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Abstract
The freshwater–marine transition that characterizes an estuarine system can provide 
multiple entry options for invading species, yet the relative importance of this gradient 
in determining the functional contribution of invading species has received little atten-
tion. The ecological consequences of species invasion are routinely evaluated within a 
freshwater versus marine context, even though many invasive species can inhabit a 
wide range of salinities. We investigate the functional consequences of different sizes 
of Corbicula fluminea—an invasive species able to adapt to a wide range of tempera-
tures and salinity—across the freshwater–marine transition in the presence versus ab-
sence of warming. Specifically, we characterize how C. fluminea affect fluid and particle 
transport, important processes in mediating nutrient cycling (NH4-N, NO3-N, PO4-P). 
Results showed that sediment particle reworking (bioturbation) tends to be influenced 
by size and to a lesser extent, temperature and salinity; nutrient concentrations are 
influenced by different interactions between all variables (salinity, temperature, and 
size class). Our findings demonstrate the highly context-dependent nature of the eco-
system consequences of invasion and highlight the potential for species to simultane-
ously occupy multiple components of an ecosystem. Recognizing of this aspect of 
invasibility is fundamental to management and conservation efforts, particularly as 
freshwater and marine systems tend to be compartmentalized rather than be treated 
as a contiguous unit. We conclude that more comprehensive appreciation of the dis-
tribution of invasive species across adjacent habitats and different seasons is urgently 
needed to allow the true extent of biological introductions, and their ecological conse-
quences, to be fully realized.
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1  | INTRODUCTION

Estuaries are transitional areas that face cyclic variations in physico-
chemical and biotic conditions. These interface areas are at the fore-
front of global ecological changes (Grilo, Cardoso, Dolbeth, Bordalo, & 

Pardal, 2011; IPCC, 2013; Rabalais, Turner, Díaz, & Justić, 2009) and 
are particularly prone to invasion by nonindigenous species because of 
their proximity to human populations (Cohen, Small, Mellinger, Gallup, 
& Sachs, 1997) that introduce major vectors for introductions (Crespo, 
Dolbeth, Leston, Sousa, & Pardal, 2015; Gallardo, Clavero, Sánchez, 
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& Vilà, 2016; Williams & Grosholz, 2008). Simultaneously, increasing 
sea-surface temperatures, rising sea levels, increasing atmospheric 
CO2 concentrations, and ocean acidification are already altering 
coastal and marine habitats (Kroeker, Kordas, Crim, & Singh, 2010; 
Levitus, Antonov, Boyer, & Stephens, 2000; Parmesan & Yohe, 2003) 
which may, in turn, further modify the likelihood and rate of the intro-
duction of nonindigenous species (Rahel & Olden, 2008; Stachowicz, 
Terwin, Whitlatch, & Osman, 2002; Williams & Grosholz, 2008).

Estuaries are highly productive habitats (Dolbeth et al., 2011; 
Hicks et al., 2011; Kennish, 2002) and functionally important areas 
(e.g., Sousa, Lillebø, Pardal, & Caçador, 2010; Sousa, Lillebø, Risgaard-
Petersen, Pardal, & Caçador, 2012). They are generally character-
ized by low diversity, constrained by local environmental conditions 
(Dolbeth et al., 2011; Hicks et al., 2011; Kennish, 2002), such that the 
introduction of new species that have different traits to the recipi-
ent community can have a disproportionate effect on the functioning 
of the ecosystem (Darrigran & Damborenea, 2011; Simberloff et al., 
2013; Stachowicz & Byrnes, 2006). In this respect, nonindigenous in-
vasive species (NIS) may shift the composition of native communities 
or otherwise propagate ecological impacts throughout the food web 
and generate associated positive or negative effects on ecosystem 
functioning. These, in turn, can be alleviated or exacerbated by other 
factors such as climate change, nutrient loading, land use alteration, 
and several other anthropogenic-induced changes (Stachowicz et al., 
2002; Strayer & Hillebrand, 2012).

