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Abstract: Depth-sensing indentation (DSI) technique allows easy and reliable determination of two
mechanical properties of materials: hardness and Young’s modulus. Most of the studies are focusing
on the Vickers, Berkovich, and conical indenter geometries. In case of Knoop indenter, the existing
experimental and numerical studies are scarce. The goal of the current study is to contribute for
the understanding of the mechanical phenomena that occur in the material under Knoop indention,
enhancing and facilitating the analysis of its results obtained in DSI tests. For this purpose, a finite
element code, DD3IMP, was used to numerically simulate the Knoop indentation test. A finite element
mesh was developed and optimized in order to attain accurate values of the mechanical properties.
Also, a careful modeling of the Knoop indenter was performed to take into account the geometry and
size of the imperfection (offset) of the indenter tip, as in real cases.
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1. Introduction

Depth-sensing indentation (DSI) tests are typically used to evaluate the hardness and Young’s
modulus of materials. They can also be used to extract the uniaxial mechanical properties of bulk
and composite materials, such as the yield stress and the strain hardening parameter (see, e.g., [1–4]).
The most common hardness testing methods were developed in the early twentieth century. They are
typically performed using spherical, conical and pyramidal indenters with Vickers and Berkovich
geometries. In addition, the Knoop pyramid geometry is also used [5].

Hardness tests with the Knoop indenter have been valuable in the mechanical characterization of
some materials, such as thin coatings [6,7] and biological materials (e.g., dental tissue [8]). Another
important application of this hardness tests is in the field of the gradient materials obtained by severe
plastic deformation (see, e.g., [9–11]), for which it is required to determine the mechanical properties
in thin samples and/or thin surface layers of the samples.

In fact, the Knoop indenter geometry leads to wider and shallower indentations for a given applied
load than the Vickers and Berkovich geometries. This makes the Knoop hardness test particularly
attractive in some cases as for the determination of the near-surface properties and the characterization
of brittle materials. Moreover, the results obtained in the Knoop hardness test are sensitive to the
indenter orientation, making it a useful tool to analyze the materials anisotropy (e.g., [12]).

Although Knoop indenter is relatively common to use, it has not received suitable attention with
respect to the study of some of the peculiarities of the test itself. One of the first studies using numerical
simulation of the Knoop indentation test was performed by Rabinovich and Sarin [13], in their study,
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the Knoop indentation was analyzed in the context of linear elasticity. Giannakopoulos [14] presented
analytical results on the response of frictionless and adhesionless contact of flat, linear elastic and
visco-elastic isotropic surfaces penetrated by pyramidal indenters including the Knoop geometry.
Giannakopoulos and Zisis [15] studied the Knoop indentation of elastic and elastoplastic materials
with and without strain hardening. More recently, Giannakopoulos and Zisis [16] presented a finite
element study on the adhesionless contact of flat surfaces by Knoop indenter. Only a few experimental
studies, such as those by Riester et al. [17,18] were performed in order to clarify the analysis procedure
of DSI tests with the Knoop geometry. Recently, Ghorbal et al. [19] performed an experimental work
on ceramic materials in order to compare the conventional Knoop and Vickers hardness.

In this context, the present study intends to contribute to clarify some aspects of the Knoop
indentation, particularly those related to the analysis of depth sensing indentation (DSI) results.
For this purpose, three-dimensional numerical simulations of the indentation tests were performed,
using various pyramidal indenter geometries, from Vickers to Knoop. A systematic study is
accomplished using materials with different mechanical properties whose ratio between the residual
indentation depth after unloading (hf) and the indentation depth at maximum load (hmax) is in the
range 0.022 < hf/hmax < 0.984. The correction factor, β, required to determine the Young’s modulus,
is evaluated as a function of the indenter geometry, from Vickers to Knoop. In addition, numerical
simulations using flat indenters with equivalent lozenge geometries were performed, in order to better
understand the role of the pyramidal geometry.

