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Abstract: Microwave-assisted extraction of volatile oils (MAE) potentially offers a more efficient and
bio-sustainable method than conventional extraction by Clevenger apparatus (CE). This study aimed
to optimise the MAE of the volatile oil from Pterodon emarginatus fruits and characterise the volatile
compounds. A 23 full-factorial central composite design and response surface methodology were used
to evaluate the effects of time (min), moisture (%) and microwave power (W) on the extraction yield.
The process optimisation was based on the desirability function approach. The reaction time and
moisture conditions were standardised in these analyses. The volatile oil composition was analysed
by Gas Chromatography/Mass Spectrometry (GC/MS) in order to compare techniques extractions
influences. Microwave irradiation showed excellent performance for extraction of the volatile oil
from Pterodon emarginatus and there were some advantages in compare to conventional method
with respect to the time (14 times), energy (6 times), reagents amounts and waste formation. About
chemical composition presents significant differences with the type of extraction. Caryophyllene
(25.65%) and trans-α-bisabolol (6.24%) were identified as major components in MAE sample while
caryophyllene (6.75%) and γ-elemene (7.02%) are the components with higher relative percentage in
CE samples. The microwaves assisted process shown an increase of economic interested compounds
present in volatile oil.

Keywords: optimisation; microwave; volatile oil; extraction; terpenes; Pterodon emarginatus; analytical
eco-scale

1. Introduction

The Brazilian Cerrado (savannah) comprises hundreds of plant species that show potential use
and feasibility for economic and therapeutic exploitation. Several of these species are used by local
populations to treat various diseases that affect humans and animals. One of these medicinal plants
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is Pterodon emarginatus (Fabaceae), also called “sucupira” or “faveiro” that is distributed throughout
central Brazil, in the states of Goiás, Minas Gerais and São Paulo.

The Fabaceae or Leguminosae family belongs to the order Fabales, which comprises about
650 genera and 18,000 species worldwide [1–3]. Approximately 200 general and 1,500 Fabaceae
species are found in Brazil, with a particularly high representation from the Brazilian Cerrado, which
contains around 777 species, distributed across approximately 101 genera [4,5]. The Fabaceae family
anatomically covers three subfamilies, namely the Papilionoideae (Faboideae), Caesalpinoideae and
Mimosoideae [6]. The seed oil and extracts of the bark and stems of P. emarginatus are used in Brazilian
folk medicine to treat rheumatism, control diabetes, antimicrobial, anti-inflammatory and analgesic
agent [7]. Among others, lupeol, botulin triterpenes, flavonoids, saponosides were identified in stem
bark and seed extracts [8–10].

The fruit of P. emarginatus are used for the treatment of muscle aches, sprains, arthritis and
arthrosis, anti-inflammatory and analgesic activity [11]. Studies of a crude extract of P. emarginatus
fruits found an anti-inflammatory activity attributed to the presence of terpene compounds [12]. Also,
the crude hexane extract of P. emarginatus fruit showed to protect against the oxidative and nitrosative
stress induced by acute exercise in rats [13]. Characterisation of the hexane extract identified fatty
acids, sesquiterpenes (α-caryophyllene, β-caryophyllene, myrcene, α-pinene, farnesene) and tricyclic
furanoditerpenes, with the isolation of 6α, 7β-diacetoxy-vouacapan-17β-oate [14].

In this context, a recent technology namely microwave-assisted extraction (MAE) has been broadly
used to extract various natural components from plants [15–20]. The MAE for the extraction of oils
from natural substrates has been established as an alternative to conventional heating because it allows
the decrease of the extraction time, the decrease of the volume solvent and the decrease of the amount
of biomass needed by increasing the extraction yield [21–23]. The superior performance of microwave
irradiation in these extraction processes could be related with the interaction of irradiation and water,
microwave releases the essential oil and in situ water is transferred from the inside to the outside
of the plant material [24]. The extraction efficiency can be affected by several properties such as the
characteristics of the plant material, power level, duration of microwave irradiation, type and volume
of solvent used, the ratio biomass/solvent, the size of the coupled distillation system and the vial
format used for the extraction therefore the rational optimization of the microwave-assisted extraction
is essential to achieve higher efficiencies. Considering the various biological activities associated
with P. emarginatus constituents and other botanical species, the design of green and sustainable
extraction methods and characterization of the essential oils derived from these plants is an important
and trending area of research aimed at sourcing natural bioactive compounds. Here we report the
optimisation of the microwave assisted extraction (MAE) with experimental design of volatile oil from
the fruit of P. emarginatus considering the extraction time, power and properties of the plant material
(humidity) and analyzed the chemical composition of the extract.

2. Results

2.1. Optimisation of Microwave-Assisted Extraction of Volatile Oil

Microwave-assisted extraction were performed using 30 g of dried fruits of P. emargnatus in
13.2 mL of water. To optimize the influence of experimental variables: the extraction time, moisture
and microwave irradiation in the extraction yield we performed a 23 experimental design. Table 1
shows the coded (in parentheses) and the decoded values of the independent variables, namely,
time (min), moisture (water added to sample) (%) and microwave power (W), on the experimental
extraction yields (% v/w) and volume (mL) of volatile oil obtained.
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Table 1. Optimisation experimental results of the extraction process yield and volume of volatile oil
obtained from P. emarginatus fruits.

