a procedure script to conduct the tests, conveying the same exact in-
structions to all the participants. The full procedure script, translated to English,
is presented in appendix B. An activity diagram presenting the main test session
phases and their flow can be seen in figure 5.1. The test sessions were always
conducted with two researchers present at all times, where one was responsible
for handling the interactive VR simulation and the data collection, and the other
was in charge of receiving the participants and providing assistance in equipping
and removing the necessary hardware.

After the participants arrived at the laboratory, they were asked to read and agree
to an informed consent form and answer a sociodemographic questionnaire on
a computer, ensuring the data collected were anonymous and confidential. The
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sociodemographic questionnaire included questions about the participant’s age,
gender, height, education level, professional occupation, dominant hand and pre-
vious experiences with interlocking building blocks, virtual reality and robots.
All participants were asked whether they were prone to feeling nauseous, dizzy
or sick and were asked to tell the experimenters in case of feeling bad during the
test session. Before the users were equipped with the necessary hardware, a re-
searcher presented a summary of the overall procedure while immersed in the
interactive VR simulation, presenting and explaining the following four stages:

• Eye-tracking calibration, the first step is to calibrate the eye-tracking sen-
sor and verify if the HMD is fitting correctly for the sensor to have an un-
obstructed reading of the participant’s eyes.

• Training stage, the second step is to practice for the assembly task without
the presence of robots.

• Collaborative task, the third step is to perform the collaborative assembly
task with the different test conditions.

• Questionnaire, the last step is to answer a questionnaire regarding their
perception of the robot through VR at the end of each test condition.

After the summary of the test session, one of the researchers assisted the par-
ticipants with equipping the HMD and the controllers, as well as attaching the
pulse sensor to the fourth digit of the non-dominant hand, while performing the
task. The users were instructed on how to adjust the HMD by themselves, so they
were able to set it in a proper position where they could see the image focused
and clear. After correctly placing the HMD, participants were given the handheld
controllers and told to move around and explore the SteamVR Home to get used
to VR and its controls. In the meantime, the pulse sensor was attached to the
participant’s non-dominant hand’s fourth digit.

The researcher responsible for handling the data collection verified if the data
acquired by the pulse sensor was proper and ensured that the eye-tracking sys-
tem calibration was performed successfully. The primary reason for verifying the
sensor signal’s quality was the sensor being attached too tightly or loosely to the
participant’s finger. After the necessary verifications, the test session began, with
the participants practising for the assembly task in the training stage. When the
participants were done rehearsing, they were asked to press a button to advance
to the next stage.

In this part, the participants performed the collaborative assembly task once per
test condition, and after each test condition, they were prompted to answer the
GQS in VR. After going through all the test conditions, the participants were
assisted in removing the equipped hardware and asked to answer the VR PQ.
Upon concluding, the researchers thank the participants for their participation.

Although the researchers abstained from intervening during the actual collabo-
rative assembly task, there were instances where participants required guidance.
During the calibration process of the eye-tracking system, a researcher assisted
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Welcome the participant, ask preferred language
and present an overview of the test session

Participant agrees with the informed consent form
and answers the demographic questionnaire

Assist the participant in equipping the head-mounted
display, handheld controllers and pulse sensor

Start recording the computer display with the unity session

Execute the eye-tracker sensor calibration

Start the training stage for the participants to practice

Tests with data collection

Answer the Godspeed Questionnaire Series in virtual reality

Perform the collaborative assembly task for a given test condition

No

Test conditions available? Yes

Assist the participant in unequipping the hardware

Participant answers the virtual reality presence questionnaire

Thank the participant for his participation in the test

Figure 5.1: Activity diagram presenting the main test session phases and their
flow.
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the participants in adjusting the HMD and the interpupillary distance (IPD),
when necessary, to certify that the pupil sensor had a full view of the partici-
pant’s eyes and to provide an overall better user experience, a researcher verbally
communicated what was happening to the participants.

In the training stage, the researchers intervene freely to assist participants with
specific details of the task, such as explaining the controls to grab the cube and
insert it in the corresponding slot and how to proceed to the collaborative assem-
bly task after completing the training. While performing the collaborative task
with the robots, the researchers tried not to intervene and only did so if required
because of the participants reported feeling sick from nausea or dizziness or if the
participant interacted with the researchers.

In between test conditions, the participants were asked if they were feeling well
and not feeling nauseous or dizzy. Only after obtaining acknowledgement did
the researcher advance to the following test condition. Lastly, when answering
the GQS inside the interactive VR simulation, the researchers intervene to explain
the controls and user interface to the participants and to inform them that if their
opinion is neutral, they should leave the scale untouched. The researchers also
answered if there was any misunderstanding about the content of the question-
naire.

5.3 Study Participants

A total of 39 participants were recruited to participate in the study. The partic-
ipants’ recruitment was done through email invitations directed mainly at the
University of Coimbra student population. The recruitment of participants at-
tempted to be gender-balanced to have similar numbers of female and male par-
ticipants. Data from three participants, out of the 39, was excluded from the study
because the participants were unable to finish the tests due to motion sickness or
not feeling well.

From the total of 36 participants whose data were analysed, 20 participants self-
identified as males and 16 participants as females. The participants’ ages var-
ied from 19 to 26 years old, with the average age being around 22 years old
(M = 22, SD = 2), 22 years old (M = 22, SD = 3) for male participants and 21
years old (M = 21, SD = 2) for female participants. The participants’ education
levels varied where 19 had completed Secondary Education, 15 had Bachelor’s
or equivalent, and 2 had a Master’s or equivalent. A total of 29 participants de-
scribed their current professional occupation as being a student, one as a public
servant, one as a web designer and the remaining five as not having a current
professional occupation.

The sociodemographic questionnaire also comprised questions about prior con-
tact and experience with interlocking building blocks (like Lego), robots and VR.
Although most participants had contact with all three, knowing these helped
characterise the sample. Out of the 36 participants, 34 answered that they had
had previous contact or experience with interlocking building blocks, while the
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remaining 2 answered negatively. Most participants who responded positively
described their contact or experience as playing with interlocking building blocks
when they were children. When asked about previous contact or experience with
robots, 34 participants answered positively, and the remaining 2 answered neg-
atively. Most participants who responded positively described their contact or
experience as watching movies or series where robots took part and also through
video games. Regarding previous contact or experience with virtual reality, 31
participants answered positively, and the remaining 5 answered negatively. Most
participants who responded positively described their contact or experience as
having used it in simulators and other previous virtual reality research experi-
ments. Overall, most participants had had some previous contact and experience
with all three components presented above, which was optimal for this research.
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5.4 Data Collection and Analysis

5.4.1 Data Description

Physiological Data

The physiological data file was recorded and stored in a CSV formatted text file at
a frequency of 100 Hz or 10 ms period. Each test condition produced a physiolog-
ical data file, totalling five physiological data files per participant. Each physio-
logical data file contains the following 63 columns of data variables, as described
in table 5.2.

Data category Data description Number of data columns
Time 2

Unity time
Expressed in milliseconds 1
Expressed in nanoseconds 1

Eyes 39
Eye-tracker

Milliseconds timestamps 1
Total frames count 1

Gaze focus
Current object name 1
Gaze focus point position coordinates (X, Y, Z) 3
Gaze focus point distance (X, Y, Z) 1

Left and right eye data validity 2
Left and right eye openness level 2
Pupil

Left and right eye pupil diameter 2
Left and right pupil position coordinates in sensor area (X, Y) 4

Eye gaze
Left and right eye gaze origin position coordinates (X, Y, Z) 6
Left and right eye gaze direction vector normalised (X, Y, Z) 6
Accuracy factor of the gaze ray 1

Eye facial expression levels for character animation 6
Convergence

Convergence distance validity 1
Convergence distance from central point of right and left eye 1
Tracking improvements count 1

Pulse 3
Beats per minute (BPM) 1
Inter-beat interval (IBI) 1
Signal 1

Movement 15
Left and right controller position coordinates (X, Y, Z) 6
Head-mounted display (HMD)

HMD position coordinates (X, Y, Z) 3
HMD rotation degrees (X, Y, Z) 3

Robot end-effector position coordinates (X, Y, Z) 3
Task 4

Current block 1
Current trial 1
Details 1
Current type of collaboration 1

Table 5.2: Description and column count of the physiological and task-specific
variables.
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From all the physiological data acquired during the tests with participants, the
data that is crucial to this study is, from the eyes data, the pupil dilation, the
blink rate and the gaze fixation; from the pulse data, the pulse BPM and the pulse
IBI.

Psychological Data

The psychological data file is recorded and stored in a CSV formatted text file,
once, at the end of each test condition in the interactive VR simulation after the
participants answer the questionnaire, totalling five psychological data files per
participant. Each psychological data file contains the following four columns of
data variables, as described in table 5.3.

Data category Data description Number of data columns
Question identifier Question unique identifier number 1
Question answer The answer given by the participant 1
Question semantics The two semantics used for the question 2

Table 5.3: Description and column count of the psychological variables.

5.4.2 Data Processing

The data processing pipeline algorithm was done with the Python 3.8 program-
ming language in a Jupyter Notebook, using Microsoft’s Visual Studio Code as a
code editor. In addition, the Python software libraries Matplotlib, NumPy, Pan-
das and SciPy Signal were used for data visualisation, high-level mathematical
operations, signal filtering and signal peak detection, and data structure and or-
ganisation, respectively.