2. Theoretical Aspects

The ability of the ultramicrohardness equipment to register the load versus the depth indentation,
during the test, enables us to evaluate not only the hardness, but also other properties, such as the
Young’s modulus. Based on the Sneddon relationship [20] between the indentation parameters and
Young’s modulus, Doerner and Nix [21] have proposed an equation that relates the Young’s modulus
with the compliance, C, of the unloading curve at the point of the maximum load and the contact area,
Ac, such as:

Er =

√
π

2β

1√
Ac

1
C

, (1)

where β is the geometrical correction factor for the indenter geometry. The specimen’s Young’s
modulus, Es, is obtained using the equation:

1
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=
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s
)
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+
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)
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where E and ϑ are the Young’s modulus and the Poisson’s ratio, respectively, of the specimen
(s) and of the indenter (i). When performing numerical simulations, the indenter can in a first
approximation considered as rigid for simplicity (e.g., [22]), and so

(
1− ϑ2

i
)
/Ei = 0. The accuracy of

the Young’s modulus results, obtained with the above equations, depends on the correct evaluation of
the contact area and compliance. The contact area, Ac, can be evaluated by two different procedures.
One procedure uses the contour of the indentation in the finite element mesh, in order to make
the results independent of the formation of pile-up or sink-in. The other is the usual experimental
procedure, which makes use of the compliance, C, evaluated by fitting the unloading part of the
load–indentation depth curve, (P − h), using the power law [22]:

P = P0 + T(h− h0)
m, (3)

where T and m are constants obtained by fit and h0 is the lower value of the indentation depth, h,
used in the fitted region, corresponding to a load value P0, during unloading. The upper part of the
unloading curve taken into account in the fits is 70% [22]. Once the value of compliance, C, is known,
the contact indentation depth, hc, that allows the calculation of the contact area according to the
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geometry of the indenter (Ac = f (hc)), is determined by the equation hc = hmax− εPmaxC, where hmax

is the indentation depth at the maximum load, Pmax, and ε is a parameter equal to 0.72 for conical or
pyramidal (Berkovich [23], Vickers [22] and Knoop [18] indenters).

An approach that can be used for evaluating the correction factor, β, was proposed by Joslin and
Oliver [24], combining the hardness and Young’s modulus equations:

P
S2 =

π

4β2
HIT

E2
r

, (4)

where H = P/Ac is the hardness, P the maximum applied load and S the stiffness (S = 1/C). The ratio
between the maximum applied load and the square of the stiffness, P/S2, is an experimentally
measurable parameter that is independent of the contact area and so of the penetration depth [24].

3. Numerical Simulation and Materials

Three-dimensional numerical simulations of the hardness tests were carried out, using a finite
element (FE) in-house code DD3IMP. This FE code, which has already been tested in the case of
Vickers, Berkovich and conical indentation of bulk materials and thin films (see, e.g., [22,25,26]), allows
simulating the hardness tests with any type of indenter shape, taking into account contact with friction
between the indenter and the sample [22,27,28]. The mechanical model, which is the basis of the
DD3IMP code, considers the hardness test as a quasi-static process that occurs in the large plastic
deformations domain. In DD3IMP, the contact with friction problem is modeled using a classical
Coulomb’s law. To relate the static equilibrium problem to the contact with friction, an augmented
Lagrangean method is applied to the mechanical formulation. This leads to a system of non-linear
equations, where the kinematic (material displacements) and static variables (contact forces) are the
final unknowns [27,28]. To solve this problem, the code uses a fully implicit Newton–Raphson-type
algorithm. All non-linearities, induced by the elastoplastic behavior of the material and by the contact
with friction, are treated in a single iterative loop [27,28].

In the current study, the friction between the indenter and the deformable body was assumed to
have a friction coefficient of 0.16. This is a commonly used value and leads to a better description of
the indentation process than if frictionless contact is assumed [22,26].

3.1. Indenters

The Knoop indenter has a pyramidal geometry, with a lozenge-shaped base having one diagonal
(L) 7.11 times longer than the other (m). The angles between the edges (apical angles) are 172.5o for the
long edges and 130o for the short edges, as shown in Figure 1.
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Figure 1. Schematic representation of the Knoop indenter geometry.

The ideal (in the absence of pile-up or sink-in) indentation contact area, Ac, of the Knoop indenter
as function of the indentation contact depth is given by:

Ac = 2h2
c tan θ1 tan θ2 = 65.4h2

c , (5)
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where hc is the ideal indentation contact depth, θ1 = 65o and θ2 = 86.25o are the semi-apical angles of
the Knoop indenter.

