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The brain is one of the most exquisite organs in the body with high metabolic
demands, and requires a tight regulation of the surrounding environment. This tight
control is exerted by the neurovascular unit (NVU) comprising different cell types, where
endothelial cells play the commander-in-chief role. Thus, it is assumable that even
slight perturbations in NVU might affect, in some cases irreversibly, brain homeostasis
and health. In this line, recent findings support the two-hit vascular hypothesis for
neurodegenerative conditions, where vascular dysfunction underlies the development of
neurodegenerative diseases, such as Alzheimer’s disease (AD). Knowing that endothelial
cells are rich in mitochondria and nicotinamide adenine dinucleotide phosphate
(NADPH) oxidases, two major reactive oxygen species (ROS) sources, this review aims
to gather information on how oxidative stress is in the front line of vascular alterations
observed in brain aging and neurodegenerative conditions, particularly AD. Also, a brief
discussion about the therapeutic strategies aimed to protect against cerebrovascular
diseases is included.

Keywords: neurovascular unit, endothelial cells, oxidative stress, mitochondria, NADPH oxidases, Alzheimer’s
disease

INTRODUCTION

The brain integrates and regulates several central and peripheral signals to maintain body
homeostasis (Ronnett et al., 2009). So, it is not surprising that the brain is an organ with a
high energy demand, although it represents only 2% of the body weight (Mergenthaler et al.,
2013). In fact, it is widely known that proper neuronal activity entails high amounts of energy.
However, the capability of the brain to store energy is very reduced, requiring a constant supply
of energy substrates, namely glucose, through blood flow to fulfill its energy needs (Ohta et al.,
1992). For that reason the brain receives about 15% of cardiac output and accounts for 20%
of total body oxygen consumption (Moreira et al., 2009; Nunomura et al., 2009; Ronnett et al.,
2009). At this point, it is worth mentioning the neurovascular coupling, where neurons, glial
cells and blood vessels communicate to each other to regulate cerebral blood flow (CBF) and
vessels permeability depending on location and neuronal activity in order to efficiently maintain
energy substrates supply to satisfy the metabolic needs (Gordon et al., 2007). Cerebral blood vessels
comprise unique properties forming the blood–brain barrier (BBB), a physical barrier that permits
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the passage of water, some gases and lipophilic molecules by
passive diffusion and the selective transport of certain molecules
(e.g., glucose) and protects against external toxins and pathogens.
Thus, even slight alterations in BBB properties can be responsible
for the onset/progression of neurological diseases. From all the
BBB constituents (endothelial, mural and glia cells, astrocytes
and macrophages), endothelial cells that form blood vessels,
play a major role in BBB proper functioning (Daneman and
Prat, 2015). Blood vessels control the influx and efflux transport
allowing, for example, the entry of glucose and amino acids
from the blood into the central nervous system (CNS) and
the removal of specific waste products from the CNS into the
blood (Daneman and Prat, 2015). More recently, Kubíková
et al. (2017), performed a mapping of brain microvessels
obtained from two healthy human adult brain samples and
found that in certain brain areas microvessels density is higher
than others, which can reflect the different susceptibilities to
vascular damage. Even slight alterations in brain vasculature can
underlie different neurodegenerative events. Indeed, it is widely
described that conditions interfering with brain vasculature, such
as stiffening of cerebral arteries or increased vessel tortuosity,
caused by diabetes and hypertension among other conditions,
can induce BBB breakdown underlying the development of
neurodegenerative conditions such as Alzheimer’s disease (AD)
(Carvalho et al., 2010, 2013, 2014; Steinman et al., 2017). It is
also known that in many cases BBB integrity is deeply affected by
oxidative stress. In fact, increased reactive oxygen species (ROS)
production contribute to endothelium dysfunction and increased
permeability of BBB (Enciu et al., 2013). These alterations are
mainly attributed to the redistribution and/or altered expression
of critical tight junction proteins such as claudin-5 and occludin
(Schreibelt et al., 2007; Lochhead et al., 2010).

Although it is widely accepted that vascular changes play a
crucial role in neurodegenerative diseases, none of the available
therapies are effective when translated to clinical trials revealing
some gaps in the mechanisms behind the vascular and tissue
brain changes under pathological conditions. Thus, studies aimed
to develop new non-invasive techniques to better understand why
and when changes occur bring a new hope for the treatment
of conditions characterized by cerebrovascular alterations (Vaas
et al., 2017). In the next section we will discuss the role of
oxidative stress in brain vascular alterations putting the focus on
mitochondria and nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase (Nox).

MAJOR PLAYERS IN VASCULAR
OXIDATIVE STRESS

It is widely known that cells homeostasis depends on the
regulated levels of ROS. Low/moderate levels of ROS can act as
signaling molecules, which are crucial to maintain normal cells
function, while uncontrolled generation of ROS causes oxidative
damage contributing to cells dysfunction and damage (Chen
et al., 2017).

Physiological ROS levels can play important roles in cerebral
vasculature (De Silva and Miller, 2016). Studies performed in

animal models show that ROS can contribute to the regulation
of brain perfusion through their action in vascular tone control
(Miller et al., 2009; Grochowski et al., 2018). Indeed, physiological
levels of ROS play a major role as cerebral vasodilators (Figure 1).
For example, it has been shown that the addition of NADPH, the
substrate for Nox, in cerebral vessels in vitro and in vivo cause
hydrogen peroxide (H2O2)-dependent vasodilatation (Didion
and Faraci, 2002; Park et al., 2004; Miller et al., 2005; De Silva
and Miller, 2016).

