
Jason Pimenta Wrisez

BIOGRAPHIES OF THINGS USING
BLOCKCHAIN

Dissertation in the context of the Master in Informatics Engineering,
specialization in Software Engineering, advised by Prof. Vasco Pereira

and João Barata and presented to the Department of Informatics
Engineering of the Faculty of Sciences and Technology of the

University of Coimbra.

January of 2023

DEPARTMENT OF INFORMATICS ENGINEERING

Jason Pimenta Wrisez

Biographies of things using
blockchain

Dissertation in the context of the Master in Informatics Engineering,
specialization in Software Engineering, advised by Prof. Vasco Pereira and João

Barata and presented to the Department of Informatics Engineering of the
Faculty of Sciences and Technology of the University of Coimbra.

January 2023

Acknowledgements

First, I would like to thank Prof. Vasco Pereira and Prof. João Barata for their
continuous advice and support of my work throughout both semesters. A special
thanks to Prof. João Barata for the initial theme proposal and to Prof. Vasco
Pereira for the late night revisions.

Many thanks to my jurors, Prof. Karima Velasquez and Prof. Bruno Cabral for
showing interest in my work by reading, evaluating and suggesting improve-
ments.

A personal thanks to my colleagues and friends João Paiva and Tiago Ribeiro,
for their companionship during the whole graduation journey, support, and for
being good partners.

I am grateful for my girlfriend Charline Monges, for bringing the emotional sup-
port, affection and purpose a man needs to accomplish his highest goals.

I would like to thank my family, especially mom, dad, grandma and my sister
Line, for the usual support and their presence that also make this effort worth-
while.

Lastly, I would like to show appreciation to my roommates, for bringing me a fun
and pleasant environment to live and work in.

v

Abstract

This thesis addresses the concept of product biographies hosted in blockchain-
based systems. A product biography is a log that defines the characteristics of
a product from the beginning to the end of its life, along with potential events
and transformations originating new lifecycles of that product. A Design Sci-
ence Research (DSR) methodology was followed during the course of this project,
starting with the elaboration of a literature review about product tracing and
different implementations of blockchain-based networks. An architecture for a
generic system capable to host product biographies was represented, picking a
solution based on literature review findings around enterprise blockchain solu-
tions. This architecture gives attention to quality attribute scenarios and require-
ments regarding stakeholders’ roles, product data, and the blockchain network
and infrastructure. After this design phase, the objective was implementing a
prototype of this platform, by setting up a network, a smart contract with differ-
ent functions suited for operating with product biography information, and an
external client application for end users, composed of a web application backend
and frontend. With this prototype, simulations and testing were done to validate
the previously defined scenarios of the architecture, in order to support different
quality attributes and demonstrate the usefulness of a blockchain solution for this
use case. Finally, the thesis wraps up with a conclusion, guidelines for potential
future work about this theme.

Keywords

Product biography, Distributed Ledger, Enterprise Blockchain, Product Tracing,
Smart Contract

vii

Resumo

Esta tese aborda o conceito de biografias de produtos hospedadas em sistemas
baseados em blockchain. Uma biografia de produto é um registo que define as
características de um produto desde o início até ao fim de sua vida, juntamente
com possíveis eventos e transformações que originam novos ciclos de vida desse
produto. Uma metodologia de Design Science Research (DSR) foi seguida no decor-
rer deste projeto, começando com a elaboração de uma revisão de literatura so-
bre rastreamento de produto e diferentes implementações de redes baseadas em
blockchain. Foi representada uma arquitetura de um sistema genérico capaz de
hospedar biografias de produtos, com base em descobertas da revisão de liter-
atura à volta de soluções de blockchain empresarial. Esta aquitetura dá atenção a
cenários de atributos de qualidade, e a requisitos sobre as funções de partes inter-
essadas, dados de produto e rede e infraestrutura de blockchain. Após esta fase
de design, o objetivo foi implementar um protótipo desta plataforma, através da
criação de uma rede, um smart contract com diferentes funções adequadas para
operar com informação de biografias de produto, e uma aplicação externa para
utilizadores finais, composto por um frontend e backend de uma aplicação web.
Com este protótipo foram feitas simulações e testes para validar os cenários pre-
viamente definidos da arquitetura, de forma a suportar atributos de qualidade
diferentes e demonstrar a utilidade de uma solução blockchain. Por fim, a tese é
concluída com orientações para possíveis trabalhos futuros neste tema.

Palavras-Chave

Biografia de Produto, Blockchain Empresarial, Rastreamento de Produto, Registo
Distribuido, Smart Contract

ix

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Objectives and expected results . 3

2 Methodology and work plan 5
2.1 Methodology . 5
2.2 Work distribution . 5
2.3 Risk analysis . 7

3 Literature review 11
3.1 Product tracing . 11
3.2 Distributed ledgers and blockchain key concepts 13

3.2.1 Hashing . 14
3.2.2 Asymmetric cryptography 15
3.2.3 Data storage and Merkle Trees 16
3.2.4 Network permissioning . 16
3.2.5 Consensus protocols . 17

3.3 Bitcoin . 18
3.3.1 Key design choices in Bitcoin deployment 19
3.3.2 Challenges . 21

3.4 Ethereum . 22
3.4.1 Smart contracts and decentralized applications 23
3.4.2 Token standards . 24
3.4.3 Decentralized Autonomous Organizations 25
3.4.4 Scalability issues . 26

3.5 Hyperledger . 27
3.5.1 Fabric . 28
3.5.2 Sawtooth . 32

3.6 Final comparisons . 36
3.7 Summary . 37

4 Requirements definition and architecture 39
4.1 Quality attributes . 40
4.2 High-level requirements . 42

4.2.1 Data requirements . 42
4.2.2 Stakeholder requirements . 43
4.2.3 Network requirements . 44
4.2.4 Infrastructure requirements 45

xi

Chapter 0

4.3 Architecture . 45
4.3.1 System diagram . 46
4.3.2 Container layer . 47
4.3.3 Component layer . 50

4.4 Summary . 52

5 Implementation of a product biography platform 55
5.1 Prerequisites . 55
5.2 Setting up a Sawtooth network . 57
5.3 Setting up a Fabric network . 58

5.3.1 Organizations configuration 59
5.3.2 Channel configuration . 60

5.4 Product biography smart contract . 61
5.4.1 Data model definition . 61
5.4.2 Smart contract functions and deployment 62

5.5 Client application example . 64
5.5.1 Backend application . 64
5.5.2 Frontend interface . 65

5.6 Results . 66
5.7 Summary . 72

6 Validation and testing 73
6.1 Validation of the architecture . 73

6.1.1 Network security . 73
6.1.2 Network decentralization . 76
6.1.3 Data privacy . 76
6.1.4 Data immutability . 79

6.2 Further testing of the implementation 81
6.2.1 Smart contract testing . 81
6.2.2 Network analysis . 82

6.3 Summary . 83

7 Conclusion 85
7.1 Limitations . 85
7.2 Future work guidelines . 86

Appendix A 95

xii

Acronyms

ATAM Architecture Tradeoff Analysis Method.

AWS Amazon Web Services.

BOL Beginning Of Life.

CA Certificate Authority.

CFT Crash Fault Tolerance.

CLI Command-Line Interface.

CPU Central Processing Unit.

DAO Decentralized Autonomous Organization.

Dapp Deecentralized Application.

DLT Distributed Ledger Technology.

DSR Design Science Research.

EAN European Article Number.

ECC Elliptic-Curve Cryptography.

EIP Ethereum Improvement Proposal.

EOL End Of Life.

ERC Ethereum Request for Comments.

ETH Ether.

EVM Ethereum Virtual Machine.

GLN Global Location Number.

GPS Global Positioning System.

GRAI Global Returnable Asset Identifier.

GUI Graphical User Interface.

IoT Internet of Things.

xiii

Chapter 0

JS JavaScript.

MOL Middle Of Life.

MSP Membership Service Provider.

NFT Non-Fungible Token.

OU Organizational Unit.

P2P Peer-to-Peer.

PBFT Practical Byzantine Fault Tolerance.

PLM Product Lifecycle Management.

PoET Proof of Elapsed Time.

PoS Proof of Stake.

PoW Proof of Work.

QA Quality Assurance.

QAS Quality Attribute Scenario.

RFID Radio-Frequency Identification.

RIPEMD RIPE Message Digest.

RPC Remote Procedure Call.

RSA Rivest–Shamir–Adleman.

SBC Single-Board Computer.

SGX Software Guard Extensions.

SHA Secure Hash Algorithm.

TLS Transport Layer Security.

UTXO Unspent Transaction Output.

VPS Virtual Private Server.

WWAN Wireless Wide Area Network.

xiv

List of Figures

2.1 Design Science Research (DSR) flow for this thesis. 6
2.2 Gantt work chart for the first semester. 6
2.3 Gantt work chart for the second semester. 7

3.1 EAN-13 barcode from the GS1 standard 13
3.2 Generic representation of a blockchain 14
3.3 Hashing function process and its avalanche effect at work 15
3.4 Merkle Tree representation, aggregating four transactions 16
3.5 Scalability trilemma . 26
3.6 Components of a simple Fabric test network 29
3.7 Example of the Sawtooth network, with different components and

transaction families . 32
3.8 Practical Byzantine Fault Tolerance (PBFT) mechanism in three steps,

with leader A and attacker C . 34

4.1 Layer 1 diagram of the C4 architecture model. 46
4.2 Organization system diagram of the C4 architecture model. 47
4.3 Channel system diagram of the C4 architecture model. 49
4.4 Client components diagram of the C4 architecture model. 51
4.5 Peer components diagram of the C4 architecture model. 52

5.1 Home page of the frontend application. 67
5.2 Product creation form, with event data. 68
5.3 Selected product, with a unique event. 69
5.4 Product transformation form, with event data and a new product. . 70
5.5 Product final timeline, showing two events and a transformation

with the ID of a new product. 71
5.6 Different listing of private products from both organizations. 72

6.1 Snapshot of network communication during a ledger query. 74
6.2 Snapshot of network communication during a ledger update. . . . 75
6.3 Encrypted message of an orderer. 75
6.4 Login page of CouchDB. 77
6.5 CouchDB databases of Organization 1. 77
6.6 CouchDB databases of Organization 2. 78
6.7 Private product document of the “p” CouchDB database. 78
6.8 Private product document of the “h” CouchDB database. 79
6.9 Brief representation of the Hyperledger Fabric blockchain. 80
6.10 Ledger related metrics, from the Grafana dashboard. 82

xv

Chapter 0

A1 Complete layer 2 diagram of the C4 architecture model. 97
A2 Complete layer 3 diagram of the C4 architecture model. 98

xvi

List of Tables

2.1 Risk 1 . 8
2.2 Risk 2 . 8
2.3 Risk 3 . 8
2.4 Risk 4 . 8
2.5 Risk 5 . 9
2.6 Risk 6 . 9

3.1 Comparison between permissioned and permissionless blockchain
networks. 17

3.2 Comparison between node functionalities in blockchain networks. 36
3.3 Comparison between consensus protocols in blockchain networks. 37

4.1 Security Quality Attribute Scenario (QAS) 40
4.2 Decentralization QAS . 40
4.3 Privacy QAS . 41
4.4 Privacy QAS . 41

A1 Data requirements. 95
A2 Stakeholder requirements. 96
A3 Network requirements. 96
A4 Infrastructure requirements. 96

xvii

Chapter 1

Introduction

This document is the final thesis “Biographies of things using Blockchain”. This
first chapter is an introduction to the theme of this work, clarifying what the
context, motivation, objectives, and expected outcomes are, followed by a concise
structure for the rest of the document.

1.1 Context

In our modern economy, the design, production, usage, and dismissal of all kinds
of products are being done by separate organizations and people from all around
the world. Keeping track of materials and processes used for each component
of a complex product is not an easy task, requiring the supervision of different
parts of an organization’s value chain. Some cases of design, supply, and service
chain disruption cannot be prevented, mostly due to malfunction, scarcity, or
accidental reasons, but a lot can still be done regarding product waste, loss, and
storage management, as shown in [Rezaei and Liu, 2017].

Product Lifecycle Management (PLM), a concept well defined in [Terzi et al.,
2010], can be seen as a business model point of view and as a strategy for manag-
ing and linking the three phases of the lifecycle of a product:

• Design and manufactoring periods stand for the Beginning Of Life (BOL).

• The following distribution, sale and use of these products corresponds to
the Middle Of Life (MOL).

• Finally, the End Of Life (EOL) stage of a product happens when it is dis-
posed of or collected for recycling and reuse of materials or components.

From a technology standpoint, PLM also represents a set of integrated tools that
create a flow of information about the product in every phase of its lifecycle. The
goal of these tools is to have the best data possible at the right time and with the
correct context to mitigate preventable problems. Organizations are taking the

1

Chapter 1

initiative to prevent future losses by developing a better tracing system for their
products through the use of new technologies.

Since the appearance of the internet, new opportunities for improved lifecycle
management have emerged for performance enhancement and cost effectiveness,
such as the availability of shipment data, instantaneous communication with ven-
dors and customers, or simply online purchasing, customer support, and prod-
uct reviews [Lancioni et al., 2000], and things have not stopped. The adoption of
blockchain networks takes PLM to a new level by allowing more tracing capabili-
ties and data transparency between all stakeholders of a product. This is possible,
for example, with the tokenization of assets, a concept used for the digital repre-
sentation of products in a blockchain.

Due to this digital transformation and the growing demand for environmentally
friendly practices, it is becoming increasingly appealing for users and organiza-
tions to learn more about products by keeping a complete log of their lives, from
conception to disposal. Information such as the origin of a product, the duration
of its storage before sale, and the number of owners it previously had are all im-
portant pieces of knowledge, and being able to store and verify this data, while
respecting the privacy of the end consumer, is a challenging task. From now on,
we will refer to this product log as a product biography, a term already used in
previous papers, such as [Barata et al., 2020] and [Spring and Araujo, 2017].

1.2 Motivation

It is stated in [Ameri and Dutta, 2005] that around 60% of most businesses’ oper-
ational time gets wasted due to disseminated, incorrect, and repeated data used
during design and production. The development of a generic product biography
aims to solve these issues by gathering the correct amount of data from every
stage of a product’s life and linking it together.

Note that representing a product from the beginning to the end of life is only
a linear interpretation and simplistic point of view. In real life, a product can
go through different stages of EOL and go through a “servitization” process to
repair, for instance, a product by swapping a few components. These different
cycles of a product are also named, from a business point of view, as a circular
economy composed of maintenance, reuse, redistribution, refurbishing, reman-
ufacture, and recycling phases. These steps are thoroughly described in [Spring
and Araujo, 2017]. A well defined product biography has to contain all these
transformations, where each component can be linked to each other to form a
complex product.

Other interesting concepts to include in these biographies are user experience
reviews and manual insertion of data about specific models of products. The
distinction between autobiography, where the product itself is the source of data
and third-party biography, where external user experience memorization occurs,
is mentioned in [Barata et al., 2020]. These can be very useful for fault detection,
tracking the desirability of a product, the rate of failure, and legal regulations.

2

Introduction

Another interesting example of product biography applications is the new sus-
tainability initiatives emerging from the European Union, stated in different doc-
uments and proposals, such as [Commission, 2022], that aim to create a “Digital
Product Passport for textiles” in 2024, with mandatory requirements about en-
vironmental sustainability. An opportunity emerged in our contacts with a ma-
jor textile fibre producer to understand the possible applications of a biography
to their business. This represents an opportunity to create product biographies
around textile products, a big part of these being clothing pieces, linking all data
from raw material harvesting to disposal of worn-out remains.

The quality attributes of data in a blockchain, described in more detail later in the
document, serve as the driving forces for using this new technology to host these
biographies and, in result, give more reliable data to organizations and more con-
fidence to consumers.

1.3 Objectives and expected results

Considering the problem stated above, a list of objectives is defined for the du-
ration of this thesis. The order of these objectives also align with the structure of
the rest of the document:

1. Establish a work methodology suited for this theme, with a progressive
risk management and a showcase of tasks completed split between the two
semesters;

2. Perform research in current product tracing implementations and do a lit-
erature review of blockchain concepts and popular cryptocurrency and en-
terprise solutions;

3. Design a generic architecture with quality attributes scenarios and require-
ments, suited for a platform hosting product biographies, and focusing on
blockchain technology as a backend foundation;

4. Develop a prototype for product biographies, describing every step taken
and applying the defined architecture;

5. Validate the architecture scenarios with tests on the implemented prototype,
as well as showcasing testing techniques on the developed artifacts;

6. Conclude the document, stating the accomplishments of the thesis and pro-
vide guidelines for future work, with possible improvements.

Finishing this first chapter, an introduction to the theme of the thesis was con-
cluded, along with the motivation of the work being done and a list of structured
goals. As stated in the objectives, the methodology of the work and the risk man-
agement are reviewed in the next chapter.

3

Chapter 2

Methodology and work plan

This chapter describes the methodology used for this thesis and the work planned
for both semesters. A brief and adaptative risk analysis was also performed to
plan courses of action in case of failure in completing important tasks, in order to
avoid potential problems. Gantt diagrams were used for each semester to show
the sequence of the finished task, with a description for more context.

2.1 Methodology

A Design Science Research (DSR) approach was used for this thesis, consisting of
several iterative steps for the construction of a solution [Peffers et al., 2007], while
following DSR guidelines from [Hevner et al., 2004]. To better understand the
process, Figure 2.1 shows the expected flow of the project, indicating each phase
of the process, the outcomes, and what iterations may happen. Note that the last
iteration, from the conclusion back to a new problem identification, stands for the
possibility of picking up this thesis work and developing it even further.

DSR has been previously used by similar research, such as for development of
blockchains for off-site production management [Wu et al., 2022] and supply
chain management frameworks [Liu et al., 2022]. This methodology is helpful
to get reliable knowledge into a new domain, enumerate a problem to solve, and
draw a proposal for a solution, which corresponds to the first three steps and
what was done in the first semester; and develop, evaluate the result and con-
clude with guidelines for future work, which is what was done in the second
semester.

2.2 Work distribution

The thesis work started in the first semester with a literature review, presented
in Chapter 3, on product tracing, mainly about how different industries track
and version their products, how failures can be detected and what solutions ex-

5

Chapter 2

Problem
identification

Solution objectives

Design

Development

Evaluation

Conclusion

Architecture

Literature
review

Requirements

Results &

Guidelines for further research

Implementation

Validation
& Testing

PhasesIterations Outputs

Figure 2.1: DSR flow for this thesis.

ist. Having chosen blockchain as our core technology for developing a future
solution, extensive research was done about this concept to understand its real
advantages. Current popular blockchain projects, around cryptocurrencies and
enterprise use cases were also reviewed, in order to analyse their implementation
decisions and perceive the reasoning behind them.

Based on the literature findings and contacts with industrial experts interested in
our work, high-level requirements of a generic platform and the first version of
the architecture were defined in Chapter 4.

A summary of the work of the first semester is shown in Figure 2.2.

Figure 2.2: Gantt work chart for the first semester.

6

Methodology and work plan

In the second semester, the first step was starting the development of a platform
hosting product biographies, based around the projects reviewed in the previous
semester. At the same time, the literature review was improved, adding correc-
tions and more information to the document, as well as the definition of quality
attribute scenarios, used to validate the architecture. While achieving this pro-
totype, tests and evaluation of the implementation were completed to assure the
correct function of the project. Finally, the final report was elaborated, docu-
menting the whole implementation process. The work summary of the second
semester is displayed in the Gantt chart 2.3.

Figure 2.3: Gantt work chart for the second semester.

In the following section, the risk analysis taken during the thesis is described,
showing the preventive steps taken for a better execution of the work.

2.3 Risk analysis

Due to the emerging nature of blockchain and its applications, some inherent
risks exist in the elaboration of this thesis. Risk analysis was done throughout
the duration of the project, in order to have a solid grasp of current conditions
and to better react to potential consequences of the decisions taken. For each risk,
probabilities, impacts and mitigation plans were defined.

A risk probability can be low, when the risk is not likely to happen during the-
sis, medium, when it is somewhat likely to occur, and high, which is very likely
to happen during the project. As for the impact, the same three levels of like-
lihood were used. A low impact represents no significant changes or delays to
the course of the project, a medium impact forces some changes to occur dur-
ing the development, and finally, a high impact drives considerable changes and

7

Chapter 2

potential delays, shifting the objectives of the thesis.

The following Tables 2.1, 2.2, 2.3 and 2.4 identify the risks taken into account in
the beginning of the work:

Table 2.1: Risk 1

Risk The research involves new technologies around blockchain;
having a risk that these technologies may get rapidly
outdated or inaccurate with new version releases and
changes in a specific technology’s architecture.

Probability High.
Impact Medium.
Mitigation plan Engage through further research, for instance by analysing

up-to-date documentation.

Table 2.2: Risk 2

Risk The implementation process requiring using new and more
recent tools, such as using new programming languages
and containerize nodes to run a blockchain network; has a
risk of needing more adaptation time than expected,
leading to delays in the elaboration of this thesis.

Probability Medium.
Impact Low.
Mitigation plan Doing early experiments with the technologies to be used.