The Knoop indenter geometry was modeled using parametric Bezier surfaces, which allows a
satisfactory description of the indenter tip, namely an imperfection such as occurs in the real geometry,
similar to the case of offset in the Vickers indenter [25,29]. The modeled Knoop indenter, shown in Figure 2,
has a tip imperfection consisting of a plane normal to the indenter axis with an area equal to 0.0032 µm2

(this value is the same as the experimentally found, for the Vickers indenter, by Antunes et al. [29]).
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Figure 2. Knoop indenter modeled with Bezier surfaces: (a) general view; (b) detail of the indenter
tip imperfection.

Due to the tip imperfection, the indenter area function does not match the ideal area function above
mentioned (Equation (5)). Table 1 shows the area function of the Knoop indenter (ratio, R = L/m = 7.11)
used in the numerical simulations. This table also shows four others area functions of pyramidal
indenters, used in this study, with different values of the ratio, R, between the diagonals of the indenter
(R = 1, 2.5, 4 and 5.5), where the ratio R = 1 corresponds to the Vickers indenter.

Table 1. Area function of the indenters used in the numerical simulations.

R = L/m θ1 θ2 Area Function

1 (Vickers) 74.0546 74.0546 A = 24.5000h2 + 0.5600h + 0.0032

2.5 69.1723 81.3478 A = 34.5500h2 + 0.6650h + 0.0032

4 67.0462 83.9559 A = 44.6000h2 + 0.7556h + 0.0032

5.5 65.8369 85.3366 A = 54.6500h2 + 0.8364h + 0.0032

7.11 (Knoop) 64.8379 86.2199 A = 65.4377h2 + 0.9152h + 0.0032

For pyramidal indenters, other than Vickers and Knoop, the angles θ1 and θ2 were chosen such
that the tangents of θ1 and θ2 follows a quasi-linear evolution with R, as shown in Figure 3. In this
way it is possible to study the extent to which the deviation of Vickers geometry towards the Knoop
geometry influences the indentation results obtained with DSI experiments.
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In order to better understand some aspects related with the influence of the indenter geometry on
the mechanical properties evaluation, numerical simulations using lozenge-shaped flat indenters were
also performed. The flat indenters were modulated with five values of the ratio, R = L/m, between the
diagonals of the lozenge, as for the pyramidal indenters (R = 1, 2.5, 4, 5.5, and 7.11).

3.2. Finite Element Mesh

The test sample used in the numerical simulations has both radius and thickness equal to 40 µm.
Its discretization was performed using three-linear eight-node isoparametric hexahedrons. Due to
geometrical and material symmetries in the X = 0 and Z = 0 planes, only a quarter of the sample was
used in the numerical simulation, as shown in Figure 4.

Metals 2018, 8, x FOR PEER REVIEW  5 of 15 

 

In order to better understand some aspects related with the influence of the indenter geometry 
on the mechanical properties evaluation, numerical simulations using lozenge-shaped flat indenters 
were also performed. The flat indenters were modulated with five values of the ratio, R = L/m, 
between the diagonals of the lozenge, as for the pyramidal indenters (R = 1, 2.5, 4, 5.5, and 7.11).  

3.2. Finite Element Mesh 

The test sample used in the numerical simulations has both radius and thickness equal to 40 µm. 
Its discretization was performed using three-linear eight-node isoparametric hexahedrons. Due to 
geometrical and material symmetries in the X = 0 and Z = 0 planes, only a quarter of the sample was 
used in the numerical simulation, as shown in Figure 4.  

 
(a) 

 

 
(b) 

Figure 4. Finite element mesh used in the numerical simulations: (a) global view; (b) detail of the 
central region where indentation occurs 

The FE mesh is composed by 17,850 elements. The size of the elements in the indentation region 
is 0.055 μm. This refinement has proven to provide accurate values of the indentation contact area, 
when measured using the contour of the indentation, in case of Vickers and Berkovich geometries, 
with equal value of offset area (see, e.g., [22,26]). In fact, the Young’s modulus values obtained from 
the indentation contact area, evaluated using the contour of nodes in the FE mesh in contact with the 
indenter at maximum load presents an error less than 1%, when compared with the values used as 
input in the numerical simulation (e.g., [26]). In the present study, the size of the central region of the 
finite element mesh, especially refined, is larger than in these cases, and thus the total number of 
elements is approximately three times greater, in order to take into account the elongated geometry 
of the Knoop indenter. 

