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Abstract An approximate dual representation for non-
Abelian lattice gauge theories in terms of a new set of dynami-
cal variables, the plaquette occupation numbers (PONs) that
are natural numbers, is discussed. They are the expansion
indices of the local series of the expansion of the Boltz-
mann factors for every plaquette of the Yang–Mills action.
After studying the constraints due to gauge symmetry, the
SU(2) gauge theory is solved using Monte Carlo simula-
tions. For a PONs configuration the weight factor is given by
Haar-measure integrals over all links whose integrands are
products of powers of plaquettes. Herein, updates are lim-
ited to changes of the PON at a plaquette or all PONs on a
coordinate plane. The Markov chain transition probabilities
are computed employing truncated maximal trees and the
Metropolis algorithm. The algorithm performance is investi-
gated with different types of updates for the plaquette mean
value over a large range of βs. Using a 124 lattice very good
agreement with a conventional heath bath algorithm is found
for the strong and weak coupling limits. Deviations from the
latter being below 0.1% for 2.5 < β < 3. The mass of the
lightest J PC = 0++ glueball is evaluated and reproduces the
results found in the literature.

1 Introduction

The computation of the properties of strongly-interacting
matter directly from Quantum Chromodynamics (QCD)
remains a challenging problem. For matter at zero baryon
density, Monte Carlo lattice QCD simulations are currently
used to address both zero and finite temperature [1]. On
the other hand, the investigation of dense quark matter, as
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required for example to study the structure of atomic nuclei
and neutron stars, the quark-gluon plasma produced in heavy
ion collisions, and the matter that existed in the early stages
of the Universe, is still an open problem for lattice QCD sim-
ulations due to algorithmic limitations. Indeed, the investiga-
tion of such systems, e.g. in the grand canonical ensemble,
demands the introduction of a finite chemical potential μ

in the partition function of the theory. The baryon chemical
potential turns the Euclidean action into a complex-valued
function and the integration measure in the path integral of
the partition function is no longer positive definite, giving
rise to the so-called sign problems, and thereby limiting the
use of Monte Carlo techniques with importance sampling.
For sufficiently small values of μ, the study of dense sys-
tems can still rely on importance sampling when combined
with re-weighting [2,3]. However, in general, the handling of
complex actions requires the introduction of new sampling
techniques as, for example, the direct sampling of the den-
sity of states or a mapping of the theory into new variables
such that one recovers a positive Boltzmann factor; in this
latter approach, the theory reformulated in terms of the new
variables is called the dual theory – Ref. [4] provides a recent
review on these methods for lattice field theories. The map-
ping of a given theory into its dual has been used to overcome
sign problems appearing in different fields [5].

In lattice QCD in the strong coupling limit, sign problems
can be avoided by mapping the theory into a dual representa-
tion, using new “dual variables”, after the integration of the
gauge fields prior to the integration of the fermion fields [6–
8]. The gauge symmetry of the original theory imposes con-
straints on the new set of dual variables which, nevertheless,
can be handled via generalizations of the original Prokof’ev-
Svistunov worm algorithm [9].

Another example of a dual representation of QCD is the
effective theory introduced in Ref. [10], where the fundamen-
tal degrees of freedom are the Polyakov loops defined in the
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group Z(3). This effective theory can be derived from QCD
in the strong coupling limit, by restricting the non-Abelian
gauge degrees of freedom to the center of the group SU(3),
i.e. to the group Z(3), and performing a hopping expansion
in the quark sector. The action of the Z(3) effective theory
inherits a sign problem from QCD. However, after rewriting
the original partition function in terms of dual variables, it
becomes a sum of real and positive Boltzmann weights [11].
The dual variables are dimers, that are attached to the lattice
links, and monomers, that are attached to the lattice sites. In
the dual representation, the complex nature of the original
action is washed out [11]. Symmetries of the original the-
ory appear, again, as constraints on the dual variables of the
reformulated theory that can be handled with the use of a
generalized worm algorithm.

In recent years several other interesting QCD-related the-
ories were studied using dual representations. Theories with
O(N) and CP(N-1) symmetries, which, like QCD, are asymp-
totically free, were investigated with dual representations
at zero [12,13] and finite density [14]. Strongly interact-
ing fermionic theories, relevant for graphene [15] and also
for particle physics, were investigated with the fermion bag
approach [16–19], in which a dual representation can be built
after a suitable integration of the fermionic degrees of free-
dom. By combining strong coupling and hopping-parameter
expansions, an effective theory [20] in the dual representation
free of sign problems is obtained. Scalar field theories have
also been successfully mapped into dual representations, see
e.g. Refs. [21–25].

In what concerns gauge field theories, dual representations
were implemented for pure Abelian U(1) theory [26,27],
Higgs-U(1) theory [28,29], and U(1) Abelian theory with
fermion fields [30]. For pure SU(N) lattice gauge theory
a dual representation was suggested recently in Ref. [31],
where the dual variables are random Gaussian matrices intro-
duced by recursive applications of the Hubbard-Stratonovich
transformation [32]. Recently, a dual representation for non-
Abelian gauge theories was suggested in Refs. [33–35], in
which the partition function for the dual theory is given by a
sum of positive and negative terms, which prevents the use of
Monte Carlo simulations with importance sampling to solve
the theory.

In the present work we discuss a new approximate dual
representation for pure non-Abelian gauge theories. Starting
from the partition function written in terms of the Wilson
action, we expand the Boltzmann exponential factor of a sin-
gle plaquette as a power series. The expansion indices of
each plaquette, bμν (x) ∈ N0, where N0 is the set of natu-
ral numbers, after integrating over the gauge fields, play the
role of dynamical variables. The Boltzmann weights become
functions of the dual variables bμν (x), and a Metropolis-type
algorithm can be built. The transition probabilities of the cor-
responding Markov chain are ratios between these weights.

In the new representation of the non-Abelian gauge theory,
the weights are computed using the Haar-measure integrals
involving the link variables. The integration over the links
is a non-trivial problem per se as each link is coupled to all
links in the entire lattice. For the numerical experiment, we
make approximations in the integration over the link fields to
estimate the transition probability defining the Markov chain
and thus generate ensembles of the dual variables

{
bμν (x)

}
.

The work reported herein investigates the pure SU(2)
Yang–Mills gauge theory. Although the boson sector of a
gauge theory does not suffer from the sign problem, our
goal is to test a new algorithm/representation of a gauge the-
ory to study strong interactions. The natural development of
the ideas discussed herein are both the inclusion of matter
fields to simulate the full theory and the improvement in the
approximations considered. The rationale used here to build
a new dual representation can, in principle, be extended to
the fermionic sector. The full theory requires the use of an
enlarged set of dynamical variables, defined after the expan-
sion of the partition function. Furthermore, the constraints in
the corresponding dual theory due to the gauge symmetry are
of the same type as those for the pure Yang–Mills theory. On
the other hand, the integration over the link fields requires a
new analysis.

We test our algorithm by computing the plaquette mean
value, related to the energy density of the pure gauge sys-
tem, over a large range of the lattice coupling constant β

and the mass of the (expected) lightest scalar glueball state
(J PC = 0++). Our results show that the plaquette mean
value obtained with the algorithm developed here deviates, in
the worst case, by less than 0.1% when compared with a stan-
dard heat bath simulation for β ∈ [0, 4.5]. The mass of the
lightest glueball agrees well with previous lattice estimates
[36–42] and also with estimates based on a gauge-gravity
duality model [43].

Our paper is organized as follows. In the next section
we present our approximate dual representation for the non-
Abelian Yang–Mills theory. In Sect. 3 we discuss the con-
straints on the dual variables due to gauge symmetry which
determine the types of updates that must be considered in a
algorithm approach to solve the theory. In Sect. 4 we discuss
the Monte Carlo algorithm used in our approach. We also
present strategies to decouple a region from the entire lat-
tice surrounding a dual variable to be updated locally. In the
factorized region, the group integrals are done analytically.
Still in Sect. 4 we show how to implement one possible type
of nonlocal update. In Sect. 5 we show how to represent the
observables to be measured in terms of the dual variables. In
Sect. 6 we give the details of the simulations and report the
numerical data for the observables measured. A summary in
Sect. 7 completes the paper.
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2 Approximate dual representation for lattice
Yang–Mills theory

The lattice formulation of pure Yang–Mills theory uses as
fundamental fields the link variables Uμ(x), which belong
to the gauge group SU(N). We consider the standard Wilson
action [44]:

S [U ] = β

N

∑

x∈V

∑

μ<ν

Re Tr
[
1 −Uμν(x)

]
, (1)

with the plaquette Uμν(x) given by the product of link vari-
ables

Uμν(x) = Uμ(x)Uν(x + μ̂)U †
μ(x + ν̂)U †

ν (x), (2)

where the spacetime indices μ and ν run from 1 to d, with d
being the dimension of the Euclidean space, and x runs over
the lattice volume V . The partition function of the theory is
given by