Data Pre-processing

The plots in the following section pertain to the same exemplary participant for
data processing demonstration purposes. Firstly, the data is fetched from the files
containing the raw data obtained from the Unity simulation. For each participant,
ten data files were generated, five for the physiological and five for the psycho-
logical data; two files per test condition times the five different conditions. Each
of these data files is stored in a separate Pandas DataFrame data structure, which
is subsequently stored in Python lists. The DataFrames stored in the lists are then
split into more DataFrames that are better categorised and parsed into epochs
of interest, namely different types of robots, types of collaboration and also dif-
ferent monitor states, in the case of Baxter and Sawyer. The biological signals
data required processing, such as signal filtering, peak detection and calculation
of arithmetic averages. The parameters used to process the acquired data were
constant across all the participants.
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Eye Pupil Dilation Processing

The raw eye pupil diameter data comprised data for each left and right eye sep-
arately. Each eye’s data was independently filtered with a Butterworth low-pass
filter using Scipy Signal. Figure 5.2 shows the difference between the raw signal
and the filtered signal using the function:

scipy.signal.butter(n, wn, fs, btype='lowpass', analog=False)

Where n is the order of the filter, the order value used was 2, the wn is the critical
or cutoff frequency and the value used was 2 Hz. Lastly, the fs is the sampling
frequency at which the digital signal was acquired, in this research, this value
corresponds to 100 Hz. The scipy.signal.butter() function returns two arrays
b, a that correspond to the numerator (b) and denominator (a) polynomials of
the filter, that are then used as parameters in the Scipy Signal function:

scipy.signal.lfilter(b, a, x)

Where b is the numerator array, a is the denominator array, and x is the array with
the signal data, this function returns y, which is the output of the digital signal
after filtering.

After filtering the left and right eye raw signals with the low-pass filter, a com-
bined signal of both eyes was calculated with an arithmetic average between the
two signals.

Finally, a Scipy Signal Find Peaks function was used to detect the local max-
ima, i.e. the signal peaks that correspond to the instances when the participants
blinked or a loss of signal occurred due to the eye-tracker sensor not being able
to detect the eyes properly.

scipy.signal.find_peaks(x, height, width)

Where x is the signal data, height is the required height of the peaks, in this study,
the minimum required peak height is −2 mm, and the maximum required peak
height is 3.5 mm. Lastly, the width is the required width of the peaks in samples,
the value used for the minimum necessary peak width is 5 samples, equalling
a minimum of 50 ms duration for the detected peaks. This function returns an
array with the indices of the detected peaks that satisfy all the given conditions
in x.

After detecting the signal peaks indices, a for loop was used to iterate through
the signal and remove the data points around the detected peaks, a total of 130
samples are removed for each peak. Additionally, 100 samples were deleted from
the beginning of the signal and 150 samples from the ending. The final result is
represented in figure 5.4.

The final value for the combined pupil diameter is calculated from this data using
an arithmetic average between all the remaining data points with the function
Numpy Nanmean function numpy.nanmean(a), where a is the array of data points
from which to infer the average, and finally its output is rounded to 2 decimal
places with the function numpy.round_(a, d) where a is the output value of the
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Figure 5.2: Raw and filtered left and right eye pupil diameter

arithmetic average calculation and d is the number of decimals places to preserve,
in this case, the parameter is set to the value 2.
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Figure 5.3: Average combined left and right eye pupil diameter
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Figure 5.4: Filtered combined eye pupil diameter with peaks removed
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Eye Blink Detection & Processing

The eye blinks were inferred from two different eye data variables, the eye open-
ness level and the eye validity, with peak detection. Each of these variables was
comprised of raw data pertaining to the left and right eye and was processed
separately using the Scipy Signal Find Peaks function, where the following pa-
rameters were used:

scipy.signal.find_peaks(x, height, distance)

Concerning the eye openness level, the parameter x is the signal data, height is
the required height for the peaks in the signal, with the minimum height being
0 and the maximum height being 0.35. Finally, the parameter distance is related
to the horizontal distance between peak detections. This parameter was set to 10,
meaning that, after detecting a peak, the next peak may only be detected after a
horizontal distance of 10 samples, 10 samples equates to 100 ms intervals.

Regarding the eye validity, all the parameters have the same values and configu-
ration, except for the height, where the minimum required peak height is 0, and
the maximum is 10.

As mentioned before, the Find Peaks function returns an array with the indices
of the detected peaks that satisfy all the given criteria in the signal x. To obtain
the average blink rate, after inferring the peaks for the left and right eye, which
represent the total number of blinks for each eye and variable, eye openness and
eye validity, an arithmetic average was calculated between each left and right eye
to obtain the combined number of blinks for the left and right eye per variable. A
second arithmetic average was used to calculate the average of the two variables,
eye openness and validity, conveying the average number of total eye blinks in
a given session. Finally, the number of average eye blinks was divided by the
total duration of the task in seconds (s) and rounded to 4 decimal places, thus
calculating the average number of blinks per second. A visual representation of
the peaks detected in both eyes across the two different variables, eye openness
and eye validity, can be seen in the graphs in figure 5.5, and 5.6, respectively.
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Figure 5.5: Peaks detected in the eye openness level signal for both eyes.
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Figure 5.6: Peaks detected in the eye validity level signal for both eyes.
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Pulse Rate & Pulse IBI Processing

For the pulse data, both the pulse rate and IBI were processed using a Scipy Signal
Butterworth low-pass filter, similar to the one implemented in the eye pupil di-
lation signal processing. Figure 5.7 shows the difference between the raw signals
and the filtered signals using the function:

scipy.signal.butter(n, wn, fs, btype='lowpass', analog=False)

Where n is the order of the filter, the order value used was 2, the wn is the critical
or cutoff frequency and the value used was 1 Hz. Lastly, the fs is the sampling
frequency at which the digital signal was acquired; this value corresponds to
100 Hz. As mentioned previously, the scipy.signal.butter() function returns
two arrays b, a that correspond to the numerator (b) and denominator (a) poly-
nomials of the filter, that are then used as parameters in the Scipy Signal Lfilter
function:

scipy.signal.lfilter(b, a, x)

Where b is the numerator array, a is the denominator array, and x is the array with
the signal data, this function returns y, which is the output of the digital signal
after being filtered.

After filtering both signals with the low-pass filter the arithmetic average of the
remaining data points was calculated with the Numpy Nanmean function:

numpy.nanmean(a)

Where a is the array of data points from which to infer the average, and finally
its output is rounded to 2 decimal places with the function numpy.round_(a, d)
where a is the output value of the arithmetic average calculation and d is the
number of decimals places to preserve, in this case, the parameter is set to the
value 2.

Having presented the data processing procedures, the next section focus on the
results of the analysis of the collected results.
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Figure 5.7: Raw and filtered pulse rate and pulse inter-beat interval signals
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5.5 Results

In this subsection, the quantitative analysis performed with repeated measures
analysis of variance (ANOVA) results are presented and analysed, both individ-
ually and collectively. In ANOVA analysis, a lower p-value for a particular factor
signifies a higher statistical difference between the averages of the factor.

5.5.1 Repeated Measures Analysis of Variance

Collaboration with Kuka LBR iiwa versus Baxter versus Sawyer

The main factors being analysed in the following subsection are the type of robot
and the type of collaboration used for the collaborative assembly task.

Eye data

When analysing the results of the within-subjects effects of the eye pupil diame-
ter, displayed in figure 5.8, we can observe a statistically significant difference in
the combined pupil diameters for the main effect of the type of robot (p < 0.001),
meaning that different types of robots yielded different pupil sizes. The mean
combined pupil diameter is higher for the robot Baxter and lower for Kuka LBR
iiwa and Sawyer. This observation can indicate that humans are under a higher
cognitive load (for example, more self-aware or observant) when performing
the collaborative task with a robot whose anthropomorphism level is higher, i.e.
robots’ whose appearance resembles humans the most. In this case, Baxter is the
robot with the highest anthropomorphism level amongst the three due to having
a torso, two arms and a head, as opposed to Kuka LBR iiwa and Sawyer, which
have a single arm without a head, and a single arm with a head, respectively.

Figure 5.9 displays the participants’ blink rate for the different types of robots
and types of collaboration. The p-value for the type of robot factor (p = 0.280)
shows there is no significant statistical difference for the latter. However, there
is a significant statistical difference between the two types of collaboration (p =
0.003). Overall the participants’ blink rate is lower when performing the collabo-
rative task sequentially as opposed to simultaneously. This can indicate that the
participants are under higher cognitive load (or, alternatively, more alert) during
the sequential collaboration, thus not blinking as much as in the simultaneous
collaboration approach.