3.3. Materials 

Three-dimensional numerical simulations of depth-sensing indentation with pyramidal 
indenters were carried out using 45 fictitious materials, whose mechanical properties are shown in 
Table 2. In order to cover a wide range of materials used in engineering applications, five values of 
yield stress (0.2, 2, 6, 10, and 20 GPa), three values of Young’s modulus (70, 200 and 400 GPa) and of 
strain hardening parameter of the Swift law (0.01, 0.15 and 0.3), were taken into account.  

The plastic behavior of the materials is described by the von Mises yield criterion and the Swift 
hardening law: 𝜎 = 𝑘(𝜀 + 𝜀଴)୬  where 𝜎  and 𝜀  are the equivalent stress and plastic strain, 
respectively, and 𝑘, 𝜀଴ and n (strain hardening coefficient) are the material parameters (the yield 
stress is: 𝜎୷ = 𝑘𝜀଴୬); the parameter 𝜀଴ was considered to be equal to 0.005. The elastic behaviour is 
isotropic and described by the generalised Hooke’s law; the Poisson’s ratio, 𝜗  is 0.3, for all 
simulations. 

Figure 4. Finite element mesh used in the numerical simulations: (a) global view; (b) detail of the
central region where indentation occurs.

The FE mesh is composed by 17,850 elements. The size of the elements in the indentation region
is 0.055 µm. This refinement has proven to provide accurate values of the indentation contact area,
when measured using the contour of the indentation, in case of Vickers and Berkovich geometries,
with equal value of offset area (see, e.g., [22,26]). In fact, the Young’s modulus values obtained from
the indentation contact area, evaluated using the contour of nodes in the FE mesh in contact with the
indenter at maximum load presents an error less than 1%, when compared with the values used as
input in the numerical simulation (e.g., [26]). In the present study, the size of the central region of
the finite element mesh, especially refined, is larger than in these cases, and thus the total number of
elements is approximately three times greater, in order to take into account the elongated geometry of
the Knoop indenter.

3.3. Materials

Three-dimensional numerical simulations of depth-sensing indentation with pyramidal indenters
were carried out using 45 fictitious materials, whose mechanical properties are shown in Table 2.
In order to cover a wide range of materials used in engineering applications, five values of yield
stress (0.2, 2, 6, 10, and 20 GPa), three values of Young’s modulus (70, 200 and 400 GPa) and of strain
hardening parameter of the Swift law (0.01, 0.15 and 0.3), were taken into account.

The plastic behavior of the materials is described by the von Mises yield criterion and the Swift
hardening law: σ = k(ε + ε0)

n where σ and ε are the equivalent stress and plastic strain, respectively,
and k, ε0 and n (strain hardening coefficient) are the material parameters (the yield stress is: σy = kεn

0);
the parameter ε0 was considered to be equal to 0.005. The elastic behaviour is isotropic and described
by the generalised Hooke’s law; the Poisson’s ratio, ϑ is 0.3, for all simulations.
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Table 2. Mechanical properties of the materials used in the numerical simulations.

Materials Studied Cases n σy (GPa) E (GPa)

Without strain hardening
5

≈0

0.2, 2, 6, 10 and 20

70
5 200
5 400

With strain hardening

5
0.15

70
5 200
5 400
5

0.30
70

5 200
5 400

4. Results

4.1. Indentation Geometry and Equivalent Plastic Strain Distributions

A study of the indentation geometry with the Knoop indenter (R = 7.11) was performed using
only three of the materials in Table 2, covering different values in the possible range of hf/hmax.
Table 3 shows the mechanical properties of these materials, which have two Young’s modulus values,
200 and 400 GPa, yield stress of 0.2, 6, and 20 GPa, and two values of the strain hardening parameter,
n ≈ 0 and n = 0.3. Table 3 also includes the value of the ratio between the indentation depth after
unloading and the indentation depth at maximum load, hf/hmax. This ratio, which can be easily
obtained from the experimental load-unloading curve, is independent of the maximum indentation
depth, for a given material in cases of conical [30] and Vickers [22] indentations. Its range of values is
from 0 to 1, which corresponds to materials with purely elastic and rigid-plastic behaviors, respectively.
All numerical simulations of the hardness test were performed up to the same maximum indentation
depth, hmax = 0.2 µm.

Table 3. Mechanical Properties of The Materials Used in the Study of The Knoop Indentation Geometry.