Z = C
∫

DU
∏

x,μ<ν

e
β
N Re Tr[Uμν(x)], (3)

where DU = ∏
x,μ dUμ(x) is the Haar measure for the

gauge links, C = exp
(−βNVp−1

)
is a normalization factor

and Vp is the number of plaquettes in the volume V . Given an
operator O(U ), its vacuum expectation value is represented
by the functional integral

〈O〉 = C

Z

∫
DU

∏

x,μ<ν

e
β
N Re Tr[Uμν(x)] O(U ). (4)

In the traditional lattice approach, this expectation value is
estimated by the average

〈O〉 ≈ 1

Ncon f

Ncon f∑

i=1

O(U (i)), (5)

where the set of configurationsU ={U (i), i =1, . . . , Ncon f },
distributed according to exp{−S[U ]}, is produced with a
Monte Carlo algorithm. The statistical error associated with
such an estimate scales with the number of configurations as
N−1/2
con f .
The simulation of Yang–Mills theory with a dual represen-

tation demands rewriting the partition function in Eq. (3) in
terms of a new set of dynamical variables other than the links.
In order to be able to apply such a type of algorithm, let us
expand the exponentials appearing in the partition function
in powers of β

Z =
∫

DU
∏

x, μ<ν

∑

bμν(x)

[
β
N Re Tr Uμν(x)

]bμν(x)

bμν(x)! , (6)

where we have discarded for the moment the global factorC .
Performing the integration over the link variables, i.e. com-
puting the integral

∫
DU , Z can then be viewed as a function

of the discrete set of variables bμν(x), which are natural num-
bers. Let us introduce the notation

∑

{b}
=

∏

x,μ<ν

∑

bμν(x)

, (7)

so that the partition function can be written as

Z =
∑

{b}
Q{U } [{b}] , (8)

where

Q{U } [{b}] =
∫

DU
∏

x,μ<ν

[
β
N Re Tr Uμν(x)

]bμν(x)

bμν(x)! . (9)

The integration of the link variables defines the weight func-
tions Q{U } [{b}] which are, themselves, functions of the nat-
ural numbers bμν (x), the new dynamical variables; bμν (x)
are from now on called plaquette occupation number (PON).
Then, one can define a Markov chain to update the bμν(x)
values by choosing a transition probability given by the ratio
of the weight functions Q{U } [{b}], that complies with the
principle of detailed balance and ensures the convergence of
the Markov chain to the right probability distribution. Before
dealing with the details of the update, let us discuss the con-
straints on bμν(x) due to the group integration over the link
variables.

3 Constraints on the dual variables bμν(x)

Herein we discuss the constraints on the bμν(x) when group-
integrating over the gauge links. The results and the group
integrations discussed below can, in principle, be extended to
SU(N) but we restrict our analysis to SU(2). The main prop-
erties and results for the group integration required to under-
stand the current work are summarized in the “Appendix A”.

Let us consider the plaquette

Uμ0ν0(x0) = Uμ0(x0)Uν0(x0 + μ̂0)U
†
μ0

(x0 + ν̂0)U
†
ν0

(x0)

= U1 U2 U3 U4, (10)

defined on the (μ0, ν0) plane, see Fig. 1, where Ul with l =
1, . . . , 4 stands for a generic link and l is a composite index
taking values in the set:

L = {
(x0, μ0) ; (x0 + μ̂0, ν0

) ; (x0 + ν̂0, μ0
) ; (x0, ν0)

}
.

(11)
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Fig. 1 Representation of the (μ0, ν0) lattice plane. The gauge links
are shown as arrows. The “central plaquette” Uμ0ν0 (x0) = U1U2U3U4
(in solid red arrows) and the plaquettes which contain any of the links
appearing in Uμ0ν0 (x0). Ai are the staples (in non-solid black lines),
defined in the (μ0, ν0) plane, required to complete the neighboring
plaquettes besides the links in the “central plaquette”

Let Ai be the staple that together with the link variable
Ui defines a plaquette in the (μ0, ν0) plane which shares
with Uμ0ν0(x0) the link Ui – see Fig. 1. In the following,
to simplify the notation, we will write bl for the dynamical
variable that is associated with the plaquette containing the
staple Al , i.e. the staple in the plane (μ0, ν0) that is associated
with the link Ul . The weight function Q associated with the
plaquettes represented in Fig. 1 is

Q{U } [{b}] =
(

β

N

)∑
bμν(x) ∫

DU

× 1

b0! [Tr U1U2U3U4] b0

×
[
Tr U1A

†
1

]b1

b1! ×
[
Tr U2A

†
2

]b2

b2!

×
[
Tr U3A

†
3

]b3

b3! ×
[
Tr U4A

†
4

]b4

b4! . . . (12)

The properties of the group integration are such that most of
the possible sets {b} have a null weight and do not contribute
to the partition function. The non-vanishing contributions
are those where a given link variable Ul , with l = (μ, x),
appears nl times in the integrand, with nl being a multiple of
N, where N is the number of colors. Consider, for example,
the link variableU2 in Eq. (12): it appears b0 +b2 = n2 times
in the integrand, i.e.

∫
dU2 (U2)i1 j1 (U2)i2 j2 . . . (U2)in2 jn2

, (13)

and this gives a non-vanishing contribution to Q{U } [{b}] only
if n2 = b0 + b2 is a multiple of N. This implies that b0 and
b2 are either multiples of N or their sum is a multiple of
N, despite (b0 mod N ) �= 0 and (b2 mod N ) �= 0. In four
dimensions, the linkU2 belongs to the plaquettes represented
in Fig. 1 and also to plaquettes belonging to orthogonal planes
not shown in the figure. Therefore, for a generic link Uμ(x),
it follows that the sum over the set {bμν(x)} that count the
number of times Uμ(x) appears in the integral in Eq. (12) is
given by

nμ(x) =
μ−1∑

ν=1

[
bνμ(x) + bνμ(x − ν̂)

]

+
d∑

ν=μ+1

[
bμν(x) + bμν(x − ν̂)

]
, (14)

and only those {bμν(x)} configurations such that all {nμ(x)}
are multiples of N contribute to the partition function, i.e.

nμ(x) mod N = 0. (15)

This is a non trivial constraint that also simplifies the anal-
ysis of the possible sets of updates that can appear within a
Markov chain.

4 Update algorithm

A possible local update compatible with Eq. (15) replaces
bμν(x) → bμν(x)±Δ, with Δ being a multiple of N. In this
way, if the original configuration {bμν(x)} verifies the con-
straint in Eq. (15), the new configuration is also compatible
with Eq. (15). On the other hand, if (Δ mod N) �= 0, then
to fulfil Eq. (15) at all lattice points, one has to change the b
values in the neighboring points accordingly and, therefore,
in the next neighboring points and so on and so forth. The
updates where Δ is not an integer multiple of N requires a
global update over a finite region of the lattice.

An ergodic algorithm must access all possible b values
and, therefore, requires the use of both local and nonlocal
updates. If, for example, the Markov chain is initiated set-
ting all PON such that (bμν(x) mod N) = 0 and only local
updates are implemented, i.e. a given b is modified by adding
an integer multiple of N, configurations where all PONs of
a given plane are not multiples of N cannot be reached and,
therefore, the update does not verify the ergodicity require-
ment.

To ensure convergence to the right probability distribution,
one needs to set a detailed balance equation compatible with
Eq. (15). Our implementation chooses randomly a b or a set
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of b’s and proposes new values b′. As usual in algorithms of
this kind, the transition probability for accepting the new b′
is given by

p = P{b}old→{b}new

P{b}new→{b}old
= Q

[{b}new
]

Q
[{b}old

] , (16)

which is enough to ensure that the sampling reproduces the
correct distribution probability [45].

The computation of the weight function Q requires inte-
gration over the link variables, for all possible PONs con-
figurations, which per see is a difficult problem. The Haar
measure for the group integration is invariant under gauge
transformations and this allows rotating the links and, even-
tually, replace some of them by the identity in the evaluation
of the Q[{b}] functions. In particular, a path in which the
maximal number of links allowed by the group integration
are rotated to the identity defines what is known as a “max-
imal tree” [46]. Our proposal consists in, given a bμν(x)
variable to be updated, performing an exact integration of
the gauge links in the neighborhood of the plaquette Uμν(x).
In order to be able to compute the transition probability p we
set a small number of links to the identity matrix and, in this
way, decouple a region with links “close” to the bμν(x) vari-
able to be updated and a region with the remaining “distant”
links. The transition probability for accepting the new value
p is given by the ratio between weight functions and, there-
fore, the integration of the “distant” links cancels out and
we need consider only the contributions of the links that are
closer to the plaquette associated with bμν(x). The replace-
ment of a small subset of link variables by the identity matrix
is clearly an approximation, but it enables to perform group
integrations analytically.

