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Invasion by alien species is a worldwide phenomenon with negative consequences
at both natural and production areas. Acacia longifolia is an invasive shrub/small tree
well known for its negative ecological impacts in several places around the world. The
recent introduction of a biocontrol agent (Trichilogaster acaciaelongifoliae), an Australian
bud-galling wasp which decreases flowering of A. longifolia, in Portugal, demands the
development of a cost-efficient method to monitor its establishment. We tested how
unmanned aerial vehicles (UAV) can be used to map A. longifolia flowering. Our core
assumption is as the population of the biocontrol agent increases, its impacts on the
reduction of A. longifolia flowering will be increasingly visible. Additionally, we tested
if there is a simple linear correlation between the number of flowers of A. longifolia
counted in field and the area covered by flowers in the UAV imagery. UAV imagery
was acquired over seven coastal areas including frontal dunes, interior sand dunes
and pine forests considering two phenological stages: peak and off-peak flowering
season. The number of flowers of A. longifolia was counted, in a minimum of 60 1 m2

quadrats per study area. For each study area, flower presence/absence maps were
obtained using supervised Random Forest. The correlation between the number of
flowers and the area covered by flowering plants could then be tested. The flowering of
A. longifolia was mapped using UAV mounted with RGB and CIR Cannon IXUS/ELPH
cameras (Overall Accuracy > 0.96; Cohen’s Kappa > 0.85) varying according to habitat
type and flowering season. The correlation between the number of flowers counted
and the area covered by flowering was weak (r2 between 0.0134 and 0.156). This is
probably explained, at least partially, by the high variability of A. longifolia in what regards
flowering morphology and distribution. The very high accuracy of our approach to map
A. longifolia flowering proved to be cost efficient and replicable, showing great potential
for detecting the future decrease in flowering promoted by the biocontrol agent. The
attempt to provide a low-cost method to estimate A. longifolia flower productivity using
UAV failed, but it provided valuable insights on the future steps.

Keywords: invasive plant species, Remote Sensing, unmanned aerial vehicles, coastal habitats, biocontrol agent
monitoring, Acacia longifolia, flower mapping
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INTRODUCTION

Biological invasions are one of the main factors of habitat
changes, resulting in immeasurable losses to economy and
biodiversity (Hulme, 2009; Perrings et al., 2010). Often,
long-term invasions trigger drastic changes in ecosystem
functioning, in land cover and in biotic communities both above
and below ground (Marchante et al., 2008; Hellmann et al., 2017).
Such changes may be particularly aggravated when native and
invasive plants have different life forms (Marchante et al., 2015).

The European Commission has recently recognized the
severity of the problems caused by Invasive Alien Species
through the Regulation (EU) No 1143/2014 of the European
Parliament and the Council of the European Union, clearly
stressing (amongst other strategies) the importance of effective
management practices (European Union, 2014). Methods
currently used in Europe to control invasive plants are frequently
prohibitively expensive and often unsuccessful, unsustainable,
and/or environmentally damaging. These, associated with the
increasing pressure to reduce the use of herbicides stresses
that it is crucial to find more sustainable, inexpensive, and
environmentally friendly control approaches.

Acacia longifolia (Andrews) Willd. (Sydney Golden Wattle;
Fabaceae) is one of several Australian Acacia species that are
invasive in many regions around the world (Rejmánek and
Richardson, 2013) including in southern Europe where it has
proliferated mostly on coastal areas (Marchante et al., 2014; Cesar
de Sa et al., 2017). This leguminous shrub/small tree has a long
track of diverse ecological impacts in coastal systems (Marchante
et al., 2003, 2008), where it replaces native herbaceous and shrub
dune communities and proliferates under maritime pine forests.
The long-term invasion by A. longifolia has significant impacts on
soil properties, altering its biological and chemical composition
(Marchante et al., 2009; Hellmann et al., 2017) and hindering the
recovery of invaded habitats (Marchante et al., 2011).

The intentional introduction of natural enemies to control
invasive plants is frequently considered as a sustainable and
environmentally friendly methodology around the world (Shaw
et al., 2016). It has been used for over a century worldwide
(Murphy and Evans, 2009), with nearly 550 agents released
against over 224 plant species in 130 countries (Winston et al.,
2014). Many introductions of biocontrol agents resulted in either
complete (ca. 1/3 of total cases of invasive plants) or moderate
(higher number of agents) levels of success (Murphy and Evans,
2009). Despite this, biological control can be considered as
potentially dangerous, current practice assures that before a
species is cleared for release a full range of tests and risk
analyses are performed to assure that the risk is minimal.
Yet, in Europe, several reasons including (amongst others) an
apparent ignorance of the potential of biological control of
weeds amid policy makers and some level of risk aversion
(Sheppard and Shaw, 2006) has delayed the use of biocontrol
against invasive plants until 2010. After that, it has been used
three times: two in the UK, with releases in 2010 and 2014
(Shaw et al., 2011; Tanner et al., 2015), and the third in
Portugal with the first release of Trichilogaster acaciaelongifoliae
(Froggatt) (Hymenoptera: Pteromalidae), to control A. longifolia,