Material σy (GPa) n E (GPa) ν hf/hmax

M1 0.2 0.01
200 0.3

0.97
M2 6

0.3
0.40

M3 20 400 0.25

Figure 5 shows the indentation profiles, obtained for the three materials at maximum load
(Figure 5a,c) and after unloading (Figure 5b,d), along the two diagonals, the shorter, m, and the longer,
L, respectively. Figure 5a shows that for the shorter diagonal, the indentation profile obtained at the
maximum load depends on the material mechanical properties. In case of materials M2 and M3 the
indentation surface sink-in. This behavior can be associated with the value of the ratio hf/hmax that
is equal to 0.40 and 0.25 (for the materials M2 and M3, respectively), and with the high value of the
strain hardening parameter, n. In case of M1 material, with a ratio hf/hmax equal to 0.97, i.e., close
to 1, the indentation surface does not present sink-in or pile-up. On the other hand, the indentation
profile obtained at maximum load for the longer diagonal, almost does not depends on the materials
mechanical properties (Figure 5c).



Metals 2018, 8, 885 7 of 15
Metals 2018, 8, x FOR PEER REVIEW  7 of 15 

 

 
(a) 

 
(b) 

  
(c) (d) 

Figure 5. Surface indentation profiles obtained along the two diagonals, the shorter, m (z-axis) and 
the longer, L (x-axis), respectively: (a,c) obtained at maximum load; (b,d) after unloading. 

After unloading, the indentation profiles corresponding to the materials M2 and M3 shown elastic 
recovery in both diagonals (Figure 5b,d). Moreover, the amount of elastic recover increases with the 
decrease of the ratio ℎ୤/ℎ୫ୟ୶. In case of M1 material, with a ratio ℎ୤/ℎ୫ୟ୶ = 0.97 and without strain 
hardening, the indentation profile along the short diagonal shows pile-up (Figure 5b). In fact, for other 
indenter geometries (conical and Vickers), the pile-up appears for values of the ratio ℎ୤/ℎ୫ୟ୶ higher 
than 0.8 in materials without strain hardening (see, e.g., [22,30]). It should be noted that, for a given 
material, the ℎ୤/ℎ୫ୟ୶ ratio correlates with the value of the H/𝐸 ratio between the hardness and the 
Young’s modulus, and slightly depends on the strain hardening parameter. 

Figure 6 shows the comparison between the Knoop indentation diagonals at maximum load. To 
make possible this comparison, the indentation profiles were normalized by considering the value of 
the R-ratio between the indenter diagonals (R equal to 7.11). Figure 6a shows that in the material M1 
the two diagonal exhibit a similar behavior. In the case of the materials M2 and M3 sink-in is observed 
along the short diagonal. Moreover, the sink-in slightly increases with the value of the ratio ℎ୤/ℎ୫ୟ୶. 

 
(a) 

 
(b) 

Figure 5. Surface indentation profiles obtained along the two diagonals, the shorter, m (z-axis) and the
longer, L (x-axis), respectively: (a,c) obtained at maximum load; (b,d) after unloading.

After unloading, the indentation profiles corresponding to the materials M2 and M3 shown elastic
recovery in both diagonals (Figure 5b,d). Moreover, the amount of elastic recover increases with the
decrease of the ratio hf/hmax. In case of M1 material, with a ratio hf/hmax = 0.97 and without strain
hardening, the indentation profile along the short diagonal shows pile-up (Figure 5b). In fact, for other
indenter geometries (conical and Vickers), the pile-up appears for values of the ratio hf/hmax higher
than 0.8 in materials without strain hardening (see, e.g., [22,30]). It should be noted that, for a given
material, the hf/hmax ratio correlates with the value of the H/E ratio between the hardness and the
Young’s modulus, and slightly depends on the strain hardening parameter.

Figure 6 shows the comparison between the Knoop indentation diagonals at maximum load.
To make possible this comparison, the indentation profiles were normalized by considering the value
of the R-ratio between the indenter diagonals (R equal to 7.11). Figure 6a shows that in the material M1
the two diagonal exhibit a similar behavior. In the case of the materials M2 and M3 sink-in is observed
along the short diagonal. Moreover, the sink-in slightly increases with the value of the ratio hf/hmax.
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Figure 6. Surface indentation profiles at maximum load, obtained from the results of Figure 5a,c, where
z is multiplied by R = 7.11, in order to easily compare the profiles along the two diagonals, the longer,
L, and the shorter, m: (a) Material M1; (b) Material 2; (c) Material M3.