The gaze fixation duration of the participants on the robots, presented in figure
5.10, measures the time in seconds, the participants’ gaze fixated on the robots
during the collaborative assembly task. The gaze fixation duration was acquired
for 19 participants. There was a statistically significant difference in visual fixa-
tion duration for the factor type of robot (p = 0.007). The robot with the high-
est gaze fixation duration is Kuka LBR iiwa for both types of collaboration, fol-
lowed by Baxter. In contrast, the robot with the lowest overall gaze fixation du-
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Within Subjects Effects

  Sum of Squares df Mean Square F p

Type of robot 1.3257 2 0.6628 14.82 < .001
Residual 3.0423 68 0.0447    

Type of collaboration 0.0633 1 0.0633 1.46 0.236
Residual 1.4771 34 0.0434    

Type of robot ✻ Type of collaboration 0.0760 2 0.0380 1.66 0.198
Residual 1.5590 68 0.0229    

Note. Type 3 Sums of Squares

 Post Hoc Comparisons - Type of robot

Comparison

Type of robot   Type of robot Mean Difference SE df t ptukey

Kuka - Baxter -0.1883 0.0337 34.0 -5.59 < .001
  - Sawyer -0.0515 0.0326 34.0 -1.58 0.268
Baxter - Sawyer 0.1368 0.0405 34.0 3.38 0.005
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Type of collaboration Type of robot Mean SE Lower Upper

Sequential Kuka 4.00 0.0836 3.83 4.17
  Baxter 4.21 0.0947 4.02 4.40
  Sawyer 4.10 0.0922 3.91 4.29
Simultaneous Kuka 4.01 0.0999 3.81 4.21
  Baxter 4.18 0.0975 3.98 4.38
  Sawyer 4.01 0.1128 3.79 4.24

 
Figure 5.8: Combined (left and right) eye pupil diameter in millimetres (mm) data
analysis for type of robot and collaboration.
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Within Subjects Effects

  Sum of Squares df Mean Square F p

Type of robot 0.0300 2 0.01501 1.30 0.280
Residual 0.7400 64 0.01156    

Type of collaboration 0.0650 1 0.06498 10.63 0.003
Residual 0.1957 32 0.00612    

Type of robot ✻ Type of collaboration 0.0142 2 0.00709 1.40 0.255
Residual 0.3249 64 0.00508    

Note. Type 3 Sums of Squares

 Post Hoc Comparisons - Type of collaboration

Comparison

Type of collaboration   Type of collaboration Mean Difference SE df t ptukey

Sequential - Simultaneous -0.0362 0.0111 32.0 -3.26 0.003
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Type of collaboration Type of robot Mean SE Lower Upper

Sequential Kuka 0.294 0.0333 0.226 0.362
  Baxter 0.284 0.0332 0.216 0.351
  Sawyer 0.320 0.0344 0.250 0.390
Simultaneous Kuka 0.352 0.0450 0.261 0.444
  Baxter 0.317 0.0380 0.240 0.394
  Sawyer 0.337 0.0358 0.265 0.410

 
Figure 5.9: Blink rate in blinks-per-second data analysis for type of robot and
collaboration.
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ration is Sawyer, also keeping the trend in both types of collaboration. There
was a statistically significant difference between the two types of collaboration
(p < 0.001), with the participants focusing on the robots almost twice as much
in the sequential collaboration approach versus the simultaneous approach. This
can be explained by the fact that the participants need to wait for the robot in the
sequential approach, thus having more time to look at it while waiting. In the
simultaneous collaboration approach, the participants and the robot move inde-
pendently, hence the lower visual focus duration, since the participants only look
at the robots when necessary to confirm their position and avoid collisions.

Pulse data

In the analysis of the participants’ pulse rate, as displayed in figure 5.11, the type
of robot factor is close to being statistically significant (p = 0.069). The partici-
pants’ pulse rate is higher for the robot Kuka LBR iiwa and lower for the robot
Baxter. The higher BPM observed in this context can be explained by Kuka LBR
iiwa being the less anthropomorphic robot, which may lead the participants to
experience more stress while performing the collaborative task. The lower heart
rate observed for both Baxter and Sawyer means that the participants are more
at rest or relaxed when performing the collaborative task with these robots, with
Baxter, the most anthropomorphic robot, being the one with the lowest average
pulse rate. The factor type of collaboration for the pulse rate is not statistically
significant (p = 0.207). The hearts’ BPM and the IBI variables are inversely cor-
related, meaning that when the heart’s BPM is lower, the IBI is higher and vice
versa. However, the pulse IBI, displayed in figure 5.12, does not show any statis-
tical significance for the factors type of robot (p = 0.288) and type of collaboration
(p = 0.455).

Task duration data

The task duration, displayed in figure 5.13, measures the average elapsed time
in seconds that the participants take to finish eight trials, i.e. a fully assembled
structure of interlocking building blocks. There is a statistically significant differ-
ence in both factors, the type of robot (p < 0.001) and collaboration (p < 0.001).
On average, the participants take less time to complete the collaborative task with
the robot Sawyer, followed by Kuka LBR iiwa and Baxter. The sequential collabo-
rative approach appears to have a higher duration difference for both Kuka LBR
iiwa and Baxter but is less noticeable in the robot Sawyer. These results are par-
ticularly interesting because they show that the participants were more effective
when collaborating with Sawyer, a hybrid of an industrial robot like Kuka LBR
iiwa and a more anthropomorphic robot like Baxter. This means that while an-
thropomorphism may be more desired for some collaborative tasks, it might not
be so for all tasks. In this particular context, the task at hand was assembling in-
terlocking building blocks, so Baxter, due to its human-like appearance, may not
be the preferred robot for this specific task, unlike robots like Kuka LBR iiwa or
Sawyer with lower anthropomorphism levels.
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Within Subjects Effects

  Sum of Squares df Mean Square F p

Type of robot 222.9 2 111.43 5.72 0.007
Residual 701.9 36 19.50    

Type of collaboration 625.3 1 625.27 52.58 < .001
Residual 214.1 18 11.89    

Type of robot ✻ Type of collaboration 25.2 2 12.61 1.99 0.151
Residual 227.9 36 6.33    

Note. Type 3 Sums of Squares
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Type of collaboration Type of robot Mean SE Lower Upper

Sequential Kuka 14.26 1.475 11.16 17.36
  Baxter 11.16 1.141 8.76 13.56
  Sawyer 9.92 1.211 7.38 12.47
Simultaneous Kuka 8.25 0.904 6.36 10.15
  Baxter 7.25 0.813 5.54 8.96
  Sawyer 5.79 0.791 4.13 7.45

 
Figure 5.10: Average gaze fixation duration on robots in seconds (s) data analysis
for type of robot and collaboration.
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Within Subjects Effects

  Sum of Squares df Mean Square F p

Type of robot 2016.8 2 1008.4 2.801 0.069
Residual 21604.3 60 360.1    

Type of collaboration 222.6 1 222.6 1.664 0.207
Residual 4012.8 30 133.8    

Type of robot ✻ Type of collaboration 43.2 2 21.6 0.131 0.877
Residual 9854.6 60 164.2    

Note. Type 3 Sums of Squares

 Post Hoc Comparisons - Type of robot

Comparison

Type of robot   Type of robot Mean Difference SE df t ptukey

Kuka - Baxter 7.67 2.57 30.0 2.980 0.015
  - Sawyer 5.99 3.58 30.0 1.672 0.232
Baxter - Sawyer -1.68 3.92 30.0 -0.428 0.904
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Type of collaboration Type of robot Mean SE Lower Upper

Sequential Kuka 106.4 4.87 96.5 116
  Baxter 99.6 3.72 92.0 107
  Sawyer 100.1 4.41 91.1 109
Simultaneous Kuka 109.0 5.65 97.4 121
  Baxter 100.5 4.87 90.5 110
  Sawyer 103.3 5.12 92.8 114

 Figure 5.11: Pulse rate in beats-per-minute (BPM) data analysis for the type of
robot and collaboration.
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Within Subjects Effects

  Sum of Squares df Mean Square F p

Type of robot 61924 2 30962 1.272 0.288
Residual 1.46e+6 60 24341    

Type of collaboration 3457 1 3457 0.574 0.455
Residual 180804 30 6027    

Type of robot ✻ Type of collaboration 16498 2 8249 0.868 0.425
Residual 570031 60 9501    

Note. Type 3 Sums of Squares
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Sequential Kuka 643 27.6 586 699
  Baxter 665 23.9 616 713
  Sawyer 666 41.3 582 751
Simultaneous Kuka 633 31.5 569 697
  Baxter 699 32.6 632 766
  Sawyer 668 44.6 577 759

 

Figure 5.12: Pulse IBI in milliseconds (ms) data analysis for the type of robot and
collaboration.
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Within Subjects Effects

  Sum of Squares df Mean Square F p

Type of robot 2552.9 2 1276.47 128.00 < .001
Residual 698.1 70 9.97    

Type of collaboration 283.4 1 283.41 16.55 < .001
Residual 599.5 35 17.13    

Type of robot ✻ Type of collaboration 42.3 2 21.15 3.45 0.037
Residual 429.0 70 6.13    

Note. Type 3 Sums of Squares
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Sequential Kuka 49.2 0.717 47.7 50.7
  Baxter 52.8 0.813 51.1 54.4
  Sawyer 43.4 0.650 42.1 44.8
Simultaneous Kuka 46.2 0.532 45.2 47.3
  Baxter 49.9 0.311 49.2 50.5
  Sawyer 42.4 0.422 41.5 43.3

 

Figure 5.13: Task duration in seconds (s) data analysis for the type of robot and
collaboration.
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Baxter and Sawyer monitor display On and Off

A comparison of the data acquired between the robots Baxter and Sawyer with
their monitors, i.e. animated faces, turned off and turned on, was performed
to find if this human-like characteristic impacted the participants’ performance.
The acquired data from the eyes, pulse and task duration was analysed using
repeated measures ANOVA. Table 5.4 summarises the data analysis.