in late 2015 (Marchante et al., 2017). It is expected that the
biocontrol agent (BCA) T. acaciaelongifoliae (an Australian bud
galling wasp) will significantly reduce the flower production
of A. longifolia (Dennill, 1985; Dennill et al., 1999), thus
disrupting its capacity to renew the seed bank (Marchante et al.,
2010).

The introduction of T. acaciaelongifoliae began in November
2015 with its release in eight sites along the Portuguese coast
(López-Núñez et al., 2017; Marchante et al., 2017). To ensure
the success of this biocontrol measure it important to monitor
its establishment and impact on A. longifolia. However, the
fieldwork is time-consuming, expensive, and each field campaign
is only capable of covering small areas. Furthermore, as the BCA
population increases and spreads, it will be virtually impossible to
monitor its extent only through field sampling. Unmanned Aerial
Vehicles (UAV) can potentially offer a cost-effective solution to
address this challenge. Our assumption is that if it is possible to
map the flowering of A. longifolia using low-cost UAV platforms
equipped with “off-the-shelf ” digital camera sensors, then it is
possible to monitor the establishment of the BCA at low cost as
well. Ultimately, we expect that monitoring the loss of flowering
can be used to continuously monitor the establishment of the
BCA. The use of remotely sensed data has rapidly increased and
has nowadays a wide range of applications in many different
fields, with potential to become a key tool for ecological research
and conservation (Horning et al., 2010; Gonzalez et al., 2016)
including for the study of invasive alien plants (Cesar de Sa et al.,
2017; Weisberg et al., 2017).

Unmanned aerial vehicles offer unique opportunities for
Spatial Ecology because of their ability to almost on-demand
acquire very high-resolution imagery (Anderson and Gaston,
2013) and by using sensors tailored to the task as well as
3D structure of plants which will allow further inferences of
plants physiological and structural traits at an unprecedented
spatial scale (Niphadkar and Nagendra, 2016). Remote Sensing
of invasive alien plants is often difficult because these occur
in disturbed areas, “mixed pixels” and under canopy (Bradley,
2014). UAVs represent an exceptional opportunity to detect
invasive plants due to their operational flexibility (Müllerová
et al., 2017a,b). This allows researchers and stakeholders to
improve their mapping efforts by focusing on a particular
phenological stage of the target species (Hill et al., 2016), e.g., the
peak and post peak of flowering season.

Attempts to use plant phenology to improve detection by
Remote Sensing are not new (Everitt et al., 1995; Gorsevski, 2013;
Khwarahm et al., 2017) but efforts like these are often hindered
by lack of easily accessible and low cost data. The impact of
flowering in the spectral characteristics of plants can sometimes
lead to increased confusion between classes (He et al., 2011)
which implies a need for deeper characterization (Andrew and
Ustin, 2006). While A. longifolia leaf spectral responses have been
thoroughly measured (Lehmann et al., 2015a; Große-Stoltenberg
et al., 2016) there is lack of similar data collected on its flowering.
Mapping A. longifolia using airborne hyperspectral sensors has
been shown to be successful (Pandey et al., 2014) but these
methods are still too costly to be included in a continuous
monitoring effort.
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FIGURE 1 | Scheme of how the flower counting was performed in the field and examples of field data collection by the team. (A) The bottom left corner was
georeferenced and the quadrat had one side oriented toward N and the other oriented toward east. (B–D) Show examples of data being collected in the field with
the 1 m2 quadrat. The variability of the flowering of this species is visible: (B) Sample collected in the interior dunes where the flowering extends throughout the
whole branches of the plant. (C) In the frontal dunes where plants are smaller and flowering does not extend to the end of the branch and is instead “hidden” below
the canopy of the plant. (D) Is a typical example of how A. longifolia morphologically adapts to the pine forest by growing in height as opposed to width and shows a
decrease in flower productivity.