The effect of the indenter geometry on the equivalent plastic strain distribution of the indentations
was also studied. Figure 7a,c shows the equivalent plastic strain distributions obtained at the maximum
load in the numerical simulations of the materials M1 (hf/hmax = 0.97) and M3 (hf/hmax = 0.25) using
the Knoop indenter. For comparison, the same figure also shows the same distributions obtained with
the Vickers indenter (Figure 7b,d).
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Figure 7. Equivalent plastic strain distributions obtained at maximum load in the numerical simulations
using the Knoop and Vickers indenters: (a,b) Material M1; (c,d) Material M3.

For each material, the maximum values of the equivalent plastic strain are quite similar for the
Knoop and Vickers indenters. However, in the case of Knoop, the equivalent plastic strain distributions
are asymmetric with respect to the indenter axes. The maximum values of the equivalent plastic strain
are observed along the longest diagonal. For M1 material (hf/hmax = 0.97), the maximum value of the
equivalent plastic strain is slightly higher in the Vickers indentation (≈0.686) than for Knoop (≈0.674).
The maximum plastic strain region is located just at the surface in the edge regions of the indentation
(Figure 7a,b). In case of the M3 material (hf/hmax = 0.25), as shown in Figure 7c,d, the maximum
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value of equivalent plastic strain is also somewhat higher for the Vickers indentation (≈0.159), than for
the Knoop (≈0.149). However, for this material, the region with maximum equivalent plastic strain is
located beneath the indentation surface, whatever the indentation geometry.

4.2. Indentation Contact Area and Young’s Modulus

The results of the numerical simulation of the hardness tests with the Knoop indenter, for all
materials in Table 2, were used to study the influence of the mechanical properties on the evaluation
of the indentation contact area and, consequently, on the Young’s modulus. As mentioned above,
the indentation contact area was determinate using two different procedures: one of them uses the
load-unloading curve as in the experimental DSI procedure for evaluating this area, Ahc , and the other
considers the contour of nodes of the FE mesh in contact with the indenter at maximum load, AFE

(numerical contact area).
Figure 8 shows the evolution of the indentation contact areas, Ahc and AFE, as a function of the ratio

hf/hmax. These contact areas are normalized with respect to the reference area, AREF, corresponding to
the obtained with the area function of the indenter (Equation (5), with hc equal to the indentation depth,
which does not take into account the pile-up or sink-in formation). Figure 8a shows that the contact area,
Ahc , is independent of the strain hardening parameter and Young’s modulus, whatever the value of the
ratio hf/hmax. Moreover, the ratio Ahc/AREF is always less than 1. Figure 8b shows that the numerically
calculated contact area, AFE, is nearly independent from the strain hardening parameter and Young’s
modulus, for the ratio hf/hmax < 0.6. However, for hf/hmax > 0.6 the normalized contact area depends on
the strain hardening parameter. The ratio AFE/AREF is even higher than 1 after a value of hf/hmax that
depends on the strain hardening parameter (hf/hmax equal to 0.85, 0.90 and 0.95 for n equal to 0, 0.15 and
0.3, respectively), indicating pile-up formation. For both cases, Ahc/AREF and AFE/AREF, similar behaviors
were previously observed for the case of the conical, Vickers and Berkovich indenters (see, e.g., [22,26,30]).
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Figure 8. Normalized contact area results obtained in the numerical simulation of the materials with
the values of the strain hardening parameter, yield stress and Young’s modulus shown in Table 2, using
the Knoop indenter. (a) Contact area Ahc /AREF; (b) Contact area AFE/AREF.

Figure 9 shows the evolution of the Young’s modulus Ehc and EFE normalized by the input
value used in the numerical simulation, EREF, as a function of the ratio hf/hmax. The average ratio of
Ehc /EREF is close to 1.419, except for values of hf/hmax approaching 1, for which the ratio Ahc /AREF

increases for low values of the strain hardening parameter of the materials (n = 0 and 0.15). This is a
consequence of the pile-up formation during the indentation of these materials, as was also observed
for Vickers indenters [25]. The ratios of EFE/EREF are slightly higher than those of Ehc /EREF, being in
average close to 1.469. Slight differences between both ratios, Ehc /EREF and EFE/EREF, were already
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observed for the Vickers indenter [25]. Under these conditions, in the experimental indentation tests,
a value for the correction factor β of 1.419 is required to be used for the contact area evaluation (hc)
from the unloading curve, in case of the Knoop indentation. This value is essentially different from
other indenter geometries such as conical, Vickers and Berkovich, which require β values around 1.034,
1.055, 1.081, respectively (see, e.g., [22,26]).
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Figure 9. Normalized Young’s modulus results obtained in the numerical simulation of the materials
with the values of the strain hardening parameter, yield stress and Young’s modulus shown in Table 2,
using the Knoop indenter: (a) Young’s modulus Ehc /EREF; (b) Young’s modulus EFE/EREF.