Table 2.3: Risk 3

Risk The technologies chosen for the architecture and
implementation were only initially researched theoretically,
having a risk of not working as expected or not satisfy the
needs of this thesis in an applied implementation.

Probability Medium.
Impact High.
Mitigation plan Opt for a fallback option that is also compatible with the

requirements defined in Section 4.2.

Table 2.4: Risk 4

Risk The applicability of the architecture details in a textile
industry use case, where the possibility of all planned
development is uncertain.

Probability Low.
Impact Low.
Mitigation plan Follow through with an implementation for generic

products.

8

Methodology and work plan

As the thesis advanced in the second semester, a few risks materialized the fol-
lowing ways:

• The risk in 2.3 required the project to have a completely new architecture
model and a different implementation part, switching from a Hyperledger
Sawtooth backend to a Hyperledger Fabric one, which now included smart
contract development. These technologies and their usefulness are thor-
oughly evaluated in the literature review;

• The risk in 2.4 happened, redefining a few points of the document and only
using textile products as examples during the implementation process.

Risk 3 delayed the implementation and architecture validation process, it made
risk 2, of Table 2.2, less likely to happen due to the larger choice of programming
languages of the fallback option. Following this iteration, new risks, in Table 2.5
and 2.6, were taken into consideration, throughout the new phases of develop-
ment:

Table 2.5: Risk 5

Risk As smart contract functions are ran in a blockchain
network, they are harder to test and debug in a
development environment due to potential network related
issues, risking a longer implementation timeframe.

Probability High.
Impact Medium.
Mitigation plan Finding appropriate solutions for testing smart contracts,

taking into account the type of network and programming
language used.

Table 2.6: Risk 6

Risk The development of an external client application
interacting with a blockchain network is more complex
when compared to other traditional components of a
development stack, such as databases or microservices;
risking an unfamiliar debugging process to this part of the
implementation.

Probability Low.
Impact Medium.
Mitigation plan Researching into more implementation details of the

blockchain network.

And during the rest of the work, the following risks were addressed, helping in a
achieving a better result:

9

Chapter 2

• The risk in 2.5 was likely to happen, but it was correctly prevented by re-
searching debugging and testing solutions, such as the ones used in Chapter
6;

• The risk in 2.6 was prevented, doing additional research around Hyper-
ledger Fabric in the beginning of the second semester.

The following chapter will present a literature review of this project in order to
understand the concepts required for the solution.

10

Chapter 3

Literature review

In order to understand the issue that needs to be solved, this chapter’s literature
review begins with a synopsis of the most recent developments in the field of
product lifecycle management and tracing, with special attention to what infras-
tructure and technology is used. Subsequently, the distinctive features of popular
Distributed Ledger Technologies (DLTs) are mentioned, followed by a more de-
tailed review of blockchain concepts to emphasize what properties are the most
relevant for our problem and what challenges are associated with the technology.

After covering the main points relevant to a blockchain data and network struc-
tures, an introduction is shown for two of the most popular cryptocurrency projects,
Bitcoin and Ethereum,. These cryptocurrencies are based on blockchain technol-
ogy and the intention of this review is to understand the rationale between the
decisions taken, what their work in progress is, their impact on the financial sys-
tem as a cryptocurrency and why it happened. Also, difficulties during their cur-
rent open development are described in more detail, with the mention of relevant
solutions aiming to solve the known problems of Bitcoin and Ethereum.

Following the cryptocurrencies review, an analysis of enterprise blockchains is
provided, maintained by the Hyperledger foundation. These projects follow a
philosophy much more suited for industrial applications and handling those spe-
cific types of use cases. A more detailed review is suited for the Fabric and Saw-
tooth blockchains, due to their applicability to supply chain solutions. The main
purpose of this literature review is to highlight and compare different blockchain
implementations in order to evaluate the applicability and possibilities in an ar-
chitecture and for solution of a product biography.

3.1 Product tracing

As already mentioned in Section 1.1, different organizations have started to find
solutions to better track their products in every stage of their lives. In this first
section, we will examine what the latest and avaliable solutions are and what
technologies are appliable in a platform hosting biographies of things.

11

Chapter 3

To start this literature review, we reviewed three different implementations re-
lated to the theme of this thesis. Following this, a brief summary about the GS1
is made, an organization maintaining global standards about products in a wide
range of industries. Since the goal of this research is to discover a suitable tech-
nology for our solution, and in part, define a generic architecture of a blockchain
network, the results of each implementation do not have to exactly align with our
goals.

An interesting implementation of a blockchain applied to the textile industry
comes from [Agrawal et al., 2021]. The paper structures a Hyperledger Fabric
blockchain architecture, covered in more detail and with the latest version in con-
sideration, in Section 3.5, and a representation of a textile and clothing supply
chain, which corresponds to six phases. If we were to use this supply chain to
execute our product biography, there would be even more steps before and after
to provide a thorough record of all the product’s life.

Although this paper doesn’t deal with Internet of Things (IoT) nor represents a
generic way to insert different parameters for textile products, it provides insight
as to how to track states of organic cotton transactions, generated from a smart
contract, and account values in a blockchain, as well as performance simulations
for a specific consesus algorithm, explained in the sections below.

[Barata et al., 2020] introduces the concept of “biography of things”, correspond-
ing to product biography, mentioned in Section 1.1, and a complete gathering and
storage system of sociomaterial data about products, behaving as an extension of
regular Product Lifecycle Management (PLM) and using blockchain as well as
offchain data. The approach taken by this paper is to follow the production of
paper pulp by using digital twins, IoT devices to track this data, located in the
same area. Some limitations to this approach are revealed and addressed:

• It is impossible to have only one digital twin in a product with different
manufacturing stages and components. To solve this, a digital twin is used
per phase, tracking each part individually.

• Having a digital twin for as little as each tree, in the case of paper pulp pro-
duction, is unfeasable. In this case, materials should be tracked in batches,
for instance, with one digital twin per production lot.

In the case of [Barata et al., 2020], the composition of a product made from paper
pulp could be represented in three different stages, by (1) raw materials, (2) fac-
tory, where paper pulp is produced, and (3) the final product, ready for sale or
use. To gather more details about an implementation using IoT devices, [Salah
et al., 2020] depicts a use case about a cold supply chain of pharmaceutical prod-
ucts, where real-time attention to temperature and humidity levels are crucial.

As for the IoT devices, [Barata et al., 2020] and [Salah et al., 2020] implementations
use similar technology, such as different sensors to track temperature, humid-
ity, vibration, light and other movements; Global Positioning System (GPS) and
Wireless Wide Area Network (WWAN) modules; smoke detectors and Radio-
Frequency Identification (RFID), all linked to Single-Board Computers (SBCs) or

12

Literature review

microcontrollers. These devices enable a real-time logging of data during manu-
facturing processes, transportation and usage, which is invaluable for an organi-
zation, making them able to evaluate losses, find the causes of an anomaly more
easily and give it more time to react and mitigate the economic or logistic impact.
It is also vital to prevent and detect errors from these devices, especially during
automatic data writing. A way of prevention is to use more than one of each
device in a place at a time.

To finish, GS1, as mentioned in the beginning of this section, is a global organi-
zation that maintains a number of standards for products. [GS1, 2022a] shows a
detailed document about every standard and their specification, that These stan-
dards help identifying products in a global commercial network, such as:

• European Article Number (EAN) is a 13-digit number, used as a barcode,
to identify products in the industry and to be scanned during transactions
and inventory checks;

• Examples of unique identifiers are the Global Returnable Asset Identifier
(GRAI) and the Global Location Number (GLN), used to track reusable
products, for example containers used in transportation, and locations, re-
spectively. These numbers are all structured in a similar fashion, using the
first one, two or three digits as country codes and the rest as manufacturer
and product or the specific location.

Figure 3.1: EAN-13 barcode from the GS1 standard, taken from [GS1, 2022a].

These identifiers can be employed in a potential solution suggested in this thesis
since they can have a significant impact on the process of tracking products along
a supply chain.

These solutions are all distinct from one another since the objectives are different,
but they all collect vital information that we should be aware of while building
our own solution. By implementing a solution based on blockchain, one still has
to deal properly with privacy-sensitive data by using encryption and possibly
with permissioning systems. The industry could benefit from a honest system
with biographies of things, using DLT technologies which are addressed next.

3.2 Distributed ledgers and blockchain key concepts

After a brief overview about product tracing implementations, key concepts and
notions are identified in this section in order to better understand the subject and
the potential of blockchain based solutions.

13

Chapter 3

In the following sections, nodes and peers are mentioned interchangeably, as syn-
onymous for entities participating in the validation of a blockchain or distributed
network as well as data and transactions for information stored and/or verified
in the blockchain. These concepts apply to the majority of existing blockchain
implementations.

The concept of DLTs was established as a consensus of digital data that is shared
and synchronized among other peers which can be personal computers, servers
or any other computing device with enough storage and network capabilities.
Each node can store a local copy of the ledger and use one of several consensus
protocols to agree on which data is stored. The data is timestamped and usually
appended in chronological order in the ledger, making it impossible to edit or
delete the content after it is inserted.

This means, by default, that one of the quality attributes a DLT has to offer is
its immutability and the concept of a product biography may benefit from that.
Other quality attributes can be assured, mentioned in [Kannengießer et al., 2020]
such as avaliability of data and confidentiality, integrity and security of the ledger
depending on design decisions and trade-offs.

Comparisons between blockchain, Tangle and hashgraphs technology are con-
tinuously made, for example in [Schueffel, 2017] done in 2017, but for the sake of
simplicity and to opt for a more popular and patent-free solution, only blockchains
are covered in this thesis as a backend solution for a product biography platform.

A blockchain, shown in 3.2, is a data structure based on a group of blocks of data
usually used in distributed and potentially decentralized and public networks.
Distributed networks are networks that divide tasks between different devices in
order to fulfill a certain goal, whereas decentralized networks distribute power
between different entities, with the goal of having no central authority.

Figure 3.2: Generic representation of a blockchain, adapted from [Nakamoto,
2008].

These blocks are linked together by a mathematical one-way and determinis-
tic function called a cryptographic hash, explained below. Each block of data
contains the hash value of the block preceding it, except for the first block, also
known as the Genesis Block or Block 0.

3.2.1 Hashing

Hashing is used to verify integrity of data. Hash functions can take any data
of any length, called a message, and convert it into a fixed size hash value or
digest, which is impossible to revert in a practical fashion if the algorithm used

14

Literature review

is safe, like the Secure Hash Algorithm (SHA) 2 family of functions, KECCAK
used in Ethereum, standardized as the SHA-3 family, or the now deprecated MD5
function. The size of this digest depends on the algorithm used.

These functions also have a desired avalanche effect, meaning for the slightest
difference in the message, the result will be completely different. This is shown
in Figure 3.3 and we can also notice that the messages are indistinguishable from
the hash values.

Figure 3.3: Hashing function process and its avalanche effect at work, adapted
from [Nakamoto, 2008].

Hashing cryptographic procedures are widely used and essential parts of very
important projects like OpenSSL and its security is continuously tested [Gilbert
and Handschuh, 2003].

In a blockchain, each block has its own hash value that depends on the previous
block’s hash. Any change in a previous block will also change the resulting value
of the hash function, which in turn will change the hash value of that block and
every block succeeding it. This makes the whole structure immutable, which is
essential for a blockchain and its applications.

3.2.2 Asymmetric cryptography

Another key concept in a blockchain is the use of private/public key pair encryp-
tion, or assymetric encryption. Transactions occuring in a blockchain are signed
by someone using its own private key and verified by others using its public key
to prove its origin.

The private or secret key is usually a string, a seed phrase or a number generated
or picked from a big range of numbers. The public key is derived from the private
key and used to verify these signatures, giving proof of who submitted the trans-
action. To generate the public key, an asymmetric cryptography function is used
such as the Rivest–Shamir–Adleman (RSA) algorithm. This function should also
be one-way, deterministic and takes longer to run than other types of encryption,
so it should not be used for actual encryption of data.

Cryptocurrencies use wallets, that manage private/public key pairs and allows
users to own and send coins to other users through their public keys, called ad-
dresses. Every public key may be explored in the blockchain to see the chain of
transactions of circulating coins, for example. Implementations of this are de-
scribed in the following Sections 3.3 and 3.4.

15

Chapter 3

For our solution, it is essential to identify who is writing data into the blockchain,
despite only using key pairs for identification being a pseudonymous process.

3.2.3 Data storage and Merkle Trees

Scalable data storage is tricky to do in a blockchain. In theory, all kinds of data
may be stored into a blockchain but in real use cases, it is not feasible to distribute
any files or heavier data into a public and decentralized ledger. This is due to
storage limitations of every node and network limitations of distributing that
data to every peer avaliable, even more so if the blockchain is public.

The block size in a blockchain can also vary, some projects use a fixed size while
others use a variable size. A bigger block size requires more computational power
from the nodes, which can limit the number of nodes and in turn centralizes
more the project, but increases the transaction throughput, as seen in [Göbel and
Krzesinski, 2017].

A common solution for data storage is to not store all the data but instead use the
hash values of it, grouped in a Merkle Tree, represented in Figure 3.4.

Figure 3.4: Merkle Tree representation, aggregating four transactions, adapted
from [Nakamoto, 2008].

Transactions are grouped in a tree by hashing them together, giving the verifiabil-
ity needed for the transaction to be immutable, or in other words, tamper-proof.

Because a blockchain is not the best way to store raw data, other ways of storage
are used and verified with the hash signatures, for instance by using an external
database or other. This approach can centralize the data source to a unique entity
and therefore making the blockchain lose its purpose as a decentralized tool.

3.2.4 Network permissioning

Blockchain networks, just like any other distributed environment, can have its
own sets of rules for who is allowed to participate in the validation or access of
the blockchain.

16

Literature review

We refer blockchain networks as permissionless when they don’t require the per-
mission of any entity to participate and validate new blocks, as opposed to per-
missioned blockchains which require permission and only a set of entities are
allowed in. As for submitting transactions, a public blockchain allows anyone
to transact in, whereas private blockchains only allow certain entities to interact.
Semi-private solutions also exist, which can have roles implemented for different
nodes with different types of access, for instance.

Different attributes of permissionless and permissioned blockchains are com-
pared in Table 3.1. These attributes are related to transactions and it is impor-
tant to mention that these are just broad generalizations and no attribute has a
fixed result for every scenario. For instance, a permissionless blockchain can be
private, although it is an unusual tradeoff to take.

Table 3.1: Comparison between permissioned and permissionless blockchain net-
works.

Permissionless Permissioned
Transaction speed Slower Faster
Decentralization Total Parcial or none
Data security Stronger Weaker
Cost Expensive Cheaper

Usually, in a public and decentralized blockchain, anyone can run a node with
its own copy of the blockchain without the a central authority coordinating the
process, as long as the node follows the expected rules. Nodes can find each
other in several ways, for instance by maintaining a list of nodes they already
know, consulting servers that respond with a list of avaliable nodes or just run an
adequate gossip protocol, disseminating addresses and data.

This raises a big challenge: how can people agree on which blockchain is the real
one, if anyone can validate blocks? To solve this, different consensus protocols
were put in place for each use case as systems of agreement for all the participant
nodes in a blockchain. Since everyone can submit transactions or other data into
a blockchain, other nodes need to verify that data.

3.2.5 Consensus protocols

When working with distributed systems where data replication exists, it is im-
portant to agree on what data is being maintained and eventually protect the
network from attackers that wish to exploit it [Wahab and Mehmood, 2018]. In a
blockchain, consensus protocols are used to decide who has the capacity of writ-
ing the next block.

In permissionless networks, to ensure the authenticity of every transaction and
data in the blockchain, consensus mechanisms are used in every participating
node to appoint a winner of a lottery to write the next block, repeating the pro-
cess for each one. Whereas in permissioned networks, where the participants
are already managed separately, consensus protocols are usually used to prevent

17

Chapter 3

byzantine [Pease et al., 1980] or crash failures instead. In summary, two kinds of
consensus protocols exist:

• Probabilistic algorithms, when the writer of the block is chosen by a lottery
between the nodes;

• Deterministic algorithms, when a predefined node is in charge of submit-
ting blocks for an arbitrary period of time.

The most well-known and used consensus protocols used in blockchain presently
are two probabilistic algorithms: Proof of Work (PoW) and Proof of Stake (PoS), and
two deterministic ones: Practical Byzantine Fault Tolerance (PBFT) and RAFT.

To understand the intricacies of different consensus mechanisms, a full context
of a blockchain structure and network is needed. Every consensus protocol has
its own trade-offs and that is the reason why there is not a singular solution for
every use case, whether it be a permissioned or permissionless blockchain and
what kind of data it holds.

In the following sections covering blockchain implementations, we will cover in
more detail how these concepts are applied and how consensus algorithms incen-
tivize usage, in the case of cryptocurrencies and how well they can scale for our
solution, as well as the other concepts exposed here that are crucial to understand
the need of a blockchain and why it can be useful for our solution.

3.3 Bitcoin

The literature review will now focus more on examining projects with blockchain
implementations relevant for our problem, starting with Bitcoin. Having this
approach after reviewing important aspects from the last section will help us un-
derstand better the decision making of each implementation.

In 2008, Satoshi Nakamoto started designing and developing the Bitcoin protocol
[Nakamoto, 2008], a solution for a decentralized and Peer-to-Peer (P2P) digital
money system that discards the need of a mediator or a central entity to confirm
transactions. This is achieved with a public and permissionless network, where
anyone with a powerful enough computing device can be a node and help sup-
port the network, validating the blockchain and confirming the incoming trans-
actions. This process of supporting the network is called mining, in the case of
Bitcoin and other blockchains that use a PoW consensus mechanism.

Its development was based on previous cryptocurrency work, such as [Szabo,
2022], and with the use of several design decisions mentioned below and exten-
sive and open development, Bitcoin managed to be widely adopted as an alterna-
tive to fiat money and speculative asset, with a market capitalization reaching 1
Trillion USD in 2021, recorded in [CoinMarketCap, 2022] while its creator remains
anonymous.

18

Literature review

In the following subsection, we will introduce some key decisions taken by Bit-
coin that can, in a way, justify its adoption as well as its main challenges as a
cryptocurrency currently.

3.3.1 Key design choices in Bitcoin deployment

As mentioned in the previous chapter, Bitcoin went through an extensive de-
velopment period where critical decisions were made that wouldn’t be easy to
revert now, with the cryptocurrency actively in use and widely adopted. Any
future change to the blockchain structure would require an update of the Bitcoin
Core software, which is the tool needed to run a node.

In case of disagreement between the nodes in which node version to use or which
chain of blocks to maintain, a fork of the blockchain may occur at a certain block
number where the original blockchain is maintained and a new one starts to be
used and mined [Webb, 2018]. Forks may also happen momentarily, in case two
nodes verify a block nearly at the same time, coexisting for a short moment. Bit-
coin had several forks from the original protocol, the most widely used today
being Bitcoin Cash.

It is important to review these design choices to achieve and justify an architec-
ture of a blockchain suited to store our product biographies.

Transaction storage

The model Bitcoin uses to store balances in the blockchain is called Unspent
Transaction Output (UTXO), where the amount avaliable to a wallet equals to the
amount received and not yet spent. [Nakamoto, 2008] defines a coin as a chain
of digital signatures and allows transactions to have several inputs and outputs,
therefore splitting and merging different amounts for a new UTXO, as a more
efficient way to move coins. UTXO-based systems are fundamentally different
from other account-based systems, where a state is kept for each wallet instead
and enables a more modular approach with blockchain data [Chan, 2021].

This also allows Bitcoin to “prune” the Merkle Tree, previously described in 3.2.3,
by removing transactions with the totality of a coin spent, saving disk space.

Double hashing

Bitcoin kept its hashing implementation relatively simple, using just the SHA-256
algorithm and RIPE Message Digest (RIPEMD)-160 in its code [Chan et al., 2020],
for several things:

• Maintaining data integrity of every transaction;

• Hashing a Merkle Tree;

19

Chapter 3

• Linking transaction inputs and outputs;

• Creating public addresses with better privacy;

• Mining new blocks, with block header, PoW and previous block hashes.

In every case, every hashing is computed twice either by using the SHA-256 func-
tion twice, where hash = SHA256(SHA256(message)) or, using the RIPEMD
function to output a smaller hash: hash = RIPEMD160(SHA256(message)),
used for public addresses mainly. Both double hashes are done as a preventive
security measure.

Ownership of coins and digital signatures

The Bitcoin protocol enables anyone owning a private/public key pair to make
transactions by signing with the owner’s private key a hash of the previous trans-
action plus the new owner’s public key [Nakamoto, 2008]. This makes it impos-
sible to spend someone’s coins unless the private key is compromised.

The owner of a private key can remain a secret since no identifier is needed to own
one, making Bitcoin a pseudonymous network. It is not truly anonymous because
public keys can still be queried to analyse where the coins were transferred to. So
the coins are effectively based on a chain of digital signatures and in Bitcoin, the
public key is derived from the private using Elliptic-Curve Cryptography (ECC)
functions.