In Portugal, A. longifolia flowering period usually peaks
during winter (mainly between late December and March)
(Morais and Freitas, 2015) before most other co-occurring
plants begin to flower. During these months, areas invaded by
A. longifolia are clearly visible due to their bright yellow flowering
bloom. We hypothesize that the high resolution of the Remote
Sensing equipment mounted in UAVs can capture this species
flowering features, rarely captured via satellite due to winter
cloud cover. By testing the potential for mapping the flowering
of A. longifolia we additionally aim to demonstrate its potential
for monitor the future impact of the BCA. This may become
a novel approach for monitoring the impact of insects on the
phenological cycle of invasive plant species, ensuring low cost and
repeatability.

Previous works have shown a linear relationship between
the area covered by flowers in photographs captured by digital
cameras and the number of flowers of Lesquerella fendleri (Gray)
S. Wats (an herbaceous species with regular distribution of
flowers) grown in controlled experimental conditions (Adamsen
et al., 2000; Thorp and Dierig, 2011). Based on this, our second
aim is to test if such relationship exists when the plant is
a woody species, A. longifolia, with variable distribution of
flowers, occurring in the wild and using UAV imagery. This
would allow making estimations of numbers of flower (or other
morphological parameter) through UAV imagery.

Summarizing, the objectives of this work were to evaluate the
use of UAV Remote Sensing imagery to: (a) detect and map the
flowering of the invasive plant A. longifolia, and (b) test if there
is a linear relationship between the flower cover detected by the
UAV and the number of flowers of A. longifolia measured in
field. This is particularly important as this method is intended
to be applied in the future to detect the effects of the BCA on the

density of flowers, which is expected to decrease substantially in
the future (Dennill et al., 1999).

MATERIALS AND METHODS

Study Species and System
Acacia longifolia (Andrews) Willd. is easily identifiable both
during the flowering season due to the bloom of yellow flowers
as well as during the fruitification when its seed pods begin
to brown and remain on the branches. It can develop as a
shrub (often up to 4 m in height), when occurring in primary
dunes, and as small tree (up to 8 m in height) when occurring
more inland, also below the canopy of other species (e.g.,
maritime pines) (Cesar de Sa et al., 2017; Invasoras, 2017).
During fieldwork we observed a high variability in flower patterns
amongst plants depending on its morphology (tree or shrub) and
on the position in the dune system (Figures 1B,C). For example,
while A. longifolia generally produces flowers throughout the
broad terminal part of the branches (Figure 1B), it occasionally
produces less flowers in the tip of the branches when in the
primary dunes (Figure 1C); and produces much lesser amount
when under pine canopies and often closer to the tip of the branch
(Figure 1D).

This study was carried out on seven sites distributed along
ca. 80 km of the central-northern coast of Portugal (Figure 2
and Table 1). Sites were selected in order to include the most
common coastal habitats invaded by A. longifolia: (1) several
plant communities in sand dunes (SD), including primary dunes,
interdunes and secondary dunes (Cesar de Sa et al., 2017);
maritime pine occurs in these areas but generally does not
dominate (SD1, SD2, SD3, SD4, SD5); and (2) pine forests
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FIGURE 2 | Study sites location. SD1, SD2, Quiaios sand dunes; SD3, Tocha secondary sand dunes; SD4, São Jacinto sand dunes; SD5, Torreira sand dunes. PF1,
PF2, Quiaios pine forests.

plantations (hereafter pine forests, PF), where maritime pine
dominates and A. longifolia occurs in the understory (PF1, PF2).

The dunes of Quiaios (SD1 and SD2, Figure 2) are a coastal
strain of primary and secondary sand dunes with associated
pine forests that extends inland. These sites are characterized
by a mosaic of several well-established plant communities,
including native perennial herbs (e.g., Ammophila arenaria
and Corynephorus canescens) alternating with chamaephytic
shrublands (e.g., Corema album, Cistus salviifolius, Artemisia
campestris). Between the different plants assemblages there are
large areas dominated by invasive plant species (e.g., Carpobrotus
edulis, Arundo donax, Acacia saligna, and A. longifolia).

Tocha secondary sand dunes (SD3, Figure 2) are characterized
by a singular sand dune string conformation, perpendicular to
the shore line. Like Quiaios dunes (SD1 and SD2) it is mainly
dominated by diverse well adapted littoral plant communities
(with A. arenaria, C. album and A. campestris as the most
common species) alternating with areas dominated by alien plant
species, such as C. edulis and A. longifolia. SD3 burned in 1993
which triggered the expansion of A. longifolia, leading to the
replacement of maritime pine stands by monospecific stands of
A. longifolia. São Jacinto (SD4) and Torreira (SD5) sand dunes
are located further north and are characterized by primary dunes
highly invaded by A. longifolia. SD4 shows maritime pines and

TABLE 1 | Data acquisition summary: characterization of sites, UAV flights, and fieldwork sampling done to quantify the number of flowers.