Ecological modifications due to invasive events are generally de-
scribed as having negative effects on the resident communities and 
ecosystem processes (e.g., biodiversity loss, biofouling), but positive 
effects have also been described (e.g., local economy, improvement of 
water quality) (Dolbeth, Cusson, Sousa, & Pardal, 2012; Katsanevakis 
et al., 2014; Rosa et al., 2011). Nevertheless, estuaries as transitional 
habitats face species introductions from freshwater and/or marine 
sources, exacerbated by the gradient in environmental conditions that 
has the potential to provide multiple entry points, generate refugia 
opportunities, and influence source–sink dynamics that affect the 
long-term presence and exchange of individuals between populations 
(Heinrichs, Lawler, & Schumaker, 2016).

Most work on biological invasions focus on specific habitats and 
how the introduced species interact with native populations and 
communities (e.g., Ilarri et al., 2012; Simberloff et al., 2013; Strayer 
& Hillebrand, 2012; Williams & Grosholz, 2008). However, in most 
cases, it is difficult to establish cause–effect relationships without 
experimental studies (Grosholz & Ruiz, 2009). An additional chal-
lenge, particularly for coastal systems (Grosholz & Ruiz, 2009), is 
the difficulty of defining a causal relationship in a dynamic system 
(Hale, Mavrogordato, Tolhurst, & Solan, 2014; Murray, Douglas, & 
Solan, 2014) because the expression of species contributions is 
context dependent (Godbold & Solan, 2009) and can take a long 
time to emerge (Godbold & Solan, 2013). Therefore, it becomes im-
portant to address when and how the occurrence of invasive spe-
cies interacts with gradients of environmental variables that often 
characterize transitional habitats. These are seldom studied, espe-
cially in association with other aspects of directional forcing, such 

as, for example, aspects of climate change (but see Schneider, 2008; 
Weitere et al., 2009).

Here, we investigate how different size classes (a proxy for 
age) of a prominent invader of freshwater systems—the Asian Clam 
Corbicula fluminea, O.F. Müller, 1774, (Crespo et al., 2015; Sousa, 
Antunes, & Guilhermino, 2008)—affect important ecosystem pro-
cesses (sediment fluid and particle transport) in the presence ver-
sus absence of warming across the freshwater–marine transition. 
Corbicula fluminea is known to affect hydrological processes, bio-
geochemical cycles, biotic interactions and the physical environ-
ment at an ecosystem scale (Sousa, Gutiérrez, & Aldridge, 2009; 
Sousa, Antunes, et al., 2008). Despite often being described as a 
freshwater bivalve, C. fluminea is an euryhaline species (salinity, 
up to 10–14; McMahon, 1983, 1999) and can colonize the areas 
upstream of estuaries (Franco et al., 2012; Ilarri, Souza, Antunes, 
Guilhermino, & Sousa, 2014; Sousa, Nogueira, Gaspar, Antunes, & 
Guilhermino, 2008). This is important because euryhaline species 
are able to invade along the freshwater-marine continuum of the 
estuarine environment, presenting the possibility of temporary or 
permanent refugia that will allow longer term persistence (Crespo, 
Leston, Martinho, Pardal, & Dolbeth, 2017). Moreover, species that 
show phenotypic plasticity may be predisposed to establishing pop-
ulations that are functionally dominant under climate change (e.g., 
Somero, 2010). By considering both the native freshwater habitat 
and the oligohaline waters of estuarine areas that have high inva-
sive potential, we hypothesized that different sizes in macrobenthos 
could differentially mediate levels of ecological functioning and that 
temperature (in a simulated heat wave) could influence the intensity 
of the biological processes involved, with implications for long-term 
functioning under a changing climate. We tested these ideas empir-
ically by manipulating temperature, salinity, and C. fluminea size in a 
model marine benthic system.