The pupil diameter data, depicted in figure 5.14, shows a statistically signifi-
cant difference for the factor type of robot (p = 0.002) and the factor type of
collaboration (p = 0.025), however not as significant for the factor monitor state
(p = 0.164), indicating that there is no difference in pupil diameters for the an-
imated faces being turned on or off. The blink rate data, represented in figure
5.15, shows an almost statistically significant difference for the factor type of col-
laboration (p = 0.02), yet not significant for the factor monitor state (p = 0.787),
indicating that there is no difference in rates for the animated faces being turned
on or off. The data for gaze fixation duration on robots’ animated faces, repre-
sented in figure 5.16, shows a statistically significant difference for the factor type
of collaboration (p < 0.001) and for the monitor state (p = 0.007). This indicates
a difference in gaze fixation duration on the robots’ faces, showing that the par-
ticipants spent more time looking at the robots’ faces when turned on, with the
difference being more pronounced on Baxter, and less time when turned off. The
pulse data, the pulse rate depicted in figure 5.17 and the pulse IBI depicted in
figure 5.18, does not show any statistically significant differences. The task du-
ration data, represented in figure 5.19, shows there is a statistically significant
difference for the factors type of robot (p < 0.001) and the factor type of collab-
oration (p < 0.001), however, no significant difference is reported for the factor
monitor state (p = 0.460).

Mean
Pupil

diameter [mm]
Blink rate
[blinks/s]

Visual focus
duration [s]

Pulse
rate [bpm]

Pulse
IBI [ms]

Task
duration [s]

Sequential Baxter Off 4.28 0.370 9.49 100.2 676 56.1
Baxter On 4.14 0.328 12.83 99.0 653 55.4
Sawyer Off 4.13 0.389 9.81 97.3 648 46.6
Sawyer On 4.07 0.361 10.04 103.0 684 46.3

Simultaneous Baxter Off 4.23 0.373 5.87 102.2 678 49.9
Baxter On 4.13 0.394 8.63 98.7 721 49.8
Sawyer Off 3.99 0.418 5.80 98.6 651 42.6
Sawyer On 4.04 0.390 5.78 108.0 685 42.2

Table 5.4: A summary table of the acquired data averages for the robots Baxter
and Sawyer with their monitor displays turned off and turned on.
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Within Subjects Effects

  Sum of Squares df Mean Square F p

Type of robot 1.310 1 1.3097 11.42 0.002
Residual 3.898 34 0.1146    

Type of collaboration 0.223 1 0.2235 5.50 0.025
Residual 1.381 34 0.0406    

Monitor state 0.295 1 0.2951 2.02 0.164
Residual 4.962 34 0.1459    

Note. Type 3 Sums of Squares
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Type of robot Type of collaboration Monitor state Mean SE Lower Upper

Baxter Sequential OFF 4.28 0.0983 4.08 4.48
    ON 4.14 0.0972 3.94 4.34
  Simultaneous OFF 4.23 0.0988 4.03 4.43
    ON 4.13 0.1020 3.92 4.33
Sawyer Sequential OFF 4.13 0.1052 3.92 4.34
    ON 4.07 0.0886 3.89 4.25
  Simultaneous OFF 3.99 0.1525 3.68 4.30
    ON 4.04 0.0932 3.85 4.23

 Figure 5.14: Combined (left and right) eye pupil diameter in millimetres (mm)
data analysis for monitor state.
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Within Subjects Effects

  Sum of Squares df Mean Square F p

Type of robot 0.0538 1 0.05380 2.9027 0.098
Residual 0.5931 32 0.01853    

Type of collaboration 0.0421 1 0.04210 6.0262 0.020
Residual 0.2236 32 0.00699    

Monitor state 9.42e-4 1 9.42e-4 0.0744 0.787
Residual 0.4052 32 0.01266    

Note. Type 3 Sums of Squares
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Estimated Marginal Means - Monitor state ✻ Type of collaboration ✻ Type of robot

95% Confidence Interval

Type of robot Type of collaboration Monitor state Mean SE Lower Upper

Baxter Sequential OFF 0.296 0.0379 0.219 0.373
    ON 0.271 0.0313 0.207 0.335
  Simultaneous OFF 0.304 0.0416 0.219 0.388
    ON 0.330 0.0393 0.250 0.410
Sawyer Sequential OFF 0.321 0.0360 0.247 0.394
    ON 0.320 0.0360 0.247 0.393
  Simultaneous OFF 0.346 0.0375 0.269 0.422
    ON 0.329 0.0378 0.252 0.406

  Figure 5.15: Blink rate in blinks-per-second data analysis for monitor state.
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Within Subjects Effects

  Sum of Squares df Mean Square F p

Type of robot 17.9 1 17.87 2.66 0.120
Residual 120.9 18 6.71    

Type of collaboration 105.4 1 105.41 21.15 < .001
Residual 89.7 18 4.98    

Monitor state 90.5 1 90.52 9.37 0.007
Residual 173.9 18 9.66    

Note. Type 3 Sums of Squares
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Estimated Marginal Means - Monitor state ✻ Type of collaboration ✻ Type of robot

95% Confidence Interval

Type of robot Type of collaboration Monitor state Mean SE Lower Upper

Baxter Sequential OFF 2.41 0.469 1.425 3.40
    ON 5.58 0.826 3.848 7.32
  Simultaneous OFF 1.08 0.250 0.554 1.61
    ON 2.93 0.708 1.444 4.42
Sawyer Sequential OFF 2.49 0.550 1.338 3.65
    ON 3.48 0.577 2.266 4.69
  Simultaneous OFF 1.56 0.446 0.627 2.50
    ON 1.73 0.483 0.715 2.74

 Figure 5.16: Average gaze fixation duration per robot animated face in seconds
(s) data analysis for monitor state.
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Within Subjects Effects

  Sum of Squares df Mean Square F p

Type of robot 175 1 175 0.183 0.672
Residual 28593 30 953    

Type of collaboration 251 1 251 1.107 0.301
Residual 6805 30 227    

Monitor state 428 1 428 0.422 0.521
Residual 30470 30 1016    

Note. Type 3 Sums of Squares
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Estimated Marginal Means - Monitor state ✻ Type of collaboration ✻ Type of robot

95% Confidence Interval

Type of robot Type of collaboration Monitor state Mean SE Lower Upper

Baxter Sequential OFF 100.2 3.55 93.0 107
    ON 99.0 5.61 87.5 110
  Simultaneous OFF 102.2 5.13 91.7 113
    ON 98.7 5.71 87.1 110
Sawyer Sequential OFF 97.3 5.57 85.9 109
    ON 103.0 5.32 92.2 114
  Simultaneous OFF 98.6 6.25 85.8 111
    ON 108.0 6.37 95.0 121

 Figure 5.17: Pulse rate in beats-per-minute (BPM) data analysis for monitor state.
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Within Subjects Effects

  Sum of Squares df Mean Square F p

Type of robot 13785 1 13785 0.188 0.668
Residual 2.20e+6 30 73382    

Type of collaboration 19751 1 19751 1.224 0.277
Residual 484138 30 16138    

Monitor state 31815 1 31815 0.630 0.434
Residual 1.52e+6 30 50525    

Note. Type 3 Sums of Squares
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Type of collaboration Type of robot Monitor state Mean SE Lower Upper

Sequential Baxter OFF 676 24.7 625 726
    ON 653 33.6 585 722
  Sawyer OFF 648 41.5 564 733
    ON 684 56.5 569 800
Simultaneous Baxter OFF 678 31.9 612 743
    ON 721 47.5 624 818
  Sawyer OFF 651 36.8 575 726
    ON 685 67.0 548 821

  Figure 5.18: Pulse IBI in milliseconds (ms) data analysis for monitor state.
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Within Subjects Effects

  Sum of Squares df Mean Square F p

Type of robot 5071.50 1 5071.50 342.527 < .001
Residual 518.21 35 14.81    

Type of collaboration 1768.89 1 1768.89 58.064 < .001
Residual 1066.25 35 30.46    

Monitor state 9.07 1 9.07 0.559 0.460
Residual 568.13 35 16.23    

Note. Type 3 Sums of Squares
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Estimated Marginal Means - Monitor state ✻ Type of collaboration ✻ Type of robot

95% Confidence Interval

Type of robot Type of collaboration Monitor state Mean SE Lower Upper

Baxter Sequential OFF 56.1 1.002 54.0 58.1
    ON 55.4 1.081 53.2 57.6
  Simultaneous OFF 49.9 0.305 49.3 50.5
    ON 49.8 0.514 48.8 50.9
Sawyer Sequential OFF 46.6 0.709 45.2 48.0
    ON 46.3 0.905 44.5 48.1
  Simultaneous OFF 42.6 0.184 42.2 43.0
    ON 42.2 0.816 40.5 43.9

  Figure 5.19: Task duration in seconds (s) data analysis for monitor state.
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5.5.2 Human Performance

In the following section, the general linear models between the physiological and
psychological data are presented in more detail. The scatter diagram linear trend
lines show patterns in the data, the grey areas represent the standard errors, and
the dots represent the data points.

The pupil diameter and the anthropomorphism, as displayed in figure 5.20, shows
a negative trend that is a nearing statistically significant difference (p = 0.062),
indicating that the pupil diameter decreases as the anthropomorphism increases.

The blink rate and the anthropomorphism, displayed in figure 5.21, indicate no
linear relation and no statistical significance (p = 0.862).

The pulse rate and the anthropomorphism, displayed in figure 5.22, indicate no
linear relation and no statistical significance (p = 0.401).