The neurovascular unit (NVU), containing neurons,
astrocytes, pericytes, microglia and endothelial cells, is
equipped with a powerful antioxidant defense systems that
include glutathione (GSH), glutathione peroxidase, glutathione
reductase, superoxide dismutase and catalase (Tayarani et al.,
1987; Halliwell, 2001). GSH in particular has been shown to
play an important role in the maintenance of BBB integrity
(Figure 1) (Agarwal and Shukla, 1999). Also, the nuclear factor

FIGURE 1 | Dual role of reactive oxygen species in neurovascular unit. In
neurovascular unit (NVU) reactive oxygen species (ROS) play a controversial
role with low/moderate levels of ROS acting as signaling molecules, which are
crucial to maintain normal cells function, while uncontrolled generation of ROS
causes oxidative damage contributing to cellular dysfunction and cells
damage. In physiological situations ROS can act as cerebral vasodilators,
regulators of signal transduction, inducers of mitogenic response and immune
defense mechanisms, regulators of blood flow and effectors of
preconditioning mechanisms. However, when ROS concentrations pass a
certain threshold, they lead to an increase in blood flow resistance, decreased
nitric oxide (•NO) bioavailability, decreased vasodilatation and immune
response, increased apoptosis and decreased endothelial nitric oxide
synthase (eNOS) expression, leading to pathological conditions. The delicate
balance of ROS levels is regulated by cellular antioxidant systems such as
glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR),
superoxide dismutase (SOD), catalase, nuclear factor erythroid 2-related
factor 2 (NRF2) and antioxidant response element (ARE).
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erythroid 2-related factor 2 (NRF2) seems to play a major defense
role by modulating microglial dynamics (Rojo et al., 2010),
by protecting astrocytes and neurons from toxic insults (Lee
et al., 2003; Vargas and Johnson, 2009) and by regulating the
expression of antioxidant enzymes (Shah et al., 2007; Yan et al.,
2008). Additionally, NRF2 induces secondary defense proteins
via interaction with the antioxidant response element (ARE) in
the promoter region of target genes (Figure 1). Interestingly,
astrocytes have a higher capability of efficiently increase GSH
and ARE-linked gene expression, which allows astrocytes to be
more protected than neurons against moderate levels of oxidative
stress (Vargas and Johnson, 2009).

A failure in the ability of NVU cells to maintain the proper
balance between ROS production and their neutralization causes
the disruption of NUV and brain homeostasis predisposing to
neurodegenerative conditions (Carvalho et al., 2013; Wevers
and de Vries, 2016). It has been shown that following an
injury microglia and astrocytes produce high levels of ROS via
Nox, which seem to have harmful effects in the expression
of important molecules involved in BBB integrity (e.g., ZO-1,
claudin-5 and occluding). Pericytes, which are in close proximity
to endothelial cells, play a vital role in the integrity of BBB
(Armulik et al., 2010). Under pathological conditions, pericytes
are highly susceptible to oxidative stress (Shah et al., 2013)
resulting from overproduction of mitochondrial ROS (Shah
et al., 2013). Moreover, it has been demonstrated that ROS
production by activated microglia causes pericytes apoptosis
(Ding et al., 2017). However, there is a lack of information
regarding the role of ROS in pericytes under physiological
conditions. Endothelial cells signaling seems to be crucial in
the regulation of NVU proper functioning with increased ROS
formation playing a major role in the alteration of NVU
function and coupling (Girouard and Iadecola, 2006; Faraco et al.,
2016).

It was also shown that ROS-induced changes in
microcirculation can have profound implications in brain
vascular pathophysiology due to alterations in blood flow
resistance and, consequently, in regulation of blood pressure
(Figure 1) (Staiculescu et al., 2014). Both superoxide (O2

•−) and
H2O2 are able to cause both relaxation as well as contraction
of cerebral blood vessels depending on the concentration and
presence of other species (Faraci and Sobey, 1998; Allen and
Bayraktutan, 2009; Freeman and Keller, 2012). In fact, oxidative
stress can impair cerebral vascular function via the disruption of
endothelium-dependent nitric oxide (•NO) signaling (Figure 1)
(Girouard et al., 2007; Mayhan et al., 2008; Miller et al., 2010b). It
is widely described that the reaction of O2

•− with •NO leads to
a decrease in •NO bioavailability and, consequently, a decrease
in its vasodilator, anti-proliferative, and anti-inflammatory
properties (De Silva and Miller, 2016). Furthermore, increased
levels of H2O2, a common vasodilator in cerebral circulation,
can act as a pro-apoptotic agent in cerebral vascular cells
(Figure 1) (Li et al., 2003). Increased levels of ROS can also
lead to an increase in Rho kinase signaling (Aghajanian et al.,
2009) interfering with endothelial nitric oxide synthase (eNOS)
expression and activity, affecting •NO production (Figure 1)
(Faraco et al., 2013).