Equation (4) was used in order to confirm the above correction factor β. Figure 10 shows the ratio
P/S2 versus H/E2

r obtained by numerical simulation of all materials in Table 2, for the case of the
Knoop and Vickers indenters. The reduced Young’s modulus, Er, was determined considering the
input Young’s modulus and Poisson ratio, H, determined using the contact area evaluated from the
contour of the indentations.
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r , obtained in the numerical simulations of

all materials in Table 2, using the Knoop and Vickers indenters.

The straight-lines in Figure 10 pass through the origin of the axes as indicated by Equation (4)
(independently of the indenter geometry, curves match for H/E2

r = 0, i.e., for materials with
rigid-plastic behaviour, which corresponds to the ratio hf/hmax = 1). The β factor is evaluated
from the slope, ρ, of the straight line, related with β through ρ = (π/4β2). Using this procedure,
for the values of the R-ratio of 1, 2.5, 4, 5.5, and 7.11, the β correction factor obtained were 1.054, 1.141,
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1.232, 1.351, and 1.473, respectively. The value of 1.473 for the Knoop indenter is very close to that
mentioned above (1.469), obtained from the ratios EFE/EREF (Figure 9b).

4.3. Flat Indenter

In order to understand if the value of the β factor is affected by the plastic deformation beneath
the indenter, five flat-ended punches were considered having the same R-ratio values between the
diagonals (L and m) as for pyramidal indenters (Table 1). Also, the flat-ended punches were modeled
using parametric Bezier surfaces and the finite element mesh is shown in Figure 4. This study allows an
understanding of to what extent the evolution of the β factor values with R is related to the pyramidal
geometry of the indenter and/or to the loss of symmetry of the flat punches, when R evolves from 1
to 7.11.

Using flat indenters, numerical simulations were performed up to a 0.025 µm displacement
imposed so that only elastic deformation occurs in the material beneath the indenter. Five values of
Young’s modulus were used: 30, 200, 400, 600 and 800 GPa. Figure 11 shows the evolution of the
load as a function of the indentation depth, he, obtained in the numerical simulations with the flat
indenters for values of the R-ratio equal to 1 (as for the Vickers indenter), 4 and 7.11 (as for the Knoop
indenter). The figure shows that, for a given indentation depth, the load increases with the increase of
the Young’s modulus and the R-value.

As above mentioned, Equation (1) comes from the Sneddon’s equation [20] that relates the applied
load, P, with the elastic deflection of the surface of the material, he, and can be written as follows:

P =
2βE

1− ϑ2 ahe, (6)

where E and ϑ are de Young’s modulus and Poisson ratio of the material, respectively; a is the radius
of the rigid Sneddon cylindrical flat indenter, or an equivalent value for other rigid indenter geometry
with the same area; and β is a parameter that takes into account the geometry of the indenter (β = 1,
for cylindrical flat indenter).

The Young’s modulus results obtained by the data such as in Figure 11 indicate that, in case of
the flat punches, the value of the β parameter in Equation (6) is different from 1 and depends on the
R-ratio, whatever the Young’s modulus, as shown in Table 4.

Table 4. Values obtained for the correction factor β in the numerical simulations with flat indenters.

R = L/m

E (GPa)

Average Values of β30 200 400 600 800

β

1.00 1.055 1.054 1.053 1.054 1.054 1.054
2.50 1.125 1.123 1.124 1.125 1.124 1.124
4.00 1.215 1.214 1.214 1.214 1.215 1.214
5.50 1.269 1.266 1.267 1.267 1.266 1.267
7.11 1.374 1.372 1.371 1.371 1.372 1.372