Elliptic-Curve Cryptography

ECC is a more recent approach from traditional asymmetric encryption systems,
such as the RSA, using a different mathematical approach. In short, the public
key generation uses arithmetic operations around an elliptic curve, as opposed
to around a modulo number. Nowadays, ECC is considered to be better com-
pared to RSA and other conventional systems since a smaller key size in ECC can
provide the same level of security and is faster calculating the public key [Re-
bahi et al., 2008] due to the lower key size but slower verifying it, although these
differences might be neglegible in our context.

Elliptic-curve public-key cryptography is still not as used by common systems
nowadays, mainly due to uncertainty about patent-related issues and its security
due to the algorithm not being as mature and understood as RSA for example.

An elliptic curve’s mathematical expression is y2 = x3 + ax+ b with a and b as pa-
rameters that should be carefully chosen. The curve chosen for Bitcoin’s public-
key generation is called secp256k1, which is a name derived from the curve’s
parameters and these parameters are also the properties that limit the number of
possible private keys to a little less than 2256, since not all private keys are secure.

20

Literature review

Mining incentives

A way to secure the network normal and protect it from attackers, Bitcoin found
a way to incentivize the validation of new and honest blocks. To do so, Bitcoin
does two things:

1. Issuing a block reward for each mined block;

2. Collecting transaction fees.

To validate blocks, the protocol uses an up to date version of Hashcash [Back
et al., 2002], which is a PoW mechanism. The function runs on each participat-
ing node, which then brute-forces a adjusted value, called “nonce”, until one of
nodes reaches a necessary hash value and receives the block rewards and the cor-
responding fees from the last block. This transaction is the first one of the new
block.

Blocks are generated approximately every ten minutes and this is achieved by
increasing the complexity of the hash to find if blocks are mined below that time
threshold and vice versa. In the original Hashcash specification, the complexity
of the hash to find could only be doubled or halved by changing the number
of leading zeros of the hash, whereas in Bitcoin, the complexity can be changed
more gradually, by considering the hash as a very big integer and the hash to find
being one below that integer. By taking into account the total processing power
of the network, the function tunes its complexity to always stay close to the ten
minutes [Nakamoto, 2008].

The incentivization works also to prevent Sybil attacks in Bitcoin. A Sybil attack
is a type of attack which can occur in decentralized networks, where power is
seized by fake entities, controlled by a unique person or organization. In the case
of Bitcoin, a Sybil attack may happen if 51% of the hashing power belongs to the
same entity, ending up controlling the output of the network.

So effectively, the consensus mechanism is probabilistic and works as a lottery
between the nodes, biased towards the nodes with more processing power. As a
mention, Bitcoin goes also through “halvings”, where the block rewards go down
by half every 210000 mined blocks, so with time the network relies more and more
on transaction fees and the actual value of the coins for large scale mining to be
profitable.

3.3.2 Challenges

There are a few challenges associated with Bitcoin’s usability and traceability of
transactions. First, as the network usage grows with more and more transactions
submitted and constrained by a small (1MB) and fixed block size, network con-
gestion will eventually occur. As a consequence, transactions aren’t immediately
submitted to the blockchain on the next block but instead go through a memory

21

Chapter 3

pool that acts like a priority queue, where a transaction’s rank depends on a paid
fee.

The higher the fee, the faster a transaction will get confirmed and as usage grows,
the fee threshold for a transaction to be accepted will rise, making the blockchain
very expensive to transact directly at one point. The main answer for this nowa-
days is to use what we call layer 2 solutions, which deal with transactions them-
selves through other means, making Bitcoin act like a settlement layer. The most
well known layer 2 for Bitcoin is the Lightning Network [Antonopoulos et al.,
2021].

Another challenge is the lack of privacy of users using the blockchain. Since
blockchain has an open ledger, everyone can see where coins flow and even
though public addresses have no associated name, a single identified transaction
reveals all the movements from the identified user. In Lightning Network again,
private channels exist, and are mentioned in [Antonopoulos et al., 2021], where
users can secretly exchange coins, although the privacy of the users depends on
the trust in others to not reveal the information, making it not an ideal solution.

Finally, the PoW consensus mechanism, while being the most secure one known,
is very intensive on energy costs, due to the existant competition for block re-
wards.

Reviewing these challenges is important for a platform hosting biography of
things, since a lot of data will be flowing for each product and scalability has
to be assured and the privacy of some data is also a concern. The most rele-
vant aspects of Bitcoin for our supply chain solution have been reviewed. Other
projects under review, starting by Ethereum have some of these implementation
choices reflected in them, further emphasizing how important Bitcoin is for the
blockchain technology.

3.4 Ethereum

To better understand the progress in blockchain technology, it is important to
also review the Ethereum project. This blockchain is heavily influenced by Bit-
coin yet was a driving force for innovation. The innovative elements will be the
main subject of the review, such as the popular smart contract and tokenization
functionalities.

The Ethereum blockchain started its development in 2014 and its intent was not
to replicate the work done in Bitcoin or deny its intrinsic value, but to allow
developers to build programs in a Turing-complete programming language in
a blockchain. One of the original founders, Vitalik Buterin, stated in [Buterin,
2015a] that the project’s goal was to merge the idea of decentralized money with
programming capabilities, using programs called smart contracts by making a
distributed state machine, rather than a simpler distributed ledger.

In [Wood, 2022], transaction data are called “messages” outputed by “accounts”,
that can either be external entities that own a private key, or internally by the

22

Literature review

smart contracts. As opposed to Bitcoin, Ethereum’s data is stored by state, instead
of UTXO data, but accounts work similarly to Bitcoin wallets in practice, besides
a few more fields containing the following:

• An Ether (ETH) balance, not to be confused with Ethereum, which is the
cryptocurrency hosted by the blockchain;

• A counter for processing transactions only once, called nonce;

• A storage that can contain variables and Ethereum Request for Comments
(ERC) tokens, explained further below.

Smart contract accounts also contain their code stored inside in addition to what
was listed and the global state of these smart contracts and all accounts is what’s
maintained by the blockchain, as opposed to Bitcoin’s UTXO model. In the fol-
lowing section, we will cover in detail how contracts are deployed and how they
can be used.

3.4.1 Smart contracts and decentralized applications

Smart contracts are a term used for programs stored on a blockchain. This idea
is not new [Szabo, 1997] but Ethereum’s implementation is what made the term
popular. They can only be executed after receiving a transaction from external
accounts and these programs can have a multitude of purposes, such as:

• Create financial applications or services and automate transactions, based
on on-chain conditions;

• Define “tokens”, which are sub-currencies that exist in Ethereum;

• Decentralized exchanges, between ETH and other tokens;

• Decentralized Autonomous Organizations (DAOs).

Network fees

As already mentioned, the smart contract has to be deployed in order to be used
by external accounts. Both its deployment and usage costs a certain amount of
ETH, called gas and the gas price depends on the usage of the network and how
congested it is, making use of a similar memory pool as Bitcoin. This gas fee has
to be paid to cover for incentive and energy costs of the nodes participating in the
node, since the code is also executed by them.

These gas fees are also applied to generic transactions of ETH from one account to
the other and the amounts are most commonly represented by gwei which equals
109 ETH and is awarded to the node participants, in a similar fashion as Bitcoin.
Other units are pre-labelled in [Buterin, 2015a].

23

Chapter 3

Solidity and Ethereum Virtual Machine

The Ethereum Virtual Machine (EVM) is used to run the smart contracts from
EVM bytecode when they receive a transaction, in order to make arbitrary calcu-
lations and output further transactions. This is described in [Wood, 2022].

To generate this bytecode, high-level languages are used instead, where Solid-
ity is the most prominent one for Ethereum. It is influenced from C++, Python
and JavaScript and shares a lot of design choises from these languages, includ-
ing object-oriented features and static typing. A prior study [Lopes Barata and
Rupino da Cunha, 2019] was also conducted about the understandability of So-
lidity smart contracts from people with background in these languages. To main-
tain and run consistent bytecode generation with improvements to the Solidity
language, it is required to specify a version or a range of versions of the language
in the beginning of every contract file. Otherwise, legacy smart contracts would
not run properly anymore.

The use of smart contracts is very important for our potential solution, in order to
give more trust into the data around every product biography. This is achieved
because smart contract transactions do not need verification from intermediate
entities. Other advantages of smart contracts include:

• Speed of usage, as opposed to traditional business processes;

• Safety, since every smart contract is tamper-proof;

• Accuracy of results, due to the automated process.

One of the use cases of smart contracts is to represent “things”, called tokens, that
needed standardized interfaces for regular use between other smart contracts.

3.4.2 Token standards

Tokens in Ethereum are used to represent virtually any object in the blockchain
and standards exist to improve the usability with other smart contracts. These
standards are named ERC and can also represent application-level methods used
by the tokens themselves.

For these standards to exist, Ethereum uses a decentralized approach for develop-
ment with Ethereum Improvement Proposals (EIPs) where these new standards
are first proposed, go through a review from the community that can choose to
favour, oppose or ask for further revisions of the standard and only gets imple-
mented after its acceptance. A review of three of the most popular standards is
done down below.

ERC-20

It is the most popular standard used, stated by [Fröwis et al., 2019], and is very
commonly used to represent, subcurrencies, the name Ethereum uses for alterna-

24

Literature review

tive currencies that exist inside the blockchain. Complying the smart contract
code to this standard to build a custom currency makes it trivial to use with al-
ready existing wallets, without extra steps for integration. These tokens are also
fungible, which means every token issued has the same value as all the others.

ERC-20 specifies six different functions, described in [Fabian Vogelsteller, 2015]
all necessary to query the token’s balances, total supply and making transfers
between external accounts or through a smart contract, with approval.

ERC-721

Also known as Non-Fungible Token (NFT), as the name states it is a standard to
implement tokens, in the same manner as in ERC-20, but without being fungi-
ble. This means each token is unique and identified with a tokenId number, used
to link the token to the signature of data or even as the documentation states,
encoded images or real data, up to 256 bits of data [Fröwis et al., 2019].

ERC-1155

This standard can represent both fungible and non fungible tokens and is an im-
provement of both ERC-20 and ERC-721 standards, both in efficiency and correct-
ing implementation errors. Its functions are similar to the mentioned standards,
except that they allow for multiple requests in a single call.

Other standards are still in EIP phase to fix known bugs or unintentional be-
haviour and give additional functionalities such as to allow users to reject incom-
ing tokens from blacklisted addresses, to make the miner of the block, instead of
the sender, pay for the gas fees while transfering tokens (ERC-865) or have a new
token type that can only be transferred once, sticking to the account afterwards
[Buterin, 2015b].

Conforming to these standards can be very useful for replication in a future so-
lution to facilitate law regulations and interoperability with other blockchains,
especially those compatible with the EVM.

3.4.3 Decentralized Autonomous Organizations

A DAO is an organization based on the blockchain and structured with smart
contracts. Usually, the participation requires the ownership of some kind of to-
ken and smart contracts functions that enable proposals for voting, adding or
changing features in the DAO. Organizations governed this way have one inher-
ent advantage which is a completely decentralized and fairer rule by obeying the
code and the voted proposals. Voting power for proposals is usually reflected
in the amount of tokens owned and delegated to be part of the DAO, although
other governance methods are available. This can lead to some problems for the
organization if unregulated and not audited properly, like vulnerability to Sybil

25

Chapter 3

attacks, mentioned in Section 3.3.1. The World Economic Forum recently pub-
lished a paper about this concept [Aiden Slavin, 2022].

Although this type of governance is less used in enterprise blockchains, since the
configuration of a permissioned blockchain has already a type of governance, it
remains an interesting idea for the solution.

3.4.4 Scalability issues

Similarly to Bitcoin, Ethereum has had scalability issues hindering its popular
adoption by having exorbitant and volatile gas fees for even the simplest trans-
actions, this led to a lot of research for a solution.

Recently, Ethereum upgraded to the version 2.0 of Ethereum, which aimed to
make the network more sustainable and cheaper to use. The network switched
from a PoW to PoS consensus mechanism, merging with an already live version
of a new blockchain, called Beacon chain. This upgrade also enabled the pro-
cess of implementing sharding, which is a scaling method consisting of dividing
the network in smaller group of nodes, called shards, to validate transactions in
parallel and reduce congestion of the network.

PoS is also based on a lottery system to decide who gets the block reward, like
PoW, but instead of deciding the winning node by doing intensive computing to
find a hash value and upping the odds with more processing power, the probabil-
ity is decided by the amount of currency a node “stakes” to validate the network.

Other proposals with new features, such as the EIP-1559, have been improv-
ing Ethereum’s base code to reduce this volatility [Roughgarden, 2020], but no
measures have significantly upgraded the overall scalability issues of the main
blockchain layer so far. These issues are represented by the blockchain trilemma
shown in Figure 3.5.

Figure 3.5: Scalability trilemma, adapted from [Karaarslan and Konacaklı, 2020].

[Buterin, 2015a] states that every blockchain network has to decide in a trade-

26

Literature review

off between scalability, decentralization and security. Both Bitcoin and Ethereum
have a vision opting for a combination of decentralization and security, leaving
the scalability issues to be mitigated with layer 2 solutions.

Taking advantage of the programmability of Ethereum, other processing layers
have been developed, alike to the Lightning Network for Bitcoin. They can be
separated in two groups:

1. Sidechains, which are different EVM compatible blockchains that have dif-
ferent parameters, run independently and are connected to the Ethereum
blockchain through two-way bridges. This makes it possible to “connect”,
through a smart contract, tokens from Ethereum’s main network to these
sidechains. Unlike real layer 2 solutions, sidechains usually don’t update
states or post transactions to the main blockchain;

2. What Ethereum effectively calls layer 2 solutions, are blockchains that in-
herit the security properties of the main network. These solutions always
post the new states and bundles of transaction data.

Other blockchains with EVM compatibility and different implementation deci-
sions, such as different consensus protocols or block parameters, also emerged
with the main goal to provide a platform with the same capabilities but without
the gas fee tradeoff.

As Ethereum got more popular with the usage of smart contracts, they became
the foundation of what are called Deecentralized Applications (Dapps) and the
decentralized web or Web 3.0. Dapps use smart contracts as a backend foun-
dation and a web interface to make applications hosted with the help of decen-
tralized blockchain technology, as opposed to hosting on centralized servers [Bu-
terin, 2015b]. With the usage of Ethereum external accounts and events emitted
by smart contracts made to be read by any external program, this internet is much
more personal and in control of the users.

In the following section, we will evaluate how Hyperledger open-source projects
differ from cryptocurrency platforms. Narrowing down this research into enter-
prise platforms gets closer to the specific use case related to the thesis.

3.5 Hyperledger

A review of Hyperledger enterprise blockchains is presented in this section. Hy-
perledger is a community hosting and responsible for a number of frameworks,
libraries and tools suited for enterprise-grade DLT deployment. It was founded
in 2016 and is part of the Linux Foundation, along with some other well known
projects such as Kubernetes, NodeJS or the Linux kernel [Labs, 2022b]. These
projects use a lot of concepts from the previously reviewed blockchains, but with
different purposes from cryptocurrencies.

27

Chapter 3

Unlike blockchains used in cryptocurrencies, enterprise blockchains can be fun-
damentally different in function. The inherent characteristics of using a solution
based on a blockchain can be applied to many different industries and Hyper-
ledger offers back-end technologies for a wide range of practical applications.

Currently, the Hyperledger foundation hosts more than ten projects with backing
from more than a hundred industry members, with names such as IBM, American
Express and Oracle. As for the project themselves, they are divided in different
DLT and network implementations, libraries and tools to support them and are
all centered around blockchain technology, as shown in [Hyperledger, 2021].

These projects, including Fabric and Sawtooth which are reviewed next, are all
open-source, i.e. their code is available publicly and has permissive licensing for
modification and distribution. Their components will be reviewed in more detail,
since the network implementation of this thesis is formed around them.

3.5.1 Fabric

Fabric started to be developed by IBM, being integrated later on in Hyperledger.
It is a back-end allowing organizations to form blockchain networks divided by
channels and composed by two different kinds of nodes, peers and orderers, man-
aging the network. Its main goal is to be a modular architecture for permis-
sioned blockchains, allowing for the use of various pluggable components like
databases, smart contracts, different consensus protocols, and membership man-
agement.

As Fabric is currently in development, this thesis is describing the structure of the
latest version released, v2.4.6. Since this version is relatively recent, most of the
review is done around the official documentation, [Hyperledger, 2022b]. A sim-
ple Fabric network is shown in Figure 3.6, with the following key components:

• Organizations, representing different entities in the network;

• Membership Service Providers (MSPs), acting as identity providers of these
organizations;

• Channels, a representation of a network with different organizations;

• The ledger, which is composed by the blockchain and the current state of
data;

• Chaincode, a term used interchangeably with smart contract, are functions
that define the transaction logic on the channel;

• Peers, responsible for endorsing and executing transactions from the chain-
code;

• Orderers, a node that does transaction ordering and writes data to new
blocks;

• Applications, interacting externally with the network.

28

Literature review

Peer A

Ledger 1

Orderer C

Chaincode 1

Peer B

Chaincode 1

Ledger 1

MSP A

MSP B

Channel configuration 1

MSP CMSP A

MSP C

MSP B Channel policies

Channel 1

Application A

Organization A

Organization B

Organization C

Figure 3.6: Components of a simple Fabric test network, adapted from [Hyper-
ledger, 2022b].

Identity

Organizations represent a singular or group of entities interacting in the Fabric
network. These entities are identified in the organization through a MSP, com-
posed of identities issued by a Fabric Certificate Authority (CA), trusted by its
own organization and assigned a role. More details about MSP’s structure are
documented in [Hyperledger, 2022h]. It is only possible to participate in the net-
work using this identity and being registered in the network.

Each organization may be divided in different Organizational Units (OUs) and
each entity can have different roles in the network, through a special OU called
NodeOU. The available roles in NodeOU are client, peer, admin and orderer, and
each one also has an associated certificate. As an example, with NodeOU en-
abled in an organization, only an entity with a certificate issued by the peer role
may perform functions related to the peer node, described below. Finally, a Fab-
ric CA server may be used to register new organizations, along with generating
certificates for identities and other certificates used for encrypted communica-
tion through TLS. Specific documentation about the Fabric CA is also available in
[Hyperledger, 2022a]

29

Chapter 3

Channel

A blockchain network in Hyperledger Fabric is commonly called a channel. Re-
ferring again Figure 3.6, it is composed by two different nodes participate in it
and a channel configuration.

The channel configuration has the identity of every organization participating in
it, also called the Channel MSP along with the policies of the network, defining
which entities from which organizations can do certain operations. If a new or-
ganization has to be added to a channel, the configuration has to be changed and
agreed between the administrators to support new nodes with redefined roles.
This is different to permissionless networks reviewed above, where the capabil-
ities and policies of the network are public and the same for every participating
entity and where each configuration change requires a software update from all
nodes.

Each channel also has its own ledger, composed by a blockchain and a world state,
representing the current value of objects on the ledger. As mentioned in [Hy-
perledger, 2022g], having an additional world state database is faster to obtain
the current values, instead of performing queries in a blockchain. Fabric offers
two options for the database, LevelDB, which is a simple key-value database, and
CouchDB, a more complete option for ledger states structured in objects, such as
in JSON format, yet any type of database can be plugged in, therefore the options
for this database are not restricted to these two.

Chaincode is also a part of the channel definition that must be approved by the
channel administrators in order to be invoked. Each chaincode may be upgraded
into new versions and have their own endorsement policies, and define who, in
the network, has to verify transaction outputs before they get validated. Chap-
ter 5 takes a closer look into the chaincode deployment and transaction lifecy-
cles, as part of the implementation of a Fabric network. Depending on how the
chaincode is implemented, compatibility with token standards is possible, such
as Ethereum’s ERC reviewed in Section 3.4.2, in order to provide interoperability
possibilities.

Nodes

As mentioned before, there are two kinds of nodes in Hyperledger Fabric: peers
and orderers.

Starting with peers, these are the participants responsible for executing and en-
dorsing transactions, through the Fabric Gateway service, a new concept from the
latest version of Hyperledger Fabric in [Hyperledger, 2022j]. Transactions can
have two types:

• Read: This type only needs the proper authorization through the certificate
to read the ledger from a single peer;

• Write: Depending on the endorsement policy of the chaincode, this type

30

Literature review

requires additional steps to validate the transaction, such as having other
peers endorsing it, by repeating the execution and signing their response,
using a cryptographic function, and submit the transaction to the ordering
service. The complete steps are mentioned in [Hyperledger, 2022j] and will
be taken during the implementation process in Chapter 5.

An orderer, on the order hand, doesn’t store any chaincode data but instead, or-
ders the results onto a new block and sends it back to the peers for validation.
The validation process of each peer, referred in some parts of the documentation,
such as in [Hyperledger, 2022i], follows the subsequent steps:

1. Ensuring the transaction have been endorsed by the required organizations;

2. Verifies that every endorsement’s results match;

3. Makes sure the recent committed transactions are not invalidated by other
recently appended transactions.

If any of these verifications fail, the block is not added to the blockchain and the
ledger is not updated.