Site characteristics Image acquisition Fieldwork

Site Flowering status Habitat Date Time of day Resolution (cm) Flower sampling Quadrats sampled

SD1 Peak Primary dune 10/03/2015 Morning 4 11/03/2015 71

SD2 Peak Primary dune 11/03/2015 Morning 4 12/03/2015 71

SD3 Peak Secondary dune 11/03/2015 Afternoon 4 13/03/2015 63

SD4 Post peak Primary and interdune 04/04/2015 Morning 6 25/03/2015 65

SD5 Post peak Primary dune 04/04/2015 Afternoon 6 06/04/2014 60

PF1 Peak Pine forest 10/03/2015 Afternoon 6 – 0

PF2 Peak Pine forest 13/03/2015 Afternoon 5 18/03/2015 78

Due to logistics and technical difficulties it was not possible to perform fieldwork in PF1. Since sampling locations were randomly selected not all areas of 50 × 50 m had
A. longifolia.
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large patches of invasion by A. longifolia. In SD5 the maritime
pines co-occur with secondary dune communities and are also
mixed with invasive Acacia dealbata and Acacia melanoxylon.
On the other hand, the pine forests of Quiaios (PF1 and PF2,
Figure 2) include sparse plantations of Pinus pinaster with
scattered patches of Halimium halimifolium and C. salviifolius.
PF1 also has Eucalyptus globulus plantations. Both PF1 and PF2
show a varying degree of invasion by different Acacia species,
including A. longifolia.

Fieldwork and UAV Data Acquisition
The field work was divided in two distinct main tasks performed
as closely as possible in time (Table 1): (1) remote imagery
acquisition by low cost digital cameras mounted on UAV, and (2)
fieldwork sampling to quantify the number of spikes (hereafter
referred as flowers) of A. longifolia produced per m2 in randomly
selected areas within each site.

Both field sampling and the UAV flights were performed in
two seasons: (1) during flowering peak and (2) at the end of
the flowering season of A. longifolia (Table 1), in order to test
the accuracy in detecting flowers in both periods. By studying
different phenological stages and habitats we expected to obtain a
broad overview of the possibilities and limitations of this method.

Unmanned aerial vehicles flights were executed by Firemap
SA1, between March and April 2015, using the senseFly eBee2

mounted, alternately, with one of two versions [regular RGB
or filtered Colour-infrared (CIR)] of the Cannon IXUS/ ELPH,
16.0 MP, 6.16 mm × 4.62 mm sensor. Since two different
cameras were operated with the same UAV, it was necessary
to perform two flights over the same area and therefore the
RGB and CIR acquisition had on average 1 h of difference
between them. All flights were performed between 100 and 160 m
above ground altitude depending on the meteorological and local
terrain conditions and this resulted in different resolution of the
final products (Table 1).

All the UAV data was pre-processed and delivered by Firemap
SA using Structure-from-motion (SFM) available in Agisoft
Photoscan version 1.2.0. Besides delivering the orthophotos of
each location with 4 bands (RGB and NIR), the SFM by-
products of Digital Surface Model (DSM) and Digital Elevation
Model (DEM) were also delivered. The DEM was obtained by
cloud-point semi-supervised classification methods which are
readily available in Agisoft Photoscan. The Canopy Height Model
(CHM) was obtained by subtracting the DEM from the DSM
(Matese et al., 2017). This resulted in 5 different covariates used
for the classification exercise: Red, Blue, Green, and NIR bands
and the CHM.

Because the flights were performed between March and April
(A. longifolia flowered very late in the Portuguese winter of 2015)
and often near the coastline, it was not possible to deploy the UAV
in all locations during an ideal timeframe (Table 1). The flights
in each site covered approximately an area of 65 ha. Also, per
area, a minimum of nine well spread-out ground control points
were collected with sub centimeter accuracy using a Trimble GPS

1www.firemap.pt
2www.sensefly.com

XH 6000 antenna receiver to assist in the processing of the final
products (Benassi et al., 2017) as well as for alignment of the RGB
and CIR acquisitions.