Run Time
(min)(X1)

Moisture
(%)(X2)

Power
(W)(X3)

Yield
(% v/w)

Vol.
(mL)

1 21(−1) 44(−1) 220(−1) 1.6 0.5
2 21(−1) 44(−1) 280(+1) 5.3 1.6
3 21(−1) 56(+1) 220(−1) 3.3 1.0
4 21(−1) 56(+1) 280(+1) 5.3 1.6
5 39(+1) 44 (−1) 220(−1) 3.3 1.0
6 39(+1) 44 (−1) 280(+1) 6.6 2.0
7 39(+1) 56(+1) 220(−1) 5.0 1.5
8 39(+1) 56(+1) 280(+1) 6.0 1.8
9 30(0) 50(0) 250(0) 3.6 1.1

10 30(0) 50(0) 250(0) 3.6 1.1
11 30(0) 50(0) 250(0) 3.3 1.0
12 30(0) 50(0) 250(0) 3.6 1.1
13 30(0) 50(0) 250(0) 3.6 1.1

The association between the dependent and independent variables were described by fitting
Equation (1) to the experimental data by multiple regression analysis. Analysis of variance (ANOVA)
was then used to evaluate the fit of the model. The results showed the terms of the model that were
statistically significant with confidence level of 95% (p < 0.05) and those that were not statistically
significant. The ANOVA results for all responses are listed in Table 2.

Table 2. Analysis of variance (ANOVA) results.

Source of Variation a Sum of Square df Mean Square F-Value p-Value

X1 3.65 1 3.65 202.50 0.00014 b

X1
2 3.14 1 3.14 174.38 0.00019 b

X2 0.98 1 0.98 54.44 0.00180 b

X3 12.50 1 12.50 694.44 0.00001 b

X1X2 0.04 1 0.04 2.50 0.18900 d

X1X3 0.25 1 0.25 13.61 0.02103 c

X2X3 2.00 1 2.00 111.11 0.00046 b

Lack of fit 0.04 1 0.04 2.50 0.18900 d

Pure error 0.07 4 0.02
Total sum of squares 22.67 12

R2
adj 0.9876

a X1 = Time (min.); X2 = Moisture (%); X3 = Power (W); b Significant at p < 0.01; c Significant at p < 0.05;
d Not significant.

Table 2 results indicate that the variables with the largest effects on extraction yield were the
linear terms, time (X1) and power (X3), followed by the quadratic term, time (X1

2) and the interaction
between moisture and power (X2.X3). The linear term, moisture (X2), and the interaction between
the time and power (X1.X3) were also significant (p < 0.05). The ANOVA showed that lack-of-fit was
not significant for the model at 95% confidence interval (CI) (p > 0.05), confirming that the model
satisfactorily represented the data. Also, the R2

adj was 0.9876, verifying that the fitness of the model to
the extraction yield explained more than 98% of the total variability within the range of values studied.
The model equation for extraction yield, without the insignificant terms, is given in Equation (1):

Extraction yield (%) = 0.012X1
2 + 0.794X2 + 0.200X3 − 0.442X1 − 0.003X2X3 − 0.003X2X3

− 0.0006X1X3 − 42.49
(1)
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The three-dimensional response surface plots were generated based on Equation (2), by fixing
one independent variable at the zero level while the others were varied within the range studied,
to analyse the effects of independent variables on the response (Figure 1). As shown in Figure 1a,
the yield values increased as time and power increased. Also, the response surface plot of yield as
a function of the time and moisture, which maintained the power fixed at the centre point value
(Figure 1b), showed that increasing the extraction time in combination with moisture, resulted in
increased yield. Alternatively, (Figure 1c) demonstrates that the use of low moisture and high power
also led to an increase in extraction yield.

The contour and response surface model described by Equation (3) showed that increasing
the extraction time and irradiation power resulted in higher yields and volume of extracted oil.
The increase in moisture negatively influenced the extraction process.
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Figure 1. Response surface plots show the effect of time (min), moisture (%) and microwave power (W)
on the extraction yield (%) (a) the yield values increased as time and power increased; (b) the yield
values increased the extraction time in combination with moisture; (c) The yield values increased when
low moisture and high power were tested.

The desirability function was used to determine the optimum setting of the reaction conditions
that led to the highest response level [25]. The optimisation algorithm allowed the elaboration of
the profiles for predicted response values and desirability functions (Figure 2). The red vertical lines
shown in the upper three rows of curves in Figure 2 indicate the maximal individual desirability
relative to extraction yield, while those in the bottom row show the maximum global desirability.
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Figure 2. Profiles of predicted response values and desirability function. The red lines indicate
experimental values after optimisation.

The maximum global desirability, D = 0.9850, is reached when the optimised reaction conditions
are implemented, i.e., 39 min extraction time, a low moisture of 44% and high power at 280 W.
Therefore, it is expectable that using these experimental conditions an extraction yield of 6.6% v/w
will be obtained.