As of the latest Hyperledger Fabric version, every orderer uses a Crash Fault
Tolerance (CFT) algorithm to replicate the ordering decision to different orderers,
if they exist. This algorithm is called RAFT and is introduced in [Ongaro and
Ousterhout, 2014]. In the RAFT protocol, every orderer in a cluster may have a
follower, candidate or leader states:

RAFT uses terms, starting when no leaders are available and one has to be chosen
through an election, or when an arbitrary time value elapses. The next points
describe, in order, the election procedure:

1. An election starts by giving each follower a random election timeout, usu-
ally between 150 and 300 milliseconds, and when the first follower’s time-
out elapses, its state changes to candidate and starts sending vote requests to
the remaining followers;

2. A follower, upon receiving a vote request and in case it has not voted this
term, increments its term number by one and votes for that candidate;

3. Finally, after every candidate have sent and received their votes, the candi-
date with the majority of votes becomes the leader.

After the election, the leader’s duty is to send requests to the followers in order
to reset the term time and to notify that he is still alive. Only the leading orderer
receives the validation requests from the peers, but still requests every follower
for their blocks. This

External applications can also interact with the fabric network and request trans-
actions with the required authorization, by talking to a peer’s gateway service

31

Chapter 3

from a suited client API available in different languages. In Chapter 5, a client
application is implemented using this exact API.

Finally, Hyperledger Fabric also implements a gossip protocol, documented in
[Hyperledger, 2022f], for better data integrity and consistency. It is used to an-
chor available peers from different organizations, detect peers recently gone of-
fline and disseminate ledger data to out of sync peers and new peers in the net-
work. The pings sent to detect alive and dead peers, also called heartbeats, have a
programmable frequency and use signed data from their certificates, so malicious
peers can not impersonate others

Going back to the scalability trilemma in Figure 3.5, Fabric and other permis-
sioned blockchains use the security plus scalability combination, since they don’t
face the trade-off of having a public network. Finally, the Fabric architecture
makes it the most popular project on Hyperledger, since it covers a wide range of
industry applications, our use case included.

3.5.2 Sawtooth

Hyperledger Sawtooth is another enterprise blockchain platform. Intel started
its development and the overall structure presents some differences when com-
pared to Fabric. Figure 3.7 shows how a Sawtooth network is structured, with
the internal look of a node.

Sawtooth node

REST API

Network

Consensus
engine

Clients

Sawtooth nodes

Tx families

Validator

Figure 3.7: Example of the Sawtooth network, with different components and
transaction families, adapted from [Hyperledger, 2022l].

While Fabric uses different types of nodes, such as orderers and normal peers,
Sawtooth uses a unique type of node, shown in Figure 3.7. Each internal compo-
nent of a Sawtooth node is detailed in the following subsections.

32

Literature review

Validator

The validator is the main component integrating the entirety of the node’s func-
tions, being responsible for maintaining consensus, validating batches and creat-
ing blocks, and coordinating communication with the other nodes and external
clients [Hyperledger, 2022o]. It is also responsible for receiving proposed trans-
actions and blocks from other nodes, in order to validate them with their result
and a set of rules for verify their integrity and authorization.

Batches are used to reduce possible congestion from hundreds or thousands of
transactions in a short period of time, which are atomic units of changes with
ordered transactions, executed in parallel. The structure of batches, transactions
and their headers, as well as detailed information about these data objects is doc-
umented in [Hyperledger, 2022n]. The transaction family processors get dele-
gated by the validator, after receiving requests from other nodes or from the REST
API to perform and validate these transactions.

Transaction families

A transaction family is composed of written in different programming languages
and implementing the business logic of an application. They can be used in the
same manner a smart contract is used in other blockchain networks, or as an
interface or compatibility layer for easier development.

Another relevant feature of Sawtooth is the ability to use both on-chain and in-
stalled smart contracts, as opposed to only installed in Fabric or only on-chain
in Ethereum. By default, Sawtooth already provides samples in Sawtooth’s core
repository for essential operations, such as the following, taken from [Hyper-
ledger, 2018]:

• Collect information about the ledger’s blocks;

• Identity and policies management;

• Configure on-chain network settings;

• Compare blockchain system performance;

• Test the network with transactions;

• Compatibility layers, such as the Sabre transaction family, which imple-
ments on-chain smart contracts executed in a WebAssembly virtual ma-
chine; and the Seth transaction family, used to run EVM compatible smart
contracts.

Transaction families have transaction processors, written in different program-
ming languages and implementing the business logic, and client interfaces, usu-
ally exposing REST API endpoints or providing a Command-Line Interface (CLI).

33

Chapter 3

Network communication

Clients can interact with these transaction families through a optional and cus-
tomizable REST API available, with the necessary permissions. An event system
is also put in place to broadcast changes, where applications can subscribe to
them to gather data and relay information back. As for the rest of the commu-
nication between nodes, also represented in Figure 3.7, Protobuf serialization is
used for better efficiency and speed.

Through Seth, using Solidity smart contracts is possible, also opens new doors
for compatibility and interoperability options between these networks, using the
same contract code.

Consensus engine

In order to build an agreement between nodes, Sawtooth offers the possibility to
use consensus protocols suited for different permissioning levels of the network.
RAFT and PBFT are used for permissioned consensus. Sawtooth’s PBFT imple-
mentation uses an improved version of the original mechanism with dynamic
network membership, regular view changes, and a block catch-up procedure, de-
tailed in [Hyperledger, 2022l].

PBFT is a leader-based algorithm always assumes that messages going through
different nodes can not be always trusted, because it’s assuming the channel is
insecure [Castro and Liskov, 2002]. It starts by electing a leader, which will, in
the case of a blockchain, set the current caller for agreement by everyone. If one
or more nodes are malicious, including the leader, they can only control the final
state by being above 1/3 of the total nodes. Otherwise, no matter what states the
malicious nodes emit, the legitimate nodes go by the majority of votes received
and agree upon this result. An example of this is shown in Figure 3.8, where we
represent this mechanism and state X as the legitimate blockchain state and Y as
the malicious one.

Figure 3.8: PBFT mechanism in three steps, with leader A and attacker C, adapted
from [Castro and Liskov, 2002].

34

Literature review

Proof of Elapsed Time (PoET) is another option for consensus mechanisms avail-
able in Sawtooth. It is a lottery-style consensus protocol, similar to PoW and PoS,
where each node has a probability of being the winner of a new block. Instead
of using computational power or currency stake, PoET assigns a wake up time
to every validator, which in turn validators sleep using a function in a trusted
execution environment. Whoever gets the best time and wakes up first is the one
writing the block.

To avoid malicious manipulation, such as changing the given time to a shorter pe-
riod, Intel created a trusted environment for these kind of code executions, called
Software Guard Extensions (SGX). PoET, in practice, has two versions. One is
only crash-tolerant, much like RAFT, but enables the use of this protocol with
any Central Processing Unit (CPU). Whereas only modern Intel CPU can take ad-
vantage of the Byzantine tolerance part of the protocol, which in turn also enables
Sawtooth to become a permissionless network.

For testing purposes, Sawtooth also has a developer mode consensus protocol
available, which just picks a random leader to be in charge of validating the net-
work.

Despite not being as popular as Fabric, Sawtooth might be a powerful option as a
backend to host biographies of things, especially with the use of Grid, reviewed
in the next subsection.

Grid

An useful tool to be used with Sawtooth is Hyperledger Grid. It is composed by a
number of smart contracts to be ran on the Sabre engine, mentioned above. These
smart contracts are particularly useful for a use case of supply chain manage-
ment, dealing with schemas for product creation compliant with GS1 standards
[GS1, 2022b] already implemented. These standards were referred in Section 3.1.
In summary, the smart contracts available from Grid enables:

• Definition of schemas for the creation of products;

• Insertion and updates of product data;

• Location definition and updates for products;

• Access control of the previous points.

Grid can be installed in the same machine as a Sawtooth validator, and provides a
web interface, a CLI tool and a REST API for user interaction, making it possible
to have different options for integration of clients and actors, such as IoT devices.

With a proper initial configuration of the Sawtooth inner layer, it is possible to
interact only with Grid interfaces for data manipulation.

35

Chapter 3

3.6 Final comparisons

After reviewing Bitcoin, Ethereum, Hyperledger Fabric and Hyperledger Saw-
tooth, final comparisons are due to summarise important aspects of each of these
projects, and for the decision making needed in the design of the architecture and
implementation phases. Since each blockchain project was reviewed differently
to highlight their notable attributes, this section aims to succintly compare each
of these qualities, to give a better basis for our subsequent work phases.

Node operations vary highly in each implementation, because each project has
different objectives and priorities. Table 3.2 summarises the difference in different
domains for these nodes.

Table 3.2: Comparison between node functionalities in blockchain networks.

Bitcoin Ethereum Fabric Sawtooth
Permissioning Open Open Closed Closed
Storage model UTXO State State State
Smart contracts No Yes Yes Yes
Decentralization level High Medium-

high
Not
guaranteed

Not
guaranteed

Tx submission Always Always Policy and
node type
dependent

Policy
dependent

Code execution Non
existant

Optional Policy and
node type
dependent

Policy
dependent

Block writing Always Always Policy and
node type
dependent

Policy
dependent

The mentioned cryptocurrencies show a different permissioning level from Hy-
perledger, giving the opportunity for everyone to participating in the network, as
long as they fulfill the device or staking requirements of their consensus proto-
cols. Fabric and Sawtooth backends, despite having a lower level of decentraliza-
tion, are more suited for our solution, as they fit a better role scaling and storing
larger amounts of data. These tradeoffs were mentioned in 3.4.4.

Out of the projects reviewed, only Bitcoin does not support programmability in
its main network. Not every node in an Ethereum, Fabric or Sawtooth network
must be able to execute smart contract code, either. Besides that, only nodes with
the required policies may execute and validate transactions in the Hyperledger
blockchains. In the special case of Fabric, two types of nodes exist, separating the
block writing logic.

As mentioned in 3.2.5, each distributed blockchain network needs some form of
consensus mechanism, no matter the permissioning level of the network. How-
ever, it’s the type consensus that defines if a blockchain may be permissioned or
permissionless. The following Table 3.3 addresses each algorithm mentioned so

36

Literature review

far, with some attributes.

Table 3.3: Comparison between consensus protocols in blockchain networks.

PoW PoS PBFT PoET RAFT
Probabilistic finality Yes Yes No No No
Permissionless networks Yes Yes No Both No
Byzantine failure tolerance Yes Yes Yes SGX only No

Sybil attacks, mentioned in Section 3.3.1, may happen in any distributed network
with a degree of decentralization. In the case of cryptocurrencies, it is avoided
by incentivization of the network, paying truthful block miners coins for their
contribution, in the case of PoW and PoS. For more centralized approaches, these
attacks are avoided by identity verification mechanisms.

PoS and PoET algorithms have lower energy consumption than PoW, but are
more exposed to centralization issues in a permissionless network, due to PoS
requiring value staking and giving more power to richer entities and PoET’s SGX
version only working with Intel CPUs, restricting the number of potential partic-
ipants.

RAFT, despite not showing any major strengths in the comparisons

3.7 Summary

With this review, we understood the necessary concepts for a blockchain network
to function, going through important aspects of its architecture, such as:

• Permissionless and permissioned blockchains divergences.

• Data security measures, such as hashing functions and public key encryp-
tion.

• The need for consensus protocols and incentivization of public cryptocur-
rencies.

The design decisions made in Bitcoin and Ethereum were examined because they
are shared by the majority of active blockchain projects. Despite some of their
features not being directly used for our use case, some concepts remain rele-
vant for analysis. With the introduction of smart contracts, programmability in
a blockchain is a game-changer and essentially what enables us to build a future
solution. To better understand the impact of smart contracts, the following topics
were reviewed:

• Differences between UTXO and account-based models.

• What triggers smart contract execution and its cost.

37

Chapter 3

• Some developed programs and standards based on smart contract code.

By analysing these features on widely adopted cryptocurrencies, we can argue
that blockchain technology is truly disruptive in the financial sector, and with the
introduction of Hyperledger DLTs, this positive change is also available to other
industries.

Both Fabric and Sawtooth projects are part of the Hyperledger family of DLTs,
which have more of a focus on industry data and applications, with improve-
ments for security and scalability available in a permissioned network. The key
differences between enterprise blockchains and cryptocurrencies were also exten-
sively reviewed in this report.

Chapter 4 introduces the first drafts of the proposed architecture, integrating the
insights collected during the literature review phase for a potential implementa-
tion of a product biography platform, while also briefly mentioning the value of
having one.

38

Chapter 4

Requirements definition and
architecture

Following the literature review about blockchain concepts and implementations,
this chapter will delve into the creation of a software architecture for an imple-
mentation of a blockchain platform to host product biographies.

For that, key practices of the book [Bass et al., 2003] are used, such as meeting
non-functional requirements described as quality attributes in this chapter, un-
derstanding the requirements of the system and managing trade-offs of the cho-
sen attributes. After this decision-making phase, we will represent our architec-
ture in a C4 model diagram, defined in [Brown, 2022], using three layers of detail
to describe the system with its different components and containers.

Before going further, it is important to highlight what the real purpose of a prod-
uct biography platform is. The usefulness of a product biography, in a real world
scenario, can be illustated with the following points:

• Having an immutable history of usage and registry of various events of
a product gives a possibility for manufacturers to optimize their supply
chains;

• Besides the supply chain improvements, Quality Assurance (QA) is also
easier to provide, by identifying potential issues in produced batches;

• By having transparency of data, and ideally by also storing third party data,
end users may have more trust in their products and more loyalty to a brand
that offers clarity in their processes;

• Regulators can take advantage in this transparency as well, making it easier
to verify compliance.

Overall, a product biography must help organizations, end consumers and regu-
lators to meet their expectations, although a proper implementation of a product
biography depends on the quality of information that is provided.

39

Chapter 4

4.1 Quality attributes

To measure the usefulness of a product biography platform based on blockchain
technology, quality attributes, also referred to as “ilities”, are defined in this sec-
tion, also in a way to delineate which aspects the architecture and the implemen-
tation of a prototype have to respect. Following this, Quality Attribute Scenario
(QAS) are described telling how the architecture and implementation should re-
spond.

For blockchain networks in general, the following quality attributes can be de-
fined, some of them already being discussed in the literature review:

• Security;

• Decentralization;

• Privacy;

• Immutability.

These quality attributes are taken into account with scenarios for the implemen-
tation in the next chapter and validated in Chapter 6. The following Tables 4.1,
4.2, 4.3 and 4.4 illustrate the elaborated scenarios for the architecture and imple-
mentation to follow:

Table 4.1: Security QAS

ID S1
Source of stimulus End user
Stimulus The user performs an action, initiating communication

between the network.
Artifact Messages sent during the communication.
Response The message is encrypted, being secure against external

entities with malicious intents trying to perform a
man-in-the-middle attack.

Response measures Network analysis of the messages.

Table 4.2: Decentralization QAS

ID S2
Source of stimulus Participating organizations
Stimulus Actions with different permission levels.
Artifact Blockchain network.
Response The control and validation of the actions must have a

different permission levels, in order to distribute power
to different participating organizations.

Response measures Implementation of a correct configuration of network,
organization and user permissions and definitions.

40

Requirements definition and architecture

Table 4.3: Privacy QAS

ID S3
Source of stimulus End user
Stimulus The user stores or queries private product data.
Artifact Peers of the network.
Response The end user’s privacy is respected, by only allowed

the authorized peer to access and change the data.
Response measures Blockchain or database analysis of encrypted private

data storage in the correct organizations.

Table 4.4: Privacy QAS

ID S4
Source of stimulus Block writer
Stimulus An additional block gets appended to the blockchain.
Artifact Blockchain network.
Response The responsible nodes must validate and append the

new block, making it unable to edit or revert it back.
Response measures Blockchain analysis of snapshots of previous blocks,

verifiability of block hash values.

Achieving these quality scenarios is a continuous process during implementation
and runtime and the development of the prototype should not compromise these
scenarios.

The projects reviewed in the previous chapter already have a lot of open devel-
opment and discussion about dealing with the trade-offs of using a blockchain
network, but due to the sheer difficulty of approaching these trade-offs, this the-
sis will not attempt to deal with them. Despite that, the impacted attributes must
still be acknowledged:

• Performance, scalability: By choosing a consensus protocol that favorises
security and decentralization, the speed of transactions, overall throughput
of a blockchain network and the potential size and user base of the network
is constrainted;

• Interoperability: For distinct blockchain networks to be interoperable with
other networks or systems, additional requirements might need to be met,
which could compromise the modularity of data and the level of privacy of
the data replicated on these other networks.

It is worth noting that these scenarios and the architecture as a whole can evolve,
emphasizing the impportance of documenting the process and adapt to changes,
for instance through methods like the Architecture Tradeoff Analysis Method
(ATAM), detailed in [Kazman et al., 1998].

41

Chapter 4

Overall, these attributes along with their scenarios, will help guiding the design
of the architecture defined below. But before that, high-level requirements for the
architecture are also defined in the following section.

4.2 High-level requirements

This section covers a number of high-level requirements lists that a platform of
product biographies should respect, after defining the key quality attributes that
the architecture must use. These lists have some requirements of more impor-
tance than others, and as a method of prioritization, the MoSCoW prioritiza-
tion technique is used, introduced in [Clegg and Barker, 1994]. MoSCoW is an
acronym standing for four different levels of priority, from most to least impor-
tant:

• M - Must have, are mandatory requirements to be implemented;

• S - Should have, are important requirements, since they bring much more
value to the prototype;

• C - Could have, are nice-to-have requirements that do not have a large im-
pact for this development phase;

• W - Won’t have, are requirements that have no importance for now.

This prioritization is useful to decide what to implement first in the prototype of
the next section. The requirements are divided in four sections: data, stakeholder,
network and infrastructure.

4.2.1 Data requirements

To build a platform for biographies of all kinds of products, data modularity is
key in order to support the most diverse number of attributes, needed in a plat-
form composed of generic products. Setting a stricter data model for our products
is easier and more predictable to develop and interact with client applications,
but restrictive for an architecture with generic products.

In an effort to achieve the best of both worlds, the following requirements define
how data should be stored in an immutable ledger and interacted with in the
blockchain network:

1.1 The platform must be able to gather product data, with a name and its
events and transformations;

1.2 The platform must be able to represent singular products, as well as batches
of products;

42

Requirements definition and architecture

1.3 The product data must have a name attribute and an unique identifier ID;

1.4 A batch of products must have quantity and unit attributes;

1.5 The product data must be immutable;

1.6 Each different product should have a modular data structure, depending
on its needs;

1.7 The product data could be compatible with GS1 standards, an industry
standard used worldwide for identification and tracking;

1.8 Public product data could be used externally, by following established Non-
Fungible Token (NFT) standards, such as the Ethereum Request for Com-
ments (ERC)-721 or ERC-1155 discussed in Section 3.4.2;

1.9 The platform could be able to gather customer and reusage data, among
other types of data from a circular economy point of view;

1.10 Product data could be used for a digital textile passport, such as for the
digital passport use case, mentioned in Section 1.2;

1.11 Additional data, such as images, could be stored outside of a ledger and
referenced there.

These requirements, with only a few necessary attributes, help in building a sim-
ple data model for a generic product biography.

4.2.2 Stakeholder requirements

A product is generally owned, made and regulated by different but generally
predefined entities. In reality, these entities should be replaceable, like changing
the owner of a product in a second hand sale. Also, trusting a single entity of
doing keeping the records right is not possible due to the likely corruption of the
system, so Distributed Ledger Technology (DLT) systems with shared trust and
distributed operations are better suited so every participant can approve which
entities to trust, whether this system is public or not.

In the case of permissioned blockchains, these requirements can only be applied
with policy settings and clear identification of the participants whereas in per-
missionless networks, smart contracts with whitelists for who is allowed to do
certain calls could be used, for instance, but generally every entity can partici-
pate in the validation of the network.

Stakeholders must have explicit permissions regarding what they can and cannot
do in a network, regardless of whether they are businesses, individual end users,
governmental bodies, or automated devices. For this reason, we define a list of
requirements for their roles with their permissions:

2.1 Network administrators must be allowed to configure the network and de-
fine participants and policies;

43

Chapter 4

2.2 Organization users and applications, such as automated Internet of Things
(IoT) devices, must have different policies to query and input new product
data in a ledger;

2.3 Other clients, organizations and applications must be able to make personal
or transactional data private;

2.4 Any entity must not be allowed to edit or delete previously inserted prod-
uct data;

2.5 Other clients, organizations and applications must be allowed to query un-
restricted and authorized product data;

2.6 Clients could be associated to product data, publicly or privately, with at-
tributes such as ownership.

4.2.3 Network requirements

The requirements for a blockchain network are discussed in this section, after
having a better understanding of the type of data required for product biogra-
phies and the roles that each stakeholder should play in the network.

Implementing smart contracts in a permissionless network, like Ethereum, would
be a possible solution, but the gas costs are very discouraging, as mentioned in
Section 3.4.4 and the throughput of transactions is also restrictive, because of the
large consensus needed in such a big network. Therefore, in this architecture,
the options are limited to permissioned networks. Two enterprise blockchains
capable of this task, Fabric and Sawtooth, were reviewed in Sections 3.5.1 and
3.5.2, respectively, with comparisons made between the two. For a better user
interaction, it is also necessary to have a adequate interface for an end user, in
order to transact with product data.