In each site, 30 areas of 50 m × 50 m were randomly selected
for further field sampling which meant not all the pre-selected
areas would have A. longifolia. Within each area with A. longifolia
presence, a minimum of three 1 m2 quadrats were sampled for
flowering counts (Figure 1 and Table 1). A minimum of 60 1 m2

quadrat samples were collected in each study area (Table 1).
Due to the extremely high number of flowers present in 1 m2,
it was necessary to adapt the method of flower counting which
would otherwise become unfeasible. So, within each quadrat,
the flowers were counted in (at least) 3 smaller subplots of
30 cm × 30 cm (Figure 1A). Also, only the number of flowers in
the first 30 cm starting from the tip of the branch were considered.
These subplots were chosen in order to be representative of
the flowering within that 1 m2 quadrat (Figure 1). The smaller
30 cm × 30 cm subplots were then extrapolated to number of
flower per m2. This method was adapted from the methodology
used by Morais and Freitas (2015) to provide an estimate of the
number of flowers on a sampled area m2. In total, data on 408 m2

were collected. Each quadrat was georeferenced in the SW corner
and oriented toward NE. A Trimble GeoExplorer 6000 R© with
post-processing differential correction was used to georeference
the quadrat position to correctly match the field flower count
sampling with the UAV observation.

Mapping Acacia longifolia Flowering
To map the flower presence/absence in each image we used
the Random Forest algorithm (Breiman, 2001). The Random
Forest is a classification algorithm widely used in the field of
Remote Sensing (Feng et al., 2015; Belgiu and Drăgut, 2016).
It’s a non-parametric supervised classification which consists in
an ensemble of Classification and Regression Tree’s to identify
the target classes (Breiman et al., 1984; Breiman, 2001). The tree
creation process consists in subsetting the training samples with
replacement and using part of the data to train the tree while the
remaining data is used to measure the prediction error (Belgiu
and Drăgut, 2016). The final error estimate is known as the Out-
of-Bag error (OOB) and is given by averaging the prediction error
(Breiman, 2001; Belgiu and Drăgut, 2016).

To calibrate and validate the classification, 1000 points were
randomly generated for each study area and visually identified
as having flower presence or not (Figure 3). This is a common
practice in Remote Sensing when very high resolution images are
available and the distinction between the classes is clear (Feng
et al., 2015; Lehmann et al., 2017; Müllerová et al., 2017b) as it is in
our case (A. longifolia flowers vs. everything else, Supplementary
Figure S9).

These 1000 points were then randomly separated into two
groups, one used for calibration (70% of the points) and the
remaining 30% used for validation which allowed assessing the
Overall Accuracy and Cohen’s Kappa for each image (Lehmann
et al., 2017; Müllerová et al., 2017b). To obtain the maps of
A. longifolia flower cover/m2 we applied a focal filter to the
binary map where the window size varied according to the image
resolution (Table 1), effectively resampling each image to 1 m2.
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FIGURE 3 | Flowchart of the process developed to evaluate both flower cover and flower count of A. longifolia per m2. The simple linear regression was performed
by using the flower cover per m2 detected by UAV in each of the sampled quadrats.

The visual identification of the calibration/validation points
was performed using ArcGIS R©10.2 while R R© 3.2.1 was used for: (i)
data handling raster (Hijmans and van Etten, 2012), (ii) maptools
(Bivand and Lewin-Koh, 2012), (iii) Random Forest classification
(Liaw and Wiener, 2002) and (iv) Presence/Absence classification
accuracy tests (Freeman and Moisen, 2008).

As we aim to evaluate the feasibility of using UAV imagery
to monitor the expansion of T. acaciaelongifoliae (specifically
through its effects on the flower cover of A. longifolia) we
analyzed the statistical distributions of the flower cover per m2

in each site.

Testing Correlation Between Flower
Cover by UAV and Field Measured
Flower Number
In our study we followed the same approach used by Thorp and
Dierig (2011). In controlled conditions these authors collected
digital photographs of a small patch (0.125 m2) of Lesquerella
fendleri (Gray) S. Wats and established a linear relationship
between the area occupied by flowers in the photograph and
the number of flowers present in the patch. We tested this
method in the field for A. longifolia and by using UAV imagery.
Acacia longifolia is structurally more complex than L. fendleri;
as previously mentioned, it is a shrub/small tree which produces
flowers in different heights while the latter is an herb.

To adapt the Thorp and Dierig (2011) method to imagery
acquired by UAV we used the 1 m2 quadrats positioned in the
field (as shown in Figure 1) to guide the extraction of the flower

cover in that same location. This allowed the establishment of the
linear regression between flower cover and number of flowers
counted in the field. If this linear relationship between area
of flower cover and number of flowers counted in the field is
successfully established, then this method would allow mapping
the number of flowers of A. longifolia using UAVs using only the
area covered by flowers.

RESULTS

Mapping Acacia longifolia Flowering
The Random Forest classification obtained very high accuracy
when detecting presence of flowers of A. longifolia (Table 2).
The Overall Accuracy and Cohen’s Kappa values were always
higher than 0.95 and 0.85, respectively, which indicates that the

TABLE 2 | Accuracy values obtained for the Random Forest classification
algorithm, for each study site.