Considering vascular cells, there are several ROS sources
such as mitochondrial electron-transport chain, cyclooxygenases
(COXs), lipoxygenases, cytochrome P450 reductases, xanthine
oxidase, nitric oxide synthase (NOS) and Nox (Miller et al.,
2010a). However, in this review, we only discuss mitochondria
and Nox, both of them widely described as main producers
of ROS either in physiological and pathological conditions in
endothelial cells.

Mitochondria: More Than an Energy
Producer
Reporting to the history of biology evolution, mitochondria
are described as organelles derived from aerobic bacteria that
in ancient times invaded proto-eukaryotic cells as parasites
(Dromparis and Michelakis, 2012). From there, a symbiotic
relationship evolved with mutual benefits and mitochondria
became intracellular organelles (Dromparis and Michelakis,
2012). Although mitochondria are widely described as
energy producers through the highly conserved oxidative
phosphorylation (OXPHOS) process (Cadenas and Davies,
2000; Chan, 2006), nowadays the role of mitochondria reached
substantially higher importance in cell homeostasis due to
their involvement in several vital processes such as cell growth
and differentiation, cell cycle control and death (Osellame
et al., 2012; Carvalho et al., 2015), intermediary metabolism,
calcium (Ca2+) homeostasis and signaling, and apoptosis (Chan,
2006).

However, mitochondrial energy production can be a
double-edge sword. Indeed, OXPHOS is not 100% efficient
and during this process an electron leak occurs between
mitochondrial complexes leading to the production of ROS
such as O2

•−, •NO, hydroxyl radical (HO•), peroxynitrite
(ONOO−), and H2O2 (Richter and Kass, 1991; Ricquier
and Bouillaud, 2000; Goetz and Luch, 2008). As previously
mentioned, low/moderate ROS levels exert a beneficial role by
activating protective mechanisms (Valko et al., 2007; Correia
et al., 2010; Alfadda and Sallam, 2012). However, when ROS
levels reach critical values they lead to oxidative stress and
activate anomalous signaling mechanisms that can lead to cells
degeneration and death (Brown and Borutaite, 2001; Sheu et al.,
2006).

Brain endothelial cells seem to possess a number of
mitochondria higher than that observed in peripheral endothelial
cells (Oldendorf et al., 1976; Alyautdin et al., 2014). However,
in comparison with other cell types with higher energy
requirements, mitochondria content in endothelial cells is
modest. In rodent models, mitochondria compose 2–6% of the
cell volume as opposed to 28% in hepatocytes and 32% in cardiac
myocytes (Dromparis and Michelakis, 2012; Kluge et al., 2013).
These observations support the idea that mitochondria is not a
major source of energy in brain endothelial cells. In fact, several
studies support the idea that brain endothelial cells obtain a large
proportion of their energy from anaerobic glycolytic metabolism
of glucose (Spahr et al., 1989; Mertens et al., 1990; Culic et al.,
1997). Actually, mitochondria are more likely to serve primarily
as essential signaling organelles in the vascular endothelium
(Quintero et al., 2006; Tang et al., 2014; Busija et al., 2016).
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The activation of mitochondria by physiological stimuli or
pharmacological agents leads to the liberation of vasoactive
factors by the endothelium, which exert a major role in
the modulation and maintenance of BBB integrity and brain
homeostasis (Busija and Katakam, 2014). Moreover, it is far
known that aging leads to a decrease in mitochondria number in
cerebral endothelial cells associated with the loss of BBB integrity
(Mooradian, 1988). The BBB high demand of mitochondrial
activation comes with a price, the prospect for an increased
ROS production that in physiological conditions is regulated by
antioxidant enzymes such as glutathione reductase, manganese
superoxide dismutase, catalase, among others (Freeman and
Keller, 2012). Additionally, it has been demonstrated that
vascular endothelial growth factor (VEGF) exerts its functions in
endothelial cells migration through mitochondrial ROS (Wang
et al., 2011), a process involved in several physiological processes
such as wound healing and vascular repair (Freeman and Keller,
2012). Moreover, studies in human coronary resistance arteries
showed that mitochondrial ROS are involved in endothelium
regulation of vascular homeostasis (Liu et al., 2003). In the same
study, the authors reported that mitochondrial ROS have an
influence in vascular regulation and health. Indeed, the authors
tested mitochondrial complexes I and III and Nox inhibitors and
observed that only the mitochondrial inhibitors were able to exert
effects in the regulation of flow-induced dilation (Liu et al., 2003).
Besides the above evidence more studies are needed to explore the
role of mitochondrial ROS in cerebral vasculature during disease
progression, in contrast to the extensive literature concerning
systemic vessels.