Succinctly, our ledger has to follow the following requirements to make the most
use of DLT technology:

3.1 The network must have a shared blockchain ledger of product data;

3.2 The blockchain must be distributed by, at least, more than one node from a
different organization;

3.3 Different entities should have an interface to interact with the network and
ledger;

3.4 Manual and automatic transactions to the network should be supported by
the network;

3.5 Client front-end applications could be implemented to query product data.

44

Requirements definition and architecture

4.2.4 Infrastructure requirements

The solution also needs to fulfill some physical requirements to better ensure
the availability quality attribute of the network and data. To host our ledger
nodes, physical hosting as well as cloud hosting solutions, such as Virtual Private
Servers (VPSs), Amazon Web Services (AWS) or Azure can be used, so a variety
of solutions exist here. IoT devices used for automatic data harvesting, for exam-
ple, should be capable of submitting data the most precise way possible, with an
accurate response time and also in a way the data is relevant and doesn’t over-
load the network. This is hard to enforce, therefore the following requirements
will only meet infrastructure requirements for the internal network:

4.1 Each ledger must be distributed to every participating node;

4.2 There should be at least one node maintaining the ledger for each partici-
pating organization;

4.3 Each participating organization should have at least one node verifying
ledger transactions and smart contract executions impacting them.

These requirements, despite not being absolutely necessary for a working net-
work, are important to bring the wanted value to product biographies and respect
the quality attributes mentioned above. In the appendix, requirements are also
listed, for further consultation, from Tables A1 to A4. In the following section the
architecture is described thoroughly, along with an explanation of the decisions
made.

4.3 Architecture

After describing the necessary quality attributes and requirements needed to ful-
fill our goal, this section will cover the planned architecture for a generic imple-
mentation of a blockchain network capable of hosting product biographies. This
architecture was designed based on the Hyperledger Fabric backend but can be
replicated in other systems, respecting certain conditions which will be described
in this section.

The C4 model is a widely used graphical notation to represent software system
architectures, created by Simon Brown [Brown, 2022]. C4 is based on four layers,
each layer giving more detail and less abstraction than the previous one. In this
architecture, three of the four layers are represented:

• The system context layer, representing the entities acting on the system and
the software systems themselves;

• The containers layer adds more detail to these systems by expanding into
several containers, which can represent different interfaces, applications
and data stores;

45

Chapter 4

• The components layer represent parts of each container shown above, dis-
playing what happens close to the actual code.

For legibility purposes, containers and components have been divided into rele-
vant parts as they are being described in this section. A full view of the layer 2
and 3 of the architecture model, in Figures A1 and A2 respectively, are depicted
in the appendix of this document.

4.3.1 System diagram

The first layer, represented in Figure 4.1, represents three organizations: Organi-
zation 1, Organization 2 and Orderer Organization. Each organization has a respon-
sible administrator, having the most permissions within the organization; and
a regular user, except for the Orderer Organization, with different permissions
suited to different functions. Each organization is registered in a channel, called
Channel 1.

Fabric network Channel 1
[Software System]

Representation of an Hyperledger
Fabric channel, called Channel 1.

User
[Person]

Normal user with limited
permissions given by

organization 1

User
[Person]

Normal user with limited
permissions given by

organization 2

Organization 1
[Software System]

Software system representing
organization 1 and its peer, MSP

and a Fabric CA server.

Organization 2
[Software System]

Software system representing
organization 2 and its peer and

MSP.

Orderer Organization
[Software System]

Software system representing the
orderer organization, with its

orderer node and MSP.

Participates in Participates in

Orders transactions in Belongs to

Belongs toBelongs to

Belongs to

Belongs to

Administrator
[Person]

Administrator of the Orderer

organization.

Administrator
[Person]

Administrator of the channel
and organization 2.

Administrator
[Person]

Administrator of the channel
and organization 1.

Figure 4.1: Layer 1 diagram of the C4 architecture model.

The functions and capabilities of the members of each organization in a chan-
nel is described in the lower layers. In reality, each organization can have more
participating members and belong to more channels, while a channel can have

46

Requirements definition and architecture

any number of organizations. A more detailed look at the structure of one of the
organizations and the channel is provided in the following section.

4.3.2 Container layer

Going to the second layer, high level technical blocks of each organization and
the channel systems is shown, starting with the organization diagram. Only the
Organization 1 structure is displayed, that is because the Organization 2 structure
should be the similar, only with the exception of the Fabric CA server.

Organization system

Figure 4.2 represents how both the administrator and user of an organization can
interact with the network. Two main functions are represented in this diagram:

• The enrollment, registration and identification of members, through a Fabric
CA client, a Fabric CA server and the Local Membership Service Provider (MSP);

• The interaction in the Channel 1, either directly through a peer called Peer 1
or a Client Application.

Peer 1
[Container: Go]

Manages ledgers, smart contracts transaction
proposals and endorsements.

Client application
[Container: e.g. Javascript, Typescript, Go]

Client application to interact with Fabric peers

Channel 1
[Channel]

Administrator
[Person]

Administrator of the channel and
organization 1.

User
[Person]

Normal user with limited permissions given
by organization 1.

Fabric CA server
[Container: Go]

Responsible to enroll organizations, OUs and users,
creating certificates for TLS secure communication

and MSPs of users, peers, and admins of
organizations.

Local Membership Service
Provider (MSP)

[Container: YAML config, PEM files]

Identifies the users, peers and admins.

Fabric CA client
[Container: Go]

Client used to register and enroll organizations, OUs
and users in a Fabric network.

Organization 1
[Organization]

Interacts with

product data

[Web Browser]

Identifies

Identifies

Enrolls and registers

OUs and users

[CLI]

Sends requests

Generates certificates

Interacts with the network.

Submits transactions.

[gRPC]

Interacts with product data

Manages channel configuration changes

[CLI]

Figure 4.2: Organization system diagram of the C4 architecture model.

47

Chapter 4

In this case, the administrator is responsible to register and enroll organization
members into a Fabric Certificate Authority (CA) server, which is the source of
trust of CA certificates in a Fabric network, in this example. This means that
other organizations, such as Organization 2, have to get their identities from the
same root of trust, in this example to the same CA server. Note that in a real
network, it is possible and even recommended to use replicated CA servers in
other organizations, while connecting to a high availability proxy demonstrated
in [Hyperledger, 2022a] and sharing the same certificates database, in order to
share the same registered and, if needed, revoked identities.

In a production environment, more fabric CA servers can be implemented to is-
sue certificates, having to be balanced by a HA proxy and having to share and/or
replicate their identity databases. PostgreSQL or MySQL are currently the sup-
ported databases to run in a cluster, whereas SQLite is the default one for a single
fabric CA server.

Along with the certificates, MSPs have configuration files composed of each iden-
tity, optionally structured in Organizational Units (OUs). These units can divide
different members with different permissions, both locally and in a channel, as
described in 3.5.1. Members of an organization with provided identities can in-
teract with the channel in different ways:

• The Organization 1 user accesses the network through a client application,
using a library that interacts to the peer through gRPC, a Remote Procedure
Call (RPC) framework using Protobuf messages developed by Google;

• The administrator can access the peer directly, through a Command-Line
Interface (CLI) shown in the next section, to interact with data directly by
invoking smart contracts to read or input data. The CLI interface is not
limited to an administrator, but it’s impractical for regular users to access a
device that way.

In this architecture, it is assumed that the administrator of Organization 1 also
has administrative privileges in the channel, defined in the following Figure 4.3,
meaning that he is also able to manage channel policies. An organization can run
multiple peers and orderers, also depending on the authorization given by the
channel policy, with its structure shown in the following section.

A client application more adequate for a regular user is also shown, interacting
with the network in an easier way, shown later in Figure 4.4. Despite not being
shown directly, it is assumed an administrator has every permission a regular
user has, so it is also possible for him to interact with this application. This ad-
ministrator, by having access to the device where the peer is running, can also
interact directly with it, through a CLI, displayed in Figure 4.5, in the next archi-
tecture layer.

48

Requirements definition and architecture

Channel system

The view pictured in Figure 4.3 represents the minimum parts of a channel nec-
essary for a proper blockchain network. Every channel must have a group of
policies, associating identities generated by a CA with capabilities in the channel,
such as:

• The ability to read and write from the ledger;

• Who is able to maintain peers and orderers in the channel;

• Who are the administrators of the channel.

Peer 1
[Container: Go]

Manages ledgers, smart contracts transaction
proposals and endorsements.

Channel configuration
[Container: YAML config, PEM files]

Contains the MSP information of the participants of
the channel, as well as their policies and capabilities.

Orderer
[Container: Go]

Responsible for ordering transactions in a block and
submitting blocks to the peers.

Peer 2
[Container: Go]

Manages ledgers, smart contracts transaction
proposals and endorsements.

Chaincode
[Container: Go, Javascript, Typescript, Python]

Channel 1
[Channel]

Installs, approves

and executes.

Organization 2
[Organization]

Provides new block with

ordered transactions.

[gRPC]

Orderer Organization
[Organization]

Installs, approves

and executes.

Provides new block with

ordered transactions.

[gRPC]

Organization 1
[Organization]

Interacts with product data

Manages channel configuration changes

[CLI]

Administrator
[Person]

Administrator of the channel and
organization 1.

Administrator
[Person]

Administrator of the channel and
organization 2.

Interacts with product data

Manages channel configuration changes

[CLI]

Figure 4.3: Channel system diagram of the C4 architecture model.

In order for a blockchain network to have a real purpose, its ledger has to be dis-
tributed and validated between different entities. This is why, in this example,

49

Chapter 4

two peers are responsible for executing and endorsing transactions, while an ex-
tra orderer organization orders the result of those transactions into new blocks,
fed back to the peers. This process was thoroughly described in Section 3.5.1.

For simplicity, only an orderer is represented here, although in a real network,
it is recommended in [Hyperledger, 2022k] to run more than a single orderer,
where in this case a consensus algorithm, reviewed in Section 3.5.1, is used to get
additional agreement among different organizations. No users are represented in
the orderer organization, because orderers’ main functions do not have any direct
user actions.

This distinction between peers, orderers and their functions is an intrinsic part of
the Fabric structure. The main idea of this separation can be replicated in different
technologies, by giving the power of executing different smart contracts, access
different types of data and validate the network to separate entities.

4.3.3 Component layer

After reviewing the second layer, components of the client application and peer of
Organization 1 are presented with additional detail, using the third architecture
layer of the C4 model.

Client application container

The application, shown in Figure 4.4, is structured in a similar way to any mod-
ern web application and only the Fabric gateway API is part of the Fabric project.
Starting off with the frontend application, this component can be composed by any
technology able to display pages to the end user with data from the network, ei-
ther by a web browser used in this case, or alternatively with a native application
from any operating system.

As the user executes actions in the frontend, HTTP(S) requests go to another com-
ponent, an backend application with REST API, which is responsible from parsing
the data correctly and use a Fabric gateway API to make the proper requests in
gRPC to the network. Note that these calls require infrastructural logic, which
the gateway API uses, letting the backend only worry with business logic.

50

Requirements definition and architecture

Channel 1
[Channel]

User
[Person]

Normal user with limited permissions given
by organization 1.

Organization 1
[Organization]

REST API
[Component: Express JS, Go, Spring]

Exposes endpoints to interact with Client
applications.

Fabric gateway client API
[Component: JavaScript, TypeScript, Go,

Python]

Library to deal with the infrastructural logic of the
Fabric network.

Application front-end
[Component: e.g. Vue, React, HTML/CSS/JS]

GUI for interaction with the back-end

Client application
[Container]

Makes API calls
[JSON/HTTP]

Uses

Interacts with product data
[Web Browser]

Interacts with the network.

Submits transactions.

[gRPC]

Peer 1
[Container: Go]

Manages ledgers, smart contracts transaction
proposals and endorsements.

Peer 2
[Container: Go]

Manages ledgers, smart contracts transaction
proposals and endorsements.

Organization 2
[Organization]

Interacts with the network.

Submits transactions.

[gRPC]

Figure 4.4: Client components diagram of the C4 architecture model.

After the network processes the calls, the response is dealt with the application
backend, which responds with a HTTP status code and body, in the case of a web
application as stated above.

Peer container

Figure 4.5 shows components that make up a peer in the Hyperledger Fabric
network. To simplify, some components used in the peer are not illustated inde-
pendently, such as the internal gRPC interface and the gossip protocol used to
discover peers.

51

Chapter 4

Channel 1
[Channel]

Channel configuration
[Container: YAML config, PEM files]

Contains the MSP information of the participants of
the channel, as well as their policies and capabilities.

Orderer
[Container: Go]

Responsible for ordering transactions in a block and
submitting blocks to the peers.

Chaincode
[Container: Go, Javascript, Typescript, Python]

Administrator
[Person]

Administrator of the channel and
organization 1.

Organization 1
[Organization]

Installed chaincode
[Component: e.g. Go, Typescript, Javascript]

Description of component role/responsibility.

Ledger
[Component: LevelDB, CouchDB, JSON]

Contains the current World State and the blockchain
with past transactions.

Channel configuration
[Component: e.g. YAML configuration file]

Contains the MSP information of the participants of
the channel, as well as their policies and capabilities.

Peer node
[Component: Go]

Executes chaincode, chaincode lifecycle and channel
related actions.

Endorses and verifies endorsement of new
transactions.

Peer 1
[Container]

Fabric Gateway service
[Component: Go]

Receives Fabric Gateway API calls from client
applications.

Manages transaction proposals and endorsements.

Updates ledger with

new block

Installs, approves

and executes

Peer CLI
[Component: Bash]

CLI interface to the organization peer.

It can manage the peer node, calls chaincode,

chaincode lifecycle and channel related actions.

Sends instructions

Sends instructions

Provides new block with

ordered transactions.

[gRPC]

Interacts with the network.

Submits transactions.

[gRPC]

Verifies

signatures from Copy of

Copy of

Interacts with product data

Manages channel configuration changes

[CLI]

Client application
[Container: e.g. Javascript, Typescript, Go]

Client application to interact with Fabric peers

Figure 4.5: Peer components diagram of the C4 architecture model.

Using peer executables, an administrator can interact with the network through a
CLI, as mentioned already. These interactions require the peer node to be running,
which executes the necessary functions, which can be anything from managing
the peer, channel or chaincode functions the peer is participating in. Every peer
participating in a channel must have a copy of:

• The channel configuration which includes the channel MSP and a configura-
tion file stating the capabilities of the rest of the members of the network;

• The chaincode used in every channel, whenever it needs to execute and
endorse the transactions he is in.

While the peer node daemon is running, an orderer can also send him messages
of new blocks, through gRPC as it is done for all internal communication in the
network, and update his ledger and world state, described in Section 3.5.1.

4.4 Summary

This chapter described the process of designing an architecture, based on the C4
model, starting with the listing of relevant quality attributes for a blockchain net-
work, giving relevant scenarios for these attributes and trade-offs, followed by an
enumeration of different high level requirements, separated in different domains.

With reference to the projects discussed in the preceding chapter that address
some quality attributes, it was determined that these were outside the scope of

52

Requirements definition and architecture

this work. Some high level requirements were also set with a lower priority and
will not be approached in the next chapter, during the development of a proto-
type.

By finishing this chapter exploring a possible architecture, it is expected to fulfill
its role as a blueprint of a generic platform of product biographies. The objec-
tive for the next chapter is to implement a prototype based on this architecture,
describing every relevant step taken.

53

Chapter 5

Implementation of a product
biography platform

This chapter shows the process of implementing a prototype of a platform for
product biographies, exemplifying the architecture defined in the last chapter.
The implementation phase started off by identifying the needed software and de-
pendencies to run, followed by a summarization of the initial attempt of setting
up a Sawtooth network, and upon trial and error, follow through with a Fab-
ric implementation instead. Some key artifacts were developed along with the
network, such as:

• A base data model to define a product;

• The smart contract around this product definition to be used in the Fabric
network;

• A REST API to connect to the Fabric network and simplify the infrastructure
logic of the implementation, defined as the backend of a client application;

• A simple web page to interact with the REST API and show results to the
end user, defined as the frontend of a client application.

The goal of this implementation is to achieve the Must have and Should have points
defined in Section 4.2, mentioning every high level requirement fulfilled through-
out the development, and show off the possibilities of this network.

5.1 Prerequisites

Before starting with the implementation of the project, some software dependen-
cies must be installed. In this section, every dependency for every developed
artifact is listed.

55

Chapter 5

To test the Hyperledger Sawtooth test validator, only Docker, docker-compose
are required, as the inner dependencies of Sawtooth are not documented but in-
stead just added to a docker-compose YAML configuration file. Ubuntu 18 is also
required to run a Sawtooth node natively.

The final implementation of the Hyperledger Fabric network, has the following
requirements, without any specific operating system required:

• Fabric binaries and docker images of the test network, using the latest ver-
sion v2.4.6;

• docker and docker-compose;

• jq, a Command-Line Interface (CLI) JSON processor;

• logspout, a log router for Docker.

Fabric provides four different language options for the Chaincode implementa-
tion. JavaScript (JS) was chosen for this thesis because of the familiarity with the
language and past experience. To use this language, the following requirements
are needed:

• node, a JS runtime environment, using the latest version, v19.0.1;

• npm, a package manager that comes bundled with Node, using the latest
version, 8.19.2.

The dependencies of the Node chaincode project itself are:

• fabric-contract-api, providing a contract interface for the JS code, using
the latest version, v2.2.3;

• json-stringify-deterministic and sort-keys-recursive, to make sure
the JSON data of products is already read and written in a deterministic
way, using the latest versions v1.0.8 and v2.1.8, respectively.

Despite the fabric-contract-api dependency requiring a v12.16.1 version of
node and npm with version 6.4.1, the smart contract showed no problem running
with the versions stated above. For the client application and as mentioned in the
introduction, two projects were created. The backend application, involving the
REST API, uses the following dependencies:

• express, a JS web application framework. using the latest stable version
v4.18.2;

• fabric-gateway, providing the API to the Fabric network, using the latest
version v1.1.2;

56

Implementation of a product biography platform

• uuid, to generate unique product IDs, using the latest version 9.0.0;

• Other dependencies used for the API documentation and HTTP request
handling: swagger-jsdoc in v6.2.7, swagger-ui-express in v4.6.0, cors
in v2.8.5 and body-parser in 1.20.1.

And finally, for the frontend of the client application, the following dependen-
cies were used:

• vue, a JS framework for user interfaces;

• vuetify, a vue framework for UI components.

Other dependencies were used during development, such as a linter for the JS
projects and a build tool used with the frontend application, but were not listed
as they have no impact to the result of the implementation. The choices were
made around JS frameworks, Express and Vue, again, due to the familiarity of it
with past projects. The client application’s sole purposes is to demonstrate the
network and chaincode’s capabilities with external requests, so the technology
selection here has little impact on the project as a whole.

Following the prerequisites summary, the next chapter shows the attempt taken
in implementing a Hyperledger Sawtooth network.

5.2 Setting up a Sawtooth network

An initial implementation using Hyperledger Sawtooth was attempted, since it
had more desirable features that could help for a product biography platform and
the overall architecture would be simpler to apply, for example by using only one
type of validator, opposed to what happens in Hyperledger Fabric.

Despite using the latest version v1.2, the project showed a lack of maintenance
and stability of dependencies during the installation and execution of a Sawtooth
node, documented in [Hyperledger, 2022m]. Windows and Linux-based operat-
ing systems were used.

The first attempt was running a test validator, available from a docker-compose
file in the Sawtooth documentation. The docker-compose worked as expected,
creating the necessary images and running containers for the REST API and the
validator itself. Problems started occuring when, in order to run the necessary
software to perform transactions, unmaintained packages had to be used and
without it, not even the test validator would work. After further trial to use
this software, more dependencies had to be downgraded to match the packages’
versions and, after a cost-benefit and risk analysis, the decision to opt for the
implementation of a blockchain network using more popular options, such as
the Hyperledger Fabric project, was taken.

57

Chapter 5

As a preemptive measure, it was previously stated in Section 2.3, that in case a
Sawtooth implement would become unsuccessful, a fallback solution would be
to implement a new solution using the Fabric framework, reviewed in Section
3.5.1, followed by a new architecture from the last semester as well.

The following Section will depict the development taken, in a successful way,
using Hyperledger Fabric as a backend for a blockchain network.

5.3 Setting up a Fabric network

After the trial and error of setting up of a Sawtooth network, an implementation
for a Hyperledger Fabric network was attempted. The Fabric project has different
public repositories available for the different components in open development,
including one called fabric-samples, which has implementation samples of sev-
eral Fabric artifacts, such as a test network, a Fabric CA server and different types
of chaincode and organization examples.