The task duration and the anthropomorphism, displayed in figure 5.23, indicate
no linear relation and no statistical significance (p = 0.208).
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Estimate Linear model fit by OLS
Call Pupil_diameter__millimeters ~ 1 + Anthropomorphism
R-squared 0.0207
Adj. R-squared 0.0149

 ANOVA Omnibus tests

  SS df F p η²p

Model 1.13 1 3.53 0.062 0.021

Anthropomorphism 1.13 1 3.53 0.062 0.021

Residuals 53.33 167      
Total 54.45 168      

 Fixed Effects Parameter Estimates

95% Confidence Interval

Names Estimate SE Lower Upper β df t p

(Intercept) 4.1829 0.0435 4.097 4.26875 0.000 167 96.23 < .001
Anthropomorphism -0.0862 0.0459 -0.177 0.00433 -0.144 167 -1.88 0.062

 
Figure 5.20: Pupil diameter (vertical axis) in millimetres (mm) relation with an-
thropomorphism (horizontal axis) group scores.
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Estimate Linear model fit by OLS
Call Blink_rate__blinks_per_second ~ 1 + Anthropomorphism
R-squared 2.22e-4
Adj. R-squared -0.00708

 ANOVA Omnibus tests

  SS df F p η²p

Model 0.00120 1 0.0304 0.862 0.000

Anthropomorphism 0.00120 1 0.0304 0.862 0.000

Residuals 5.42312 137      
Total 5.42433 138      

 Fixed Effects Parameter Estimates

95% Confidence Interval

Names Estimate SE Lower Upper β df t p

(Intercept) 0.35211 0.0169 0.3187 0.3855 0.0000 137 20.865 < .001
Anthropomorphism 0.00303 0.0174 -0.0314 0.0374 0.0149 137 0.174 0.862

 
Figure 5.21: Blink rate (vertical axis) in blinks per second relation with anthropo-
morphism (horizontal axis) group scores.
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Estimate Linear model fit by OLS
Call Pulse_rate__beats_per_minute ~ 1 + Anthropomorphism
R-squared 0.00535
Adj. R-squared -0.00218

 ANOVA Omnibus tests

  SS df F p η²p

Model 505 1 0.710 0.401 0.005

Anthropomorphism 505 1 0.710 0.401 0.005

Residuals 93896 132      
Total 94401 133      

 Fixed Effects Parameter Estimates

95% Confidence Interval

Names Estimate SE Lower Upper β df t p

(Intercept) 105.79 2.30 101.23 110.35 0.0000 132 45.916 < .001
Anthropomorphism -2.08 2.47 -6.97 2.80 -0.0732 132 -0.843 0.401

 
Figure 5.22: Pulse rate (vertical axis) in beats per minute (bpm) relation with
anthropomorphism (horizontal axis) group scores.
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Estimate Linear model fit by OLS
Call Task_duration__seconds ~ 1 + Anthropomorphism
R-squared 0.00943
Adj. R-squared 0.00354

 ANOVA Omnibus tests

  SS df F p η²p

Model 38.3 1 1.60 0.208 0.009

Anthropomorphism 38.3 1 1.60 0.208 0.009

Residuals 4021.8 168      
Total 4060.1 169      

 Fixed Effects Parameter Estimates

95% Confidence Interval

Names Estimate SE Lower Upper β df t p

(Intercept) 48.583 0.375 47.842 49.32 0.0000 168 129.47 < .001
Anthropomorphism 0.499 0.394 -0.280 1.28 0.0971 168 1.26 0.208

 
Figure 5.23: Task duration (vertical axis) in seconds (s) relation with anthropo-
morphism (horizontal axis) group scores.
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5.5.3 Godspeed Questionnaire Series

This section presents a brief overview of the results of the Godspeed Question-
naire Series. In the end, it also discusses the uncanny valley effect.

Description of the questionnaire series dimensions

As described before, the Godspeed Questionnaire is composed of the follow-
ing dimensions: anthropomorphism, animacy, likeability, intelligence and safety.
In the anthropomorphism questionnaire group, the participants rate the differ-
ent conditions concerning their perception of the robots’ anthropomorphism, i.e.
how closely the robots resemble the human morphology. In the animacy ques-
tionnaire group, participants rate the different conditions regarding their percep-
tion of the robots’ animacy, i.e. the robots’ expression of life through movement
and appearance. In the likeability questionnaire group, the participants rate the
different conditions regarding their perception of the robots’ likeability, i.e. their
perceived sympathy, kindness and friendliness. In the intelligence questionnaire
group, the participants rate the different conditions regarding their perception of
the robots’ intelligence, i.e. how knowledgeable, competent and intelligent the
robots’ are perceived to be. Lastly, in the safety questionnaire group, the partici-
pants rate the different conditions regarding their perception of the robots’ safety,
i.e. how safe the participants feel when interacting with the different robots.

To verify the internal consistency reliability of the items in a questionnaire group,
Cronbach’s α was calculated for each condition and questionnaire group, as sug-
gested by Bartneck et al., the questionnaire authors. The results obtained from the
calculations are presented in the table 5.5 and are generally good, i.e. ≤ 0.7, ex-
cept for the “Baxter On” condition on the Perceived Safety questionnaire group,
where the lowest value inferred was 0.507. Although lower, the value still deems
the results acceptable (Bartneck et al., 2009b).

Questionnaire Group

Condition Anthropomorphism Animacy Likeability Perceived
Intelligence

Perceived
Safety

Kuka 0.873 0.886 0.923 0.884 0.695

C
ro

nb
ac

h′
s

α

Baxter Off 0.820 0.853 0.916 0.863 0.761
Baxter On 0.892 0.884 0.920 0.863 0.507
Sawyer Off 0.886 0.906 0.915 0.864 0.668
Sawyer On 0.914 0.903 0.954 0.884 0.720

Table 5.5: Cronbach’s Alpha for each test condition and questionnaire group.

For easier presentation and readability of the psychological results, the names of
the conditions were abbreviated in the following graphs and tables. In the de-
scription below, the abbreviations and their correspondent condition are shown:
BOFF - Baxter with monitor turned off, BON - Baxter with monitor turned on,
KUKA - Kuka LBR iiwa, SOFF - Sawyer with monitor turned off, SON - Sawyer
with monitor turned on.
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Anthropomorphism

The figure in 5.24 shows a graph with participants’ average anthropomorphism
score, an higher score value indicates that the participants perceive that condi-
tion to be more anthropomorphic. The condition with the highest score is BON,
the robot Baxter with the monitor on, with a value of 2.91, followed by SON, the
robot Sawyer with the display monitor turned on. The condition with the lowest
average rating is KUKA with a score of 2.35. The results reveal that the robot
with the highest perceived anthropomorphic level is Baxter, followed by Saywer
and Kuka LBR iiwa. There is also a significant difference between the robots Bax-
ter and Sawyer having their monitors turned on or off, with the cases where the
monitors were turned on being determined as more anthropomorphic. Concern-
ing different genders’ perceptions of the robots’ anthropomorphism, there are
no notable differences or trends between the females’ and the males’ attributed
scores.
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Condition Mean SD

Anthropomorphism BOFF 2.55 0.841
BON 2.91 0.988
KUKA 2.35 0.966
SOFF 2.44 0.913
SON 2.75 0.998

Figure 5.24: Anthropomorphism group mean scores for separate genders and
their standard error bars. The table displays the anthropomorphism group mean
scores for combined genders and their standard deviation (SD).
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Animacy

The animacy questionnaire scores, as shown in figure 5.25, present similar re-
sults to the anthropomorphism questionnaire, which as mentioned in (Bartneck
et al., 2009b), the two questionnaire groups have question items that overlap. In
the animacy group, the highest rated condition is BON for the Baxter robot with
the monitor on with a score of 3.01, followed by SON for the Sawyer robot with
the monitor on. The lowest-rated condition in the animacy group is SOFF, the
Sawyer robot with its monitor turned off, with a score of 2.56. However, the aver-
age scores for the remainder of the conditions, KUKA and BOFF, all exhibit very
close values of 2.60 and 2.62, respectively, indicating that the participants do not
perceive significant differences with regard to their animacy. The robots with the
monitors turned on were perceived as having more animacy. This indicates that
the monitor factor is important for the perception of animacy. Overall, the female
participants perceive the robots as holding more animacy than the male partici-
pants, except for Kuka LBR iiwa, where both genders perceive the robot animacy
similarly.
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Animacy BOFF 2.62 0.831
BON 3.01 0.885
KUKA 2.60 0.969
SOFF 2.56 0.944
SON 2.89 0.899

Figure 5.25: Animacy group mean scores for separate genders and their standard
error bars. The table displays the animacy group mean scores for combined gen-
ders and their standard deviation (SD).
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Likeability

In the likeability questionnaire group scores, as shown in figure 5.26, it is pos-
sible to observe that BON, the Baxter robot with his monitor turned on, is the
condition which the participants deemed to be more likeable with a score of 3.70,
closely followed by the condition SON, the Sawyer robot with his monitor turned
on with a score of 3.62. The most disliked robot, as rated by the participants, was
Kuka LBR iiwa, with the lowest group score of 3.34, followed by SOFF and BOFF
in the respective order. In line with the previously presented results, the most
liked robots are both Baxter and Sawyer with their monitors turned on, meaning
the participants seem to be more comfortable with the latter. A difference in rat-
ings across the two genders is also visible, with the female participants rating all
of the conditions with a higher score than the male participants.
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Likeability BOFF 3.43 0.768
BON 3.70 0.781
KUKA 3.34 0.752
SOFF 3.38 0.740
SON 3.62 0.825