The values of β for R = 1 (as for the Vickers indenter) is in agreement with those obtained in
previous studies (see, e.g., [22,26]). In the case of R = 7.11 (as for the Knoop indenter), β is equal
to 1.372. The increase of the value of β with R is certainly related with the loss of symmetry of the
flat punches with the increase of the ratio R. Indeed, the same was observed in case of the conical,
Vickers and Berkovich indenters, whose values of the factor β increase in this order (1.034, 1.055, 1.081,
respectively), although on a smaller scale [26].
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Figure 12 shows that the evolution of β with R for the flat punches is a quasi-linear function, quite
close to that observed for the case of the pyramidal indenters (obtained with Equation (4): 1.054, 1.141,
1.232, 1.351 and 1.473). Moreover, the values of β for the pyramidal indenters are slightly higher than
those determined for the flat indenters, except the R-ratio equal to 1.
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The dissimilarity between the β values obtained for the flat and the pyramidal indenters is
certainly because, in the case of pyramidal indenters, not only elastic deformation occurs, but also
plastic deformation appears, which significantly distorts the material surface. Moreover, the increase
of the value of R-ratio leads to the lowering of the symmetry of the plastic strain distribution along
two axes of the indenter (see Figure 7).

4.4. Correlation with Experimental Results

In order to check the performance of the correction factor β proposed in this study, experimental
results of five materials were used to calculate the Young’s modulus. They are fully dense brittle
materials, covering a wide range of mechanical properties, whose experimental data were obtained
from bibliography [19]. Table 5 presents the Young’s modulus results of these materials determined
by Grobal et al. [19], using two different methods proposed by: (i) Grobal et al. [19] (EG); (ii) and
Marshall et al. [31] and Riester et al. [18] (EM). The results obtained by the method proposed in the
current study (E), using β equal to 1.419 as defined above for the Knoop indenter, are also shown in
this table. For comparison, nominal values of the Young’s modulus, Enom, evaluated by ultrasonic
method [19] are presented and used to calculate the errors. To evaluate the Young’s modulus,
Grobal et al. [19] make use of the plot of the contact stiffness, C, as a function of 1/

√
AC, whose

values of the slopes of the fitted straight lines (
(√

π/2βEr
)

in Equation (1)), are also used in current
study to assess the value of E, for all materials.

Table 5. Experimental Young’s modulus results.

Materials Enom (GPa)
[19]

EG (GPa)
[19] Error (%) EM (GPa)

[19] Error (%)

√
π

2β
1
Er

(µm/N2)

[19]
E (GPa) Error (%)

Si3N4 317 ± 4 316.5 ± 4.24 −0.16 300 ± 20.0 −5.36 2.548 ± 0.029 302.8 ± 4.40 −4.48
Ceramic-glass 82 ± 2 85.0 ± 0.36 3.66 85 ± 4.0 3.66 7.930 ± 0.031 82.1 ± 0.35 0.15

Alumina 385 ± 6 386.0 ± 7.75 0.26 380 ± 18.5 −1.30 2.233 ± 0.032 359.4 ± 6.90 −6.64
β-TCP 130 ± 2 129.0 ± 0.85 −0.77 142 ± 14.0 9.23 5.568 ± 0.032 120.7 ± 0.70 −7.12

Fused silica 68 ± 1 65.0 ± 0.30 −3.00 70 ± 4.0 2.94 9.221 ± 0.034 69.9 ± 0.25 2.80

Average of the absolute value of the error 1.57 4.50 4.27

The results in Table 5 show that the proposed β coefficient enables relatively good accuracy of
the Young’s modulus. The average of the absolute value of the error is equal to 4.27%. This is higher
than that obtained by the method of Grobal et al. [19] and slightly lower than that achieved using the
method by Marshall et al. [31].

5. Conclusions

A finite element study using the three-dimensional numerical simulation of hardness tests of
elastic–plastic materials is performed. Pyramidal indenters with geometry from Vickers to Knoop
were used. Also flat-ended punches were considered. This allowed us to obtain important information
about the geometry of the indentation surface (sink-in and pile-up formation) and the distribution
of plastic deformation beneath the pyramidal indenters. Both types of tests, with pyramidal and flat
punch indenters, allow an assessment of the values of the geometrical parameter β to be used in the
Sneddon’s equation [20], for flat-ended punches, and the Doerner and Nix equation [21], for pyramidal
indenters. This permits to determine the reduced Young’s modulus of the indented material when
using depth-sensing indentation (DSI) equipment. In the case of the Knoop indenter, the correction
factor β of at about 1.419 is required, in order to accurately obtain the Young’s modulus. This makes
the procedure for analyzing the results of the Knoop indenter more expeditious than it currently is.
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