These samples were pulled from the repository, using the latest version of Fabric,
v2.4.6 at the time of the elaboration of this thesis, along with binaries used to
run the peer related functions. A group of scripts are present in the samples to
simplify different actions, such as:

• network.sh, by setting up a sample network, with options to create a chan-
nel which acts as our blockchain network, to set up a CA server ran by
different organizations, and to select a different world state database, such
as CouchDB;

• monitordocker.sh, monitors every actor of the test network, more detail in
the next chapter;

• Other scripts called by network.sh also exist, for example deployCC.sh to
deploy a chaincode in the test network or createChannel.sh to create a
channel and anchor it to the available peers.

To begin, after the prerequisites were installed, the command

./network.sh up createChannel -ca

was run in the test-network folder of the fabric-samples, to generate the following
running docker containers:

• peer0.org1.example.com and ca_org1, representing a peer node and a CA
server owned by Organization 1, matching the Peer node component in “Peer
container” of Section 4.3.3 and the Fabric CA server container in “Organiza-
tion system” of Section 4.3.2;

58

Implementation of a product biography platform

• peer0.org2.example.com and ca_org2, representing a peer node and a CA
server owned by Organization 2;

• orderer.example.com and ca_orderer, representing an orderer node and a
CA server owned by the Orderer Organization;

• cli, corresponding to the Fabric CLI container in the architecture layer 2
in Section 4.3.2, has the scripts above exposed to interact with the Fabric
network.

From here onwards, the fabric-samples scripts may be ran locally from the
pulled repository folder or in the cli container.

To interact with a specific peer, since both are running on the same machine, en-
vironment variables are used to refer to the peer with want, along with their
Membership Service Provider (MSP) data. To do this, these variables can be
set manually or with the help of another script present in the Fabric samples,
setOrgEnv.sh. The variables used by peer functions are, but not limited to:

• PEER_TLS_ENABLED, may be true or false to enable Transport Layer Security
(TLS) communication;

• PEER_LOCALMSPID, referring the MSP organization ID of the peer;

• PEER_TLS_ROOTCERT_FILE, is the path to the certificate used for TLS com-
munication;

• PEER_MSPCONFIGPATH, pointing to the MSP folder structure;

• PEER_ADDRESS, is the address and port where the peer is connected.

At this point, a basic network is ready to be interacted with, but before starting
the implementation of the smart contract and client application, we will take a
look into how both organizations and channel are configured.

5.3.1 Organizations configuration

As mentioned in the literature review, in Section 3.5.1, organizations are identi-
fied through MSPs and their identities composed by CA certificates. To have a
working organization, the following structured must be followed by itself and
every member:

msp
cacerts

cert.pem
intermediatecerts
keystore

signer.key
signcerts

59

Chapter 5

signer.pem
tlscerts

tls-ca-cert.pem
tlsintermediatecacerts
config.yaml

Each members has access to a private and public key pair, keystore/signer.key
and signcerts/signer.pem respectively, to sign and verify signatures of data,
such as the result of transactions. As for the certificates, the cacerts folder con-
tains the certificates of the root Certificate Authority (CA) trusted by the organi-
zation. Every member of the organization must have a certificate derived from
this one, directly or through an intermediate certificate, used for example to sep-
arate different Organizational Units (OUs). In this case, these certificates belong
in the intermediatecerts folder. For secure communication, it is the tlscerts
certificates that are used for TLS, and the tlsintermediatecacerts if needed, by
the same logic of intermediatecerts. The list of MSP folders goes on, mentioned
in [Hyperledger, 2022h], but they are unnecessary for the implementation of this
network.

In the case of the test network, there is a MSP for each one of the organizations
and for both members: users and administrators. The next section shows how
these MSPs are referred to and given permissions in a channel.

5.3.2 Channel configuration

A channel MSP, in contrast to a local MSP shown above in detail, is not a set of
folders but part of a YAML configuration file, as mentioned in the Channel part
of the Hyperledger Fabric review in Section 3.5.1.

This configuration file has essential attributes and capabilities, defining both poli-
cies between organizations and version requirements:

• Organizations has a list of all organizations included in the channel and
all the information needed about them, which includes their MSP path, ID,
name, IP addresses of endpoints and Policies;

• Capabilities define the mininum version requirements for orderers, peers
and both, in order to run in a compatible manner;

• Application, Orderer and Channel attributes are linked to the policies and
other functional configuration settings for peers, orderers and channels re-
spectively.

A full list of a sample configuration file is available in [Hyperledger, 2022c]. Ad-
ditionally, this means that the channel itself lacks a public/private key pair and
its own certificates.

This configuration, in addition to the blockchain, must be kept in consensus in
every node and, if needed, updated accordingly.

60

Implementation of a product biography platform

5.4 Product biography smart contract

The goal in this section is to develop a working smart contract to give fundamen-
tal requirements for a product biography, mentioned in Section 4.2, To start, the
data model representing a product must be defined, in order to properly store its
data. Then, the functions interacting with this data model are described, in order
to properly interact with the product biography.

5.4.1 Data model definition

As mentioned in the 4.2.1 Section, to have the least restrictions on the data model,
we consider only three data objects in the smart contract: product, event and trans-
formation. These objects are the basic foundation of a biography, portraying what
happens to a product and how it is used. The following JSON structure repre-
sents a product with a single event and transformation, based on a textile prod-
uct, mentioned in Section 1.2:

{
"id": "1234-5678-90ab-cdef",
"name": "Cotton_1",
"events": [

{
"description": "Creation",
"location": {

"name": "Coimbra",
"latitude": 40.20564,
"longitude": -8.41955

},
"changes": {

"color": "White",
"quantity": 100,
"unit": "m3"

}
}

],
"transformations": [

{
"description": "Cloth production",
"location": {

"name": "Porto",
"latitude": 41.14961,
"longitude": -8.61099

},
productsId: [

"cdef-5678-1234-90ab"
]

61

Chapter 5

}
],
"color": "White",
"quantity": 100,
"unit": "m3"

}

A product is composed of a string id, a string name, events and transformations
arrays and, optionally, quantity and unit to represent a group or a batch of
products, and any other attribute to represent a product’s inherent characteris-
tics, such as the color in this example.

An event is used to describe any procedural change in the product, starting from
the very beginning with a harvesting process, for instance. It is composed of a
description string of the event and a location, composed of a name string and
its decimal coordinates. Any attribute can be changed during an event, except
for the id of the product and the name, if the event is the first one of the product.
The changes of each event get stored in a changes object in the event, with the
attributes to change and their new values.

Finally, a transformation represents an instance where a product originated new
ones, through a manufactoring process for example. Each transformation object
contains a description, a productsId array of the IDs of the new created prod-
ucts and a location structured the same way as in the event.

In the next section, the functions and deployment of the chaincode will be shown,
making use of this data model.

5.4.2 Smart contract functions and deployment

Hyperledger Fabric offers four complete language options for chaincode devel-
opment: Go, Java, JavaScript and TypeScript. As mentioned in the prerequisites
section, JS is used and in this language, the smart contract is a subclass of the
Contract class, given by the fabric-contract-api, called ProductBiography.
Every function exposed in this class may be invoked upon deployment. The func-
tions exposed to implement a product biography are the following:

• CreateEmptyProduct creates an empty product, with only an id and name
and no genesis event;

• CreateProduct creates an product, with an id, name and a genesis event
that may contain information about the creation of this product, along with
different attributes;

• UpdateProduct updates a product, taking an event and changing its at-
tributes if needed;

• TransformProduct updates a product with a transformation, creating new
products with an initial event, also given as a parameter;

62

Implementation of a product biography platform

• DeleteProduct deletes a product, given its id;

• GetProduct returns a product from a given id;

• ProductExists receives an id and checks if a product exists or not;

• GetAllProducts returns all existing products. This function uses an internal
getStateByRange method to query all products, although in a production
environment, it may be advised to set an adequate range to not overload
the network with long queries through the blockchain.

And to exemplify the possibility of having private data, equivalent functions of
ProductExists, CreateProduct, GetProduct and GetAllProducts were used. Fi-
nally, interal functions also exist to verify if the objects follow the constraints men-
tioned in the previous section.

Every JSON structure being outputted by the smart contract have its attributes
alphabetically ordered and deterministically structured, to avoid conflicts in re-
sults between different peers and ensure more consistency of data. The ID string
must be generated outside of the Fabric Network or in a deterministic way to
ensure agreement between different peers.

In order to install a chaincode into the network, the sequence of steps below must
be followed. The Fabric binary peer lifecycle contains the necessary function
to follow these steps. Note that in the test work, a ./network.sh deployCC script
may also be used to automatically install it.

1. First, the smart contract has to get packaged properly, to be installed in the
peers;

2. The chaincode package emust be installed in every organization that is re-
quired by the endorsement policy of the chaincode, in order to properly
execute and endorse transactions. Since the endorsement policy is a de-
fault one, the majority of the peers must validate the transaction, therefore
it must be installed on both peers;

3. Upon installing the chaincode, the peers must approve the definition of the
installed package. In this case, the approval is not based on the validating
peers required by the chaincode, but the LifecycleEndorsement rule in the
channel configuration file. The package ID is the combination of the chain-
code label and a hash of the chaincode binaries;

4. When the necessary conditions of the LifecycleEndorsement are met, or in
the case of this network, upon approval of the majority of organizations,
one of them can commit the chaincode definition into the channel.

Finally, the developed chaincode is ready to be invoked, and if required, to be
properly initalized. A special Contract function Init may be required to run
for a proper chaincode initialization, as well as to specify an endorsement policy,

63

Chapter 5

that is, who must endorse the transactions for its results to become valid. Both of
these settings are applied during the approval phase of the chaincode.

In order to upgrade the chaincode to newer versions, the process is similar, ex-
cept upon approving a chaincode definition and committing it to the channel, the
name should remain the same and the sequence number properly incremented,
using the --name and --sequence flags.

Two different chaincode transactions will happen while running the prototype:
ledger queries, where the ledger is only read by a chaincode function. This chain-
code function is executed by a handler for JS code and only endorsed by a single
peer, since no transaction is happening. Ledger updates, as opposed to queries,
need the execution of the handler and the endorsement of the majority of the
peers, as well as the validation of the result.

To interact with the Fabric network and this smart contract outside of the net-
work, the implementation of a client application was described in the following
section.

5.5 Client application example

This section covers the implementation process of the client application. The ob-
jective of this application, which is external to the network, is for it to interact
with the network and carry out actions related to a product biography via the
smart contract created in the previous section. An end user will be able to insert
data in a familiar way, using the frontend page, whereas any developer may use
the web application interface, that is, the REST API, to perform functions through
HTTP requests.

5.5.1 Backend application

The backend application is one of two parts of the client web application and is
responsible to expose a REST API, and in the same time, interact with Fabric peers
through a Fabric Gateway API. The goal is to create a frontend interface that is
simpler to interact with and to show how any other application can communicate
with the network from the outside.

Two ways of authentication could be implemented here, the first is to manage its
own authentication service, and use a specific role of an authorized organization
to interact with the network, while the second could just allow the end users
use their own certificates. In a real world scenario, the first option makes more
sense in order to also manage other attributes, such as the bandwidth usage of
every user in an exposed API. For this implementation, the two peers have their
certificates in the backend folder structure, to be able to show the data difference
in private insertions of data.

As for the REST API, the following endpoints with request methods and response

64

Implementation of a product biography platform

codes are exposed, respecting the guidelines of [Mulloy, 2013] and with /api as
the root:

• GET /info, shows a page with the API information generated using Swag-
ger. Returns 200;

• GET /params, shows the current parameters used to access the network,
which may be from Organization 1 or 2. Returns 200;

• PUT /login/org1 and /login/org2, to simulate a login action and change
organizations. Returns 200;

• GET /products, returns a list of all registered products in the network, using
the . Note that in a real case scenario, this request should use additional
parameters to not overload the network by pulling every historical product;
Returns 200;

• POST /product, creates a product from an id, name and, optionally, an event
from the request body. Returns 201, 400 or 500;

• GET /product/:id, reads the product with the given id. Returns 404 if the
product is not found or 200;

• PUT /product/:id, updates the product with an event in the request body.
Returns 200, 400 or 500;

• POST /product/transform, updates a product with a transformation, from
a given id, and with an event and a transformation in the request body.
Returns 201, 400 or 500.

As shown by the response codes, the API properly sanitizes the network output,
catching potential client and server-side errors. All responses related to the prod-
uct biography are structured in JSON objects, such as the structure described in
Section 5.4.1.

Despite the REST API being easily accessed through services like Postman or pro-
grams such as curl, a frontend application was implemented in the next section
for easier visualization, interaction for the end user, and as a way to confirm this
possibility.

5.5.2 Frontend interface

The frontend part of this implementation is a single web page, composed of re-
active components of Vuetify to display the contents of a product and its events
and transformations.

Five actions are possible in this web page:

• Select the organization to view the page from. This is done to exemplify
how private product data is implemented;

65

Chapter 5

• Select a product from a list of existing products, empty products and private
products. This shows a timeline with all the events and transformations in
the product. Empty products are products that do not contain any event or
attributes and private products are products that are only available within
the current organization;

• Create a product from scratch;

• Add an event to a selected product;

• Add a transformation to a selected product, by also giving the names of
new products.

Each action involves a HTTP request to the backend, which will respond with the
desirable product data; parsing the data and properly render the page with the
updated data.

The end result is shown in the next section, along with the interaction with all the
other implemented components.

5.6 Results

After describing the implementation process of each developed artifact, this sec-
tion displays the end result of the project, as well as how every component inter-
act with each other. To start up every component, a start.sh script was devel-
oped, doing the following:

• Initializes the network, writing certficates from the CA root certificate, cre-
ating the network and its peers and orderer;

• Deploys the productbiography chaincode to the network, by following the
steps of Section 5.4.2;

• Updates the MSPs, along with the cryptographic material generated during
the network initialization, in the backend project and gives user permissions
to use the private/public key pairs;

• Starts the two parts of the client application;

• Runs a grafana + prometheus container, to inspect the Fabric network activ-
ity. Its use is covered in the next chapter.

By accessing the frontend link through a browser, exposed locally in port 8080,
the home page shown in Figure 5.1 appears, showing four buttons for different
actions and an empty product list.

66

Implementation of a product biography platform

Figure 5.1: Home page of the frontend application.

Every time the page is loaded or a product updated, HTTP requests to the back-
end are made, which can be seen by inspecting the browser’s Network Monitor, or
by the logs from the backend itself:

[api] GET /api/products called.
[api] GET /api/private/products called.
[services/fabric] Calling the GetAllProducts function of
productbiography.
[services/fabric] Calling the GetAllPrivateProducts function of
productbiography.
[services/fabric] GetAllProducts success.
[services/fabric] GetAllPrivateProducts success.

The “Change to Organization x” button changes the running organization in the
backend, from Organization 1 to Organization 2 and vice versa. In a real world
scenario, this change would be made via a login page to ensure proper autho-
rization of the end user. By clicking the button, the PUT /api/login/org1 or
PUT /api/login/org2 requests are made, and in success, a notification is shown
for the recent change made.

Initially, only two action buttons are enabled, since to add events or transforma-
tion, at least one product must exist to be selected. To proceed with the product
creation, after clicking the “Add product” button, the form in Figure 5.2 appears,
in order to create a product with the following data, also displayed there. Note
that a quantity checkbox is also included, if a batch of products has to be de-
scribed, instead of a single one. The frontend page also allows the user to create
empty products, without events and to make these products private, meaning it
may only be seen by the current organization.

67

Chapter 5

Figure 5.2: Product creation form, with event data.

By submitting this form, the endpoint POST /api/product is called, which the
backend responds by submitting the transaction to the Fabric network, following
the process described in the previous Section 5.4.2.

Upon success, the list of products is queried again and the new product will show
up. In Figure 5.3, the product is selected, showing a timeline of events and trans-
formations, containing just a single genesis event for now. This event has a times-
tamp, which contains the date of creation of the product and an array of changes,
which are the attributes added at the time.

68

Implementation of a product biography platform

Figure 5.3: Selected product, with a unique event.

To add an event and update the product, the “Add event” button will show an-
other form, similar to the form used to create the genesis event in 5.2. Submitting
an event will make a call to the POST /api/product/:id endpoint, and in success,
append a new event to the events array of the product.

Finally, the “Add transformation” shows a different form, shown in Figure 5.4,
to submit a transformation of a product to new ones. This action will not delete
the selected product, but update it with the transformation, while automatically
creating new products with attributes from a genesis event, derived of this trans-
formation.

69

Chapter 5

Figure 5.4: Product transformation form, with event data and a new product.

Submitting this form makes a request to POST /get/product/transformation,
appending the transformation to the current product and creating new products,
with a genesis event composed of the same data. This final result can be seen in
Figure 5.5, with the selected product having two events and a transformation, in
chronological order. For optimization, the transformation only contains the ID of
the new product that appears in the updated list.

70

Implementation of a product biography platform

Figure 5.5: Product final timeline, showing two events and a transformation with
the ID of a new product.

Private products may also be submitted with the smart contract. To do this, a
“Private” checkbox can be checked in the form of Figure 5.2, submitting the prod-
uct privately. In this case, the state of the product in only maintained by the or-
ganizations allowed to read the product data. As an example, a new product,
Private_Cotton_1 is inserted privately in Organization 1, showing in the list of
Figure 5.6a, but absent of Figure 5.6b, showing the Organization 2 list of products.

71

Chapter 5

Figure 5.6: Different listing of private products from both organizations.

(a) Organization 1. (b) Organization 2.

After this implementation review, a few final points must be made. The frontend
part of the client application currently does not use some defined endpoints, such
as GET /api/product/:id, because all the information about the product is al-
ready given by previously called endpoints. Also, some smart contract functions
ended up not being used at all by the client, such as DeleteProduct, because it
does not currently have a use in the client application, since blockchain data is
immutable, but may be used to clear up space in the world state of the ledger.

5.7 Summary

In conclusion, this chapter was able to display the implementation of a platform
of product biographies, with main functions such as the insertion, updates and
relating new products with existing ones. Starting off with a failed attempt run-
ning a Hyperledger Sawtooth network, four artifacts were developed, each with
a unique and essential function to a usable platform, using Hyperledger Fabric.
Also, the Must have and Should have high level requirements were thoroughly re-
spected, and with further development, the rest of the optional requirements may
be implemented in a future iteration of this project.

This shows the possibilities of describing real world data into an immutable log,
which may be controlled by different entities, and with some effort, achieve a re-
spectable level of decentralization. With this available prototype, the following
chapter will review additional implementation details, in order to validate the ar-
chitecture of this thesis, by simulating certain experiments; and also display how
the artifacts may be tested for debugging and further development iterations.

72

Chapter 6

Validation and testing

After describing the implementation process and results, this chapter’s purpose is
to use the developed prototype to validate the Quality Attribute Scenario (QAS)
of the architecture elaborated in Chapter 4 and show how further testing can
be done, reviewing what existing tools may be applied to aid smart contract
development and tools such as Prometheus and the different peer binaries for
blockchain and network monitoring.

6.1 Validation of the architecture

The validation of the architecture was done by simulation of some parts of the
developed prototype, considering the defined scenarios of Section 4.1, and using
different tools, described further, to test the implementation and prove that these
scenarios are effectively applied. From here on, each quality attribute scenario is
going to be referred by its ID.

6.1.1 Network security

In order to respect the quality attribute scenario S1, the Hyperledger Fabric net-
work uses Transport Layer Security (TLS) to encrypt data between the nodes. To
verify this, the network may be inspected using tools such as Wireshark [Foun-
dation, 2022], an open-source network and packet analyser, used to examine and
dissect packets sent in an active network. In this case, we want to verify that TLS
communication is effectively applied during a ledger query and ledger update,
using the GetProduct and CreateProduct functions of the chaincode, mentioned
in Section 5.4.2.

To identify what packets must be analysed, it is essential to know which IP ad-
dresses are involved. Since the test network is running in docker containers, we
need to identify the subnet used by our peers, as well as their IP addresses, using
the following commands:

73

Chapter 6

Find the fabric_test network ID, used in the docker-compose file
$ docker network ls | grep fabric_test

Obtain the subnet used by this docker network
$ docker network inspect -f \
’{{range .IPAM.Config}}{{.Subnet}}{{end}}’ \
<docker_network_id>
172.20.0.0/16

List the containers to get the peers’ container ID
$ docker ps

Retrieve the IP address used
$ docker network inspect -f \

’{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}’ \
<container_id>

172.20.0.8

The identified subnet is 172.20.0.0/16 and, by repeating the last command for
each container, the obtained list of IP addresses is:

• 172.20.0.8 for the Organization 1 peer;

• 172.20.0.7 for the Organization 2 peer;

• 172.20.0.9 for the orderer.

After obtaining this information, it is now possible to properly detect what pack-
ages are sent between these addresses. The next step is analyse what packets are
sent, by reading any interface available in the device, applying a filter to only
read messages from the subnet and invoking a ledger query with the GetProduct
function. Part of the result is showed in Figure 6.1, where after a successful TCP
connection is made, a TLS handshake occurs, initiating the encrypted communi-
cation.

Figure 6.1: Snapshot of network communication during a ledger query.

74

Validation and testing

In the case of a ledger query, this exchange only occurs between the two different
peers, because the orderer is not involved in reading the blockchain, as opposed
to a ledger update, showed in Figure 6.2, where the Organization 1 peer does a
TLS handshake with the orderer, before sending data.