NADPH Oxidases
The Nox family is also broadly studied due to its main catalytic
function of ROS production by transference of an electron
to molecular oxygen (Takac et al., 2012). The Nox family is
composed by different isoforms: Nox1 to 5, Duox1 and Duox2
with a broad expression in different organs and tissues and
with different cellular locations at vascular walls (de Almeida
et al., 2017). Except for Nox-5 and DUOX-1 and -2, Nox are
phagocytic oxidases, whose main task is to generate ROS to kill
foreign pathogens at homeostasis. Of note, the major source
of endothelial cells ROS comes from NOX-1, -2, -4, and -5
(Pendyala et al., 2009; Drummond and Sobey, 2014). Different
Nox isoforms seem to produce different forms of ROS; Nox1 and
2 mainly produce O2

•−; Nox4 mainly produces H2O2 and Nox5
seems to produce both O2

•− and H2O2 (Dikalov et al., 2008;
Helmcke et al., 2009). Under physiological conditions, Nox-
derived ROS seem to exert an important role in the regulation of
vasodilatation (Togliatto et al., 2017). Although it is considered
that under physiological conditions Nox activity is constitutively
low, when its function increases with the consequent increase
in ROS production, it can trigger ROS production by other
sources (Landmesser et al., 2003). Indeed, it has been described
that Nox-derived ROS play a major role in coordinating some
physiological processes such as innate immunity, modulation
of redox-dependent signaling cascades, and can act as cofactors
in the production of hormones (Drummond et al., 2011).
Furthermore, it is described that H2O2 produced by Nox family

can exert an endothelium-derived hyperpolarizing role causing
vasodilatation and reducing blood pressure in mice (Ray et al.,
2011). The Nox activity depends on the stimuli, such as cytokines
(De Keulenaer et al., 1998), growth factors (Brandes et al.,
2001), hyperlipidemia, and high glucose (Jansen et al., 2013).
Additionally, Nox family is known for its role as oxygen sensors,
modulating the different responses to hypoxia through hypoxia-
inducible factor 1 alpha (HIF-1α) mRNA induction and HIF-1α

stabilization (Gorlach et al., 2001), a process that is responsible
for alterations in gene expression due to the oxidation of target
proteins.

However, the overproduction of ROS by Nox family plays
a major role in disruption of vascular homeostasis, which
can underlie the development of neurodegenerative diseases.
Of notice, so far only Nox2 and Nox4 were associated with
endothelium dysfunction probably due to their major role
as vascular ROS producers, in comparison to the other Nox
isoforms (Matsuno et al., 2005; Takac et al., 2012).

Compelling evidence shows that Nox-derived oxidative stress
causes many of the deleterious effects of angiotensin II on the
cerebral vasculature. It was observed that angiotensin II acutely
and chronically, increases O2

•− production by Nox in rodent
cerebral vessels (Girouard et al., 2006, 2007; De Silva and Faraci,
2016). Also, functional alterations on rodents’ cerebral arterioles
following angiotensin II treatment are prevented by co-treatment
with the ROS scavenger MnTBAP and the Nox2 peptide inhibitor
gp91ds-tat (Girouard et al., 2006). It was also reported that
angiotensin II can also activate and increase O2

•− production in
cerebral vessels by activating Nox1 (Jackman et al., 2009).

Interestingly, although not extensively studied, the Nox family
activation and expression seems to be seasonal, a fact that could
be correlated with seasonal alterations in oxidative stress and
endothelium dysfunction observed in humans and rats unveiling
a new strategic pathway to future studies of clinical relevance
(Hopkins et al., 2011; Konior et al., 2014).

AGING AND NEURODEGENERATIVE
DISORDERS: WHEN THINGS START TO
FAIL

The aging process causes several alterations in brain blood
vessels such as decreased elasticity, increased cerebrovascular
remodeling and calcification, gradual cerebrovascular wall
stiffness, low-grade and widespread inflammation and oxidative
stress (Camici et al., 2015), factors that increase the risk for
cerebrovascular diseases. So far, there is no agreement of how
aging process occurs although several theories can be found in
the literature. One of the most accepted theory for aging was
first proposed by Harman (1956) and is known as “free radical
theory of aging,” which postulates that ROS levels increase with
age, being responsible for deoxyribonucleic acid (DNA), proteins
and lipids oxidative damage (Harman, 1956).

Recent findings demonstrated the existence of
BBB permeability alterations during normal aging in
human hippocampus using advanced dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI)
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(Montagne et al., 2015). It is also known that aging increases
BBB susceptibility to different challenges and its permeability is
less controlled allowing the entrance of neurotoxic substances,
which affect brain homeostasis (Zlokovic, 2011; Caplan et al.,
2017). In fact, BBB dysfunction is more pronounced under
pathological conditions, including in mild cognitive impairment
(MCI) individuals, supporting the idea that vascular alterations
are early events in cognitive deficits (Figure 2) (Montagne
et al., 2015). Using a multiphoton microscope, Han et al. (2015)
observed increased levels of O2

•− in the cerebral vessels of
aged PS1/APP transgenic mice, a model of AD. Also, electron
and confocal microscopy studies revealed that in F344 rats
aortas, the expression of the mitochondrial biogenesis factors,
such as mitochondrial transcription factor A and peroxisome
proliferator-activated receptor-γ coactivator-1-alpha (PGC-1α),
decreases with aging (Ungvari et al., 2008). Moreover, an
increase in mitochondrial H2O2 production was observed in
aged arterial rat vessels leading to an activation of nuclear
factor-κB (NF-κB) and induction of inflammatory phenotypic
changes in aged vasculature (Ungvari et al., 2007). Furthermore,
an age-dependent decline in mitochondrial complexes I, III, and
IV subunits expression was observed in rat aortas, although the
authors did not specify if all the subunits of the three complexes
were evaluated or not (Ungvari et al., 2008). Also, Wenzel
et al. (2008) were able to show an age-dependent increase in
mitochondrial ROS production and mitochondrial DNA lesions
causing aorta vascular dysfunction in two different mice models,
the ALDH-2–/– and MnSOD–/– models, which are deficient
in aldehyde dehydrogenase-2 (ALDH-2) and manganese
superoxide dismutase (MnSOD), respectively. Furthermore, the
in vitro use of mitochondrial complex I inhibitor rotenone, after
angiotensin II-induced O2