4.1 Local update

To illustrate our update scheme, let us start considering the
crudest approximation possible in the local update of a given
plaquette occupation number, say bμ0ν0(x0), associated with
the central plaquette represented in Fig. 1, i.e. replace all the
staples that are connected with Uν0(x0) (the link U4 in the
figure) by the identity. Then, the integration over Uν0(x0) is
decoupled from the integrations over the remaining links and

Q [{b}] ≈
∫

dUν0(x0)
[
Tr Uν0(x0)

]n0 Q′ [{b}′]

= Q′ [{b}′]
∫

dUν0(x0)
[
Tr Uν0(x0)

]n0 , (17)

wheren0 = nν0(x0) is calculated from Eq. (14), and Q′ [{b}′]
is independent of the link Uν0(x0). In this way, the transition

probability of the local update of the PON b0 = bμ0ν0(x0) is

p = Q
[{b}new]

Q
[{b}old]

≈ Q′ [{b′}]

Q′ [{b′}]
∫
dUν0(x0)

[
Tr Uν0(x0)

]n0(new)

∫
dUν0(x0)

[
Tr Uν0(x0)

]n0(old)

= K

∫
dUν0(x0)

[
Tr Uν0(x0)

]n0(new)

∫
dUν0(x0)

[
Tr Uν0(x0)

]n0(old)
, (18)

where

K ≡
(

β

N

)b(new)
0 −b(old)

0 b(old)
0 !

b(new)
0 !

. (19)

To improve on the estimation of p, couplings of Uν0(x0)

to neighboring links need to be considered. A possible next
level of approximation is to set all the staples associated with
Uν0(x0) to the identity with exception of g = U1U2U3 (see
Fig. 1), then

Q [{b}] ≈ Q′′ [{b}′′]
∫

dUν0(x0) F
[
Uν0(x0), g

]
, (20)

where

F
[
Uν0(x0), g

] =
[
Tr U †

ν0
(x0)

]n0−b0 [
Tr Uν0(x0)g

]b0 ,

(21)

and Q′′ [{b}′′] is the group integral over all the lattice links
except for Uν0(x0). Now, since Q′′ [{b}′′] and the integral in
Eq. (20) share the linksU1,U2, andU3, they do not decouple
and this would not allow us to obtain a number for the tran-
sition probability p. However, as we shall discuss in the next
two sections, one can still devise a strategy that allows us
to integrate over Uν0(x0) taking into account couplings with
neighboring links, so that under a local update bold

0 → bnew
0 ,

the transition probability is the positive real number given by

p = Q[{b}new]
Q[{b}old] ≈

∫
D̃U F

[
U ,B, bnew

0

]

∫
D̃U F

[
U ,B, bold

0

] , (22)

where F contains through U a subset of all links Uμ (x) of
the lattice that are integrated, and B stands for the PONs
associated with the PON b0 which is being updated.

The Monte Carlo updates considered in the present work
approximate ratios of weight functions Q following the strat-
egy just discussed. The integration of the functions F all
give positive definite answers and, thus, the approximate ratio
between the dual Boltzmann weights Q to estimate the tran-
sition probability p is also a positive real number.
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4.1.1 Integration over a short path

Let us consider Fig. 1 and the central plaquette associated
with the dual variable b0 = bμ0ν0(x0). The links belonging
to this plaquette (solid red arrows) also contribute to the sta-
ples Ai = {A1, A2, A3, A4} (non-solid black lines). Recall
that the aim is to update b0 and compute the transition prob-
ability p.

A maximal tree can be built by rotating some, but not all,
staples associated with the linksUi in the plaquetteUμ0ν0(x0)

to the identity matrix. However, assuming that all the links in
Ai can be set to the identity, the group integration can be fac-
torized and one has to consider only the following integrating
function

F4 = F4 [U ,B, b0]

= 1

b0!
(

β

N

)b0

Tr [U1U2U3U4]b0

× Tr
[
U †

1

]c1
Tr
[
U †

2

]c2
Tr
[
U †

3

]c3
Tr
[
U †

4

]c4
, (23)

with the integration measure given by

D̃U4 = dU1dU2dU3dU4. (24)

The set U = {U1,U2,U3,U4} contains the link variables to
be integrated. The set B contains the PONs that couple the
plaquette Uμ0ν0 (x0) with the neighboring plaquettes and in
two dimensions

B = {
bμ0ν0(x0 + μ̂0), bμ0ν0(x0 − μ̂0), bμ0ν0(x0 + ν̂0),

bμ0ν0(x0 − ν̂0)
}
. (25)

For a generic dimensionality, the set B contains the PONs
that define the powers ci in Eq. (23), i.e.

c1 = nμ0(x0) − b0, (26)

c2 = nν0(x0 + μ̂0) − b0, (27)

c3 = nμ0(x0 + ν̂0) − b0, (28)

c4 = nν0(x0) − b0. (29)

Let us now discuss the integration of F4 with the measure
D̃U4 defined in Eq. (24). The integration over the links of the
central plaquette can be started by picking any of the links
and for the function F4 one can reduce the integration to

I1[g; b, c] =
∫

dU Tr [Ug]b Tr
[
U †

]c

=
[
∂bx ∂

c
y

∫
dU exTr[Ug]+yTr

[
U†

]]

x=0
y=0

, (30)

whereU and g are SU(2) matrices. Integrals of this type have
been computed in Ref. [47]; they are given by

I1 =
⎡

⎣∂bx ∂
c
y

∞∑

q=0

(
xyTr [g] + x2 + y2

)q

q!(q + 1)!

⎤

⎦
x=0
y=0

. (31)

For a non-vanishing result, the condition 2q = b + c must
be fulfilled. The integral I1 is a polynomial in Tr [g], i.e.

I1[g; b, c] =
min(b,c)∑

q=0

Γ b,c
q Tr [g]q , (32)

where min(b, c) stands for the minimum of b and c, and the
coefficients Γ

b,c
q are given by

Γ b,c
q = δ{q%2 b%2}

b! c!
( b+c

2 + 1
)!
(
b−q

2

)
! ( c−q

2

)! q!
, (33)

and %2 returns the remainder of the integer division by 2.
The Kronecker delta in Eq. (33) indicates that the polyno-
mial in Eq. (32) contains only odd or even powers of q.
The evaluation of I1 is a first step towards the evaluation of
the weights Q. In our code the expression given in Eq. (32)
was used directly. The routine to compute I1 was checked
against a numerical evaluation of I1 for a number of cases
and both results agreed within machine precision. The inte-
gral I1, given in Eq. (32), can be used recursively to perform
the integration of Eq. (23):

∫
D̃U 4 F4 =

(
β

N

)b0 1

b0!
min(b0,c1)∑

q1

Γ b0,c1
q1

min(q1,c2)∑

q2

Γ
q1,c2
q2

×
min(q2,c3)∑

q3

Γ
q2,c3
q3

min(q3,c4)∑

q4

Γ
q3,c4
q4 . (34)

Once the coefficients Γ
b,c
q are known, one can get an approx-

imate estimation for the weights Q and also for the transition
probability p which is defined in the Markov chain.

In principle, the calculation of the weights can be
improved by considering more complex integrations over the
gauge links as, for example:

I2 =
∫

dU Tr [Uv]a [Ug]b Tr
[
U †

]c

=
⎡

⎣∂ax ∂by ∂
c
z

∞∑

q=0

1

q!(q + 1)!
(
xyTr

[
g†v

]

+ xzTr [v] + yzTr[g] + x2 + y2 + z2
)q
⎤

⎦
x=0
y=0
z=0

, (35)

However, the coding of this type of solutions in a Monte Carlo
simulation is rather complex and will not be pursued here.
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Alternatively and keeping the same rationale as described so
far, one can explore integrations over more complex paths on
the lattice.

4.1.2 Integration over a long path

The method described in the previous section can be extended
to more complex and longer lattice paths. From the practical
point of view, one has to compromise the length and com-
plexity of the path to perform the group integration with the
coding of the outcome of group integration.

Next, we consider an integration over the link variables
which takes into account a larger set of links that are decou-
pled from the remaining lattice. In Fig. 2 we show, in color,
the links to be integrated in the computation of the probabil-
ity transition p. To avoid clutter, we do not draw all links to
be integrated exactly. In particular, the links corresponding to
the fourth dimension are not represented in the figure. For the
path represented in Fig. 2, the links represented by solid red
lines, which belong to the central plaquette Uμ0ν0(x0), are
integrated exactly together with those represented by double
blue lines and by triple green lines.