2.2. Volatile Oil Extraction

The microwave-assisted extraction of volatile oil of 30 g of P. emarginatus fruits in 13.2 mL of
water under the optimal established conditions, 39 min, 44% humidity and 280 W, yield 1.73 mL of the
volatile oil, 5.76% (v/w). Conventional extraction was performed using the same reaction conditions as
used in MAE (X1 = 39 min, X2 = 15 mL; X3 = 280 W) but without the microwave irradiation 0.44% (v/w).
The conventional extraction using 50 g of biomass of dried crushed fruit of P. emarginatus in 500 mL of
distilled water during 4 h yield 3.60 (% v/w) of volatile oil. The results (Table 3) confirm the efficacy of
MAE to extract volatile oil from P. emarginatus fruits. Optimize MAE yielded more than ten times the
quantity of oil that conventional extraction (CE) (5.76 versus 0.44% v/w) in 39 min and almost 2 times
more oil than CE in 4 h.

Table 3. Yield of P. emarginatus volatile oil by microwave-assisted extraction (MAE) compared to
conventional extraction (CE).

Extraction
Medium Volume and Medium Yield

Volume (mL) Yield (% v/w)

MAE 1.73 5.76
CE* 1.80 3.60
CE** 0.22 0.44

* conventional extraction during 4 h; ** conventional extraction during 39 min.
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Beyond the F increase of the extraction yield the optimization of MEA of volatile oil of from
P. emarginatus fruits led to the reduction of the quantity of solvent and the reduction of the extraction
time. The extraction under conventional conditions requires 10 mL of water per gram of biomass while
using the optimize conditions for MAE only 0.4 mL are needed. The reduction of the extraction time
results in the reduction of the energy input. Under conventional heating were consumed 2.6 kW/h to
obtained 1.73 mL of volatile oil from 50 g biomass and under microwave irradiation were consumed
0.1 kW/h per 30 g of biomass to obtained 1.80 mL of volatile oil. Therefore, using the optimized MAE
the energy input was reduced from 5.33 to 0.11 kJ/g. The reduction of the extraction time and the
energy input approach the method of the sustainability requirements that is also illustrated by the
increase of the analytical Eco-scale from 86 to 89 being closer of 100, to the optimal value for green
analysis [26] (Table 4).

Table 4. Penalty points (PPs) for conventional extraction method versus microwave extraction method
analysed by Gas Chromatography Mass Spectrometry (GC/MS).

Methods Conventional PPs Microwave PPs

Reagents Biomass Sample: 50 g 2 Biomass Sample: 30 g 2
H2O: 500 mL 3 H2O: 13.2 mL 2

Instruments

Hot plate (2.6 kW/h) 2 Microwave 0
GC/MS 2 GC/MS 2
Occupation hazard 0 Occupation hazard 0
Waste 5 Waste 5

Total Penalty Points 14 11
Analytical Eco-Scale Score 86 89

2.3. Analysis of the Chemical Composition by Gas Chromatography Mass Spectrometry (GC/MS)

Chemical composition is an intrinsic property of the plant influenced by genetics, ontogeny,
and environmental stimuli, such as the incidence of ultraviolet rays, amount of water, and soil nutrition.
Also, there may still be variation between individuals of the same species, including geographically
similar location [27].

Biomass treatment and the extraction method also could influence the chemical constitution of
the sample. During the distillation process for example, water, acidity and temperature can cause the
hydrolysis of esters, rearrangements, isomerizations, racemizations and oxidations [28].

The relative percentages of the components identified by GC/MS in the essential oil extract from
fruits of P. emarginatus are presented in Table 5.

Table 5. Chemical composition and respective percentages of the main constituents in the
volatile oil obtained by microwave-assisted extraction (MAE) and conventional extraction (CE) of
P. emarginatus fruits.

RI Compound MAE (%) CE (%) Chemical Properties

1436

γ-Elemene
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Relative density 0.8996 at 20 ◦C
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Table 5. Cont.

RI Compound MAE (%) CE (%) Chemical Properties

1494
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Molecules 2018, 23, x FOR PEER REVIEW  7 of 12 

 

Soluble in ethanol acetone, acetic acid e ligroin 

1494 

E-Caryophyllene 

 

25.65 6.75 

Molecular formula C15H24 
CAS 87-44-5 
Molecular weight 204.352 
Boiling point 262–264 °C at 760 mmHg, 122 °C at 13.5 mmHg 
and 118–119 °C at 9.7 mmHg 
Relative density 0.9075 at 20 °C 
Refraction index 1.4986 at 20 °C 
Very soluble in benzene 

1454 

α-Humulene 

4.92 2.49 

Molecular formula C15H24 
CAS 6753-98-6 
Molecular weight 204.352 
Boiling point 166–168 °C at 760 mmHg and 123 °C at 10 
mmHg 
Relative density 0.8905 at 20 °C 
Refraction index 1.5038 at 20 °C 

1531 

trans-α-Bisabolol 

 

6.24 -- 

Molecular formula C15H24 
CAS 17627-44-0 
Molecular weight 222.36 
Boiling point 153 °C at 12 mmHg 
mmHg and 123 °C at 10 mmHg 
Relative density 0.9211 at 20 °C 
Refraction index 1.493–1.497 at 20 °C 
Soluble in ethanol, isopropanol and parafin 

1469 

allo-Aromadendrene 

1.31 0.92 

Molecular formula C15H24 
CAS 25246-27-9 
Molecular weight 222.36 
Boiling point 265–267 °C at 760 mmHg 
Relative density 0.923 at 20 °C 
Refraction index 1.501 at 20 °C 

1523 

cis-Sesquisabinene 

 

1.23 0.70 
Molecular formula C15H24 
Molecular weight 204.352 
Boiling point 286 °C at 760 mmHg (predictive value). 