2  | METHODS

2.1 | Sediment and fauna collection

Sediment and individuals of C. fluminea were collected in the 
oligohaline upper reaches of the Mondego Estuary, Portugal 
(40°9′47.91″N, 8°40′12.42″W) from a tidally influenced location. 
Sediment (gravel 38.7%, sand 58.9% and mud 2.5%, 0.4 ± 0.2% or-
ganic matter content, loss on ignition at 400°C, 8 hr) was defau-
nated using CO2-enriched water (bubbled CO2) for ~1 hr to initiate 
upward movement of infaunal organisms to the sediment surface by 
lowering dissolved O2, before they were manually extracted using 
tweezers (adapted from Coelho, Flindt, Jensen, Lillebø, & Pardal, 
2004).

2.2 | Experimental set-up and design

Our experimental design (see Figure S1) included all possible permuta-
tions of three different size classes of C. fluminea, with fixed biomass 
achieved through density adjustment (18.79 ± 0.94 g/aquaria wet 
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biomass: small, measuring <1 cm, ~1 year old, 13 ind./aquaria (=902 
ind/m2); medium, 2–2.5 cm, ~ 2 years old, 2 ind./aquaria1 (=138 ind./
m2); large, >3 cm, >3 years old, 1 ind./aquaria1 (=69 ind/m2) at levels 
representative of the population at study site (Franco et al., 2012; 
Crespo et al. 2017). These size classes were crossed with two levels of 
salinity (freshwater, 0, and oligohaline, 5) and two levels of temperature 
(24 and 30°C) in glass aquaria (12 × 12 × 35 cm, internal dimensions). 
Each aquaria contained sediment (~10 cm depth) overlain with water 
to 30 cm depth. To minimize variation in habitat conditions, we used 
homogenized sediment and demineralized water, adding appropriate 
quantities of commercially available aquarium salt (Pro-Reef, Tropic 
Marin®) to establish our oligohaline treatments. To distinguish the role 
of microbial and meiofaunal components of the system, we included a 
treatment where C. fluminea were absent. Temperature approximated 
summer water temperatures at the study site (24°C) or extreme heat-
wave conditions (30°C, Mouthon & Daufresne, 2006; Grilo, Cardoso, 
Dolbeth, Bordalo, & Pardal, 2011). Treatments representative of the 
natural habitat for C. fluminea (salinity, 0) contrasted to treatments (sa-
linity, 5) representing either the estuarine gradient [e.g., 4.6 ± 3.1 in the 
mesohaline areas during flood events (Verdelhos, Cardoso, Dolbeth, & 
Pardal, 2014)] or areas of the estuary prone to drought events. Hence, 
our experimental design provides insight on how species contributions 
to ecosystem functioning are modified under those circumstances. 
Our experiment required a total of 48 aquaria (4 size treatments × 2 
temperature × 2 salinity × 3 replicates, Figure S1). All aquaria were con-
tinually aerated and maintained under natural daylight conditions for a 
period of 6 days. Salinity, temperature, pH, and oxygen levels (O2) were 
measured at the beginning and at the end of the experiment. Realized 
experimental conditions are presented in Table S1).

2.3 | Measurement of particle reworking (ecosystem 
process)