Figure 5.26: Likeability group mean scores for separate genders and their stan-
dard error bars. The table displays the likeability group mean scores for com-
bined genders and their standard deviation (SD).
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Intelligence

In the perceived intelligence group scores, the condition with the highest score is
BON with a value of 3.84, very closely followed by SOFF with a value of 3.83 and
by SON with a value of 3.78. This suggests that the robot the participants per-
ceive as most intelligent is the robot Baxter with his monitor turned on, followed
by the robot Sawyer with his monitor turned off, contradicting the previously
shown results, where the robots with the monitor turned on were ranked higher
in anthropomorphism, animacy and likeability. The robot with the lowest per-
ceived intelligence was Kuka LBR iiwa, with a score of 3.70, followed by Baxter,
with the monitor turned off, with a score of 3.77. This indicates that the monitors,
whether on or off, were not an essential factor regarding the robots’ perceived in-
telligence. The male participants overall perceived all the robots, independently
of the monitor status, to be less intelligent than the female participants perceived
the robots to be.
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Perceived Intelligence BOFF 3.77 0.625
BON 3.84 0.622
KUKA 3.70 0.703
SOFF 3.83 0.662
SON 3.78 0.698

Figure 5.27: Intelligence group mean scores for separate genders and their stan-
dard error bars. The table displays the intelligence group mean scores for com-
bined genders and their standard deviation (SD).
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Safety

In the perceived safety questionnaire group scores, the group with the lowest
Cronbach α values, the condition perceived as safer is SOFF with a value of 3.32,
meaning that the participants felt safer performing the collaborative task with the
robot Sawyer with his monitor turned off, closely followed by BOFF with a value
of 3.31. The lowest-scoring condition was for KUKA with a value of 3.26, mean-
ing Kuka LBR iiwa was the robot perceived as less safe by the participants. There
are no differences in perceived safety among the two robots with monitors, since
they both average 3.30. When comparing the monitor states, on and off, the par-
ticipants, on average, seemed to feel safer with both robots, Baxter and Sawyer,
when their monitors were turned off during the collaboration. The female par-
ticipants consistently perceived all conditions as safer than the male participants
perceived them to be.
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Perceived Safety BOFF 3.31 0.310
BON 3.29 0.260
KUKA 3.26 0.311
SOFF 3.32 0.266
SON 3.28 0.284

Figure 5.28: Safety group mean scores for separate genders and their standard
error bars. The table displays the safety group mean scores for combined genders
and their standard deviation (SD).
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Uncanny Valley

The uncanny valley effect observations were obtained from the psychological
data acquired in the GQS responses. By comparing the participants’ answers
to the different questionnaire groups, it is possible to observe statistically signif-
icant (p < 0.001) positive trends between the perceived anthropomorphism and
the remainder of the questionnaire groups: animacy, likeability, intelligence and
safety. The results show that, as the perceived anthropomorphism increases, the
perceived animacy, intelligence, and safety also increase, as displayed in fig-
ures 5.29, 5.30 and 5.31, respectively. This indicates that robots perceived as more
anthropomorphic are also perceived as more animate, intelligent and safe than
robots perceived as less anthropomorphic robots.
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ANOVA Omnibus tests

  SS df F p η²p

Model 100.8 1 413 < .001 0.699

Anthropomorphism 100.8 1 413 < .001 0.699

Residuals 43.5 178      
Total 144.3 179      

 
Fixed Effects Parameter Estimates

95% Confidence Interval

Names Estimate SE Lower Upper β df t p

(Intercept) 2.719 0.0368 2.647 2.792 0.000 178 73.8 < .001
Anthropomorphism 0.797 0.0393 0.720 0.875 0.836 178 20.3 < .001

 
Figure 5.29: Animacy (vertical axis) and anthropomorphism (horizontal axis)
group scores relation.
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ANOVA Omnibus tests

  SS df F p η²p

Model 24.8 1 79.7 < .001 0.309

Anthropomorphism 24.8 1 79.7 < .001 0.309

Residuals 55.3 178      
Total 80.1 179      

 
Fixed Effects Parameter Estimates

95% Confidence Interval

Names Estimate SE Lower Upper β df t p

(Intercept) 3.738 0.0416 3.656 3.820 0.000 178 89.95 < .001
Anthropomorphism 0.395 0.0443 0.308 0.483 0.556 178 8.93 < .001

 
Figure 5.30: Intelligence (vertical axis) and anthropomorphism (horizontal axis)
group scores relation.
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ANOVA Omnibus tests

  SS df F p η²p

Model 14.4 1 63.9 < .001 0.264

Anthropomorphism 14.4 1 63.9 < .001 0.264

Residuals 40.1 178      
Total 54.5 179      

 
Fixed Effects Parameter Estimates

95% Confidence Interval

Names Estimate SE Lower Upper β df t p

(Intercept) 3.497 0.0354 3.427 3.566 0.000 178 98.88 < .001
Anthropomorphism 0.301 0.0377 0.227 0.376 0.514 178 8.00 < .001

 
Figure 5.31: Safety (vertical axis) and anthropomorphism (horizontal axis) group
scores relation.
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The perceived anthropomorphism and animacy of the robots also correlated pos-
itively with the perceived likeability and are statistically significant (p < 0.001),
as displayed in figures 5.32 and 5.33 respectively. This indicates that robots per-
ceived as more anthropomorphic and animate are also perceived as more likeable
by the participants.
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ANOVA Omnibus tests

  SS df F p η²p

Model 32.7 1 80.5 < .001 0.311

Anthropomorphism 32.7 1 80.5 < .001 0.311

Residuals 72.3 178      
Total 105.1 179      

 
Fixed Effects Parameter Estimates

95% Confidence Interval

Names Estimate SE Lower Upper β df t p

(Intercept) 3.462 0.0475 3.368 3.555 0.000 178 72.85 < .001
Anthropomorphism 0.454 0.0506 0.354 0.554 0.558 178 8.97 < .001

 
Figure 5.32: Likeability (vertical axis) and anthropomorphism (horizontal axis)
group scores relation.
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ANOVA Omnibus tests

  SS df F p η²p

Model 52.9 1 180 < .001 0.503

Animacy 52.9 1 180 < .001 0.503

Residuals 52.2 178      
Total 105.1 179      

 
Fixed Effects Parameter Estimates

95% Confidence Interval

Names Estimate SE Lower Upper β df t p

(Intercept) 3.462 0.0404 3.382 3.541 0.000 178 85.8 < .001
Animacy 0.605 0.0451 0.516 0.694 0.709 178 13.4 < .001

 
Figure 5.33: Likeability (vertical axis) and animacy (horizontal axis) group scores
relation.
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5.5.4 Virtual Reality Presence Questionnaire

This section presents the results of the VR PQ, which covers the following di-
mensions: realism, possibility to act, quality of interface, possibility to examine,
self-evaluation of performance, sounds and haptic. After completing all test con-
ditions, the study participants were asked to report their sense of presence by
answering the VR PQ through a digital form on a computer. The Cronbach’s α
for the questionnaire reported a value of 0.868. The normalised total score of the
PQ shows a general acceptance of the interactive VR simulation with an average
of 82.1% and a standard deviation of 8.4. Five of the seven evaluated domains
show a score above 80%: haptics, quality of the interface, possibility to exam-
ine and the possibility to act, the latter the highest score of 90%. The realism
domain of the VR task scored lower, with a value of 78.2%, followed by sounds,
with an even lower score of 68.4% and a standard deviation of 24.4, indicating
there is a lot of variance around the mean for the sounds domain. Although the
realism and sounds domains scored the lowest, the total normalised score indi-
cates that most participants reported a good quality VR experience and an overall
sense of presence in the interactive VR simulation.
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Virtual Reality Presence Questionnaire

Descriptives
Domain Mean SD

Score Total 82.1 8.37
Realism 78.2 13.19
Possibility to act 90.0 7.95
Quality of interface 83.0 12.15
Possibility to examine 85.4 8.93
Self-evaluation of performance 88.8 9.25
Sounds 68.4 24.39
Haptic 80.9 14.75

Figure 5.34: VR PQ normalised scores. The square shapes represent the mean
score. The table presents the mean scores and their standard deviation (SD).
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5.5.5 Summary of Results

Concerning the three different robots used in this study, results show that pupil
diameter increased and the pulse rate decreased with the increase of the robot’s
anthropomorphism. This may indicate that participants are under a higher cog-
nitive load but less stressed when performing a collaborative task with robots of
higher anthropomorphic levels like Baxter. The participants gaze fixation dura-
tion on the robots was longer for Kuka LBR iiwa, followed by Baxter and Sawyer.
The task duration was smaller for the robot Sawyer and was greater for the robot
Baxter. The robot that participants spent less time looking at is also the one with
the shortest task duration. This shows that Sawyer was the robot with whom the
participants collaborated more efficiently, having performed the assembly task
faster.

Concerning the two collaborative approaches analysed, sequential and simulta-
neous collaboration, it seems that the sequential collaboration induced a higher
cognitive load and awareness as suggested by the lower blink rate. While the
pulse data did not show any significant differences in types of collaboration. The
participants gaze fixation duration on the robots was greater for the sequential
collaboration and smaller for the simultaneous collaboration. The task duration
was longer for the sequential collaboration, indicating that the participants are
less efficient when collaborating sequentially and more efficient when collaborat-
ing simultaneously. However, Sawyer, the robot with the shortest task duration,
does not show a significant difference in the task durations regarding the two
types of collaboration.