1479 

γ-Muurolene 

 

48.03 47.31 

Molecular formula C15H24 
Molecular weight 204.352 
Boiling point 126 °C at 12 mmHg 
Relative density 0.9182 at 20 °C 
Refraction index 1.3166 at 20 °C 

The GC/MS analysis was determined on the volatile oil obtained under the optimised oil 
extraction conditions and under conventional conditions. All the constituents identified were 
sesquiterpenes hydrocarbons. The main component of the volatile oil is γ-muurolene with 48.03 and 
47.31% in MAE volatile oil and CE, respectively. However, the chemical composition presents 
significant differences with the type of extraction. Caryophyllene (25.65%) and trans-α-bisabolol 
(6.24%) were identified as major components in MAE sample while caryophyllene (6.75%) and 
γ-elemene (7.02%) are the components with higher relative percentage and trans-α-bisabolol is not 

H

H

CH3

CH3

H3C

H2C
H

H

H

HH
H

OH

H

H

H
H H

H

HO
H

H

H

25.65 6.75

Molecular formula C15H24
CAS 87-44-5
Molecular weight 204.352
Boiling point 262–264 ◦C at 760 mmHg, 122 ◦C at 13.5 mmHg
and 118–119 ◦C at 9.7 mmHg
Relative density 0.9075 at 20 ◦C
Refraction index 1.4986 at 20 ◦C
Very soluble in benzene

1454

α-Humulene

Molecules 2018, 23, x FOR PEER REVIEW  7 of 12 

 

Soluble in ethanol acetone, acetic acid e ligroin 

1494 

E-Caryophyllene 

 

25.65 6.75 

Molecular formula C15H24 
CAS 87-44-5 
Molecular weight 204.352 
Boiling point 262–264 °C at 760 mmHg, 122 °C at 13.5 mmHg 
and 118–119 °C at 9.7 mmHg 
Relative density 0.9075 at 20 °C 
Refraction index 1.4986 at 20 °C 
Very soluble in benzene 

1454 

α-Humulene 

4.92 2.49 

Molecular formula C15H24 
CAS 6753-98-6 
Molecular weight 204.352 
Boiling point 166–168 °C at 760 mmHg and 123 °C at 10 
mmHg 
Relative density 0.8905 at 20 °C 
Refraction index 1.5038 at 20 °C 

1531 

trans-α-Bisabolol 

 

6.24 -- 

Molecular formula C15H24 
CAS 17627-44-0 
Molecular weight 222.36 
Boiling point 153 °C at 12 mmHg 
mmHg and 123 °C at 10 mmHg 
Relative density 0.9211 at 20 °C 
Refraction index 1.493–1.497 at 20 °C 
Soluble in ethanol, isopropanol and parafin 

1469 

allo-Aromadendrene 

1.31 0.92 

Molecular formula C15H24 
CAS 25246-27-9 
Molecular weight 222.36 
Boiling point 265–267 °C at 760 mmHg 
Relative density 0.923 at 20 °C 
Refraction index 1.501 at 20 °C 

1523 

cis-Sesquisabinene 

 

1.23 0.70 
Molecular formula C15H24 
Molecular weight 204.352 
Boiling point 286 °C at 760 mmHg (predictive value). 

1479 

γ-Muurolene 

 

48.03 47.31 

Molecular formula C15H24 
Molecular weight 204.352 
Boiling point 126 °C at 12 mmHg 
Relative density 0.9182 at 20 °C 
Refraction index 1.3166 at 20 °C 

The GC/MS analysis was determined on the volatile oil obtained under the optimised oil 
extraction conditions and under conventional conditions. All the constituents identified were 
sesquiterpenes hydrocarbons. The main component of the volatile oil is γ-muurolene with 48.03 and 
47.31% in MAE volatile oil and CE, respectively. However, the chemical composition presents 
significant differences with the type of extraction. Caryophyllene (25.65%) and trans-α-bisabolol 
(6.24%) were identified as major components in MAE sample while caryophyllene (6.75%) and 
γ-elemene (7.02%) are the components with higher relative percentage and trans-α-bisabolol is not 

H

H

CH3

CH3

H3C

H2C
H

H

H

HH
H

OH

H

H

H
H H

H

HO
H

H

H

4.92 2.49

Molecular formula C15H24
CAS 6753-98-
6Molecular weight 204.352
Boiling point 166–168 ◦C at 760 mmHg and 123 ◦C at 10 mmHg
Relative density 0.8905 at 20 ◦C
Refraction index 1.5038 at 20 ◦C

1531

trans-α-Bisabolol

Molecules 2018, 23, x FOR PEER REVIEW  7 of 12 

 

Soluble in ethanol acetone, acetic acid e ligroin 

1494 

E-Caryophyllene 

 

25.65 6.75 

Molecular formula C15H24 
CAS 87-44-5 
Molecular weight 204.352 
Boiling point 262–264 °C at 760 mmHg, 122 °C at 13.5 mmHg 
and 118–119 °C at 9.7 mmHg 
Relative density 0.9075 at 20 °C 
Refraction index 1.4986 at 20 °C 
Very soluble in benzene 