Figure 6.2: Snapshot of network communication during a ledger update.

By observing the data sent in packets, for example in Figure 6.3, Wireshark iden-
tifies the payload as over 6KB of encrypted data sent by the orderer with the IP
address 172.20.0.9, and the encrypted gRPC message is unreadable. We can
deduce that this bigger packet is a new block of data to be appended in the
blockchain by the peers in 172.20.0.7 and 172.20.0.8, but there is no way to
tell what is inside.

Figure 6.3: Encrypted message of an orderer.

By this network analysis, we can validate that the network is secure from man-

75

Chapter 6

in-the-middle attacks, although the ultimate security of the network is always
dependent on the security of the secret keys used by the nodes.

6.1.2 Network decentralization

Although being especially hard to achieve in a permissioned network, decentral-
ization is one of most valued attributes of a blockchain network.

To fulfill the quality attribute scenario S2, the Hyperledger Fabric network en-
ables each channel and smart contract to be controlled by different entities, forc-
ing a consensus between different organizations. This is done in the channel con-
figuration, documented in [Hyperledger, 2022d], which explains every point of
the configuration as well as the process of updating it.

In summary, three groupings of configuration exist in a channel:

• Channel, includes the overall channel configuration and the policies on that
level;

• Application, which has the configuration and policies of peers;

• Orderer, includes the configuration and policies needed for orderers to op-
erate.

Each one of these groupings have the following policies subgroups: Readers,
Writers, Admins, and exceptionnally, BlockValidation for the Orderer group.
In this configuration, every key aspect of the network management is set with
rules for each participating member. For example, to approve the definition of
a chaincode implementation to the channel, or to update the channel configura-
tion, it requires, by default, a majority of administrators to approve a chaincode
definition.

But ultimately, unlike permissionless networks, the disadvantage of this imple-
mentation is that it requires the trust of whoever controls the channel and en-
dorses the product biography’s smart contract, in order to gain in overall perfor-
mance of the network to host a product biography.

6.1.3 Data privacy

As seen in the implementation results in Section 5.6, The private data of a user
may only be queried if it is part of the organization holding it. To respect the
scenario S3, the organization that owns private data has the only peer holding it
and to prove it, this section will take an internal look into the state database each
organization’s peers.

LevelDB, the default database used in the Hyperledger Fabric test network, is
too primitive for external database analysis, since it does not provide a server
or Command-Line Interface (CLI), and to be able to view the data, a third party

76

Validation and testing

viewer must be used in the filepath /var/hyperledger/production in each peer
container.

Instead, the Fabric network was initialized with the -s couchdb option. This cre-
ates a separate CouchDB container for each peer, accessible with the ports 5984
for Organization 1 and 7984 for organization 2. CouchDB is a NoSQL database,
offering a Graphical User Interface (GUI) interface and more complex query op-
tions. In the /_utils endpoint, using a browser, a login page is shown, displayed
in Figure 6.4.

Figure 6.4: Login page of CouchDB.

The login credentials are available in the docker-compose file with the CouchDB
instances, but may also be set in the peer’s configuration file.

After logging in, a menu with different options to manipulate the database is
available, and in the /_utils/#/_all_dbs page, every database used by the peer
is displayed. The databases related to our product biography smart contract start
with mychannel_productbiography. To visualize what databases are stored in
each peer, a public and private product are inserted through Organization 1. The
end result is presented in Figures 6.5 and 6.6, where each organization contains a
h_(...)_orgX and p_(...)_orgX database, with its size in the middle and num-
ber of documents, or JSON objects, to the right.

Figure 6.5: CouchDB databases of Organization 1.

77

Chapter 6

Figure 6.6: CouchDB databases of Organization 2.

The h database only contains a reference to the private product, present in both
databases, but with no actual data at all, which is instead stored in the p database.
This difference in data is shown in Figures 6.7 and 6.8, respectively displaying the
actual private data that only exists in Organization 1, and the reference that exists
in both peers.

Figure 6.7: Private product document of the “p” CouchDB database.

As a note, the version attribute in both JSON objects is the same.

78

Validation and testing

Figure 6.8: Private product document of the “h” CouchDB database.

Through this analysis, we can validate that the system is able to maintain the
confidentiality of sensitive data, where only unauthorized access to the peer may
leak this private data.

6.1.4 Data immutability

Finally, the last quality attribute scenario to validate is around data immutability,
defined as S4: The blockchain is not reverted back by a single or a group of mali-
cious entities. The use of a blockchain is especially useful to make sure appended
data does not get modified.

Hyperledger Fabric provides a way, through the peer and configtxlator bi-
naries, to get information about the blockchain ledger. In order to verify this
scenario, it is important to verify the state of the blockchain while performing
changes to a specific product, and compare the current world state with past
blocks. The following commands are used to save the latest block into a file and
decode it to JSON data:

Get information about the current block
$ peer channel getinfo -c mychannel
InitCmdFactory -> Endorser and orderer connections initialized
Blockchain info: {"height":8,
"currentBlockHash":"cW22jR8QJLbqAREBOyn5JBEf6d0krxLv2wkhya76iPQ=",
"previousBlockHash":"s+mf+Z5oqXFIxEYDeBZiNCsnjeY2ILDKMZDvTjbMlmU="}

79

Chapter 6

Fetch latest block
$ peer channel fetch newest original_product.pb -c mychannel -o \

<orderer_address> --tls --cafile <orderer_tls_certificate>
InitCmdFactory -> Endorser and orderer connections initialized
readBlock -> Received block: 7

Displays the latest block information in JSON
$ configtxlator proto_decode --input latestBlock.pb --type \

common.Block | jq
(...)

The getinfo command outputs the current and previous block hashes, as well
as the number of blocks currently in use. After fetching the block and convert-
ing it, the JSON output still has encoded information, stored in base64. As an
example, some base64 information available in original_product.pb, which is
the extracted block’s file name, is about a product with a single event, making
the product’s color equal to White. After making a change to this product, by
generating an event which turns the color attribute to Black a new block is gen-
erated by the orderer and the blockchain updated by the peers. The final result
is illustrated in figure data is effectively updated, which can be seen in the new
latest block, but block 7 remains intact, showing the appended information did
not get replaced.

Block 7 Block 8

{
 (...)
 "payload": "eyJpZCI6Ijg4
 MjkzM2VkL..."
 (...)
}

cW22jR8QJLbqAREBO...

Prev. hash: s+mf+Z5oqX... Prev. hash: cW22jR8QJL...

0y59ZT8JEmlO3jXeaMJi...

{
 ...
 "payload": "eyJpZCI6Ijg4
 MjkzM2VkL..."
 ...
}

converted to JSON:
{
 (...)
 "color": "White"

}

converted to JSON:
{
 (...)
 "color": "Black"

}

Figure 6.9: Brief representation of the Hyperledger Fabric blockchain.

80

Validation and testing

Finally, we can validate the scenario, by confirming that the blockchain actu-
ally exists, has only appended blocks and any change occuring to the past block
changes the hashes of the subsequent blocks.

This section has successfully validated the architecture around the QAS, through
the implemented prototype, by simulating different actions in the blockchain and
analysing what happens using different tools. The following section will show
further options to assist the development of a platform for product biographies,
applied to the technologies already used in the implementation process.

6.2 Further testing of the implementation

During the validation of the architecture, some tests on the blockchain itself and
the network were already executed. This section will explore further possibilities
of testing, around the development of smart contracts and the network itself.

6.2.1 Smart contract testing

While developing chaincode for the Hyperledger Fabric network, it is important
to be able to test the code locally, instead of deploying the chaincode to a network
everytime a change is made. Two options are available for local testing of the
smart contract code:

1. Running a local peer in development mode;

2. Unit testing smart contract functions.

The first option is documented in [Hyperledger, 2022e], which requires setting
up a network in a similar manner to the test network. Instead of using a channel
configuration with rules for endorsement and proper policies divided between
organizations, a configuration profile called SampleDevModeSolo is used, to sim-
ply run a single peer and orderer to run the chaincode with. In this case, the
chaincode must still follow the deployment steps of Section 5.4.2, but without the
installation part, to be effectively used.

Another option for debugging the smart contract is elaborating unit testing cases,
for instance, for each exposed function in the contract. In JavaScript (JS), the lan-
guage used during the development of this thesis, peer actions to replicate read-
ing or writing data during transactions may be faked, using mock implemen-
tation of the chaincode interface, to make these operations in memory instead.
Dependencies such as sinon [Sinon.JS, 2022] may be used, which offers the men-
tioned mock implementation, along with chai [Chai, 2022] as an assertion library.

Finally, to cover all nuances of blockchain development, it is still recommended
to run a test network simulating the end network as closely as possible. Even
with passing unit tests and proper trials in a development mode, issues related
to the endorsement of the developed transactions may occur, for example.

81

Chapter 6

6.2.2 Network analysis

Analysing network metrics is essential in a distributed network and hard to achieve
the more a network scales. Hyperledger Fabric’s test network contains images
ready for network monitoring, running prometheus [Prometheus, 2022] and grafana
[Labs, 2022a], which will be tested.

Prometheus is also an open-source tool, a monitoring and alerts system. Its goal is
to collect metrics from a distributed network and store it in a time series database,
which may be later used or just queried. Grafana is one of the tools that can use
these metrics, in order to display it interactively in a dashboard, for example.

Upon starting the mentioned containers, Grafana exposes a port 3000 to access
an available frontend, already plotting graphs for all sorts of metrics. An exam-
ple is shown in Figure 6.10, displaying some content from an already existing
dashboard, named “HLF Performance Review”, already tailored for our needs.

Figure 6.10: Ledger related metrics, from the Grafana dashboard.

After executing some transactions, these ledger metric show the time needed for
certain activities, as well as the blockchain height going up for each new product,
event or transformation inserted. More metrics are provided in this dashboard,
such as:

• Central Processing Unit (CPU), memory and disk usage;

• Chaincode metrics, such as the number of requests received, completed and
their duration;

82

Validation and testing

• Endorsement proposals also received, completed and their duration.

Prometheus’s metric gathering may also be expanded to cover the implemented
client’s REST API. Despite not being validated in the architecture of this thesis,
these monitoring tools improve network observability and are useful to properly
analyse the performance of the network.

To conclude, besides the dashboard analysis, a monitordocker.sh script is also
provided by the fabric-samples repository, mentioned in Section 5.3. This script
uses a program called logspout, used to route the different logs of the contain-
ers used for the network, into a single screen. It is especially useful to analyse
the functioning flow of the network when a transaction occurs, for instance, by
observing all nodes’ processes at once.

6.3 Summary

In this chapter, the main goal of validating the previously designed architecture
was achieved, respecting the formalized QAS of Section 4.1. During this vali-
dation process, iterating through each scenario, simulation of some parts of the
prototype was required, along with using additional tools to gather more detailed
information about blockchain data and the network itself. Finally, to uncover ad-
ditional information about the network’s operation, a monitoring and logging
system were covered.

83

Chapter 7

Conclusion

This thesis has shown the possibilities of a platform of product biographies, using
a blockchain network. Due to blockchain’s applicability and benefits, the work
started by analyzing and comparing the key design decisions made by various
projects using it: two cryptocurrencies and two enterprise projects.

Going forward with a Hyperledger Fabric implementation for the blockchain net-
work, high level requirements and quality attributes were identified for this plat-
form, and a software architecture was designed for a first iteration of a blockchain
network with the desired traits.

The implementation process proved that it is possible to apply the designed ar-
chitecture in a functional way, due to the successful creation of a test network, a
smart contract designed to control basic operations of a product biography, and
a client application to operate with these products. It also suggests that Hyper-
ledger Fabric is a possible solution, enabling a wide range of choices for future
work.

The architecture was also validated and tested, using the current implementation
as a prototype for simulating different outputs, to be assessed with proper tools.

In the following and sections, as predicted in the methodology used for this thesis
in Chapter 2, we identify limitations of the output of this thesis and guidelines
for a next possible iteration of the work.

7.1 Limitations

This section covers three main limitations of this thesis. These limitations de-
scribe what was not possible to complete during the thesis timeframe and may
also be reconsidered in future work.

The implemented artifacts lack with real world data in a practical use case. Be-
cause of this, more specific requirements could not be defined, such as specific
organizational structures and different modeling of data.

85

Chapter 7

Scenarios about other relevant quality attributes, such as performance, availabil-
ity and scalability, were not elaborated. These attributes are particularly chal-
lenging to verify realistically in a test network, as the response measures must be
more objective and linked to a real life scenario, which is harder to achieve.

Finally, not much information by regulators is available to properly define archi-
tectural constraints. Despite these limitations, the thesis results provide insightful
information on how to create a platform of product biographies. The last section
outlines the future guidelines to expand the work in possible future iterations.

7.2 Future work guidelines

This final section will provide future work possibilities in different domains, ad-
dressing the work carried on by this thesis. These suggestions were divided by
different domains, taking into account the steps of the methodology used for this
thesis.

Starting with the solution objectives, future work may extend the goal of a generic
product biography into more specific domains, such as covering the life of textile
products, from raw material gathering to disposal. The objective would be ex-
tracting more value of the representation of specific products, in a well defined
environment. The network may be implemented to adapt to this real environ-
ment, in order to gather real-time data of physical products.

For the architecture, the lacking quality attributes mentioned in the previous sec-
tion may be applied and validated. Also, specific organizations may be referred
and planned for in a production environment, such as different companies and
regulators.

Finally, in the implementation part, the work done can be extended in a few ways.
Adding interoperability options to the products is an option, such as structural
compatibility with Ethereum Request for Comments (ERC)-721 and ERC-1155
or even an interface to enable cross-communication to Ethereum Virtual Machine
(EVM) compatible networks, which are very popular nowadays. In relation to the
data, as products, events and transformations grow in the peer’s local storage, the
database could be extended to a regular relational database, outside of the peers,
to manage larger quantities of data in a more scalable fashion. In addition to these
three data objects, others could be put in practice, depending on the domain and
on the storage method used.

Hopefully, with this final analysis, the path to develop further iterations around
this project becomes clearer, since the use of a platform of product biographies is
unquestionably attractive for all entities participating in the life of a product.

86

References

Tarun Kumar Agrawal, Vijay Kumar, Rudrajeet Pal, Lichuan Wang, and Yan
Chen. Blockchain-based framework for supply chain traceability: A case ex-
ample of textile and clothing industry. Computers & industrial engineering, 154:
107130, 2021.

Kevin Werbach Aiden Slavin. Decentralized autonomous organizations: Beyond
the hype, 2022.

Farhad Ameri and Deba Dutta. Product lifecycle management: closing the knowl-
edge loops. Computer-Aided Design and Applications, 2(5):577–590, 2005.

Andreas M Antonopoulos, Olaoluwa Osuntokun, and René Pickhardt. Mastering
the Lightning Network. " O’Reilly Media, Inc.", 2021.

Adam Back et al. Hashcash-a denial of service counter-measure, 2002.

João Barata, Vasco Pereira, and Miguel Coelho. Product biography information
system: a lifecycle approach to digital twins. In 2020 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC), pages 899–904. IEEE, 2020.

Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice.
Addison-Wesley Professional, 2003.

Simon Brown. The c4 model for visualising software architecture, 2022. URL
https://c4model.com/.

Vitalik Buterin. Ethereum: A next-generation smart contract and decentralized
application platform., 2015a.

Vitalik Buterin. Decentralized society: Finding web3’s soul, 2015b.

Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proac-
tive recovery. ACM Transactions on Computer Systems (TOCS), 20(4):398–461,
2002.

Chai. Assertion library, 2022. URL https://chaijs.com/.

Aldar C-F. Chan. Utxo in digital currencies: Account-based or token-based? or
both?, 2021.

Wai Kok Chan, Ji-Jian Chin, and Vik Tor Goh. Evolution of bitcoin addresses from
security perspectives. In 2020 15th International Conference for Internet Technology
and Secured Transactions (ICITST), pages 1–6. IEEE, 2020.

87

https://c4model.com/
https://chaijs.com/

Chapter 7

Dai Clegg and Richard Barker. Case method fast-track: a RAD approach. Addison-
Wesley Longman Publishing Co., Inc., 1994.

CoinMarketCap. Coinmarketcap historical snapshot, 2022. URL https://
coinmarketcap.com/historical/20210221/.

European Commission. Eu strategy for sustainable and circular textiles, 2022.

Vitalik Buterin Fabian Vogelsteller. Eip-20: Token standard, 2015. URL https:
//eips.ethereum.org/EIPS/eip-20.

The Wireshark Foundation. Wireshark, 2022. URL https://www.wireshark.
org/.

Michael Fröwis, Andreas Fuchs, and Rainer Böhme. Detecting token systems on
ethereum. In International conference on financial cryptography and data security,
pages 93–112. Springer, 2019.

Henri Gilbert and Helena Handschuh. Security analysis of sha-256 and sisters. In
International workshop on selected areas in cryptography. Springer, 2003.

Johannes Göbel and Anthony E Krzesinski. Increased block size and bitcoin
blockchain dynamics. In 2017 27th International Telecommunication Networks and
Applications Conference (ITNAC), pages 1–6. IEEE, 2017.

GS1. Gs1 general specifications, 2022a.

GS1. Gs1 system architecture, 2022b.

Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. Design science
in information systems research. MIS quarterly, pages 75–105, 2004.

Hyperledger. Sawtooth: An introduction, 2018.

Hyperledger. An overview of hyperledger foundation, 2021.

Hyperledger. Hyperledger fabric ca documentation, 2022a. URL https://
hyperledger-fabric-ca.readthedocs.io/en/latest/.

Hyperledger. A blockchain platform for the enterprise, 2022b. URL https://
hyperledger-fabric.readthedocs.io/.

Hyperledger. Channel capabilities - hyperledger fabric main documentation,
2022c. URL https://hyperledger-fabric.readthedocs.io/en/release-2.5/
capabilities_concept.html.

Hyperledger. Updating a channel configuration - hyperledger fabric main doc-
umentation, 2022d. URL https://hyperledger-fabric.readthedocs.io/en/
release-2.5/config_update.html.

Hyperledger. Running chaincode in development mode - hyperledger
fabric main documentation, 2022e. URL https://hyperledger-fabric.
readthedocs.io/en/release-2.5/peer-chaincode-devmode.html.

88

https://coinmarketcap.com/historical/20210221/
https://coinmarketcap.com/historical/20210221/
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://www.wireshark.org/
https://www.wireshark.org/
https://hyperledger-fabric-ca.readthedocs.io/en/latest/
https://hyperledger-fabric-ca.readthedocs.io/en/latest/
https://hyperledger-fabric.readthedocs.io/
https://hyperledger-fabric.readthedocs.io/
https://hyperledger-fabric.readthedocs.io/en/release-2.5/capabilities_concept.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/capabilities_concept.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/config_update.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/config_update.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/peer-chaincode-devmode.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/peer-chaincode-devmode.html

References

Hyperledger. Gossip data dissemination - hyperledger fabric main docu-
mentation, 2022f. URL https://hyperledger-fabric.readthedocs.io/en/
release-2.5/gossip.html.

Hyperledger. Ledger - hyperledger fabric main documentation, 2022g. URL
https://hyperledger-fabric.readthedocs.io/en/release-2.5/ledger/
ledger.html.

Hyperledger. Membership service provider (msp) - hyperledger fabric main doc-
umentation, 2022h. URL https://hyperledger-fabric.readthedocs.io/en/
release-2.5/membership/membership.html.

Hyperledger. The ordering service - hyperledger fabric main documentation,
2022i. URL https://hyperledger-fabric.readthedocs.io/en/release-2.5/
orderer/ordering_service.html.

Hyperledger. Peers - hyperledger fabric main documentation, 2022j. URL
https://hyperledger-fabric.readthedocs.io/en/release-2.5/peers/
peers.html.

Hyperledger. Using the fabric test network - hyperledger fabric main docu-
mentation, 2022k. URL https://hyperledger-fabric.readthedocs.io/en/
release-2.5/test_network.html.

Hyperledger. Hyperledger sawtooth documentation, 2022l. URL https://
sawtooth.hyperledger.org/docs/.

Hyperledger. Setting up a sawtooth node for testing, 2022m. URL
https://sawtooth.hyperledger.org/docs/1.2/app_developers_guide/
installing_sawtooth.html.

Hyperledger. Transactions and batches - hyperledger sawtooth documentation,
2022n. URL https://sawtooth.hyperledger.org/docs/1.2/architecture/
transactions_and_batches.html.

Hyperledger. sawtooth-validator - hyperledger sawtooth documenta-
tion, 2022o. URL https://sawtooth.hyperledger.org/docs/1.2/cli/
sawtooth-validator.html.

Niclas Kannengießer, Sebastian Lins, Tobias Dehling, and Ali Sunyaev. Trade-offs
between distributed ledger technology characteristics. ACM Computing Surveys
(CSUR), 53(2):1–37, 2020.

Enis Karaarslan and Enis Konacaklı. Data storage in the decentralized world:
Blockchain and derivatives. arXiv preprint arXiv:2012.10253, 2020.