•− production, showed significant
improvements in endothelial dysfunction and tolerance in
human aortic endothelial cells (Dikalov et al., 2014; Mikhed
et al., 2015). Furthermore, the use of preconditioning strategies
as a therapeutic intervention is emerging and under extensive
scrutiny. Indeed, studies from our laboratory were able to show
that treating rat brain endothelial cells with non-lethal cyanide
concentrations, which lead to increased mitochondrial ROS
production, was able to confer protection against a posterior
high glucose-mediated damage, preventing apoptotic cell death
(Correia et al., 2012). Importantly, Correia et al. (2012) were
able to prove that in the absence of mitochondrial DNA, using
mitochondrial-depleted DNA human teratocarcinoma NT2
cells, this effect was abrogated, emphasizing mitochondrial role
in endothelium protection by preconditioning (Correia et al.,
2012). Moreover, the use of mitochondrial-targeted antioxidants
such as MitoTempo, showed promising results in counteracting
age-related and microgravity-induced and hyperglycemia-
induced endothelial dysfunction (Carvalho et al., 2014; Zhang
et al., 2014). Indeed, Mitotempo was able to protect endothelial
primary cultures of diabetic mouse model (db/db) and rat
cerebral arteries against amyloid β (Aβ) toxicity (Carvalho et al.,
2014) and lead to improvements in spatial working memory and
motor skill learning in young 5xFAD mouse models of AD (Lu
et al., 2015). Moreover, it was also able to recover mitochondrial
dysfunction observed in rat cerebral arteries of animals exposed

to microgravity conditions through reduction of mitochondrial
ROS levels, increased mitochondrial potential and improvement
in mitochondrial respiratory chain function (Zhang et al., 2014).

Mitochondrial-derived oxidative stress can also activate
vascular inflammation in aged carotid arteries and vessels
(Csiszar et al., 2007; Ungvari et al., 2007) leading to
atherosclerosis through activation of endothelial NF-κB,
which is responsible for the upregulation of adhesion molecules
and increased monocyte adhesiveness in aged aortic arteries
(Ungvari et al., 2007). Moreover, changes in Nox activity and/or
expression is widely described in aged brain vessels (Park et al.,
2007; Mayhan et al., 2008). Nevertheless, the mechanistic role of
Nox in the aging process remains obscure (Sahoo et al., 2016).

Data from the literature also show that in cultured aged
cerebromicrovascular endothelial cells (CMVECs) the mRNA
expression levels of Nox2 and 4 subunits were upregulated
compared with young CMVECs, a phenomenon similar to that
observed in the myocardium, leading to increased levels of
oxidative stress (Toth et al., 2014). Although further studies must
be performed in order to corroborate this hypothesis, it seems
that, similarly to the myocardium, in CMVECs the increased
expression of Nox 2 and 4 causes oxidative stress, which activates
the renin–angiotensin–aldosterone system (RAAS) (Wang et al.,
2010). This activation can occur through a ROS-induced increase
in angiotensinogen (AGT), a 60-kDa α2-globulin glycoprotein
that constitutes the precursor of RAAS; stimulation of renin, the
enzyme responsible for the initiation of the RAAS pathway; and
release or regulation of angiotensin converting enzyme (ACE)
activity, crucial for the formation of angiotensin II, the major
effector of RAAS (Morato et al., 2017). Furthermore, since Nox
4 is usually localized in mitochondria, its increased expression
can also contribute to increased levels of mitochondrial ROS
potentiating the aging process as well as age-related diseases
(Sahoo et al., 2016). The use of Nox inhibitors showed promising
results in reducing oxidative stress levels and in improving
endothelial function in several disease models (Girouard et al.,
2006; Kahles et al., 2007; Matsumoto et al., 2007; Miller et al.,
2010a). Also the use of resveratrol seems to be effective in
restoring cerebromicrovascular endothelial function through a
downregulation of Nox-derived ROS production in aged mice
(Toth et al., 2014).

Despite the extensive literature stating that age-associated
oxidative stress can lead to cerebrovascular dysfunction and
cognitive decline, there is a significant gap in our knowledge
regarding the exact mechanisms underlying these defects
(Tarantini et al., 2017a).