The links in double blue lines are in the same plane as
Uμ0ν0(x0) and their integration involves terms which include
the links of the central plaquette. For example, the integrals
referring to the links belonging to the plaquettes Uμ0ν0(x0)

and Uμ0ν0(x2) are not independent as these staples share
Uμ0(x2). The same applies to the links belonging to the
plaquettes Uμ0ν0(x3) and Uμ0ν0(x4), whose staples share
Uμ0(x3). Also, the integration over the links in the (μ, ν0)

plane are not independent of the integration of links in par-
allel planes as those represented by triple green lines. In our
integration over the longer path, we will consider four green-
type paths which belong to the upper parallel plane shown in
Fig. 2, on the down parallel plane and similar paths related
to the path which dislocated not by ρ̂0 but by the unit vector
belonging to the fourth dimension not represented in Fig. 2.
The later three paths are not represented in Fig. 2.

In the computation of the weights Q and of the proba-
bility transition p the link variables represented in red (cen-
tral plaquette with solid lines), blue (double lines) and green
(triple lines) in Fig. 2 are integrated exactly. Each of these
link variables is coupled with 2 (d − 1) staples which belong
to 2 (d − 1) plaquettes. With the exception of the red, blue,
and green links, all staples associated with the links which
are going to be integrated are rotated to the identity matrix. In
Fig. 2 the solid lines in gray represent the link variables that
are being fixed to the identity matrix in the plane (μ0, ν0). As
in the integration described in Sect. 4.1.1, we are not building
an exact maximal tree. Indeed, there are closed paths whose
links are all set to the identity. The approximation used to per-
form the group integrations factorizes a local region, which
is decoupled from the remaining lattice, and, in this way,

Fig. 2 A 3-dimensional representation of the lattice. For an update of
the central plaquette Uμ0ν0 (x0) (solid red lines), the links represented
by red, blue (double lines) and green (triple lines) are integrated in the
computation of the weight function ratio. In grey solid lines we shown
a sample of the links that are rotated to the identity in the calculation of
p. See text for details

allows for an exact group integration in each of the regions
considered. Furthermore, it factorizes the calculation of the
weights Q, which enables an easy estimation of the transition
probability p.

Let us now discuss on how to integrate over the link vari-
ables in color in Fig. 2. In principle one can choose to start the
integration by considering any of the colored links. However,
we found that starting the integration by the links in green or
the links in blue and only then performing the integration of
the links belonging to the central plaquetteUμ0ν0(x0) simpli-
fies considerably the integration process. For the integration
over a path that is coupled with the link Uμ(x) of the central
plaquette, one can rely on the result given in Eq. (32) applied
recursively. The outcome is a polynomial

P[Uμ(x)] =
∑

k

λk Tr
[
Uμ(x)

]k
, (36)

whose coefficients λk are combinations of the coefficients Γ

and are functions of the plaquette occupation numbers of the
region surrounding the integrated path. For the group integra-
tion, every link belonging to the central plaquette is coupled
with two different paths, namely, the path in green which has
four links and the path in blue with five links. The total num-
ber of links to be integrated is now forty and for this larger
integration we define F40 [U ,B, b0] as being the local func-
tion of the approximate weight function ratio, see Eq. (22).
The set of links U contains all the forty gauge links to be
integrated and the set of the plaquette occupation numbers
B include the bμν(x) whose links are in the integrated paths.
Recall that for the simpler integration discussed previously
a similar situation is found.
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The formal expression for F40 [U ,B, b0] includes the
central plaquette Uμ0ν0(x0) and four polynomials, one for
each link variable Ul ∈ Uμ0ν0(x0), coming from the integra-
tion over the green and blue paths

F40 = 1

b0!
(

β

N

)b0

Tr [U1U2U3U4]b0
∏

l∈L
PB(l)[Ul ], (37)

where L is the set of coordinates of the links associated with
Uμ0ν0(x0), see Eq. (11). PB(l)[Ul ] is the polynomial coming
from the integration of the green and blue paths coupled to
the link variable Ul , i.e.

PB(l)[Ul ] = PBG (l)[Ul ] PBB (l)[Ul ]. (38)

The polynomial PBG (l) is the outcome of the integration over
a green path and PBB (l) the outcome of integration over a
blue path. The set BG (l) includes the PONs of the plaque-
ttes whose links belong to the integrated green path. The set
BB (l) has the same meaning as BG (l) but related to a blue
path. The union of BG (l) and BB (l) defines the set B (l).
Finally, the set B, required to perform the group integration
present in F40 [U ,B, b0], is given by the union of the four
sets B (l) together with the set of PONs of the plaquettes
that share the links present in Uμ0ν0(x0).

Before providing expressions for PBG (l) and PBB (l) let
us have a closer look on the integrations leading to these
polynomials.

In Fig. 3 the green path coupled to the link U3 is shown in
full detail. This path has four links {U3a,U3b,U3c,U3d} and
the integration over these links gives

PBG [U3] =
∫

D̃UGTr [U3U3d ]b1 Tr [U3cU3d ]b2

×Tr [U3aU3bU3c]
b3 Tr [U3a]c1

×Tr [U3b]c2 Tr [U3c]
c3 Tr [U3d ]c4 , (39)

and the integration measure reads

D̃UG = dU3a dU3b dU3c dU3d . (40)

The plaquette occupation numbers {b1, b2, b3} refer to the
plaquettes Tr [U3U3d ], Tr [U3cU3d ] and Tr [U3aU3bU3c],
respectively, and {c1, c2, c3, c4}, i.e. the powers of the trace
of the links that include {U3a,U3b,U3c,U3d}, are given by
sums of the plaquette occupation numbers similar to those
found in the case discussed in Sect. 4.1.1. For example, one
has c1 = nx0+ν̂0+ρ̂−μ̂0,ν0 − b3. The definition of the remain-
ing ci and bi associated with the integration over the green
path is given in “Appendix A”.

The coefficients BG = {b1, b2, b3, c1, c2, c3, c4} take
into account the coupling of the central plaquette and a green
path attached to the link U3. The degree and the coefficients

Fig. 3 Sublattice of the representation given in Fig. 2 with the links
labeled

of the polynomial PBG (l) is determined by the values of the
BG (l).

The blue path associated with the link U3 is shown in
Fig. 4. The blue path associated with the link U3 includes
the plaquette occupation numbers associated with the first
neighbor plaquette Tr[U †

3 Ũ3eŨ
†
3d ] of Uμ0ν0(x0) and of its

second neighbor Tr[Ũ3aŨ3bŨ3cŨ3d ]. The group integration
over the blue path is

PBB [U3] =
∫

D̃UBTr
[
Ũ3aŨ3bŨ3cŨ3d

]b̃2

× Tr
[
U †

3 Ũ3eŨ
†
3d

]b̃1
Tr
[
Ũ3a

]c̃1
Tr
[
Ũ3b

]c̃2

× Tr
[
Ũ3c

]c̃3
Tr
[
Ũ3d

]c̃4
Tr
[
Ũ3e

]c̃5
, (41)

for an integration measure given by

D̃UB = dŨ3adŨ3bdŨ3c ˜dU 3d . (42)

As for the green path, expressions for the coefficients c̃i , b̃i
are given in “Appendix A”.

The polynomials coming from performing the integrations
over the green and blue paths are computed in “Appendix A”.
It follows that for the green path

PBG (l)[Ul ] =
min(b3,c1)∑

q1

min(q1,c2)∑

q2

min(b2,c3+q2)∑

q3

×
min(b1,c4+q3)∑

q4

Γ b3,c1
q1

Γ
q1,c2
q2 Γ

b2,c3+q2
q3

×Γ
b1,c4+q3
q4 Tr [Ul ]

q4 , (43)
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Fig. 4 Another sublattice of the representation given in Fig. 2 with the
links labeled

while the blue path the group integration gives

PBB (l)[Ul ] =
min

(
b̃2,c̃1

)

∑

q̃1

min(q̃1,c̃2)∑

q̃2

min(q̃2,c̃3)∑

q̃3

×
min

(
b̃1,c̃4+q̃3

)

∑

q̃4

min(q̃4,c̃5)∑

q̃5

Γ
b̃2,c̃1
q̃1

Γ
q̃1,c̃2
q̃2

×Γ
q̃2,c̃3
q̃2

Γ
b̃1,c̃4+q̃3
q̃3

Γ
q̃4,c̃5
q̃5

Tr [Ul ]
q̃5 , (44)

In order to evaluate Eq. (38) for each link of the cen-
tral plaquette Ul ∈ {U1,U2,U3,U4}, it remains to multiply
Eqs. (43) and (44). Once the polynomials PB(l)[Ul ] are eval-
uated, we can integrate F40, see Eq. (37), over the remaining
links

∫
D̃U4 F40 =

∫
D̃U4Tr [U1U2U3U4]b0

∏

l∈L
PB(l)[Ul ],

(45)

and estimate the ratio between the weights Q in order to
evaluate the probability transition p.

