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5.1.5 Conclusions 
Extra high strength steels with yield strength above 355 MPa up to 690 MPa are well suited for 
steel construction purposes. Their fabrication properties are similar to those of ordinary steels. 
Thermomechanically rolled steels in particular have a very lean composition giving high tough-
ness and superior welding properties. Quenched and tempered steels allow higher strengths to be 
exploited while still having good toughness and good weldability. 
Using high performance steel allows less material to be used. It reduces the volume of weld metal 
and thus the time for welding and also the areas to be painted if needed. Less material has to be 
transported and reduced weight simplifies the erection of structures. All this is of great benefit in 
high wage economies. The total impact on environment is reduced and the high strength offers 
new opportunities to designers. 
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5.2.1 General 
In this section, the background of modern toughness requirements as given in the Eurocodes, 
EN 1993-1-10 will be given. Examples of application to high performance steels will be shown. A 
discussion on the limiting value of yield to strength ratio as given in most codes will be made. 
Quantitative toughness properties of steel in general are determined by standardized J-integral or 
CTOD tests. Fig. 5.2.1 shows one of the standardised test specimens often used.  
The toughness properties vary with temperature. Fig. 5.2.2 gives the function of the toughness-
temperature dependency for ferritic steels, for which the following regions are distinguished:  
1. lower shelf region, where the load-deformation characteristic of test pieces in tension show 

brittle behaviour and linear elastic fracture mechanics may be used featuring stress intensity 
factors KIC as toughness values, 

2. upper shelf region, where the load-deformation characteristic of test pieces in tension show full 
ductile behaviour and non linear elastic plastic fracture mechanics applies, 

3. transition region with partial plastic deformations where modified linear elastic fracture me-
chanics may be used and the temperatures Tgy signifies the point where general yield in a net-
section (e.g. for a plate with bolt holes) occurs before fracture. 
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Fig. 5.2.1: CT-specimen for 
determining J-, CTOD- or K-
values 

 Fig. 5.2.2: Toughness-temperature-curve and related load-
deformation curves for tension elements using various pa-
rameters for toughness properties [5.4] 

 
The design rules for achieving sufficient mechanical resistance and stability of structural compo-
nents and structures are based on continuum mechanics and tests that are carried out in laborato-
ries at room temperature. The assumption behind the design rules is that upper shelf toughness be-
haviour and ductile stress-strain-behaviour govern the performance of test pieces, see Fig. 5.2.3. 
Therefore it is necessary to avoid brittle fracture by an appropriate choice of material in view of 
toughness.  
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Fig. 5.2.3: Ductile and brittle failure modes for structural design 
 
Such choices are based on toughness related safety checks carried out in the transition region of 
the toughness-temperature diagram.  
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5.2.2 Background of Fracture Mechanical Safety Assessment to Avoid Brittle Fracture  

5.2.2.1 Introduction 
In the following the fracture mechanical safety assessment to avoid brittle fracture is presented as 
it is standardized in Eurocode 3, Part 1-10 (EN 1993-1-10) "Material toughness and through thick-
ness properties" [5.5]. More information can be found in the background document to EN 1993-1-
10 [5.8]. 
The verification is performed by comparing K-values (stress intensity factors) from, on one side, 
design values of fracture mechanical action effects *

d,applK  and, on the other side, design values of 

fracture mechanical resistance *
d,matK , see Equation (1). 

*
d,mat

*
d,appl KK ≤  (1) 

The design values are chosen from statistical distributions in such a way, that the reliability re-
quired for ultimate limit state assessments is achieved. 
The verification is based on the following conservative assumptions:  
1 the structural component has a crack-like flaw at the point of maximum stress concentration 

(hot spot) with the size ad (e.g. design value of crack depth) and also is subjected to residual 
stresses from fabrication,  

2 the temperature Tmin,d of the structural component attains its minimum value and hence pro-
duces the minimum toughness properties,  

3 the structural component is stressed from permanent and variable loads accompanying the lead-
ing action Tmin,d, 

4 the design situation comprising the combination of the assumptions made above is accidental.  
By using K-values for the assessment, see Equation (1), it is possible to take advantage of the 
Sanz-correlation between fracture mechanical values KV and values obtained from Charpy V 
notch impact tests, as specified in the delivery standards for steels, so that the steels may be se-
lected without referring to toughness data determined for a specific project.  
 