CEREBROVASCULAR OXIDATIVE
STRESS AND NEURODEGENERATIVE
EVENTS: THE CASE OF ALZHEIMER’S
DISEASE

Although the previous alterations seem to be common
features in physiological aging of vessels, somewhere over
the way those defects can become more pronounced triggering
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FIGURE 2 | Cerebrovascular alterations and brain damage. The brain is a very delicate organ that relies on an extremely controlled environment and on a constant
energy supply due to its high metabolic demand, which depend on blood–brain barrier (BBB) proper functioning. Besides other cell types (astrocytes, pericytes,
microglia and a basement membrane made from structural proteins) endothelial cells (EC) assume the major role in controlling BBB integrity. Inside EC, mitochondria
and nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox) act as main sources of reactive oxygen species (ROS). In pathological conditions, an
increased ROS levels cause cerebrovascular dysfunction, which promotes an increase in BBB leakage interfering with brain energy supply and homeostasis, and
increasing amyloid β (Aβ) peptide deposition in vascular walls. Alterations in BBB features are associated with oxidative stress and damage and inflammatory
processes, among other deleterious alterations, contributing to cognitive defects and, eventually, the development of neurodegenerative diseases.

neurodegenerative events (Kling et al., 2013). Indeed, recent
reports suggest a major role for the NVU in the initiation
of neurodegeneration (Nelson et al., 2016). In fact, NVU
dysfunction leads to an increased BBB permeability with
the subsequent entry of neurotoxic molecules into the brain

disturbing its homeostasis. A decrease in the removal of
neurotoxic substances from the brain, and a deficient nutrient
delivery system eventually culminate in neuronal loss and
synaptic dysfunction (Zlokovic, 2008). Thus, a decline in
cerebrovascular function in age-associated diseases, such as
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AD, is easily understandable (Girouard and Iadecola, 2006).
Indeed, it is estimated that about 60–90% of AD patients also
present cerebrovascular alterations including cerebral amyloid
angiopathy (CAA), microinfarcts and ischemic lesions and
microvascular degeneration (Jellinger and Mitter-Ferstl, 2003;
Bell and Zlokovic, 2009).

It has been recently reported the existence of BBB and vascular
alterations in several diseases such as Parkinson’s disease (PD),
Huntington’s disease and cerebral small vessel disease (Lin et al.,
2013, 2015; Lee and Pienaar, 2014; St-Amour et al., 2015; Al-
Bachari et al., 2017) although there is a gap concerning the
mechanisms underlying those alterations and the role of vascular
oxidative stress in these pathologies.

Concerning AD, the most common form of dementia in the
elderly, more information exists about the vascular alterations
that occur in this disease (Gallart-Palau et al., 2016). Several
clinical and basic evidence points to the existence of a major
contribution of both large artery and small vessel disease in
the pathogenesis of AD (Iadecola, 2013; De Strooper and
Karran, 2016; Faraci, 2017). Having this into account, the
two-hit vascular hypothesis of AD emerged, postulating that
cerebrovascular damage is an initial insult that is self-sufficient
to initiate neuronal injury and neurodegeneration, but can also
promote accumulation of Aβ peptide, a neurotoxic peptide, in
the brain (Nelson et al., 2016). Thus, events that compromise
vascular health can initiate a cascade of deleterious events
that culminate in AD development. In fact, previous studies
from our laboratory demonstrated that some risk factors for
AD, such as hyperglycemia, increase the susceptibility of brain
endothelial cells to Aβ peptide, a phenomenon related to ROS
overproduction (Carvalho et al., 2014). Moreover, several genetic
[apolipoprotein E4 (APOE4), phosphatidylinositol-binding
clathrin assembly protein (PICALM), clusterin, presenilin 1,
amyloid precursor protein (APP), mesenchyme homeobox
gene 2 (MEOX2)] (Nelson et al., 2016) and non-genetic
(hypertension, metabolic syndrome, hypercholesterolemia,
atherosclerosis, alcohol and substance abuse, among others)
(Kivipelto et al., 2002; Skoog and Gustafson, 2006; Nelson et al.,
2016; Campos-Pena et al., 2017) risk factors for AD seem to be
linked with alterations in vascular function supporting the idea
that vascular alterations play a major role in AD pathology.

Recent studies in wild type mice showed that, even under
normal conditions, there is a different regional susceptibility
of the cerebrovasculature to oxidative stress (Austin et al.,
2015). Vessels from cortex and hippocampus, the two main
areas compromised in AD, contain significantly higher levels
of intracellular O2

•− and increased protein levels of both
Nox 2 and 4 (Austin et al., 2015). Other studies revealed
significant changes in blood vessels morphology, decreased
vascular density and increased vessels tortuosity in AD brains
(Hunter et al., 2012). Moreover, the use of recent technologies
such as arterial spin labeling magnetic resonance imaging
(MRI), functional blood-oxygen-level-dependent (BOLD)-MRI,
fluorodeoxyglucose-positron emission tomography (FDG-PET),
and single-photon emission computerized tomography (SPECT),
showed decreased levels of CBF in early phases of human
AD progression (Daneman and Prat, 2015). Recently, Lourenço

et al. (2017) showed that reduced CBF changes found in
triple transgenic for AD (3xTg-AD) mice preceded memory
dysfunction thus suggesting that cerebrovascular dysfunction
could be the primary cause of neurovascular uncoupling in
AD. Those observations are supported by MRI, transcranial
doppler and SPECT studies revealing different patterns of
decreased CBF coincident with the brain regions where
neuropathological alterations are more relevant in AD (Hu et al.,
2010; Pimentel-Coelho and Rivest, 2012). Those alterations seem
to be closely related with the levels of oxidative stress in the
cerebrovasculature. Studies from our laboratory showed that
3xTg-AD mice present an increased BBB permeability, in cortex
and hippocampus (Carvalho et al., 2013), these alterations being
correlated with decreased aconitase activity, an enzyme whose
activity is inhibited by O2

•− (Carvalho et al., 2013). The increased
levels of ROS appeared to be the result of impaired activity of
mitochondrial enzymatic complexes I–III (Figure 2). Moreover,
and similarly to our observations in mitochondria isolated from
whole brain of 3xTg-AD mice (Carvalho et al., 2012), Golgi
silver impregnation studies using multiple samples from the
hippocampus and cortices of AD patients showed that brain
endothelial cells present enlarged mitochondria, disruption of the
mitochondrial cristae and reduced abundance (Baloyannis and
Baloyannis, 2012).