For the particular case of a local update transition b0 →
b0 ±Δ, the polynomials PB(l)[Ul ] contributing to F40 do not
depend on Δ, i.e. on the update of the central plaquette and,
therefore, they do not need to be evaluated twice to compute
p. Note that the function F40 defined in Eq. (37) is given by
a sum of terms like F4 given in Eq. (23). It follows that the
solution of the group integration in Eq. (45) is a sum of the
solutions that look like Eq. (34). Then, the group integration
is reduced to the computation of factorial numbers and, it fol-
lows from the definition and the approximation used, that the
transition probability is a real and positive definite number.

4.2 Nonlocal update

The Monte Carlo updates discussed in Sects. 4.1, 4.1.1 and
4.1.2 do not allow us to access all possible configurations for
the plaquette occupation numbers. For example, those local

updates are unable to change a given plaquette occupation
number from an odd natural number to an even natural num-
ber or vice-versa. As discussed in Sect. 3, the introduction of
a global or a nonlocal update can improve the algorithm in
the sense that it enlarges the space sampled by the algorithm.

A nonlocal update can be implemented via a simultaneous
transformation of all the plaquette occupation numbers over
a plane surface, where each of the PONs is changed accord-
ingly to bμν(x) → bμν(x) ± Δ, where Δ is not necessarily
a multiple of N. For this update, the number of links to be
integrated increases with the lattice size. Recall that for the
updates discussed previously, the number of links integrated
to compute the weights depends only on the type of update
and is fixed a priori for each of the updates. Although by
enlarging the size of the space sampled by the algorithm, this
nonlocal update might not be enough to guarantee full ergod-
icity of the algorithm, but it certainly helps in approaching
an ergodic update. Of course, one can introduce other types
of nonlocal updates as, for example, an update of the PONs
attached to a cube. The updating process where a plane sur-
face is filled with PONs that are not multiples of N can not
generate a configuration where the PONs that are not multi-
ples of N are attached to the cube surface. In addition to the
so-called planar update, and to comply with full ergodicity,
one should also implement the cube type of update. However,
its implementation is rather complex and its impact on the
performance of the algorithm will be the object of a future
report.

Let us now discuss the group integration to compute the
transition probability p. In Fig. 5 we show the surface over
which the plaquette occupation numbers are to be updated.
In order to perform the group integration, the links repre-
sented by solid lines are set to the identity matrix and those
represented by doted lines are to be integrated exactly for the
weight evaluation. In d > 2 dimensions and in what respects
the group integration, the links in Fig. 5 are coupled with
staples in perpendicular planes. In the integration to com-
pute the transition probability for this nonlocal update, all
those staples are set to the identity matrix. Again, we are not
building an exact maximal tree but the approximation allows
us to get relatively simple expressions in the calculus of the
transition probability p.

The local function Fp, associated with the update over a
5 × 5 plane represented in Fig. 5, contains 24 link variables
and is given by

Fp = Tr [U1]b1

b1!
Tr
[
U †

1U2

]b2

b2!
Tr
[
U †

2U3

]b3

b3!

× · · ·
Tr
[
U †

23U24

]b24

b24!
Tr [U24]b25

b25! Tr [U1]c1

× Tr [U2]c2 Tr [U3]c3 . . . Tr [U24]c24 , (46)

123



656 Page 10 of 18 Eur. Phys. J. C (2018) 78 :656

Fig. 5 Two-dimensional representation of the 5 × 5 lattice with peri-
odic boundary conditions. The solid lines are fixed to the identity and
the doted ones are integrated in the evaluation of the weight function
ratio corresponding to a nonlocal plane update

where all bi are plaquette occupation numbers belonging to
the plane where the nonlocal update takes place, the ci are
related to the integrated link Ui and are given by a sum of
plaquette occupation numbers belonging to the plaquettes
that share Ui in other planes than the updated plane.

Starting the group integration by the link labelled 1 in
Fig. 5, the integration function is of the same type as that
defined in Eq. (30) and whose solution is given in Eq. (32).
The integration leads to a polynomial of the trace of the link
with label 2. For the integration of the link labelled 2 one
uses the solution in Eq. (32) and repeat the process to the
subsequent links, as for the integration of the green and blue
paths in the local update associated with Fig. 2.

5 Observables

We implemented the algorithm to compute the mean value of
the plaquette and the mass of the J PC = 0++ glueball. The
mean value of the plaquette is easily computed in terms of the
plaquette occupation numbers. In the partition function given
by Eq. (3), the plaquette Uμν(x) comes associated with the
factor β. Formally, one can identify a different β with each
of the plaquettes and make the replacement β → βμν(x).
Ignoring the constant C in Eq. (3), it follows that

∂ ln Z

∂βμν(x)
= 1

Z

∫
DU

(
Re Tr

[
Uμν(x)

]

N

)

W [U ] ,

=
〈
N−1Re Tr Uμν(x)

〉
, (47)

where W [U ] is the Boltzmann weight factor in the standard
representation of the partition function. Performing the same
operations with the partition function written in the new rep-

resentation, given by Eqs. (8) and (9), it follows that

∂ ln Z

∂βμν(x)
= 1

Z

∑

{b}

(
bμν(x)

β

)
Q{b}, (48)

and, therefore, the plaquette expectation value is given by the
average of the dual variables bμν(x)

〈
Re Tr Uμν(x)

N

〉
=
〈
bμν(x)

β

〉
. (49)

The average of the plaquette expectation value over the lattice
volume, called plaquette mean value u, reads

u = 1

Vp

〈∑
x,μν bμν(x)

β

〉

. (50)

The value of u estimated with our algorithm will be com-
pared with the output of a conventional heat bath Monte Carlo
method.

In this exploratory work besides the mean value of the
plaquette we also compute the mass of the scalar glueball with
quantum numbers J PC = 0++. This requires the building of
an interpolating field Φ with the right quantum numbers and
writing Φ in terms of the dual variables bμν(x). A first step
toward the computation of the mass of the scalar glueball is
the evaluation of the correlation function

G(x − y) = 〈0| Φ(x)Φ(y) |0〉 . (51)

Setting y fixed at the origin of the lattice, then the zero
momentum Euclidean space Green’s function reads

G(t) = 1

4π2

∫ ∞

0
dp

p2
√
p2 + m2

e−
√

p2+m2t

= m2

4π2

∫ ∞

1
dz

√
z2 − 1e−zmt , (52)

where m is the mass of the glueball ground state and the last
line is the result of making the change of variable p2 +m2 =
z2m2 in the first line. The integration over z is given in terms
of the K1 Bessel:

G(t) = (1/2)!
2π5/2

m

t
K1(mt) ≈

√
m

t3/2 e
−mt

(
1 + O(1/t)

)
, (53)

where the second expression holds for large values of t .
The lattice version of the operator Φ is constructed by

mapping the continuum symmetries and therefore the quan-
tum numbers of the corresponding particle into the hyper-
cubic group [40]. For the ground state and for the channel
J PC = 0++, the simplest operator is given by

Φ(t) =
∑

x

∑

μ<ν
ν �=t

Re Tr Uμν(x, t)
N

, (54)
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i.e., the sum of spacelike plaquettes. With the use of Eq. (49),
the operator Φ can be mapped into the new representation
and is given in terms of bμν(x) as

Φ(t) =
∑

x

∑

μ<ν
ν �=t

bμν(x, t)
β

. (55)

The estimation of the glueball masses from correlation
functions of type given in Eq. (53) with smaller statistical
errors is not an easy task. Indeed, given that G(t) decays
exponentially with Euclidean time, the signal to noise ratio
decreases speedily for large Euclidean time and, therefore, on
the lattice one can only rely on a limited number of time slices
to estimate m. Although there are a number of techniques to
improve the signal to noise ratio, as e.g. the use of anisotropic
lattices or the use of smeared operators [36,38,39], we will
take the interpolating operator as given in Eq. (54), with the
representation given in Eq. (55), to test the algorithm.

In practice, for estimating the scalar glueball mass, a num-
ber of uncorrelated configurations will be generated and the
operator Φ will be computed using Eq. (55). From the inter-
polating field we evaluate the scalar glueball connected Green
function

G(t) = 1

T

∑

τ

[〈Φ(t)Φ(t + τ)〉 − 〈Φ(t)〉 〈Φ(t + τ)〉] ,

(56)

where T is the lattice time length and the second term on
the right hand side in Eq. (56) removes the vacuum contri-
bution to the signal. The mass of the J PC = 0++ glueball
is measured fitting the lattice estimation in Eq. (56) to the
functional form given in Eq. (53).

6 Results

In the simulations we start the Markov chain with a cold start,
where all bμν(x) = 0, and the Monte Carlo updates use both
the local and nonlocal updates.