Regarding the monitor states for the robots Baxter and Sawyer, there are no sta-
tistically significant differences for the pupil diameter, blink rate, pulse rate and
IBI. The only measure that had statistical significance for the factor monitor state
was the gaze fixation duration on the robots’ animated faces. Indicating that the
participants spend more time looking at the robots’ faces when turned on, and
less time when turned off. A summary of the different variables’ results averages
is displayed in table 5.6.

Mean
Pupil

diameter
[mm]

Blink
rate

[blinks/s]

Gaze
fixation

duration [s]

Pulse
rate

[bpm]

Pulse
IBI

[ms]

Task
duration

[s]
Sequential Kuka 4.00 0.294 14.26 106.4 643 47.7

Baxter 4.21 0.284 11.16 99.6 665 51.1
Sawyer 4.10 0.320 9.92 100.1 666 42.1

Simultaneous Kuka 4.01 0.352 8.25 109.0 633 45.2
Baxter 4.18 0.317 7.25 100.5 699 49.2
Sawyer 4.01 0.337 5.79 103.3 668 41.5

Table 5.6: A summary of the results with the physiological measures and the task
duration.
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Evaluation of Human-Robot Collaboration

The results obtained can explain a part of the uncanny valley theory but are not
reflective of the actual proposed valley, where the affinity is lower for a higher
human likeness. According to the results presented in section 5.5.3, the percep-
tion of likeability also increases as the participants’ perception of robots’ human
likeness increases, indicating a similar effect to what Mori et al. propose.

In figure 5.35, the robots are classified according to their human likeness, as pro-
posed originally in the uncanny valley. The robot Kuka LBR iiwa, classified as
having a low human likeness due to its industrial look, is positioned where (Mori
et al., 2012) originally pointed industrial robots to be. Baxter, classified as having
a moderate human likeness due to its humanoid appearance, is positioned where
(Mori et al., 2012) originally pointed humanoid robots to be. Lastly, Sawyer is
classified as having a low-moderate human likeness positioned between Kuka
LBR iiwa and Baxter due to its industrial and humanoid appearance.

This classification can indicate that Baxter might not have the human likeness
required to be perceived as uncanny, an even more anthropomorphic robot would
be needed to cause such an emotional response.

Moving
Still

Industrial 
Robot / Kuka

Humanoid
Robot / Baxter

Sawyer

+

50% 100%

_

Af
fin
ity

Human Likeness

Uncanny Valley

Figure 5.35: The robots Kuka LBR iiwa, Baxter and Sawyer are classified accord-
ing to their human likeness in the original uncanny valley graph.

The work done in this chapter allowed evaluating HRC with a focus on human
performance and the subsequent interpretation and presentation of the results.
The following chapter shows a discussion of the results, the limitations and future
work.
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Discussion & Future Work

The sixth chapter is divided into three sections. The first section covers the dis-
cussion of the results, followed by the research limitations and lastly the future
work section.

6.1 Discussion

Concerning the main research question, the results indicate that human perfor-
mance in a VR human-robot collaborative assembly task scenario is affected by
both the robot and the type of collaboration used. We showed that for the as-
sembly task employed, a robot with lower human likeness might be preferable to
execute the task in less time, thus having higher efficiency. However, robots with
lower human likeness can induce lower cognitive load and higher stress than
robots with a higher human likeness, indicating that the use of a collaborative
robot should depend on the task to be performed. For certain applications, using
a collaborative robot in conjunction with humans can help improve the task at
hand. Even though in a collaborative assembly task such as the one presented,
the stress induced by robots with low anthropomorphism may not have a big im-
pact on human performance, the same cannot be said if the task was more critical
such as in surgery, where stress could negatively affect the human performance.
It is necessary to be prudent when implementing robots collaborative robots so
as not to affect the quality and the outcome of the task being performed.

Furthermore, albeit the results indicate that a simultaneous collaborative approach
can be more efficient from a task completion time perspective, particularly with
Kuka and Baxter, when compared to the sequential collaborative approach, for
the robot with the shortest task completion time, Sawyer, there is no significant
time difference between the collaborative approaches. Nonetheless, the sequen-
tial approach can induce higher cognitive load and awareness when compared
to the simultaneous approach, thus indicating that simultaneous collaboration
might be the preferable approach.

While the results can explain a portion of the uncanny valley theory, that is, the
increase of perceived likeability as perceived human likeness increases, the pres-
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ence of a negative emotional response or uncanniness and its effect on human
performance could not be demonstrated. The robot with the highest anthropo-
morphism used in this study, Baxter, which can be classified as a humanoid robot,
does not have the even higher human likeness required to elicit the uncanniness
or eeriness triggered by having an almost human anthropomorphism.

Regarding the evaluation of HRC through VR scenarios, although the VR system
and the developed interactive VR simulation have their limitations, the phys-
iological and psychological data suggests that to some extent, it is possible to
evaluate a human-robot collaborative assembly task scenario performed in a VR
simulation. This is demonstrated by the distinct participants’ physiological and
psychological responses to the various stimuli presented. This indicates that VR
can be a powerful tool to evaluate HRC without compromising safety.

The results presented in this study are adequate and pertinent, however, they
also exhibited minor inconsistencies. When comparing the data for the three
robots implemented, the eyes’ data shows that the pupil diameter increases as
the robots’ human likeness increases. However, when comparing the eyes’ phys-
iological responses data to the psychological responses data, the inverse trend is
shown, with the pupil diameter decreasing as the perception of robots’ anthropo-
morphism increases.

In part, this can be explained by the comparison being made, the results of the
physiological responses to the stimulus presented with the results of the physio-
logical responses to the participants’ perceptions of the robots. This comparison
might not be entirely correct due to the participants’ perceptions of the robots
being subjective to each participant’s age, culture and previous experiences and
the physiological responses to the stimulus presented being objective measures.
However, this inconsistency is negligible since it is not statistically significant and
it compares an objective measurement, the physiological responses, with a sub-
jective one, the psychological responses.

6.2 Limitations

The present research was found to have limiting factors across some domains.
Namely, concerning the hardware tools used, the interactive VR simulation de-
veloped as a possible solution to answer the research questions, and finally, the
data processing approach. The hardware tools used in the study, specified in
subsection 3.2.1, are susceptible to their limitations. In the case of the VR sys-
tem, albeit a higher-end system with haptic feedback, the physical component of
the interactions between the human and the VR simulation is still limited by the
technology.

The VR system embedded eye-tracker sensor also has its limitations. Albeit cal-
ibration was performed successfully for every participant, this does not mean
there are no eye data quality issues. Besides this, the eye-tracking system’s per-
formance can be affected by eye disease, heavy makeup and high myopia.
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Restrictions were identified regarding the pulse monitoring system in the sensor
and the OpenBCI Cyton board to which the sensor connects. Initially, in the pilot
study, participants would carry the Cyton board on themselves in a pouch, but
this, too, triggered an increase in signal noise due to the constant movement. To
get around this problem, the Cyton board was placed on a bench near the partici-
pants instead of on the pouch, improving the sensor readings but not wholly solv-
ing the noise introduced by the hand movements. The pulse sensor caused some
difficulties during test sessions due to erroneous readings. Factors like moisture,
movement and having the sensor wrapped too tightly or loosely to the partici-
pants’ fingers can affect the sensor readings.

The wires solder where they connect to the printed circuit board (PCB) broke
three different times due to being placed on the participants’ fingers. Although
not placed on the dominant hand, the participants moved their hands naturally
while performing the collaborative assembly task in VR, leading to wear and
breaking of the wire connections and causing increased signal noise in the sensor
readings due to their movements.

Furthermore, the robots used in this research and implemented in the interactive
VR simulation present some limiting factors. The robots have varying anthropo-
morphism levels or human-likeness; however, they only range from low anthro-
pomorphic levels, in the case of Kuka, to moderate anthropomorphic levels, as in
the case of Baxter, whereas Sawyer is situated in a low-moderate level, between
the robot Kuka and the robot Baxter. To show more accurate results regarding
the uncanny emotional response elicited by the uncanny valley theory, a robot
with an even higher human likeness would need to be implemented. Although
the robots’ movement significantly improved from integrating the BioIK inverse
kinematics solver, the robots do not use the Robot Operating System (ROS) soft-
ware, which can affect their movement fidelity.

Moreover, the robots being designed for collaborative applications should have
implemented collision detection and other safety and handling features that were
not present in this implementation. The end-effector gripper devices of the robots
lacked realistic movement when grabbing and inserting the interlocking building
blocks and the natural physical interactions that would be expected with the re-
mainder of the objects present in the scenario. Lastly, albeit the animated faces of
both Baxter and Sawyer were made to look as close as possible to the originals,
they lack the eyebrows and other animated facial expressions, only moving the
eyes to follow their end-effector.

6.3 Future Work

To further understand the implications of the results obtained in this study, future
research should implement multiple human performance measures, such as hu-
man movement hesitations, collisions with robots, task errors and various tasks
with different difficulty tiers. In addition, future research should consider using
non-intrusive and high-fidelity biological sensors. For example, the presence of
cables in the OpenBCI Cyton pulse sensor interferes with natural human move-
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ment, reduces VR immersion and can introduce noise in the sensor readings. In-
stead, non-invasive wireless electrocardiography (ECG) devices should be con-
sidered to achieve higher fidelity results without negatively impacting human
movement and immersion. Furthermore, other physiological data could be col-
lected, such as electrodermal activity (EDA) and brain electrical activity through
electroencephalography (EEG), providing further insight into human physiolog-
ical responses.