The extent of particle reworking—the passive and active displacement 
of sediment particles by the activity of macrofaunal organisms—was 
measured noninvasively using fluorescent sediment profile imaging 
(f-SPI, Solan, Wigham, et al., 2004) after 6 days. Briefly, this method 
allows dyed sediment particles that fluoresce under UV light (lumi-
nophores: 30 g/aquaria, 125–250 μm diameter, green color; Brian 
Clegg, Ltd, UK), to be preferentially visualized (Schiffers, Teal, Travis, 
& Solan, 2011) and the distribution of luminophores to be determined 
at high spatial resolution from images of the side of the aquaria. We 
used a Canon EOS 350D single-lens reflex digital CMOS camera (8.0 
megapixels) set for an exposure of 10 s, diaphragm aperture diameter 
of f = 6.3, and a film speed (light sensitivity) equivalent to ISO 200. 
Images were saved in red-green-blue (RGB) color with JPEG (Joint 
Photographic Experts Group) compression, cropped to the full inter-
nal width of the aquaria (952 pixels, effective resolution = 126.1 μm 
per pixel) and analyzed using a custom-made plugin that runs within 
ImageJ (Version 1.48c), a java-based public domain program devel-
oped at the US National Institute of Health (available at http://imagej.
nih.gov/ij/). Following Hale et al. (2014), we determined the mean  
(f-SPILmean, time-dependent indication of mixing), median (

f-SPILmed, 

typical short-term depth of mixing), and maximum (f-SPILmax, maximum 
extent of mixing over the long term) mixed depth of particle redistri-
bution. In addition, we determined the maximum vertical deviation of 
the sediment–water interface (upper − lower limit = surface bound-
ary roughness, SBR), which provides an indication of surficial faunal 
activity.

2.4 | Measurement of nutrient concentrations 
(ecosystem function)

Water samples (10 ml, prefiltered 0.45 μm, Whatman) were taken 
at day 0 before the introduction of fauna and at day 6 to determine 
water column nutrient concentrations (NH3-N, NO3-N, PO4-P). These 
were analyzed with Continuous Flow Analyzer Skalar Sanplus with 
segmented flow analysis (SFA), using the Skalar methods: M461-318 
(EPA 353.2), M155-008R (EPA 350.1), and M503-555R (Standard 
Method 450-P I).

2.5 | Statistical analyses

We developed independent regression models for each of our de-
pendent variables of particle reworking (SBR, f-SPILmean, 

f-SPILmed, 
f-

SPILmax) and nutrient concentrations (NH3-N, NO3-N, PO4-P) using the 
full factorial combination of independent variables (C. fluminea size 
class, temperature, salinity). As our focus was to establish the effects 
of different size classes of C. fluminea, rather than presence versus 
absence effects, the procedural control (C. fluminea absent) was re-
moved from the statistical analysis. As our data showed evidence of a 
violation of homogeneity, analyses were extended to include the ap-
propriate variance covariate structure (minimal adequate model sum-
maries are shown in the Supporting Information) using a generalized 
least squares (GLS) estimation procedure (Pinheiro & Bates, 2000). 
This procedure allows the residual spread to vary with the explana-
tory variables and avoids the need to transform data. For GLS, the 
optimal variance covariate structure was determined using restricted 
maximum-likelihood (REML) estimation by comparing the initial re-
gression model without a variance covariate structure to alternative 
regression models that include specific variance covariate structures 
using AIC and visual comparisons of model residuals. The optimal 
fixed structure was then determined by backward selection using 
the likelihood ratio (L-ratio) test obtained using maximum-likelihood 
(ML) estimation and the minimal adequate model was re-expressed 
using REML (Diggle, Zeger, Liang, & Heagerty, 2002; West, Welch, 
& Gatecki, 2007; Zuur, Ieno, Walker, Saveliev, & Smith, 2009). As in-
ferences about the relative importance of our explanatory variables, 
and their interactions, are based on the comparisons of the first level 
within each term with all other levels, we used a parametric bootstrap 
with 999 re-samples and the percentile method to obtain the 95% CI 
limits around the predicted values (shown Supporting Information). All 
analyses were performed using the “R” statistical and programming en-
vironment (R Development Core Team 2012). GLS analyses were con-
ducted using the “nlme” package (Pinheiro, Bates, DebRoy, & Sarkar, 
2014) and parametric bootstrapping were conducted assuming that 
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the estimated parameters followed a multivariate Gaussian distribu-
tion with mean and variances provided from the output of the fitting 
function, using the function “rmvnorm” within the package “mvtnorm” 
(Genz et al., 2014).