An interesting fact is that even though mitochondrial
morphology is very similar in male and female rodent
cerebral arteries, major differences can be observed concerning
mitochondrial protein mass, respiration, and function (Rutkai
et al., 2015), which is in accordance with sex/gender differences
observed in several brain-related studies (Giordano et al., 2013;
Christov-Moore et al., 2014; Ingalhalikar et al., 2014; Sun et al.,
2015) including the susceptibility to develop AD (Candeias et al.,
2017).

Mitochondrial ROS overproduction also increases Aβ

deposition in vessels walls, which is a common feature in many
cases of AD (Figure 2). Indeed, 34–35% of human AD cases
present CAA, predominantly in the occipital lobe (Love et al.,
2014). Aβ deposition in vessels walls seems to initiate a vicious
cycle, Aβ increases ROS levels, which in turn potentiate Aβ

deposition (Figure 2) (Park et al., 2011). There is also evidence
showing that Aβ can induce Nox activation and ROS production,
which are responsible for the activation of multiple mechanisms
involved in vascular dysfunction and decreased levels of tight
junction proteins mRNA (Carrano et al., 2011). However, Nox
driven ROS production does not seem to affect Aβ production
in Tg2576 mice, a mouse model of AD, lacking the key Nox 2
subunit (Park et al., 2008, 2011).

Endothelial ROS overproduction upregulates the endothelial
production and release of endothelin-1, a well know
vasoconstrictor that appears to be increased in AD (Palmer et al.,
2013). Likewise, ROS overproduction seems to be responsible for
reduced •NO bioavailability mainly by its fast reaction with O2

•−

generating ONOO− (Park et al., 2005; Tong et al., 2005) and for
a decreased activity of potassium channels (Erdos et al., 2004),
two major factors required for endothelial-mediated dilations in
brain vasculature (Hamel et al., 2016). Moreover, Aβ-induced
nitrosative stress in endothelial cells is also responsible for DNA
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TABLE 1 | Antioxidant based therapies.

Molecular target Compound Mechanism of action Reference

Mitochondria 17β-estradiol ↑Mitochondrial biogenesis
↑Antioxidant enzymes

Kemper et al., 2014

Mitotempo ↑Mitochondrial function
↓Vascular O2

−

↑Vascular NO production

Pung et al., 2012;
Kizhakekuttu et al., 2012;
Carvalho et al., 2014;
Tang et al., 2014

MitoQ ↓Oxidative stress
↓Endothelial dysfunction
↓Leukocytes adhesion

Ghosh et al., 2010;
Rodriguez-Cuenca et al., 2010;
Smith and Murphy, 2011;
Gioscia-Ryan et al., 2014

NADPH oxidases Genetic deletion of Nox 2 Improve cerebral vessels
functioning

Park et al., 2007, 2008

Apocynin
Diphenyleneiodonium
chloride

↓Nox-derived ROS production
↑eNOS-driven reactivity

Mayhan et al., 2008

Fulvene–5
triphenylmethane derivatives
grindelic acid
ML171

Inhibit extracellular Nox domains
(under investigation)

Perry et al., 2006;
Bhandarkar et al., 2009;
Gianni et al., 2010;
Munson et al., 2012;
Kofler et al., 2013

damage, resulting in poly (ADP-ribose) polymerase (PARP)
activation, ultimately leading to a large increase in intracellular
Ca2+ through transient receptor potential melastatin-2 channels
activation (Figure 2) (Park et al., 2014).

Reactive oxygen species overproduction also interferes with
HIF-1α reducing its expression and activity which will restrain
the stimulus to promote angiogenesis and new vessels formation
(Ogunshola and Antoniou, 2009) leading to a vicious cycle
of impaired capillary perfusion, hypoxia and oxidative stress
(Mamelak, 2017).

FINAL REMARKS

Recognizing vascular ROS production as one of the main causes
of BBB dysfunction in aging and dementia, particularly in AD,
raises the prospect that pharmacotherapy targeting the major
ROS producers, namely mitochondria and/or Nox, might open
a new venue to stop or, at least, slow dementia progression
(Sweeney et al., 2015). Indeed, relying on the overwhelming
evidence that mitochondrial dysfunction could be in the
genesis of neurovascular dysfunction, several molecules with
potential therapeutic effects were designed to target ROS, boost
mitochondrial function and decrease free radical production and
oxidative damage (Tong et al., 2005; Hamel et al., 2008; Moon
et al., 2014) in an attempt to improve neurovascular health. Some
of those molecules ameliorated the cognitive performance of
mouse models of cerebrovascular disease (Tong et al., 2005). It
was observed that the steroid hormone 17β-estradiol (estrogen)
modulates the expression of several transcriptional regulators
causing a decrease in PGC-1α, and an increase in PGC-1β, PGC-
1-related coactivator (PRC), nuclear respiratory factor 1 (NRF-1)
and mitochondrial transcription factor A (TFAM), which protect
cerebral blood vessels (Table 1) (Kemper et al., 2014). These