Rick Kazman, Mark Klein, Mario Barbacci, Tom Longstaff, Howard Lipson, and
Jeromy Carriere. The architecture tradeoff analysis method. In Proceedings.
fourth ieee international conference on engineering of complex computer systems (cat.
no. 98ex193), pages 68–78. IEEE, 1998.

Grafana Labs. Grafana: The open observability platform., 2022a. URL https:
//grafana.com/.

89

https://hyperledger-fabric.readthedocs.io/en/release-2.5/gossip.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/gossip.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/ledger/ledger.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/ledger/ledger.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/membership/membership.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/membership/membership.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/peers/peers.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/peers/peers.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/test_network.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/test_network.html
https://sawtooth.hyperledger.org/docs/
https://sawtooth.hyperledger.org/docs/
https://sawtooth.hyperledger.org/docs/1.2/app_developers_guide/installing_sawtooth.html
https://sawtooth.hyperledger.org/docs/1.2/app_developers_guide/installing_sawtooth.html
https://sawtooth.hyperledger.org/docs/1.2/architecture/transactions_and_batches.html
https://sawtooth.hyperledger.org/docs/1.2/architecture/transactions_and_batches.html
https://sawtooth.hyperledger.org/docs/1.2/cli/sawtooth-validator.html
https://sawtooth.hyperledger.org/docs/1.2/cli/sawtooth-validator.html
https://grafana.com/
https://grafana.com/

Chapter 7

Grafana Labs. Grafana: The open observability platform., 2022b. URL https:
//www.linuxfoundation.org/projects.

Richard A Lancioni, Michael F Smith, and Terence A Oliva. The role of the inter-
net in supply chain management. Industrial Marketing Management, 29(1):1–12,
2000.

Jiongbin Liu, Gingsun Yeoh, Longxiang Gao, Shang Gao, and Ojelanki Ng-
wenyama. Designing a secure blockchain-based supply chain management
framework. Journal of Computer Information Systems, page 5, 2022.

Sofia Lopes Barata and Paulo Rupino da Cunha. Legal and smart! an exploratory
case study on understandability of smart contracts, 2019.

Brian Mulloy. Web api design, 2013.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system", 2008.

Diego Ongaro and John Ousterhout. In search of an understandable consensus
algorithm. In 2014 USENIX Annual Technical Conference (Usenix ATC 14), pages
305–319, 2014.

Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir Chatterjee. A
design science research methodology for information systems research. Journal
of management information systems, 24(3):45–77, 2007.

Prometheus. Monitoring system & time series database, 2022. URL https://
prometheus.io/.

Yacine Rebahi, Jordi Jaen Pallares, Nguyen Tuan Minh, Sven Ehlert, Gergely Ko-
vacs, and Dorgham Sisalem. Performance analysis of identity management in
the session initiation protocol (sip). In 2008 IEEE/ACS International Conference
on Computer Systems and Applications, pages 711–717. IEEE, 2008.

Maryam Rezaei and Bin Liu. Food loss and waste in the food supply chain. In-
ternational Nut and Dried Fruit Council: Reus, Spain, pages 1–2, 2017.

Tim Roughgarden. Transaction fee mechanism design for the ethereum
blockchain: An economic analysis of eip-1559. arXiv preprint arXiv:2012.00854,
page 3, 2020.

Khaled Salah, A Alfalasi, M Alfalasi, M Alharmoudi, M Alzaabi, A Alzyeodi,
and Raja Wasim Ahmad. Iot-enabled shipping container with environmental
monitoring and location tracking. In 2020 IEEE 17th Annual Consumer Commu-
nications & Networking Conference (CCNC), pages 1–6. IEEE, 2020.

Patrick Schueffel. Alternative distributed ledger technologies blockchain vs. tan-
gle vs. hashgraph-a high-level overview and comparison. Tangle vs. Hashgraph-
A High-Level Overview and Comparison (December 15, 2017), 2017.

90

https://www.linuxfoundation.org/projects
https://www.linuxfoundation.org/projects
https://prometheus.io/
https://prometheus.io/

References

Sinon.JS. Standalone test spies, stubs and mocks for javascript. works with any
unit testing framework, 2022. URL https://sinonjs.org/.

Martin Spring and Luis Araujo. Product biographies in servitization and the cir-
cular economy. Industrial Marketing Management, 60:126–137, 2017.

Nick Szabo. Formalizing and securing relationships on public networks. First
monday, 1997.

Nick Szabo. Bit gold, 2022. URL https://unenumerated.blogspot.com/2005/
12/bit-gold.html.

Sergio Terzi, Abdelaziz Bouras, Debashi Dutta, Marco Garetti, Dimitris Kiritsis,
et al. Product lifecycle management-from its history to its new role. Interna-
tional Journal of Product Lifecycle Management, 4(4):360, 2010.

Abdul Wahab and Waqas Mehmood. Survey of consensus protocols. arXiv
preprint arXiv:1810.03357, 2018.

Nick Webb. A fork in the blockchain: income tax and the bitcoin/bitcoin cash
hard fork. North Carolina Journal of Law & Technology, 19(4):283, 2018.

Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.,
2022.

Liupengfei Wu, Weisheng Lu, Fan Xue, Xiao Li, Rui Zhao, and Maohong Tang.
Linking permissioned blockchain to internet of things (iot)-bim platform for
off-site production management in modular construction. Computers in Indus-
try, page 3, 2022.

91

https://sinonjs.org/
https://unenumerated.blogspot.com/2005/12/bit-gold.html
https://unenumerated.blogspot.com/2005/12/bit-gold.html

Appendices

93

Appendix A

Table A1: Data requirements.

ID Description
1.1 The platform must be able to gather product data, with a name and its

events and transformations.
1.2 The platform must be able to represent singular products, as well as

batches of products.
1.3 The product data must have a name attribute and an unique identifier

ID.
1.4 A batch of products must have quantity and unit attributes.
1.5 The product data must be immutable.
1.6 Each different product should have a modular data structure,

depending on its needs.
1.7 The product data could be compatible with GS1 standards, an industry

standard used worldwide for identification and tracking.
1.8 Public product data could be used externally, by following established

NFT standards, such as the ERC-721 or ERC-1155.
1.9 The platform could be able to gather customer and reusage data,

among other types of data from a circular economy point of view.
1.10 Product data could be used for a digital textile passport.
1.11 Additional data, such as images, could be stored outside of a ledger

and referenced there.

95

Chapter 7

Table A2: Stakeholder requirements.

ID Description
2.1 Network administrators must be allowed to configure the network and

define participants and policies.
2.2 Organization users and applications, such as automated IoT devices,

must have different policies to query and input new product data in a
ledger.

2.3 Other clients, organizations and applications must be able to make
personal or transactional data private.

2.4 Any entity must not be allowed to edit or delete previously inserted
product data.

2.5 Other clients, organizations and applications must be allowed to query
unrestricted and authorized product data.

2.6 Clients could be associated to product data, publicly or privately, with
attributes such as ownership.

Table A3: Network requirements.

ID Description
3.1 The network must have a shared blockchain ledger of product data.
3.2 The blockchain must be distributed by, at least, more than one node

from a different organization.
3.3 Different entities should have an interface to interact with the network

and ledger.
3.4 Manual and automatic transactions to the network should be supported

by the network.
3.5 Client front-end applications could be implemented to query product

data.

Table A4: Infrastructure requirements.

ID Description
4.1 Each ledger must be distributed to every participating node.
4.2 There should be at least one node maintaining the ledger for each

participating organization.
4.3 Each participating organization should have at least one node verifying

ledger transactions and smart contract executions impacting them.

96

Pe
er

 1
[C

on
ta

in
er

: G
o]

M
an

ag
es

 le
dg

er
s,

sm
ar

t c
on

tra
ct

s t
ra

ns
ac

tio
n

pr
op

os
al

s a
nd

 e
nd

or
se

m
en

ts
.

C
lie

nt
 a

pp
lic

at
io

n
[C

on
ta

in
er

: e
.g

. J
av

as
cr

ip
t,

Ty
pe

sc
rip

t,
G

o]

C
lie

nt
 a

pp
lic

at
io

n
to

 in
te

ra
ct

 w
ith

 F
ab

ric
 p

ee
rs

C
ha

nn
el

 c
on

fig
ur

at
io

n
[C

on
ta

in
er

: Y
A

M
L

co
nf

ig
, P

EM
 fi

le
s]

C
on

ta
in

s t
he

 M
SP

 in
fo

rm
at

io
n

of
 th

e
pa

rti
ci

pa
nt

s o
f

th
e

ch
an

ne
l,

as
 w

el
l a

s t
he

ir
po

lic
ie

s a
nd

 c
ap

ab
ili

tie
s.

O
rd

er
er

[C
on

ta
in

er
: G

o]

R
es

po
ns

ib
le

 fo
r o

rd
er

in
g

tra
ns

ac
tio

ns
 in

 a
 b

lo
ck

 a
nd

su
bm

itt
in

g
bl

oc
ks

 to
 th

e
pe

er
s.

Pe
er

 2
[C

on
ta

in
er

: G
o]

M
an

ag
es

 le
dg

er
s,

sm
ar

t c
on

tra
ct

s t
ra

ns
ac

tio
n

pr
op

os
al

s a
nd

 e
nd

or
se

m
en

ts
.

C
ha

in
co

de
[C

on
ta

in
er

: G
o,

 Ja
va

sc
rip

t,
Ty

pe
sc

rip
t,

Py
th

on
]

C
ha

nn
el

 1
[C

ha
nn

el
]

A
dm

in
is

tr
at

or
[P

er
so

n]

A
dm

in
is

tra
to

r o
f t

he
 c

ha
nn

el
 a

nd
or

ga
ni

za
tio

n
1.

In
st

al
ls

, a
pp

ro
ve

s

an

d
ex

ec
ut

es
.

U
se

r
[P

er
so

n]

N
or

m
al

 u
se

r w
ith

 li
m

ite
d

pe
rm

is
si

on
s g

iv
en

by
 o

rg
an

iz
at

io
n

1.

Fa
br

ic
 C

A
 se

rv
er

[C
on

ta
in

er
: G

o]

R
es

po
ns

ib
le

 to
 e

nr
ol

l o
rg

an
iz

at
io

ns
, O

U
s a

nd
 u

se
rs

,
cr

ea
tin

g
ce

rti
fic

at
es

 fo
r T

LS
 se

cu
re

 c
om

m
un

ic
at

io
n

an
d

M
SP

s o
f u

se
rs

, p
ee

rs
, a

nd
 a

dm
in

s o
f

or
ga

ni
za

tio
ns

.

L
oc

al
 M

em
be

rs
hi

p
Se

rv
ic

e
Pr

ov
id

er
 (M

SP
)

[C
on

ta
in

er
: Y

A
M

L
co

nf
ig

, P
EM

 fi
le

s]

Id
en

tif
ie

s t
he

 u
se

rs
, p

ee
rs

 a
nd

 a
dm

in
s.

Fa
br

ic
 C

A
 c

lie
nt

[C
on

ta
in

er
: G

o]

C
lie

nt
 u

se
d

to
 re

gi
st

er
 a

nd
 e

nr
ol

l o
rg

an
iz

at
io

ns
, O

U
s

an
d

us
er

s i
n

a
Fa

br
ic

 n
et

w
or

k.

O
rg

an
iz

at
io

n
1

[O
rg

an
iz

at
io

n]

In
te

ra
ct

s w
ith

pr

od
uc

t d
at

a
[W

eb
 B

ro
w

se
r]

Id
en

tif
ie

s

Id
en

tif
ie

s

E
nr

ol
ls

 a
nd

 r
eg

is
te

rs

O
U

s a
nd

 u
se

rs
[C

LI
]

Se
nd

s r
eq

ue
st

s

G
en

er
at

es
 c

er
tif

ic
at

es

In
te

ra
ct

s w
ith

 th
e

ne
tw

or
k.

Su

bm
its

 tr
an

sa
ct

io
ns

.
[g

R
PC

]

In
te

ra
ct

s w
ith

 th
e

ne
tw

or
k.

Su

bm
its

 tr
an

sa
ct

io
ns

.
[g

R
PC

]

U
se

r
[P

er
so

n]

N
or

m
al

 u
se

r w
ith

 li
m

ite
d

pe
rm

is
si

on
s g

iv
en

by
 o

rg
an

iz
at

io
n

2.

A
dm

in
is

tr
at

or
[P

er
so

n]

A
dm

in
is

tra
to

r o
f t

he
 c

ha
nn

el
 a

nd
or

ga
ni

za
tio

n
2.

In
te

ra
ct

s w
ith

 p
ro

du
ct

 d
at

a

M

an
ag

es
 c

ha
nn

el
 c

on
fig

ur
at

io
n

ch
an

ge
s

[C
LI

]

O
rg

an
iz

at
io

n
2

[O
rg

an
iz

at
io

n]

In
te

ra
ct

s w
ith

 p
ro

du
ct

 d
at

a

M

an
ag

es
 c

ha
nn

el
 c

on
fig

ur
at

io
n

ch
an

ge
s

[C
LI

]

Pr
ov

id
es

 n
ew

 b
lo

ck
 w

ith

or
de

re
d

tr
an

sa
ct

io
ns

.
[g

R
PC

]

A
dm

in
is

tr
at

or
[P

er
so

n]

A
dm

in
is

tra
to

r o
f t

he
 O

rd
er

er

or
ga

ni
za

tio
n.

O
rd

er
er

 O
rg

an
iz

at
io

n
[O

rg
an

iz
at

io
n]

L
oc

al
 M

em
be

rs
hi

p
Se

rv
ic

e
Pr

ov
id

er
 (M

SP
)

[C
on

ta
in

er
: Y

A
M

L
co

nf
ig

, P
EM

 fi
le

s]

Id
en

tif
ie

s t
he

 u
se

rs
, p

ee
rs

 a
nd

 a
dm

in
s.

Id
en

tif
ie

s

Id
en

tif
ie

s

L
oc

al
 M

em
be

rs
hi

p
Se

rv
ic

e
Pr

ov
id

er
 (M

SP
)

[C
on

ta
in

er
: Y

A
M

L
co

nf
ig

, P
EM

 fi
le

s]

Id
en

tif
ie

s t
he

 u
se

rs
, p

ee
rs

 a
nd

 a
dm

in
s.

Id
en

tif
ie

s

In
st

al
ls

, a
pp

ro
ve

s

an

d
ex

ec
ut

es
.

Pr
ov

id
es

 n
ew

 b
lo

ck
 w

ith

or
de

re
d

tr
an

sa
ct

io
ns

.
[g

R
PC

]

G
en

er
at

es
 c

er
tif

ic
at

es

G
en

er
at

es
 c

er
tif

ic
at

es

In
te

ra
ct

s w
ith

 p
ro

du
ct

 d
at

a

M

an
ag

es
 c

ha
nn

el
 c

on
fig

ur
at

io
n

ch
an

ge
s

[C
LI

]

Fi
gu

re
A

1:
C

om
pl

et
e

la
ye

r
2

di
ag

ra
m

of
th

e
C

4
ar

ch
it

ec
tu

re
m

od
el

.

97

Chapter 7

C
hannel configuration

[C
ontainer: YA

M
L config, PEM

 files]

C
ontains the M

SP inform
ation of the participants of

the channel, as w
ell as their policies and capabilities.

O
rderer

[C
ontainer: G

o]

R
esponsible for ordering transactions in a block and

subm
itting blocks to the peers.

Peer 2
[C

ontainer: G
o]

M
anages ledgers, sm

art contracts transaction
proposals and endorsem

ents.

C
haincode

[C
ontainer: G

o, Javascript, Typescript, Python]

C
hannel 1

[C
hannel]

A
dm

inistrator
[Person]

A
dm

inistrator of the channel and
organization 1.

Installs, approves

and executes.

U
ser

[Person]

N
orm

al user w
ith lim

ited perm
issions given

by organization 1.

Fabric C
A

 server
[C

ontainer: G
o]

R
esponsible to enroll organizations, O

U
s and users,

creating certificates for TLS secure com
m

unication
and M

SPs of users, peers, and adm
ins of

organizations.

L
ocal M

em
bership Service

Provider (M
SP)

[C
ontainer: YA

M
L config, PEM

 files]

Identifies the users, peers and adm
ins.

Fabric C
A

 client
[C

ontainer: G
o]

C
lient used to register and enroll organizations, O

U
s

and users in a Fabric netw
ork.

O
rganization 1

[O
rganization]

Installed chaincode
[C

om
ponent: e.g. G

o, Typescript, Javascript]

D
escription of com

ponent role/responsibility.

L
edger

[C
om

ponent: LevelD
B

, C
ouchD

B
, JSO

N
]

C
ontains the current W

orld State and the blockchain
w

ith past transactions.

C
hannel configuration

[C
om

ponent: e.g. YA
M

L configuration file]

C
ontains the M

SP inform
ation of the participants of

the channel, as w
ell as their policies and capabilities.

Peer node
[C

om
ponent: G

o]

Executes chaincode, chaincode lifecycle and channel
related actions.

Endorses and verifies endorsem
ent of new

transactions.

Peer 1
[C

ontainer] Fabric G
atew

ay service
[C

om
ponent: G

o]

R
eceives Fabric G

atew
ay A

PI calls from
 client

applications.

M

anages transaction proposals and endorsem
ents.

U
pdates ledger w

ith

new

 block

Installs, approves

and executes

Peer C
L

I
[C

om
ponent: B

ash]

C
LI interface to the organization peer.

It can m
anage the peer node, calls chaincode,

chaincode lifecycle and channel related actions.

Sends instructions

R
E

ST
 A

PI
[C

om
ponent: Express JS, G

o, Spring]

Exposes endpoints to interact w
ith C

lient
applications.

Fabric gatew
ay client A

PI
[C

om
ponent: JavaScript, TypeScript, G

o,
Python]

Library to deal w
ith the infrastructural logic of the
Fabric netw

ork.

A
pplication front-end

[C
om

ponent: e.g. Vue, R
eact, H

TM
L/C

SS/JS]

G
U

I for interaction w
ith the back-end

C
lient application

[C
ontainer]

M
akes A

PI calls
[JSO

N
/H

TTP]

U
ses

Sends instructions
Interacts w

ith product data
[W

eb B
row

ser]

Identifies

Identifies

E
nrolls and registers

O
U

s and users
[C

LI]
Sends requests

G
enerates certificates

Provides new
 block w

ith

ordered transactions.

[gR
PC

]

Interacts w
ith the netw

ork.

Subm

its transactions.
[gR

PC
]

Verifies signatures from

Interacts w
ith the netw

ork.

Subm

its transactions.
[gR

PC
]

C
opy of

C
opy of

U
ser

[Person]

N
orm

al user w
ith lim

ited perm
issions given

by organization 2.

A
dm

inistrator
[Person]

A
dm

inistrator of the channel and
organization 2.

Interacts w
ith product data

M
anages channel configuration changes

[C
LI]

O
rganization 2

[O
rganization]

Interacts w
ith product data

M
anages channel configuration changes

[C
LI]

Provides new
 block w

ith

ordered transactions.

[gR
PC

]

U
ser

[Person]

M
em

ber of the O
rderer

organization.

O
rderer O

rganization
[O

rganization]

L
ocal M

em
bership Service

Provider (M
SP)

[C
ontainer: YA

M
L config, PEM

 files]

Identifies the users, peers and adm
ins.

Identifies

Identifies

L
ocal M

em
bership Service

Provider (M
SP)

[C
ontainer: YA

M
L config, PEM

 files]

Identifies the users, peers and adm
ins.

Identifies

G
enerates certificates

G
enerates certificates

Interacts w
ith product data

M
anages channel configuration changes

[C
LI]

Figure
A

2:C
om

plete
layer

3
diagram

ofthe
C

4
architecture

m
odel.

98

	Introduction
	Context
	Motivation
	Objectives and expected results

	Methodology and work plan
	Methodology
	Work distribution
	Risk analysis

	Literature review
	Product tracing
	Distributed ledgers and blockchain key concepts
	Hashing
	Asymmetric cryptography
	Data storage and Merkle Trees
	Network permissioning
	Consensus protocols

	Bitcoin
	Key design choices in Bitcoin deployment
	Challenges

	Ethereum
	Smart contracts and decentralized applications
	Token standards
	Decentralized Autonomous Organizations
	Scalability issues

	Hyperledger
	Fabric
	Sawtooth

	Final comparisons
	Summary

	Requirements definition and architecture
	Quality attributes
	High-level requirements
	Data requirements
	Stakeholder requirements
	Network requirements
	Infrastructure requirements

	Architecture
	System diagram
	Container layer
	Component layer

	Summary

	Implementation of a product biography platform
	Prerequisites
	Setting up a Sawtooth network
	Setting up a Fabric network
	Organizations configuration
	Channel configuration

	Product biography smart contract
	Data model definition
	Smart contract functions and deployment

	Client application example
	Backend application
	Frontend interface

	Results
	Summary

	Validation and testing
	Validation of the architecture
	Network security
	Network decentralization
	Data privacy
	Data immutability

	Further testing of the implementation
	Smart contract testing
	Network analysis

	Summary

	Conclusion
	Limitations
	Future work guidelines

	Appendix