All data are available from Harvard Dataverse (Crespo, Solan, 
Leston, Pardal, & Dolbeth, 2017).

3  | RESULTS

We found evidence that faunal activity and behavior, and associated 
nutrient concentrations, are affected by the size class of individuals 
of C. fluminea, temperature, and salinity (Table 1 and Models S1–S7), 
although the observed effects did not necessarily form full factorial 
interactions. Size class tended to be the most important variable, fol-
lowed by temperature and/or salinity (least important). ANOVA con-
firmed that there were no differences amongst treatments at the start 
of the experimental period (day 0, p-values > .05).

3.1 | Effects on ecosystem process

Surface boundary roughness (SBR) was affected by a size class × tem-
perature interaction, but not affected by salinity (Table 1, model struc-
ture described in Model S1). Temperature, and all of its interactions, 
was the most influential variable (L-ratio = 13.497, df = 3, p = .0037), 
followed by size class and its interactions (L-ratio = 11.197, df = 4, 
p = .0244). In the presence of C. fluminea, SBR ranged between 0.454 
and 2.173 cm for the small individuals, to 0.454 and 1.853 cm for 
medium-sized individuals, and 0.214 and 2.017 cm for the large-sized 
individuals. At lower temperature, SBR reduced considerably at in-
termediate body size relative to populations of small and large indi-
viduals, but this trend was less compelling at the higher temperature 
(Figure 1). Small-sized individuals tended to show higher SBR values, 
with similar values at both temperature regimes (mean ± SE (cm): 24°C, 
1.340 ± 0.226; 30°C, 1.227 ± 0.194). The medium-sized individu-
als showed a more pronounced effect of temperature, showing the 

smallest value of SBR (mean ± SE, cm) at 24°C (0.542 ± 0.050), which 
increased at 30°C (1.269 ± 0.141). The lowest SBR values tended to 
be found in large-sized individuals, with slightly higher values at 30°C 
(mean ± SE (cm): 24°C, 0.845 ± 0.197; 30°C, 1.040 ± 0.245).

f-SPILmean was influenced by the interaction size class × salinity and 
an independent effect of temperature (Table 1, model structure de-
scribed in Model S2). Size class, and all of its interactions, was the most 
influential variable (L-ratio = 17.4282, df = 4, p = .0016), followed 
by salinity and its interactions (L-ratio = 9.434963, df = 3, p = .024) 
and temperature (L-ratio = 7.118, df = 1, p = .0076). f-SPILmean values 
ranged between 0.483 and 2.065 cm (small size class), to 0.159 and 
0.851 cm (medium size class), and 0.288 and 1.476 cm (large size 
class). For both salinities, small-sized individuals showed the highest 
values for f-SPILmean, which was even higher at salinity 5 (mean ± SE 
(cm): salinity 0, 0.754 ± 0.097; salinity 5, 1.452 ± 0.191; Figure 2a). 
f-SPILmean values were smaller for medium-sized individuals, but similar 
across salinity levels (mean ± SE (cm): salinity 0, 0.490 ± 0.099; salinity 
5, 0.458 ± 0.096, Figure 2a). The f-SPILmean in the presence of larger 
individuals responded to increasing salinity (large sized, salinity 0 vs. 
salinity 5: t-value = −2.376, df = 36, p = .0243; mean ± SE (cm): sa-
linity 0, 0.530 ± 0.083; salinity 5, 0.676 ± 0.181, Figure 2a). f-SPILmean 
increased with increasing temperature (t-value = 4.653, df = 36, 
p = .0001; mean ± SE (cm): 24°C, 0.704 ± 0.132; 30°C, 0.750 ± 0.081, 
Figure 2b).