For the local updates, a given PON bμν(x) is chosen ran-
domly and a change by ± 2 is proposed with the sign being
chosen randomly. This process is repeated Vp times, where
Vp is the total number of lattice plaquettes. To this set of
updates we call one Monte Carlo step or full sweep for the
local update.

For the nonlocal update, a two dimensional surface is cho-
sen randomly on the lattice and for each PON bμν(x) on the
surface a change by ± 1 is proposed randomly. The process
is repeated Np times, where Np is the number of two dimen-
sional surfaces on the lattice. To this set of updates we call
one Monte Carlo step or full sweep for the nonlocal surface
update.

Fig. 6 Mean value of the plaquette from simulations using the algo-
rithm and the heat bath algorithm. Top panel: comparison of the per-
formance of the two local updates. Lower panel: finite volume effects
when using the the present algorithm

6.1 Sampling and the mean value of the plaquette

For the evaluation of the mean value of the plaquette given in
terms of the dual variables, as given in Eq. (50), we simulate
two different lattice volumes, 64 and 124, for various values
of β. For each of the simulations, after discarding 103 com-
bined Monte Carlo steps for thermalization, we consider 104

configurations separated by 10 combined Monte Carlo steps.
Our numerical experiments have shown that a separation of
10 combined Monte Carlo sweeps is enough to decorrelate
the observables measured in the current work.

In Fig. 6 we compare the results obtained with the present
algorithm with the results obtained with the heat bath algo-
rithm (also for the standard Wilson action) implemented with
the library Chroma [48]. The results shown for the heat bath
algorithm refer to simulations performed on a 104 lattice, for
an ensemble with 104 configurations, separated by 5 Monte
Carlo steps.

123



656 Page 12 of 18 Eur. Phys. J. C (2018) 78 :656

Fig. 7 The same as in Fig. 6 but for the relative deviation of the results
obtained with present algorithm with respect to the heat bath results. The
vertical black lines show the interval of β values where the efficiency
of the nonlocal update is higher. See text for details

In the top panel of Fig. 6 we show the plaquette mean
value obtained in simulations of a 124 lattice combining the
local and nonlocal updates against the results of the standard
Wilson action using a heat bath simulation. As can be seen,
there is good agreement between the results obtained with
our algorithm, using any of the local updates, and with those
obtained with the heat bath simulation in the strong coupling
limit. The data also suggest that in the weak coupling limit
the present algorithm prediction for u converges to the value
given by the heat bath algorithm.

In what concerns the β dependence of the results, the
present prediction for u starts to deviate from the heat bath
result for β ∼ 1.5 up to β ∼ 3, but its maximal deviation
is about 0.1% and occurs for β ∼ 2.3. Interestingly, in this
range the local algorithm which takes into account the smaller
number of integrations, see Sect. 4.1.1, is closer to the results
of the heat bath simulation. However, as one approaches the
continuum limit, i.e. for β � 3, it is the algorithm which
uses the other local update, see Sect. 4.1.2, which is closer to
the heat bath outcome. Indeed, for the algorithm whose local
update takes into account the larger number of group inte-
grations the deviations from the heat bath result are marginal
for β � 3.

The volume dependence of the algorithm can be seen in
the lower panel of Fig. 6, where the sampling of u is inves-
tigated for two different lattice volumes. Recall that the full
Monte Carlo update is defined by a combination of local and
nonlocal updates. The data show no or only a mild depen-
dence on the lattice volume.

In Fig. 7 we show the relative deviation of the present esti-
mation of u with respect to the heat bath results for different
lattice volumes. The deviations are negligible in the strong
coupling limit and are very small when the continuum limit

is approached. The maximal deviations � 0.1% occur for
intermediate values of the coupling around β ∼ 2.3. From
the figure one can also read the improvement of considering
F40 instead of F4; recall that F40 takes into account forty
Haar integrals in the evaluation of p while F4 takes only four
Haar integrals. In particular, for the largest lattice, the data
show a notorious improvement on the values of the mean
value of the plaquette relative to the heat bath numbers when
using F40. Indeed, in the continuum limit, when one uses
F40 to estimate p, the deviations are about ∼ 50% smaller
compared to computations using F4.

The numerical simulations performed show that our
approach is a good approximation in the strong and weak
coupling limits. Given that Boltzmann weights are propor-
tional to powers β, in the strong coupling limit, i.e. for small
β values, most likely the dual variables are zero or close to
zero and setting the link variables to the identity matrix is
essentially an irrelevant operation. As β increases the dual
variables start to deviate from zero, the previous argument no
longer applies, and one can expect deviations from the exact
result. This seems to be the case for β values in the range
2.5 < β < 3. Although one would expect that integrating
more links is always better, one should recall that the inte-
gration is not exact. While it is true that the F40 updates take
into account more link variables, it also sets a large number
of link variables to the identity matrix and, therefore, at some
stage it can become less accurate than the F4 update. On the
other hand, as the continuum limit is approached, the link
variables approach the identity and, in this case, our approx-
imation reproduces faithfully the theoretical expectations.

The performance of our algorithm for different β val-
ues and different volumes can be understood looking at the
update efficiency E , defined as its acceptance rate in the
Markov chain. As can be seen in the top panel of Fig. 8,
the nonlocal update has an essentially vanishing E , with the
exception of the smaller lattice and over a narrow range of β

values. Note, however, that the region where the simulations
using the two volumes give different values for u, see the
lower panel in Fig. 6, is precisely the region of β where the
efficiency associated with the nonlocal update has its maxi-
mum value. Furthermore, the results of Figs. 6 and 8 suggest
that the nonlocal update plays an important role. Indeed, for
the smaller lattice volume and for β in the range 2.5–3, the
efficiency E is maximal and non negligible for the nonlocal
update, which makes the estimation of u by the present algo-
rithm closer to the values provided by the heat bath method.
The deviations of our estimation for u relative to the heat bath
result for the smaller volumes are milder for β in the range
2.5–3, as can be seen from Fig. 7. For the larger volumes, E
is always residual and the our estimation of u shows larger
deviations which are, nonetheless, less than 0.1% relative to
the heat bath numbers.
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Fig. 8 Efficiency of the algorithm for the various updates. Top panel:
nonlocal update, see Sect. 4.2. Bottom panel: local updates using the
function F40, see Sect. 4.1.2

Herein, we considered a single type of nonlocal update
but many other possibilities can be explored to achieve a bet-
ter and more complete sampling of the dynamical range of
values allowed for the plaquette occupation number space.
Within the rationale considered in this work, the building of a
algorithm, i.e. the implementation of other types of nonlocal
updates, implies a compromise between a given geometri-
cal setting, i.e. the definition of a given set of links over a
large region of the lattice, and the ability of being able to
perform the group integration over the corresponding sublat-
tices. Recall that, within our framework, the local updates
do not sample the entire {b} space. For example, for the
local updates the {b} remain either in the subset of odd or
even natural numbers. The nonlocal updates were built to
allow for a better dynamical range, allowing for transitions
in Markov chain where the PONs could become either odd
or even natural numbers. The search for other nonlocal types
of updates is one of the features that we aim to explore in a
future work.

Another way of reading the results in Fig. 8 is that one
should improve the efficiency E of the non local update.
Indeed, for the local updates its acceptance rate is always
∼ 10% or above, reaching a value of about 50% as the con-

tinuum limit is approached. On the other hand, the nonlocal
update defined in Sect. 4.2, has an extremely low E , with
has a maximum of ∼ 0.25% for β ∼ 2.7 for the smaller
lattice and being always residual for the larger lattice. The
low values for the efficiency associated with the nonlocal
update mean that the plaquette occupation numbers are essen-
tially trapped into the subset of the odd or the even nat-
ural numbers which is sampled by the local Monte Carlo
updates.

The local updates change, in a single update, a fixed num-
ber of bμν(x) and, in principle, are not so sensitive to volume
effects as the nonlocal updates which are affected by surface
effects.

6.2 J PC = 0++ glueball mass

In order to estimate the J PC = 0++ glueball mass we sim-
ulate the theory for β = 3.01 on a 103 × 20 lattice, with a
Monte Carlo step combining the local update as defined in
Sect. 4.1.2 and nonlocal updates as defined in Sect. 4.2.

For the conversion of the glueball mass into physical units,
we rely on Ref. [49] which uses the string tension

√
σ = 440

MeV and assumes

ln
(
σa2

)
= −4

4π2

β0
β+ 2β1

β2
0

ln

(
4π2

β0
β

)
+ 4π2

β0

d

β
+c, (57)

where the first two terms are the predictions of 2-loop pertur-
bation theory and the remaining terms parameterize higher-
order effects. The parameters c = 4.38(9) and d = 1.66(4)

were set by fitting the lattice data for the string tension using
simulations with β ∈ [2.3, 2.85]. For β = 3.01, the above
relation estimates a ≈ 0.02 fm for the lattice spacing.