5.2.2.2 Toughness Requirements 
The toughness requirement *

d,applK  resulting from applied stresses may be determined for a given 
detail, e.g. for a welded attachment on the bottom chord of a girder, as given in Fig. 5.2.4.  
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Fig. 5.2.4: Determination of toughness requirement *

d,applK [5.4] 
 
Stresses σEd are a portion of the yield strength resulting from  
a) the frequent load  

G + ψ2 QK (2) 

where G = permanent load; QK = charactistic value of variable load; ψ2 = combination factor 
for frequent loads, see EN 1990 [5.9].  

b) residual stresses σS in the tension flange from remote restraints to shrinkage effects from the 
manufacture of the beam. Local residual stresses at the hot spot from e.g. welding the attach-
ment are included in the verification procedure. 

*
d,applK  is determined in two steps: 

1 Determination of the linear elastic value Kappl,d (e.g. via ∆K(ad)-values), 

2 Modification of Kappl,d to obtain *
d,applK  by the CEGB R6-Failure Assessment Diagram (FAD) 

[5.10], to cope with local plastification of the crack tips.  
 

5.2.2.3 Toughness Resistance  
The toughness resistance Kmat,d(Tmin,d) is calculated from the specified impact energy KV ex-
pressed in terms of the temperatures TKV, for which a minimum impact energy value KV is 
reached (e.g. T27J for KV = 27 J) and from the minimum temperature of the component Tmin,d as in-
put values, see Fig. 5.2.5.  
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Fig. 5.2.5: Determination of toughness resistance KMat,d(Tmin,d) [5.4] 
 
Using the Sanz-correlation for linking T27J to the stress intensity factor K100 and the Wallin master 
curve for determining Kmat from K100 and Tmin,d, see [5.8] for more information, Kmat,d(Tmin,d) may 
be obtained by introducing an additional safety element ∆TR by which Tmin,d is shifted, to achieve 
sufficient reliability for the verification.  
 

5.2.2.4 Method for Safety Assessment  
The safety assessment as described above, see Equation 1, is transformed to temperature values 
and hence receives the form, see Equation (3) and Fig. 5.2.6: 

TEd ≥ TRd (3) 

where TEd is a reference temperature including all input values by taking them into account by 
temperature shifts. The input values are:  
- the lowest air temperature Tmin and radiation losses ∆Tr of the component,  
- the influence of shape and dimensions of the member, imperfection from crack, and stress σEd, 

resulting in ∆Tσ. 
- the additive safety element ∆TR, 
- the influence of strain rate ε∆ &T ,  
- the influence from cold forming ∆Tεpl. 
Details of the calculation are given in Figure 6.  
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Fig. 5.2.6: Assessment scheme based on temperatures [5.4] 
 
The resistance side contains solely the test value T27J and the temperature shift 18 °C caused by 
the Sanz correlation.  
The additional safety element ∆TR is obtained from a calibration of the procedure to large scale 
tests database, which contains tests on various steel grades, various welded attachments including 
local residual stresses and also cracks ad produced by artificial initial cracks grown by subsequent 
fatigue loading, see [5.8]. 
 

5.2.2.5 Standardisation of Choice of Material  
For a simplified procedure for the choice of material tables are necessary, that give the permissible 
plate thicknesses of structural members with the most common structural details depending on the 
steel grades, the toughness properties, the reference temperatures TEd and stress levels σEd. 
To this end for various structural details assumptions for initial surface cracks with the depths a0 
as given in Fig. 5.2.7 were made that were supposed to grow to the depths ad by the application of 
a reference fatigue loading which depends on the fatigue detail class ∆σc according to [5.6] and 
corresponds to a quarter of the full fatigue damage D = 1.  
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Fig. 5.2.7: Assumptions for details and initial sizes of surface cracks [5.4] 
 
Fig. 5.2.8 shows values of the toughness requirements expressed as ∆Tσ obtained in this way for 
various detail classes as specified in Eurocode 3, Part 1-9 (EN 1993-1-9) "Fatigue" [5.6] and the 
enveloping standard requirement curve obtained from these calculations.  
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Fig. 5.2.8: Enveloping standard toughness requirement curve for details according to 
EN 1993-1-10 [5.4] 
 
In Fig. 5.2.9 this standard requirement curve is compared with actual requirements from various 
steel and composite bridges.  
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Fig. 5.2.9: Comparison of toughness requirements for steel bridges with the standard requirement 
curve [5.4] 
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Fig. 5.2.10 gives the table for the choice of material in EN 1993-1-10 based on this standard re-
quirement curve. This table also includes high strength steels S460 and S690. 
 