1454 

α-Humulene 

4.92 2.49 

Molecular formula C15H24 
CAS 6753-98-6 
Molecular weight 204.352 
Boiling point 166–168 °C at 760 mmHg and 123 °C at 10 
mmHg 
Relative density 0.8905 at 20 °C 
Refraction index 1.5038 at 20 °C 

1531 

trans-α-Bisabolol 

 

6.24 -- 

Molecular formula C15H24 
CAS 17627-44-0 
Molecular weight 222.36 
Boiling point 153 °C at 12 mmHg 
mmHg and 123 °C at 10 mmHg 
Relative density 0.9211 at 20 °C 
Refraction index 1.493–1.497 at 20 °C 
Soluble in ethanol, isopropanol and parafin 

1469 

allo-Aromadendrene 

1.31 0.92 

Molecular formula C15H24 
CAS 25246-27-9 
Molecular weight 222.36 
Boiling point 265–267 °C at 760 mmHg 
Relative density 0.923 at 20 °C 
Refraction index 1.501 at 20 °C 

1523 

cis-Sesquisabinene 

 

1.23 0.70 
Molecular formula C15H24 
Molecular weight 204.352 
Boiling point 286 °C at 760 mmHg (predictive value). 

1479 

γ-Muurolene 

 

48.03 47.31 

Molecular formula C15H24 
Molecular weight 204.352 
Boiling point 126 °C at 12 mmHg 
Relative density 0.9182 at 20 °C 
Refraction index 1.3166 at 20 °C 

The GC/MS analysis was determined on the volatile oil obtained under the optimised oil 
extraction conditions and under conventional conditions. All the constituents identified were 
sesquiterpenes hydrocarbons. The main component of the volatile oil is γ-muurolene with 48.03 and 
47.31% in MAE volatile oil and CE, respectively. However, the chemical composition presents 
significant differences with the type of extraction. Caryophyllene (25.65%) and trans-α-bisabolol 
(6.24%) were identified as major components in MAE sample while caryophyllene (6.75%) and 
γ-elemene (7.02%) are the components with higher relative percentage and trans-α-bisabolol is not 

H

H

CH3

CH3

H3C

H2C
H

H

H

HH
H

OH

H

H

H
H H

H

HO
H

H

H

6.24 –

Molecular formula C15H24
CAS 17627-44-0
Molecular weight 222.36
Boiling point 153 ◦C at 12 mmHg
mmHg and 123 ◦C at 10 mmHg
Relative density 0.9211 at 20 ◦C
Refraction index 1.493–1.497 at 20 ◦C
Soluble in ethanol, isopropanol and parafin

1469

allo-Aromadendrene

Molecules 2018, 23, x FOR PEER REVIEW  7 of 12 

 

Soluble in ethanol acetone, acetic acid e ligroin 

1494 

E-Caryophyllene 

 

25.65 6.75 

Molecular formula C15H24 
CAS 87-44-5 
Molecular weight 204.352 
Boiling point 262–264 °C at 760 mmHg, 122 °C at 13.5 mmHg 
and 118–119 °C at 9.7 mmHg 
Relative density 0.9075 at 20 °C 
Refraction index 1.4986 at 20 °C 
Very soluble in benzene 

1454 

α-Humulene 

4.92 2.49 

Molecular formula C15H24 
CAS 6753-98-6 
Molecular weight 204.352 
Boiling point 166–168 °C at 760 mmHg and 123 °C at 10 
mmHg 
Relative density 0.8905 at 20 °C 
Refraction index 1.5038 at 20 °C 

1531 

trans-α-Bisabolol 

 

6.24 -- 

Molecular formula C15H24 
CAS 17627-44-0 
Molecular weight 222.36 
Boiling point 153 °C at 12 mmHg 
mmHg and 123 °C at 10 mmHg 
Relative density 0.9211 at 20 °C 
Refraction index 1.493–1.497 at 20 °C 
Soluble in ethanol, isopropanol and parafin 

1469 

allo-Aromadendrene 

1.31 0.92 

Molecular formula C15H24 
CAS 25246-27-9 
Molecular weight 222.36 
Boiling point 265–267 °C at 760 mmHg 
Relative density 0.923 at 20 °C 
Refraction index 1.501 at 20 °C 

1523 

cis-Sesquisabinene 

 

1.23 0.70 
Molecular formula C15H24 
Molecular weight 204.352 
Boiling point 286 °C at 760 mmHg (predictive value). 

1479 

γ-Muurolene 

 

48.03 47.31 

Molecular formula C15H24 
Molecular weight 204.352 
Boiling point 126 °C at 12 mmHg 
Relative density 0.9182 at 20 °C 
Refraction index 1.3166 at 20 °C 

The GC/MS analysis was determined on the volatile oil obtained under the optimised oil 
extraction conditions and under conventional conditions. All the constituents identified were 
sesquiterpenes hydrocarbons. The main component of the volatile oil is γ-muurolene with 48.03 and 
47.31% in MAE volatile oil and CE, respectively. However, the chemical composition presents 
significant differences with the type of extraction. Caryophyllene (25.65%) and trans-α-bisabolol 
(6.24%) were identified as major components in MAE sample while caryophyllene (6.75%) and 
γ-elemene (7.02%) are the components with higher relative percentage and trans-α-bisabolol is not 