The glueball mass is evaluated from the asymptotic
expression for the two-point correlation function

G(t) = g0

√
m

t3/2 e−mt . (58)

Our lattice estimations for G(t) use ∼ 107 configurations
and the correlation function can be seen in Fig. 9. Despite
using a large ensemble, our Monte Carlo code is not par-
allelized. However, the ensembles were built running the
code on various independent standalone machines. For t ≥ 6
the lattice two point correlation function becomes negative
and compatible with zero within one standard deviation and,
therefore, lattice Euclidean times larger than 6 will not be
considered.

The correlation function for t = 1 does not comply with
the remaining values for larger t and with Eq. (58) and,
therefore, in the estimation of m it is discarded. In the mea-
surement of the glueball mass we consider three different
fitting ranges and two large and independent ensembles as
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Fig. 9 Lattice estimation of correlation function G(t). The curve in
black is the fit of the lattice data to the asymptotic expression in Eq. (58)
and for the fitting range t ∈ [2, 5]. In the inset, G(t) in logarithm scale

Table 1 Fits of the glueball correlation function with the reduced chi
squared being ν2 = χ2/d.o. f.

Range Conf. = 1.12357 × 107 Conf. = 1.3259 × 107

m/
√

σ g0 ν2 m/
√

σ g0 ν2

[2:4] 3.62(98) 1.11(54) 0.13 3.62(45) 1.17(61) 0.19

[2:5] 3.61(86) 1.15(48) 0.10 3.62(53) 1.20(54) 0.15

[2:6] 3.61(00) 0.97(91) 0.36 3.61(20) 0.96(99) 0.56

described in Table 1. For each of the fitting ranges consid-
ered, the lattice data are well described by the asymptotic
expression for the correlation function in Eq. (58), as can
be seen by the values of the χ2/.d.o. f.. Furthermore, m and
g0 are independent of the fitting range. The simulations point
towards a glueball mass of 1588±378 MeV for a

√
σ = 440

MeV.
The simulation described so far uses a small physical vol-

ume and the simplest operator to estimate the glueball mass.
Indeed, none of the available techniques to improve the sig-
nal to noise ratio is used in the numerical experiments. How-
ever, despite this limitations we are able to reproduce the
numbers that can be found in the literature. Our estimates
for the intermediate fitting range are m = (3.61 ± 0.86)

√
σ

and m = (3.62 ± 0.53)
√

σ , and agree within one standard
deviation with the numbers quoted above. In Ref. [41] the
authors report several estimates for SU(2) scalar glueball
mass. Ref. [42] uses the same interpolating operator for the
glueball as ours and reports the value m = (3.7 ± 1.2)

√
σ ,

as we can see, the error in our estimation is about 30%
smaller. In Ref. [39], the simulation is done using improved
signal to noise methods and the authors report the value
m = (3.12 ± 0.22)

√
σ . Finally, the more recent calcula-

tion in Ref. [37] gives m = (3.78 ± 0.07)
√

σ .

7 Summary

In the present work we discuss a mapping of the lattice Wil-
son action into an approximate dual representation, whose
dynamical variables, the so-called plaquette occupation num-
bers (PONs)

{
bμν (x)

}
, belong to the natural numbers N0.

These dual variables are the expansion indices of the power
series expansion of the Boltzmann factor for each plaquette.
The partition function in terms of the new variables is given
by a sum of weights Q{U } [{b}]. The PONs are subject to
constraints imposed by gauge symmetry, given by Eq. (15).

The weights Q for a configuration of PONs involve inte-
grals over the link variables over the entire lattice volume
whose integrands are products of powers of plaquettes. We
used Monte Carlo simulations to solve the theory. The transi-
tion probability p defining the corresponding Markov chain
is given by ratios of the weights Q. The link integration is
simplified to get an approximate analytical estimation for p.
Specifically, the approximations consist in the following. In
an update ofbμν (x), the lattice is factorized into a region con-
taining the plaquette Uμν (x) and its complementary. Then,
the links at the interface between the two regions are rotated
to the identity. This allows us to evaluate analytically the
link integrals necessary to estimate p. Two different types
of updates, named local and nonlocal, are considered. In the
local updates, a given PON bμν(x) is chosen randomly and
a change by ± 2 – we have concentrated on SU(2) gauge
theory, see Eq. (15) – is proposed with the sign being cho-
sen randomly. For the nonlocal update, a two dimensional
surface is chosen randomly on the lattice and for each PON
bμν(x) on the surface a change by ± 1 is proposed randomly.
The nonlocal update improves the ergodicity of the algorithm
as it allows to switch the occupation numbers from odd to
even and vice-versa, an evolution which is not allowed by the
local updates. We have not considered updates that involve
changing the PONs on a cube.

The estimations for the plaquette mean value agree very
well with those obtained with a conventional heath bath algo-
rithm in the weak and strong coupling limits. Deviations from
heath bath estimations occur in the range 2.5 < β < 3, but
they are below than 0.1%. In what concerns the estimation
of the lightest SU(2) glueball mass, the simulations reported
here are in good agreement with estimated in the literature.

We stress that the approach presented here relies on a series
of approximations to get the transition probability p. One can
speculate that the fact that the links rotated to the identity are
a very small subset of the entire set of links {Uμ(x)}, their
contribution to p to be subleading, at least for the quantities
studied. Furthermore, given that the number of links set to
identity is volume independent, one expects to approximate
the exact value of p in the limit of large volumes.

The results reported here suggest that the inclusion of
larger lattice partitions in the “inner” integral, i.e. including
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larger numbers of links in the neighborhood of the updated
plaquette occupation number, to estimate the transition prob-
ability takes p closer to its real value. This can be achieved
by a careful choice of the “inner” region, i.e. the region
which includes the lattice point where the plaquette occu-
pation number is to be updated, and the “outer” sublattices
such that one is able to perform necessary group integrals
after setting some of the links to the identity. Certainly, any
progress in the evaluation of SU(N) integrals, see e.g. Ref.
[50], will help in improving the estimation of p. Another pos-
sible approach, still to be developed, is the numerical evalu-
ation of the group integrals which, hopefully, could lead to
an “exact” estimation of the transition probability.

The algorithm discussed here can be generalized to SU(N)
gauge groups with N > 2. Another interesting research
topic is the inclusion of the fermionic degrees of freedom
which, in principle, can be accommodated within the proce-
dure described. These are research problems that we aim to
address in the near future.
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Appendix A: Group integration

Here we will compute some group integrations that appears
in the evaluation of the weight function of the non-Abelian
gauge partition function written in the new representation.
First we introduce some basic properties of the group inte-
gration. Consider a function f (U ) where U ∈ SU(N), as we
can see in many textbooks e.g. [1], the group integration is
left and right invariant
∫

dU f (U ) =
∫

dU f (U g) =
∫

dU f (g′ U ) (A.1)

where g and g′ are arbitrary elements of the group SU(N)
and the Haar measure are also left and right invariant

dU = d(Ug) = d(g′U ). (A.2)

From these basic properties we can conclude
∫

dUUa,b = 0, (A.3)
∫

dUUa,bU
†
c,d = 1

N
δa,dδb,c, (A.4)

∫
dUUa1,b1 . . .Uak ,bk �= 0 If k mod N = 0, (A.5)

and these properties determine the constraint over the new
degrees of freedom discussed in Sect. 3.