protective effects were due to increased mitochondrial biogenesis
and antioxidant enzymes (Kemper et al., 2014). However, the
use of antioxidant therapy in cerebrovascular disease still needs
validation. Indeed, several promising approaches failed in clinical
trials (Tarantini et al., 2017b), opening an intense debate about
the reasons for the failure of those molecules in humans. Merely
as an example, the use of tempol showed promising results in
improving vasodilator responses of cerebral arterioles in aged
APP transgenic mice with CAA (Han et al., 2015) but so far there
is no evidence of its efficacy in clinical trials. Furthermore, two
major concerns arise from the use of antioxidants as therapeutic
approaches: (1) physiological ROS concentrations are important
in normal cell functioning and the use of antioxidants may
interfere with ROS signaling and (2) the concentrations of
antioxidants revealed to be suboptimal doses in certain situations.
Indeed, it is known now that supra-physiological concentrations
are required to compete with the constant reaction that usually
occurs between O2

•− and •NO (Drummond et al., 2011). Large
part of the studies failed to prove that antioxidants reach the
vasculature at appropriate/therapeutic concentrations (De Silva
and Miller, 2016).

To overcome the failure of the traditional antioxidants,
researchers are developing new specific-targeted antioxidants.
However, evidence about the specific-target antioxidants effects
in endothelial cells is scarce. Moreover, mitochondria-targeted
antioxidants decrease the dose required and limit toxic side
effects rendering them a promising therapeutic approach
(Smith and Murphy, 2011). It was observed that MitoTempo,
a mitochondria-targeted antioxidant, was able to counteract
Aβ-induced damage under hyperglycemic conditions in rat and
mouse primary cultures of endothelial cells (Carvalho et al.,
2014). Additionally, it was shown that MitoTempo was able
to improve mitochondrial function and coronary collateral
growth after ischemia/reperfusion in Zucker fatty rats (Table 1)
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(Pung et al., 2012). Recent studies also showed that MitoTempo
was able to decrease vascular O2

•− and increase vascular
•NO production improving endothelial-dependent relaxation
in angiotensin II-induced hypertensive C57Bl/6 mice (Tang
et al., 2014). It was also observed that MitoTempo improves
endothelial function and reduces mitochondrial O2

•− levels in
subcutaneous arterioles isolated from type 2 diabetic patients
(Table 1) (Kizhakekuttu et al., 2012). Moreover, MitoQ, another
mitochondria-targeted antioxidant was able to reduce oxidative
stress, without causing adverse effects, on wild-type mice
(Rodriguez-Cuenca et al., 2010; Smith et al., 2011) and animal
models of neurodegenerative diseases such as AD and PD (Ghosh
et al., 2010; Manczak et al., 2010). MitoQ was able to improve
age-related arterial endothelial dysfunction in C57BL/6 mice
(Table 1) (Gioscia-Ryan et al., 2014). Furthermore, MitoQ has
been shown to prevent cocaine-induced cardiac dysfunction
in Wistar rats (Vergeade et al., 2010). However, the use of
mitochondrial-directed drugs should take in account two major
limitations: first, the lack of organ-specificity, leading to a greater
accumulation in mitochondria-rich tissues; and second the
typically used chemicals tend to accumulate in the matrix and the
matrix-facing surface of the inner mitochondrial membrane, over
other important mitochondrial compartments (Leitao-Rocha
et al., 2015). The majority of mitochondria-targeted compounds
were already able to identify and get ahead of these limiting
factors in human clinical trials, defining the amount of the
compound that can be administered safely. For example, MitoQ,
was already developed as a pharmaceutical by Antipodean
Pharmaceuticals Inc. (Smith et al., 2008) and clinical trials
are running, namely in type 2 diabetic patients, where MitoQ
treatment was able to decrease ROS levels and significantly
reduced the adhesion of leukocytes to endothelial cells in type 2
diabetic individuals (Escribano-Lopez et al., 2016).

Likewise, approaches designed to target Nox-derived ROS
overproduction are also under intense scrutiny. Indeed, the

genetic deletion or inhibition of Nox2 seems effective in
improving cerebral vessels functioning in aged APP mice (Park
et al., 2007, 2008). Apocynin and diphenyleniodonium are widely
used to ameliorate Nox-related cerebrovascular dysfunction,
however, both compounds present non-specific effects and
cannot be used in the clinic (Table 1) (De Silva and Miller,
2016). In this line, several attempts are being made to synthesize
new Nox inhibitors including fulvene-5, triphenylmethane
derivatives, grindelic acid, and ML171 (Table 1) (De Silva and
Miller, 2016). However, results are scarce and further studies
are needed to demonstrate that those compounds are potential
therapeutics for the treatment of neurodegenerative conditions
characterized by oxidative stress-associated vascular alterations.

In sum, despite the existing information about the role of
cerebrovascular oxidative stress in neurodegenerative conditions,
a long way is still ahead to clarify the mechanisms of age-
associated vascular damage and subsequent neurodegenerative
conditions. New information is crucial for the design of more
effective therapeutic strategies.
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