H

H

CH3

CH3

H3C

H2C
H

H

H

HH
H

OH

H

H

H
H H

H

HO
H

H

H

1.31 0.92

Molecular formula C15H24
CAS 25246-27-9
Molecular weight 222.36
Boiling point 265–267 ◦C at 760 mmHg
Relative density 0.923 at 20 ◦C
Refraction index 1.501 at 20 ◦C

1523

cis-Sesquisabinene

Molecules 2018, 23, x FOR PEER REVIEW  7 of 12 

 

Soluble in ethanol acetone, acetic acid e ligroin 

1494 

E-Caryophyllene 

 

25.65 6.75 

Molecular formula C15H24 
CAS 87-44-5 
Molecular weight 204.352 
Boiling point 262–264 °C at 760 mmHg, 122 °C at 13.5 mmHg 
and 118–119 °C at 9.7 mmHg 
Relative density 0.9075 at 20 °C 
Refraction index 1.4986 at 20 °C 
Very soluble in benzene 

1454 

α-Humulene 

4.92 2.49 

Molecular formula C15H24 
CAS 6753-98-6 
Molecular weight 204.352 
Boiling point 166–168 °C at 760 mmHg and 123 °C at 10 
mmHg 
Relative density 0.8905 at 20 °C 
Refraction index 1.5038 at 20 °C 

1531 

trans-α-Bisabolol 

 

6.24 -- 

Molecular formula C15H24 
CAS 17627-44-0 
Molecular weight 222.36 
Boiling point 153 °C at 12 mmHg 
mmHg and 123 °C at 10 mmHg 
Relative density 0.9211 at 20 °C 
Refraction index 1.493–1.497 at 20 °C 
Soluble in ethanol, isopropanol and parafin 

1469 

allo-Aromadendrene 

1.31 0.92 

Molecular formula C15H24 
CAS 25246-27-9 
Molecular weight 222.36 
Boiling point 265–267 °C at 760 mmHg 
Relative density 0.923 at 20 °C 
Refraction index 1.501 at 20 °C 

1523 

cis-Sesquisabinene 

 

1.23 0.70 
Molecular formula C15H24 
Molecular weight 204.352 
Boiling point 286 °C at 760 mmHg (predictive value). 

1479 

γ-Muurolene 

 

48.03 47.31 

Molecular formula C15H24 
Molecular weight 204.352 
Boiling point 126 °C at 12 mmHg 
Relative density 0.9182 at 20 °C 
Refraction index 1.3166 at 20 °C 

The GC/MS analysis was determined on the volatile oil obtained under the optimised oil 
extraction conditions and under conventional conditions. All the constituents identified were 
sesquiterpenes hydrocarbons. The main component of the volatile oil is γ-muurolene with 48.03 and 
47.31% in MAE volatile oil and CE, respectively. However, the chemical composition presents 
significant differences with the type of extraction. Caryophyllene (25.65%) and trans-α-bisabolol 
(6.24%) were identified as major components in MAE sample while caryophyllene (6.75%) and 
γ-elemene (7.02%) are the components with higher relative percentage and trans-α-bisabolol is not 

H

H

CH3

CH3

H3C

H2C
H

H

H

HH
H

OH

H

H

H
H H

H

HO
H

H

H

1.23 0.70
Molecular formula C15H24
Molecular weight 204.352
Boiling point 286 ◦C at 760 mmHg (predictive value).

1479

γ-Muurolene

Molecules 2018, 23, x FOR PEER REVIEW  7 of 12 

 

Soluble in ethanol acetone, acetic acid e ligroin 

1494 

E-Caryophyllene 

 

25.65 6.75 

Molecular formula C15H24 
CAS 87-44-5 
Molecular weight 204.352 
Boiling point 262–264 °C at 760 mmHg, 122 °C at 13.5 mmHg 
and 118–119 °C at 9.7 mmHg 
Relative density 0.9075 at 20 °C 
Refraction index 1.4986 at 20 °C 
Very soluble in benzene 

1454 

α-Humulene 

4.92 2.49 

Molecular formula C15H24 
CAS 6753-98-6 
Molecular weight 204.352 
Boiling point 166–168 °C at 760 mmHg and 123 °C at 10 
mmHg 
Relative density 0.8905 at 20 °C 
Refraction index 1.5038 at 20 °C 

1531 

trans-α-Bisabolol 

 

6.24 -- 

Molecular formula C15H24 
CAS 17627-44-0 
Molecular weight 222.36 
Boiling point 153 °C at 12 mmHg 
mmHg and 123 °C at 10 mmHg 
Relative density 0.9211 at 20 °C 
Refraction index 1.493–1.497 at 20 °C 
Soluble in ethanol, isopropanol and parafin 

1469 

allo-Aromadendrene 

1.31 0.92 

Molecular formula C15H24 
CAS 25246-27-9 
Molecular weight 222.36 
Boiling point 265–267 °C at 760 mmHg 
Relative density 0.923 at 20 °C 
Refraction index 1.501 at 20 °C 

1523 

cis-Sesquisabinene 

 

1.23 0.70 
Molecular formula C15H24 
Molecular weight 204.352 
Boiling point 286 °C at 760 mmHg (predictive value). 