Site OOB (%) 1-OOB Overall accuracy Cohen’s kappa

SD1 3.29 0.967 0.957 0.910

SD2 2.43 0.978 0.980 0.950

SD3 2.71 0.973 0.993 0.986

SD4 3.71 0.963 0.973 0.939

SD5 3.57 0.964 0.967 0.896

PF1 0.71 0.993 0.980 0.859

PF2 1.72 0.983 0.973 0.870
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FIGURE 4 | Spatial distribution of A. longifolia flowers detected by UAV imagery (binary maps) in selected sites representing the different situations. SD2 and SD3,
peak of the flowering season; SD4, post-peak season; PF2, A. longifolia in the understory of the pine forest. Flower distribution in all sites may be observed on the
Supplementary Figures S1–S4. Name of study sites as in Figure 2.

color of the flowers was very well detected by UAV. The lowest
Kappa values corresponded to the sites PF1 and PF2 where
A. longifolia invades as an understory species and the flower
visibility was hindered both by total canopy cover as well as
shadows. Considering the imagery acquired during the peak of
flowering on dune systems (SD1, SD2, and SD3), SD2 and SD3
showed the highest Kappa values of all, while the OOB and the
Overall Accuracy were very high for all locations. Blue band
was the most important variable for all study areas except for
SD2 (Supplementary Figure S10) which can be indicative of the
contribution the yellow flowering to the classification accuracy as
yellow is a result of low blue value and a combination of red and
green (Sulik and Long, 2016). In opposition, the Near-Infrared
band was the least important variable for all study areas except
for P01 (Supplementary Figure S10) which can be indicative that
this band is not helpful to distinguish yellow flowers from the
background.

Clear flowering distribution patterns of A. longifolia were
visible in images of all sites, showing specifically more presence
of flowering in the dunes perpendicular to the shoreline (SD2 and
SD3) (Figure 4) while SD1 did not have these types of dunes and
also had more areas with pines. For the imagery acquired after the
peak of flowering (SD4, SD5) the accuracy was lower than that of
the best scenarios (0.973; 0.939 and 0.967; 0.896 respectively –
Table 2). The flowering in these locations was harder to identify

even during the extraction of the calibration/validation datasets
(Figure 4 and Supplementary Figures S3, S4). While still within
the flowering peak, it was possible to detect flowers on the edges
of open areas of the pine forests (for example PF2 in Figure 4 and
PF1 Supplementary Figure S4).

The flower cover maps, i.e., the total area of flower per m2,
showed that dunes perpendicular to the shoreline (SD2 and SD3)
did have more flower cover (Figure 5). The post peak imagery
(SD4 and SD5 Supplementary Figure S7) showed less flowering
intensity throughout the whole image (although very high rates of
A. longifolia are known to be present), with more cover observed
in the East of the study area and farther from the coastline. In
pine forests (PF2) higher cover of flowers were mostly visible in
the open spaces where pine canopy did not cover A. longifolia
(Figure 5) but also still visible through the pine tree canopy.

The analysis of the distributions of flower cover per m2 in
each site showed that all distributions were skewed, i.e., had
an unbalanced distribution. In sites where flower detection was
difficult, either because flowers were covered by pine canopy
(PF1, PF2) or because images were acquired after the peak of
flowering (SD4, SD5), the distribution was skewed toward the
origin, reflecting lower values of flower cover per m2 with less
variability (Figure 6). On the other hand, imagery obtained
during the flowering peak period (SD1, SD2, SD3) showed
not only higher average values of flower cover but also the
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FIGURE 5 | Acacia longifolia flower cover/m2 in selected sites representing the different situations. SD2 and SD3, peak of the flowering season; SD4, post-peak
season; PF2, A. longifolia in the understory of the pine forest. Areas fully covered with flowers correspond to red; areas with only a few flowers are showed in blue.
Flower cover/m2 in all sites may be observed on the Supplementary Figures S5–S8. Name of study sites as in Figure 2.

highest variability which translates the high spatial variability of
flowering patterns of the species (Figure 6 and Supplementary
Figures S5–S8).

Testing Correlation Between Flower
Cover by UAV and Field Measured
Flower Number
The relationship between the number of flowers quantified
during the fieldwork and the percentage of flower cover detected
by the UAV was weak (Figure 7). The highest values were
found in the primary and stabilized dunes where the flights were
performed at the peak of flowering (SD1 and SD2, Figure 7).
Lowest and non-significant correlations were observed in those
areas where UAV flights occurred after the peak of flowering (SD4
and SD5) or where A. longifolia invades the understory of pine
forest (PF2, Figure 7).