Appendix A.1: Integration over the green paths

Consider the green path, see Fig. 3, containing the links vari-
ables U3a ,U3b, U3c and U3d that need be integrated, this
path is coupled to the central plaquette (CP) Uμ0ν0 (x0) =
U1U2U3U4 by the link U3 and belong in a plane parallel to
CP in the direction ρ. Each link of CP is coupled to one green
path, here we will show the integration of the green path cou-
pled to the link U3, the precise definition of this green path
links are

U3a = Uν0(x0 + ν̂0 + ρ̂ − μ̂0), (A.6)

U3b = Uμ0(x0 + 2ν̂0 + ρ̂ − μ̂0), (A.7)

U3c = U †
ν0

(x0 + ν̂0 + ρ̂), (A.8)

U3d = Uμ0(x0 + ν̂0 + ρ̂), (A.9)

and the integration in question is given by

PBG [U3] =
∫

D̃UGTr [U3U3d ]b1 Tr [U3cU3d ]b2

×Tr [U3aU3bU3c]
b3 Tr [U3a]c1

×Tr [U3b]c2 Tr [U3c]
c3 Tr [U3d ]c4 . (A.10)

The plaquette occupation numbers (PON) bi are defined as

b1 = bμ0ρ(x0 + ν̂0), (A.11)

b2 = bμ0ν0(x0 + ν̂0 + ρ̂), (A.12)

b3 = bμ0ν0(x0 + ν̂0 + ρ̂ − μ̂0), (A.13)

and the collective powers ci are a sum of PONs and, using
Eq. (14), are defined as

c1 = nν0(x0 + ν̂0 + ρ̂ − μ̂0) − b3, (A.14)

c2 = nμ0(x0 + 2ν̂0 + ρ̂ − μ̂0) − b3, (A.15)

c3 = nν0(x0 + ν̂0 + ρ̂) − b3 − b2, (A.16)

c4 = nμ0(x0 + ν̂0 + ρ̂) − b2 − b1. (A.17)

We use Eq. (32) to solve each integral in the path. Starting
the integration by the link U3a we have

PBG [U3] =
min(b3,c1)∑

q1

Γ b3,c1
q1

∫
D̃U

′
GK1, (A.18)
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where the coefficients Γ are given by Eq. (33). The function
K1 = K1

[
U3b,U3c,U3d;U3,

{
b′}] is defined by

K1 = Tr [U3U3d ]b1 Tr [U3cU3d ]b2 Tr [U3b]c2

×Tr [U3c]
c3 Tr [U3d ]c4 Tr [U3bU3c]

q1 , (A.19)

and the measure D̃U
′
G by

D̃U
′
G = dU3bdU3cdU3d . (A.20)

Now integrating K1 with the measure dU3b we find

∫
D̃U

′
GK1 =

min(q1,c2)∑

q2

Γ
q1,c2
q2

∫
D̃U

′′
p1K2, (A.21)

where K2 = K2
[
U3c,U3d ;U3,

{
b′}] and the measure D̃U

′′
G

are defined by

K2 = Tr [U3U3d ]b1 Tr [U3cU3d ]b2

×Tr [U3c]
c3+q2 Tr [U3d ]c4 , (A.22)

D̃U
′′
G = dU3cdU3d . (A.23)

Integrating the link U3c we obtain

∫
D̃U

′′
GK2 =

min(b2,c3+q2)∑

q3

Γ
b2,c3+q2
q3

∫
dU3d K3, (A.24)

where K3 = K3
[
U3d;U3,

{
b′}] is defined by

K3 = Tr [U3U3d ]b1 Tr [U3d ]c4+q3 . (A.25)

Finally integrating the link U3d we have

∫
dU3d K3 =

min(b1,c4+q3)∑

q4

Γ
b1,c4+q3
q4 Tr [U3]q4 . (A.26)

Collecting Eqs. (A.18), (A.21), (A.24) and (A.26), we have

PBG [U3] =
min(b3,c1)∑

q1

min(q1,c2)∑

q2

min(b2,c3+q2)∑

q3

min(b1,c4+q3)∑

q4

×Γ b3,c1
q1

Γ
q1,c2
q2 Γ

b2,c3+q2
q3 Γ

b1,c4+q3
q4

× Tr [U3]q4 , (A.27)

i.e., a polynomial in Tr [U3]. This solution can be applied to
the other green paths but the definitions of the green path
links, the PONs bi and the sum of PONs ci change accord-
ingly.

Appendix A.2: Integration over the blue paths

In the Fig. 4 we present the blue path coupled to the linkU3 of
CP. Like in the green path case, each link of CP is coupled to
one blue path. Here we will show only the integration of the
blue path coupled to the link U3, the integration in question
is

PBB [U3] =
∫

D̃U BTr
[
Ũ3aŨ3bŨ3cŨ3d

]b̃2

×Tr
[
U †

3 Ũ3eŨ
†
3d

]b̃1
Tr
[
Ũ3a

]c̃1
Tr
[
Ũ3b

]c̃2

×Tr
[
Ũ3c

]c̃3
Tr
[
Ũ3d

]c̃4
Tr
[
Ũ3e

]c̃5
, (A.28)

where the definitions of the blue path links are

Ũ3a = Uν0(x0 + 2ν̂0 + μ̂0), (A.29)

Ũ3b = U †
μ0

(x0 + 3ν̂0), (A.30)

Ũ3c = U †
ν0

(x0 + 2ν̂0), (A.31)

Ũ3d = Uμ0(x0 + 2ν̂0), (A.32)

Ũ3e = Uν0(x0 + ν̂0 + μ̂0). (A.33)

The PONs b̃i are defined as

b̃1 = bμ0ν0(x0 + ν̂0), (A.34)

b̃2 = bμ0ν0(x0 + 2ν̂0), (A.35)

and the collective powers c̃i are defined by

c̃1 = nν0(x0 + 2ν̂0 + μ̂0) − b2, (A.36)

c̃2 = nμ0(x0 + 3ν̂0) − b2, (A.37)

c̃3 = nν0(x0 + 2ν̂0) − b2, (A.38)

c̃4 = nμ0(x0 + 2ν̂0) − b2 − b1, (A.39)

c̃5 = nμ0(x0 + ν̂0 + μ̂0) − b1. (A.40)

In order to guarantee that we deal with integration that looks
like Eq. (32), we need start the integration by one link of the
plaquette Ũ3aŨ3bŨ3cŨ3d , here we start by the link Ũ3a , then

PBB [U3] =
min

(
b̃2,c̃1

)

∑

q̃1

Γ
b̃2,c̃1
q̃1

∫
D̃U

′
B K̃1, (A.41)

where K̃1 and the measure D̃U
′
B are defined by

K̃1 = Tr
[
U †

3 Ũ3eŨ
†
3d

]b̃1
Tr
[
Ũ3bŨ3cŨ3d

]q̃1

×Tr
[
Ũ3b

]c̃2
Tr
[
Ũ3c

]c̃3
Tr
[
Ũ3d

]c̃4
Tr
[
Ũ3e

]c̃5
,

(A.42)

D̃U
′
B = dŨ3bdŨ3cdŨ3ddŨ3e. (A.43)
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Now integrating K̃1 by the measure dŨ3b we have

∫
D̃U

′
B K̃1 =

min(q̃1,c̃2)∑

q̃2

Γ
q̃1,c̃2
q̃2

∫
D̃U

′′
B K̃2, (A.44)

where K̃2 and the measure D̃U
′′
B are defined by

K̃2 = Tr
[
U †

3 Ũ3eŨ
†
3d

]b̃1
Tr
[
Ũ3c

]c̃3
Tr
[
Ũ3d

]c̃4

×Tr
[
Ũ3e

]c̃5
Tr
[
Ũ3cŨ3d

]q̃2
, (A.45)

D̃U
′′
B = dŨ3cdŨ3ddŨ3e. (A.46)

Integrating the link Ũ3c we obtain

∫
D̃U

′′
B K̃2 =

min(q̃2,c̃3)∑

q̃3

Γ
q̃2,c̃3
q̃3

∫
D̃U

′′′
B K̃3, (A.47)

where K̃3 and the measure D̃U
′′′
B are defined by

K̃3 = Tr
[
U †

3 Ũ3eŨ
†
3d

]b̃1
Tr
[
Ũ3e

]c̃5

×Tr
[
Ũ3d

]c̃4+q̃3
, (A.48)

D̃U
′′′
B = dŨ3ddŨ3e. (A.49)

Now integrating the link Ũ3d we can write

∫
D̃U

′′′
B K̃3 =

min
(
b̃1,c̃4+q̃3

)

∑

q̃4

Γ
b̃1,c̃4+q̃3
q̃4

∫
dŨe K̃4, (A.50)

where K̃4 is defined by

K̃4 = Tr
[
U †

3 Ũ3e

]q̃4
Tr
[
Ũ3e

]c̃5
. (A.51)

Finally, integrating the link Ũ3e we have

∫
dŨe K̃4 =

min(q̃4,c̃5)∑

q̃5

Γ
q̃4,c̃5
q̃5

Tr [U ]q̃5 . (A.52)

Now, inserting Eqs. (A.44), (A.47), (A.50) and (A.52) into
Eq. (A.41) we can write

PBB [U3] =
min

(
b̃2,c̃1

)

∑

q̃1

min(q̃1,c̃2)∑

q̃2

min(q̃2,c̃3)∑

q̃3

min
(
b̃1,c̃4+q̃3

)

∑

q̃4

×
min(q̃4,c̃5)∑

q̃5

Γ
b̃2,c̃1
q̃1

Γ
q̃1,c̃2
q̃2

Γ
q̃2,c̃3
q̃2

Γ
b̃1,c̃4+q̃3
q̃3

×Γ
q̃4,c̃5
q̃5

Tr [U3]q̃5 . (A.53)

As in the green path case, the outcome is a polynomial. The
above solution can be used to evaluate all blue path integra-
tions but we need to be careful, the definitions of the blue
path links, the PONs bi and the sum of PONs ci change
accordingly.
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