f-SPILmedian was affected by the interaction size class × temperature, 
but unaffected by salinity (Table 1, model structure described in Model 
S3). Size class, and all of its interactions, was the most influential vari-
able (L-ratio = 18.377, df = 4, p = .001), followed by temperature and 
its interactions (L-ratio = 14.846, df = 3, p = .002). f-SPILmedian values 
ranged between 0.315 and 2.395 cm (small size class), to 0.164 and 
0.731 cm (medium size class) and 0.214 and 0.882 cm (large size class). 
Despite the small-sized individuals showing the highest f-SPILmedian val-
ues at both temperatures, temperature effects seemed less important 
(mean ± SE (cm): 24°C, 1.071 ± 0.417; 30°C, 0.975 ± 0.181, Figure 3). 
Relative to small-sized individuals, f-SPILmedian values decreased for me-
dium and large size classes, at both temperatures. Interestingly, whilst 

Dependent variable Significant terms df L-ratio p

Bioturbation

SBR Size × temperature 5 17.323 .0039
f-SPILmean Size × salinity 5 24.593 <.001

Temperature 1 7.118 .0076
f-SPILmedian Size × temperature 5 19.761 .0014
f-SPILmax Size 2 12.392 .002

Nutrients

[NH3-N] Size × salinity 3 29.392 <.001

Size × temperature 3 11.715 .0084

[NO3-N] Size 3 49.921 <.0001

Salinity × temperature 3 18.854 <.001

[PO4-P] Size × temperature 3 15.499 .0014

Size × salinity 3 14.541 .0023

TABLE  1 Summary of significant terms 
found in the generalized least squares 
models, using bioturbation components 
and nutrient concentrations as dependent 
variables and size, temperature and salinity 
as explanatory variables
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f-SPILmedian increased with increasing temperature in medium-sized in-
dividuals (mean ± SE (cm): 24°C, 0.258 ± 0.027; 30°C, 0.502 ± 0.062, 
Figure 3), the reverse was true for large-sized individuals (mean ± SE 
(cm): from 24°C, 0.560 ± 0.095; 30°C, 0.398 ± 0.059, Figure 3).

For f-SPILmax, only size class was influential (Table 1, Model S4). 
Values ranged between 1.525 and 4.374 cm (small class size) to 
0.756 and 2.609 cm (medium class size) and 0.681 and 5.206 cm 
(large class size). Mean values were highest for the small-sized 
C. corbicula (mean ± SE (cm): 2.909 ± 0.270), followed by the large 
(mean ± SE (cm): 1.854 ± 0.425), and medium-sized individuals 
(mean ± SE: 1.600 ± 0.185 cm) (Figure 4). f-SPILmax for the small-sized 
individuals was significantly different from medium and large sizes 
(t-value = 4.012, df = 36, p = .0003 and t-value = 2.093, df = 36, 
p = .0441, respectively), but there was no difference between medium 
and large size classes (t-value = 0.555, df = 36, p = .5828).

3.2 | Effects on nutrient concentration

[NH3-N] was dependent on size class × salinity and size × temperature 
interactions (Table 1, model structure described in Model S5). Size 
class and its interactions were more influential (L-ratio = 57.236, df = 6, 
p < .0001) than salinity and its interactions (L-ratio = 29.392, df = 3, 
p < .0001) and temperature and its interactions (L-ratio = 11.715, 
df = 3, p = .0084). [NH3-N] ranged from 0.200 to 1.543 mg/L in the 
presence of small-sized individuals, from 0.118 to 1.933 mg/L in the 
presence of medium-sized individuals and from 0.036 to 0.530 mg/L 
in the presence of large-sized individuals of C. fluminea. [NH3-N] in-
creased with higher salinity when either medium-sized (mean ± SE, 
mg/L: salinity 0, 0.710 ± 0.289; salinity 5, 1.754 ± 0.087, Figure 5a) 
or small-sized individuals were present (mean ± SE, mg/L: salinity 0, 
0.243 ± 0.017; salinity 5, 1.360 ± 0.117 cm, Figure 5a). The large-sized 
individuals had the lowest [NH3-N] for both salinity levels (mean ± SE, 
mg/L: salinity 0, 0.148 ± 0.019; salinity 5, 0.350 ± 0.078 cm, Figure 5a), 