DISCUSSION

Detection of A. longifolia Flower
Distribution and Cover
Our results using pixel-based Random Forest classification
confirm the ability of using UAV to map invasive plants

since we obtained very high classification accuracy in all
our experimental locations. These results with the Random
Forest algorithm are in-line with other works in the field
of Remote Sensing (Immitzer et al., 2012; Feng et al., 2015;
Tamouridou et al., 2016) and with object-based classification
(Michez et al., 2016a; Yuan and Hu, 2016). This was
expected due to the unique bright yellow appearance of
A. longifolia flowers in the winter season in juxtaposition
to the lack of yellow flowering in most co-occurring native
or exotic plants (Flora-On: Flora de Portugal Interactiva,
2014).

The use of UAV in the field of invasive alien plants has
recently become more common (Hill et al., 2016; Müllerová
et al., 2017a). This technology can be a major contribution
to monitor any phenomena that induces changes on plant
phenology or morphology such as the spread of a forest pest
(Lehmann et al., 2015b) or the establishment of a biocontrol
agent. In our study, T. acaciaelongifoliae expansion is expected
to reduce flowering (i.e., decrease quantity of flowers through
space and time as it spreads from the release points) and
vigor of A. longifolia (Dennill, 1988), and as such a high
resolution Remote Sensing protocol to monitor the plant
flowering may be an excellent solution to be used as a proxy
to monitor temporal and spatial impact of this biocontrol
agent.
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FIGURE 6 | Boxplot of the pixel distribution for the flower cover/m2 in all study
sites. Boxes represent the interquartile range from the mean; dotted points
(sometimes having the appearance of bold lines) are outliers while the
continuous thin line represents the maximum and minimum of the distribution.
Name of study sites as in Figure 2.

Additionally, and despite a detailed cost analysis was not
performed, the costs of monitoring the flowering in the field
versus the costs of just deploying the UAV and processing the
image were clearly different: flower monitoring at each field site
(which sampled some plots and not the entire area overflow by
the UAV) required four researchers to work for about 8 h while
each UAV flight was done in less than 2 h with 2 operators (at
some locations 1).

In studied sand dunes, as well as in other dune systems (Elorza
et al., 2004; Rascher et al., 2011), A. longifolia frequently replaces
native plant communities where shrubs and herbs are more
frequent, occupying large patchy areas and becoming dominant
as an overstory species, and so is easier to detect. As expected
(Perroy et al., 2017), when A. longifolia occurs in the understory
of the pine forests, it is not detected by the UAV. Nevertheless, at
the peak of flowering A. longifolia visibility increased in the more
open areas of the pine forest canopy.

Accuracy of classification was dependent of flowering season
and habitat type, showing better values during flowering peak
and in sand dunes where A. longifolia dominates the overstory.
Even so, when flowers were hidden by pine canopy or when
UAV flights occurred at the end of flowering season and less or
senescent (weak yellow coloring) flowers were present, highly
accurate values were still obtained. Using UAV technology to map
below the canopy remains a challenge (Perroy et al., 2017) but
new developments of unmanned aerial systems are starting to
address flights in forests understory (Brust and Strimbu, 2015;
Liao et al., 2016; Michez et al., 2016b). These results highlight

the potential of this approach to detect variations on A. longifolia
flowering, confirming their plausible use as a proxy to detect the
decrease in flower production due to the establishment of the
biocontrol agent.

The flexibility in the acquisition of imagery with UAV allows
capturing specific stages of phenology (Müllerová et al., 2017b);
in our study it allowed to capture the peak of flowering for most of
the study areas. We observed that shadows can have very negative
effects on imagery captured at high latitudes during the days of
clear-sky. This happens due to the low altitude of sun on the
local horizon even during the solar noon. Acquisitions during
full cloud coverage significantly reduced the impact of shadows
in our experiment, and did not have a meaningful impact on the
high accuracy of the image classification exercise.

In a broader perspective, the high accuracy in identifying
A. longifolia flowering confirms the potential for using UAVs
to access phenological changes due to biota attack or any other
factor that induce changes in plant phenology or morphology.
This complies with other studies, e.g., that used satellite imagery
to assess the impact of pine beetles (Skakun et al., 2003)
and confirms the importance of accurate evaluation of plant
characteristics. Such studies highlight how UAV techniques
can be flexible and applied in a wide range of study fields.
Not only forestry, but also agriculture and environment,
are increasingly evaluating Remote Sensing approaches for
improving management efficiency (Wulder et al., 2006; Xiang and
Tian, 2011; Burkart et al., 2014).