1479 

γ-Muurolene 

 

48.03 47.31 

Molecular formula C15H24 
Molecular weight 204.352 
Boiling point 126 °C at 12 mmHg 
Relative density 0.9182 at 20 °C 
Refraction index 1.3166 at 20 °C 

The GC/MS analysis was determined on the volatile oil obtained under the optimised oil 
extraction conditions and under conventional conditions. All the constituents identified were 
sesquiterpenes hydrocarbons. The main component of the volatile oil is γ-muurolene with 48.03 and 
47.31% in MAE volatile oil and CE, respectively. However, the chemical composition presents 
significant differences with the type of extraction. Caryophyllene (25.65%) and trans-α-bisabolol 
(6.24%) were identified as major components in MAE sample while caryophyllene (6.75%) and 
γ-elemene (7.02%) are the components with higher relative percentage and trans-α-bisabolol is not 

H

H

CH3

CH3

H3C

H2C
H

H

H

HH
H

OH

H

H

H
H H

H

HO
H

H

H

48.03 47.31

Molecular formula C15H24
Molecular weight 204.352
Boiling point 126 ◦C at 12 mmHg
Relative density 0.9182 at 20 ◦C
Refraction index 1.3166 at 20 ◦C

The GC/MS analysis was determined on the volatile oil obtained under the optimised oil
extraction conditions and under conventional conditions. All the constituents identified were
sesquiterpenes hydrocarbons. The main component of the volatile oil is γ-muurolene with
48.03 and 47.31% in MAE volatile oil and CE, respectively. However, the chemical composition presents
significant differences with the type of extraction. Caryophyllene (25.65%) and trans-α-bisabolol (6.24%)
were identified as major components in MAE sample while caryophyllene (6.75%) and γ-elemene
(7.02%) are the components with higher relative percentage and trans-α-bisabolol is not detectable in
CE samples (Table 5). This increases the chance of obtaining compounds with pharmacological and
cosmetic potential. Follow bellow the major compounds chemical properties.

3. Discussion

P. emarginatus plays a vital role in the socio-economic development of the local region, and its
essential oil is widely used in Brazilian folk medicine [10]. The data obtained in this study revealed
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a pronounced increase in the yield of essential oil from P. emarginatus fruits by MAE compared to
CE. Nevertheless, the extraction itself derived from the experimental design had variation in yield
results, which can be related not only to the amount of biomass and the extraction time but the way
of pressing the fruits. For this work we used knives mill crusher type to obtain fruit powder sample.
The more biomass is formed more efficient will be the volatile oil yield extraction. This is also true for
the method by microwave irradiation [20].

This study used a fully adapted microwave distillation device intended only for extractions by
Clevenger apparatus. This proof-of-principle study was demonstrated using a small quantity of plant
material. Therefore, further tests should investigate the relative efficiency of this MAE approach using
a greater amount of biomass than used in the present study.

The use of this technique is an excellent alternative for better utilization and efficiency of oil
extraction of this species because it is a native species of Brazilian Savannah and still difficult to
grow [10,15].

In the analysis of the chemical composition of the samples obtained by MAE and by CE it is noticed
that the MAE was able to increase the obtaining of the majorities such as cariophyllene, γ-muuruleno
and γ-elemeno. This is important because these compounds have biological properties such as
anti-inflammatory, antimicrobial and antimicrobial properties that are of interest to the medical and
cosmetic pharmaceutical field [12]. The qualitative and quantitative analysis of the essential oil from
the fruits of P. emarginatus obtained under conventional conditions showed the presence of α-pinene,
myrcene, caryophyllene and methyl, ethyl, and geraniol eugenol derivatives [27]. The compounds
β-ilangeno, α-copaeene, β-caryophyllene, humulene, α-, γ- and δ-elemene, and cadinene were also
identified [10,14].

Also, future studies that identify the bioactive properties of the main constituents separately from
the essential oil and their mechanism of action are encouraged. MAE can be considered a suitable
replacement for CE, requiring less biomass for higher essential oil yield, significantly less extraction
time, energy use, CO2 emissions and solvent, highlighting its efficiency and bio-sustainability [21].
Furthermore, the MAE technique can be used to obtain secondary metabolites from other medicinal
plants and, therefore, represents an important biotechnological advancement. The variables of the
equipment (power, temperature, pressure and time), offer a range of possibilities that should vary per
the extraction kinetics of each biomass. Finally, the characteristic of studies of microwave-assisted
extraction, which stands out in technology is the reduction in the duration in time (14 times than
conventional method), energy (six times than conventional method) and reagents/solvents.

4. Materials and Methods

4.1. Botanical Material

The fruits of P. emarginatus were collected from Jaraguá city in Goiás state, Brazil (16◦53′21′ ′ S
49◦15′12′ ′ W) and taxonomically identified by Prof. Dr. Josana Peixoto de Castro, State University
of Goiás, Brazil. The voucher specimen (number 9324) was deposited in the Herbarium of the State
University of Goiás, Brazil. The fruits were cleaned with flux of air and ground by knives crusher.
The samples were maintained at room temperature (maximum 24 ◦C) until the analysis.

4.2. Conventional Extraction (CE)

The volatile oil was extracted by steam distillation in a closed flask system coupled to Clevenger
apparatus [29]. Dried crushed fruit of P. emarginatus (50 g) was added into 500 mL of distilled water
and the extraction cycle kept for 4 h.
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4.3. Microwave-assisted Extraction, Experimental Design (MAE) and Statistical Analysis

The volatile oil was extracted by steam distillation in a closed flask system coupled to Clevenger
apparatus and adapted to the reactor’s microwave apparatus (model SP, CEM Corporation, Matthews,
NC, USA) following literature protocols [30]. The optimal conditions to perform MAE were established
through experimental design.