10 0 -10 -20 -30 -40 -50 10 0 -10 -20 -30 -40 -50 10 0 -10 -20 -30 -40 -50
at T °C J

min.
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Fig. 5.2.10: Table for the choice of material based on the standard toughness requirement curve 
[5.4],[5.5] 

5.2.3 Yield to Strength Ratio Requirement 
Most design codes give a limit of the yield/strength ratio for the applicability of the design rules. 
In Eurocode 3 (EN 1993-1-1) [5.11] the limiting value 

10.1
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y ≤  (4) 

is recommended. 
Fig. 5.2.11 gives the yield/strength ratio versus the yield strength as obtained from tests. It can be 
seen that the value of the ratio increases with the yield strength. The value 0.9 is reached for a 
yield strength of about 720 MPa. This limitation is penalising the use of high performance steels 
in structural applications and can be shown not to be of relevance. 
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Fig. 5.2.11: Yield to tensile ratio of low and high strength ferritic steels depending on the yield 
strength [5.8] 
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As a typical example the net section stress - strain curve of large scale DECT (Double Edge Crack 
Tension) - test specimens made of S890 as shown in Fig. 5.2.12 is given in Fig. 5.2.13. This figure 
demonstrates fully ductile behaviour and fracture after general yield in the net section. 
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Fig. 5.2.12: Component like large scale specimen with measuring devices [5.7] 
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Fig. 5.2.13: Typical net stress temperature-yielding curves of steel [5.7] 
 
Fig. 5.2.14 gives the maximum net section stresses versus the temperature. Whereas the test piece 
tested at -50 °C shows brittle fracture before yielding, ductile behaviour with stable crack growth 
is achieved for a temperature of -31 °C. This behaviour is clearly controlled by toughness.   
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Fig. 5.2.14: Net stress temperature curve of steel [5.7] 
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Fig. 5.2.15 demonstrates, that toughness values are fully independent from the yield strength ratio. 
Hence there is no reason to limit fy/fu because of ductility reasons.  
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Fig. 5.2.15: Toughness properties depending on the yield to tensile strength ratio for S690 and 
S890 [5.7] 
 

5.3 Buckling Resistance of Structures of High Strength Steel 
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Professor, Division of Steel Structures, Luleå University of Technology, SE-971 87 Luleå, Sweden 
 

5.3.1 Introduction 
The resistance to instability is frequently governing the design of steel structures. This is an obsta-
cle to the use of high strength steel as the resistance to instability increases slower than the yield 
strength or in worst case not at all. This is so because the resistance to instability depends on the 
elastic modulus as well as the yield strength and the elastic modulus is the same for low and high 
strength steel. One relevant question is: When do you save money on using high strength steel 
when stability governs? A related question is how the structure should be designed to minimise 
the detrimental effects of instability. Both those question will be discussed in this chapter.  
In order to study the economy of using high strength steel an estimate of prices is needed, which is 
a quite intricate question. The price of structural steel usually increases with the strength, which 
can be seen from Fig. 5.3.1. It shows relative prices for heavy plates from three leading European 
producers of high strength steel in which S235 has been chosen as reference. Fig. 5.3.1 also shows 
a trend curve, which follows the square root of the yield strength. Similar results have been shown 
for hot rolled strips in [5.12]. There is a substantial scatter in prices from time to time due to the 
market situation and the marketing strategy of the producer. The production cost increases mainly 
when the production process changes e. g. from TM to QT. Also the number of grades that has to 
be produced influences the production cost and it is a matter of strategy where to allocate these 
costs. An unusual example is that you can buy S355 cheaper than lower grades in the US. Any-
way, the trend curve in Fig. 5.3.1 will be used in this study as a reflection of probable prices. 
If the strength can be fully utilised the cost of material will be lowered as the strength is increased, 
see Fig. 5.3.2. The cost of a structure depends however more on costs for fabrication and erection 
than on the price of the material. The savings in fabrication costs depends very much on the type 
of structure. The cost of a butt weld is roughly proportionate to the square of the plate thickness 