Testing Correlation Between Flower
Cover by UAV and Field Measured
Flower Number
The variation of phenology and structure of A. longifolia added
to the variability of the multiple habitats where the species
occurs and this increased the challenge of quantifying the flowers
by UAV-based imagery. Acacia longifolia has a high structural
variation as it can develop flowers along its branches, at different
heights and overlapping (or not) each other, as confirmed during
field measurements: e.g., dense groups of A. longifolia trees with
high numbers of branches and flowers overlapping each other
several times vs. trees with dispersed flowers that rarely overlap;
flowers at the top of the canopy which are hard to reach (small
trees up to 8 m) vs. flowers at soil level that are easily quantified
(shrubs lower than 2 m). This high level of variation occurred
within the same trees as well as between different trees and
was, most likely, the main factor that contributed to the low
correlation found between the numbers of flowers measured in
the field and those estimated using UAV imagery. Few works have
tried to evaluate this type of relation.

Thorp and Dierig (2011) provided a good example of
the application of this methodology achieving much better
correlation for Lesquerella fendleri (Brassicaceae). However,
L. fendleri is an herb/forb which may produce all the flowers at
approximately the same level; additionally, their experiment was
conducted in highly controlled conditions with only one unique
area of 1 m2 being observed through time, which was not the case
in our variable field conditions.
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FIGURE 7 | Relation between the numbers of flowers counted in the field and the percentage of flower cover detected by UAV. ∗∗p < 0.01; ∗∗∗p < 0.001; n.s., not
significant. PF1 was not included because field sampling was not performed for this site. Name of study sites as in Figure 2.

While our field measurements could potentially benefit from
some re-design to better characterize what is in fact perceived
by the UAV sensor and the inherent variability of A. longifolia
flowering which is probably the main cause of the observed
lack of correlation. To address what is detected by the UAV we
suggest that the quadrats should be marked on the field prior
to the UAV flights to ensure that positioning errors from GNSS
receiver are not responsible for the mismatch. Furthermore, the
volume of A. longifolia should be also considered by establishing
allometric equations relating the volume with above ground
biomass (Cunliffe et al., 2016).

This research was one of the first attempts to quantify the
number of flowers using UAVs and although this goal was
not satisfactorily achieved, it brought valuable insights on the
limitations and potentials of these systems. The quantification of
flowers, fruits, galls and/or any other plant trait is of increasing
importance to Remote Sensing of vegetation and thus, the use of
low-cost UAV as well as new satellite observation platforms (e.g.,
Sentinel) deserve further exploration.

CONCLUSION

A successful low-cost approach was developed to
map A. longifolia flowering using UAV. Mapping of
A. longifolia flowering is the first step on establishing a

method for monitoring the effect of the biocontrol agent
T. acaciaelongifoliae. And while we failed to establish a
predictive relationship between area of flower cover and
number of flowers, we believe that this method can be used
for monitoring the expected decrease of the production of
flowers.

Despite the challenges and limitations, our results showed
that UAVs clearly offer a simple and reliable method to
map the distribution of the invasive A. longifolia. Even
if this approach is better suited when A. longifolia is in
the peak of flowering and occurs as an overstory species.
While in the future it is expect that the biocontrol will
significantly diminish the flowering intensity, this impact
will increase gradually over time, therefore the near post-
flowering period reflects the expected immediate impacts of the
biocontrol.

Acacia longifolia flower cover was not linearly correlated
with the number of flowers, oppositely to L. fendleri, indicating
that there is a need to develop better methods to estimate
A. longifolia flowering. This lack of correlation is likely
explained by variability of the structure and variability of
A. longifolia flowering. Considering the potential advantages
that may come from the improvement of this approach
in field conditions, future works should address these
challenges and limitations opening a broader field of
applications.
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FIGURE S1 | Random Forest supervised classification results for SD1 and SD2.

FIGURE S2 | Random Forest supervised classification results for SD3.

FIGURE S3 | Random Forest supervised classification results for SD4 and SD5.

FIGURE S4 | Random Forest supervised classification results for PF1 and PF2.

FIGURE S5 | Flower cover per m2 for SD1 and SD2.

FIGURE S6 | Flower cover per m2 for SD3.

FIGURE S7 | Flower cover per m2 for SD4 and SD5.

FIGURE S8 | Flower cover per m2 for PF1 and PF2.

FIGURE S9 | Example of flower visibility during the flowering (a) and fructification
(b) seasons. Areas dominated by A. longifolia can be visually identified during both
seasons, but are more clearly detected during the flowering period.

FIGURE S10 | Variable importance as identified by the supervised Random Forest
classification. Blue band was generally the most important variable for the classifier
which can be interpreted as a result of yellow (high red/green vs. low blue color).
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