A 23 full-factorial design with center point was used to evaluate the main effects and interactions
of the following variables: time (min), moisture (%) and microwave power (W) on response variable
extraction yield (%). In this case, the percentage of water added in the powder material for the
extraction, followed the amount determined by the experimental design. The choice of the parameters
and their levels was based on the previous experimental studies. A total number of 13 runs of
experiment including eight experiments of 23 full-factorial design and five replicates at the center point
were carried out. The independent variables and their levels are shown in Table 6. All the experiments
were carried out at random, in order to minimize the effect of unexplained variability in the observed
responses due to systematic errors.

Table 6. Uncoded and coded levels of the independent variables used to extract the volatile oil from
P. emarginatus fruits.

Variables Levels

−1 0 1
X1 21 30 39
X2 44 50 56
X3 220 250 280

X1 = extraction time (min); X2 = moisture (%); X3 = power microwave irradiation (W).

The experimental data collected from the 23 full-factorial with central composite design,
were fitted to a polynomial function. Multiple regression analysis was used to fit Equation (2) to the
experimental data by the least squares method.

The mathematical model was used to predict the response obtained from the experimental
design applied:

Y = b0 +
k

∑
i=1

biXi +
k

∑
i=1

biiX2
i +

k

∑
i<j

bijXiXj + ε (2)

where Y represents the predicted response, b0, is the model intercept, bi, bii, and bij are the coefficients
of the linear terms Xi, Xi

2 and Xj are independent variables and ε corresponds to the model residue.
The statistical significance of each coefficient term was determined by evaluating the p- and F-values
with 95% confidence level (CL) obtained from the analysis of variance (ANOVA). The lack-of-fit of
the regression model was evaluated with 95% CL. The statistical fit of the experimental results to the
polynomial model equation was expressed by the coefficient of determination (R2) and the adjusted
coefficient of determination (R2

adj). Response surface plots were obtained by using the fitted model
and by keeping one independent variable constant at zero level while varying the remaining two
variables. Once an adjusted response to the polynomial model was obtained, the best conditions of
volatile oil extraction were defined using desirability function analysis. All calculations and graphs
were obtained using Statsoft version 7.0 (Statistica, TIBCO Software Inc., Palo Alto, CA, USA).

4.4. Yield of Volatile Oil

The yield of the volatile oil extracted from the fruit (% v/w) was calculated by directly measuring
the volume (mL) of fluid on the collector tube Clevenger apparatus, and correlated to the amount of
moisture-free sample, according to the protocols in literature [31].
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4.5. Characterisation of the Chemical Composition of Volatile Oils by Gas Chromatography/Mass
Spectrometry (GC/MS)

GC/MS was accomplished by a model GC/MS-QP2010 instrument (Shimadzu, Tokyo, Japan),
equipped with an RTX-5MS column (30 m × 0.25 mm internal diameter). The carrier gas was helium,
the flow rate was 1 mL/min, the injection volume was 1.0 µL, and the injector temperature was
set at 200 ◦C. The temperature was initially increased at 3 ◦C/min until it reached 240 ◦C, then at
10 ◦C/min to 280 ◦C, where it was maintained for 10 min. The volatile oil constituents were identified
by reference to the NIST 11 Mass Spectral Library (NIST11/2011/EPA/NIH) and by comparing their
retention indices (RIs) with authentic mass spectra [32]. The RIs were calculated by co-injection with
a mixture of C8_C32 hydrocarbons (Sigma-Aldrich, St Louis, MO, USA) and using the Van den Dool
and Kratz equation [32]. The relative percentage of the compounds within the volatile essential oil
were obtained by area normalisation.

4.6. Calculation of Energy Consumption

The energy consumption was calculated using Equation (3) [33]:

Energy consumption = P × t (3)

where, P = equipment power (W) and t = time (min or h).
The hot plate (Fisatom model: 752A, Fisatom, São Paulo, SP, Brazil) and microwave heating

(model SP, CEM Corporation, Matthews, NC, USA) used during the studies has power of 650 W and
280 W, respectively. These powers reported were used as standard to calculate the energy consumption.

4.7. Calculation of Analytical Eco-Scale

The sum of penalty points for the whole procedure should be included in the Eco-Scale calculation,
according to the following formula [26], Analytical Eco-Scale = 100 − (total penalty points).
The calculation result is ranked on a scale where a score >75 represents excellent green analysis,
>50 represents acceptable green analysis, and <50 represents inadequate green analysis [26]. The basis
for our concept of an analytical eco-scale is that the ideal green analysis has a value of 100. Recently, in
organic synthesis the concept of eco-scale values has emerged as more accurate tool for evaluating
the “ecofriendliness” of a given process, estimating the quality of the organic preparation based on
yield, cost, safety, conditions, and ease of workup/purification. This can also be applied to the natural
product field.

5. Conclusions

The microwave assisted-extraction has been shown to be feasible with particular interest in
avoiding the need for organic solvents in volatile oil extraction from plants. In this work we proof
that a minimum amount of water could be enough to bring good result in extraction. This green
methodology appears to be an excellent alternative for obtaining terpenes from aromatic plants for
academic purposes, as well as pharmaceutical, cosmetic and food fields.
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