Further research is needed to understand the effects of the uncanny valley on
human performance. Studies should consider using specifically made question-
naires to infer psychological responses to the uncanny valley. The use of robots
with near-human likeness and higher fidelity in terms of behaviour and interac-
tions should also be taken into account when attempting to reproduce the nega-
tive emotional response proposed by Mori et al..

Concerning the development of interactive VR simulations to evaluate HRC, fu-
ture research endeavours should integrate Robot Operating System (ROS) in their
applications when there is compatibility, as it helps to simulate robots’ behaviours
more accurately. Additionally, more research is needed to assess the impact of a
virtual versus a real stimulus on humans’ physiological and psychological re-
sponses. This could be achieved by having humans perform the same collabora-
tive task with the same robots in similar virtual and real environments.

Finally, future work concerning this dissertation includes the implementation of
final adjustments and preparation of the developed interactive VR simulation
Unity project and its documentation, to later share with the scientific community
through an open repository.

The current chapter presented a discussion of the results, the research limitations
and the future work. The next chapter presents the conclusion.
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Conclusion

This research aimed to understand the effects of different robot characteristics
and collaborative approaches on human performance while performing a col-
laborative assembly task through VR. The analysis of the eyes and pulse data
indicates that humans are under a higher cognitive load and awareness, but less
stressed, when performing a collaborative assembly task with robots of higher
human likeness, i.e. higher anthropomorphism. Additionally, results indicate
that the use of higher robot anthropomorphism levels, like Baxter, is not always
preferable to perform a collaborative assembly task, when compared to lower
robot anthropomorphism levels, such as Kuka LBR iiwa and Sawyer, as shown
by the task completion times experimental results.

Regarding the two collaborative approaches investigated, the physiological data
shows that the sequential approach caused higher cognitive load and awareness.
In turn, the analysis of the task completion times shows that humans are more
efficient when collaborating simultaneously with robots, thus indicating that a
simultaneous collaboration is not only more efficient from a task completion time
standpoint, but also induces a lower cognitive load and awareness in humans,
thus making it the preferable approach.

This work is relevant to the field of HRC and for the Neurocobots project be-
cause it shows that human performance in collaborative assembly tasks executed
through VR is affected by the type of robot and the type of collaboration used.
This research also demonstrates that VR is useful to perform the evaluation of
HRC, however, further research can help to specify the differences between us-
ing real and virtual stimuli. This work also contributes to the fields of HRC and
VR by sharing the conceptualised, designed and developed interactive VR sim-
ulation used to evaluate human performance in HRC. The tasks of making this
simulation available to the scientific community through an open repository are
ongoing. Once fully available, this work will allow future researchers to build
upon the project and employ it in their studies.
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Appendix A

Collaborative robots review

Cobot Manufacturer Collaboration Standard Industries Applications

ABB IRB 14000 YUM/
ABB IRB 14050 YUMI 1 ABB Cooperation,

Responsive

ISO 10218,
ISO 13849,
ISO/TS 15066

AS, ET A

AUBO i-series 2 AUBO Sequential ISO 10218 AS, ET, MC, MM A, D, MT, QI

Automata Eva 345 Automata Cooperation,
Sequential

ISO 13849,
ISO/TS 15066 MC QI

Cobotta6 Denso Cooperation,
Sequential

ISO 10218,
ISO 13849,
ISO/TS 15066

ES, MC A, MH, QI

P3/P5 Elephant Robotics Cooperation,
Sequential

ISO 10218,
ISO 13849 AS, C, ES, ET, MC, MM A, MT, W

M/H series7 Doosan Robotics Sequential ISO 13849 FB, MC, PP A, D, MT, MH, MR, QI, W

CS series Elibot Sequential ISO 10218 AS, ES, ET, FB, MM A, D, F, MH, QI

CR series8 Fanuc Sequential ISO 10218,
ISO 13849 AS, ET, FB, MC, MM, PP A, D, MT, MH, QI

Rizon9 Flexiv Cooperation,
Sequential

ISO 10218,
ISO 13849,
ISO/TS 15066

A, AS, ES, ET, MC A, F, MT

LBR iiwa/Med10 Kuka Cooperation,
Sequential ISO 13849 AS, ET, FB, MC, MM A, D, F, MH, QI

CZ1011 Nachi Robotics Cooperation,
Sequential

ISO 10218,
ISO/TS 15066 AS, ET D, MT, MH

Baxter Rethink Robotics Cooperation,
Sequential ES, ET, MM, PP MT, MH, QI

Sawyer Black1213 Rethink Robotics Cooperation,
Sequential ISO 10218 AS, ET, MM, PP MT, MH, QI

Nextage Kawada Industries Cooperation,
Responsive A

PAV series14 Precise Automation Cooperation,
Sequential

ISO 13849,
ISO/TS 15066 ES, MC MT, MH, QI

OB7 series Productive Robotics Cooperation,
Sequential ISO 10218 AS, ES, ET, FB, MM, PP MT, MR

Armar Karlsruhe IT Cooperation,
Responsive ES

UR series15 Universal Robots Cooperation,
Sequential

ISO 10218,
ISO 13849 AS, ES, ET, FB, MC, MM, PP A, D, F, MT, MH, MR, QI, W

HC series1617 Yaskawa Cooperation,
Sequential

ISO 10218,
ISO 13849,
ISO/TS 15066

AS, C, ET, FB, PP A, D, F, MT, MH, MR, QI, W

Table A.1: A review summary of the collaborative robots studied, their respective
industries and applications. The notes indicate some of the use cases reviewed.
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Appendix A

The industries acronyms used are:

A - Aerospace

C - Chemical

AS - Automotive & Subcontractors

ES - Education & Science

ET - Electronics & Technology

FB - Food & Beverage

MM - Metal & Machining

MC - Medical & Cosmetics

PP - Plastic & Polymers

The applications acronyms used are:

A - Assembly (Screwdriver/Part Insertion)

D - Dispensing (Gluing/Sealing/Painting)

MT - Machine tending (CNC/Injection mold/ICT)

QI - Quality inspection (Testing/Inspecting/Measuring)

MH - Material handling (Packaging/Palletizing/Bin Picking/Kitting)

F - Finishing (Sanding/Polishing)

MR - Material removal (Grinding/Deburring/Milling/Routing/Drilling)

W - Welding (Arc/Soldering)

M - Massaging

1https://library.abb.com/r?dk=movie&q=9AKK106713A8993
2https://www.aubo-cobot.com/public/demo3
3https://automata.tech/resources/case-studies/scaling-diagnostic-testing-with-lab-automation/
4https://automata.tech/solutions/diagnostics/nucleic-acid-testing/
5https://automata.tech/solutions/drug-discovery/screening/
6https://www.denso-wave.com/ja/robot/katsuyou/collabo.html
7https://www.doosanrobotics.com/en/Applications/Applications
8https://www.fanuc.eu/fi/en/customer-cases
9https://www.flexiv.com/en/assets/pdf/Brochure.pdf

10https://www.kuka.com/en-de/industries/solutions-database
11https://www.nachirobotics.com/collaborative-robots/
12https://www.rethinkrobotics.com/sawyer/industries
13https://www.rethinkrobotics.com/sawyer/applications
14http://preciseautomation.com/Collaborative.html
15https://www.universal-robots.com/case-stories/
16https://www.yaskawa.eu.com/application/type
17https://www.yaskawa.eu.com/application/industries
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Appendix B

Procedure Script

The full procedure script translated to English:

1. Welcome, preferred language and overview

(a) Hello and welcome to the EHRCtVRS test. What language are you
more comfortable with, Portuguese or English?

(b) I will give you a general overview of the test you are about to partici-
pate in:

i. First, I will ask you to sign a form to have your informed consent
to record and store your data;

ii. After having your consent, I will need you to answer some ques-
tions regarding yourself;

iii. If everything is ok, I will help you to put on the necessary hard-
ware to proceed with the test;

iv. The test will be divided into three parts:
A. Instructions: Where you will learn how to perform the task.
B. Task: Where you will perform the collaborative task with real

robots.
C. Questionnaire: Where you will answer some questions regard-

ing the task you just performed.

2. Informed consent form and the questionnaire

3. Assist with equipping the hardware

(a) Help to put on the pulse sensor [not too loose/tight fit]

(b) Help to put on the HMD (help to adjust it/fit it correctly) and the hand-
held controllers

4. [Record unity session (audio and video with OBS)]

5. Start the tests

(a) Practice stage
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Chapter 7

i. Grab the blue cube and insert it into the highlighted blue slot.
ii. After filling the column, grab a new block and insert it in the next

column.
iii. When ready, press the green button to start the task with the actual

robots.
iv. The robot is responsible for inserting the red cubes, and when you

hear a double beep sound, it means the robot is starting to move.
v. A timer on the wall will time how long you take to finish each trial,

so try to be as fast as possible.

(b) Collaborative assembly task with robots x5 test conditions

(c) Godspeed Questionnaire Series x5 test conditions

6. Assist with removing the hardware

(a) Help to take off the pulse sensor, the controllers and the HMD

7. VR Presence questionnaire

8. Thank you for your time and participation
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