F IGURE  1 The interactive effects of Corbicula fluminea size 
class × temperature on surface boundary roughness (SBR: cm, 
mean ± SE). For clarity, jitter has been applied to the × = argument of 
the plot function to avoid overplotting. For comparison, SBR in the 
absence of C. fluminea is presented (gray, control)

F IGURE  2 The interactive effects of Corbicula fluminea 
size × salinity (a) and the independent effect of temperature (b) on 
mean mixed depth of luminophores redistribution (f-SPILmean; cm, 
mean ± SE). For clarity, jitter has been applied to the × = argument of 
the plot function to avoid overplotting. For comparison, f-SPILmean in 
the absence of C. fluminea is presented (gray, control)

(a)

(b)

F IGURE  3 The interactive effects of Corbicula fluminea size 
class × temperature on median mixed depth of luminophores 
redistribution (f-SPILmedian; cm, mean ± SE). For clarity, jitter has 
been applied to the × = argument of the plot function to avoid 
overplotting. For comparison, f-SPILmedian in the absence of C. fluminea 
is presented (gray, control)
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similar to those when small-sized individuals were present at salinity 0. 
Temperature had positive influence on [NH3-N] when medium-sized 
individuals were present (mean ± SE, mg/L: 24°C, 0.960 ± 0.294; 30°C, 
1.504 ± 0.290 cm, Figure 5b), but was less influential when either small 
or large individuals were present, with the large-sized clams showing 
the lowest [NH3-N] (mean ± SE, mg/L: small size, 0.687 ± 0.203 at 
24°C and 0.691 ± 0.229 at 30°C; large size, 0.214 ± 0.074 at 24°C and 
0.283 ± 0.067 at 30°C, Figure 5b).

[NO3-N] was affected by the interaction salinity × temperature 
and an independent effect of size (Table 1, model structure described 
in Model S6). Size was the most influential variable (L-ratio = 49.921, 
df = 3, p < .0001), followed by temperature and its interactions  
(L-ratio = 11.258, df = 2, p = .0036) and salinity and its interactions 
(L-ratio = 7.999, df = 2, p = .0183). [NO3-N] ranged from 0.173 to 
0.659 mg/L when small-sized individuals were present, from 0.137 to 
0.732 mg/L when medium-sized individuals were present, and from 
0.158 to 0.31 mg/L when large-sized individuals of C. fluminea were 
present. Small-  and medium-sized individuals showed similar values 
of [NO3-N] (t-value = 1.961, df = 36, p = .0592; mean ± SE, mg/L: 
0.411 ± 0.039 and 0.410 ± 0.046, respectively, Figure 6a), which de-
creased for large-sized individuals (t-value = −4.582, df = 36, p = .0001; 
mean ± SE, mg/L: 0.247 ± 0.019, Figure 6a). A decrease in [NO3-N] 
was shown with salinity 5, more accentuated at 30°C (Figure 6b). Also, 
in both salinity treatments, [NO3-N] was lower at higher temperature 
(mean ± SE, mg/L: salinity 0, 0.400 ± 0.054, at 24°C and 0.354 ± 0.050, 
at 30°C; salinity 5, 0.376 ± 0.022, at 24°C and 0.294 ± 0.060, at 30°C).

[PO4-P] was influenced by the interactions size class × temperature 
and size class × salinity (Table 1, model structure in Model S7). Size, and 
its interactions, was the most influential variable (L-ratio = 57.090, df = 6, 
p < .0001), followed by temperature and its interactions (L-ratio = 15.499, 
df = 3, p = .0014) and salinity and its interactions (L-ratio = 14.541, df = 3, 
p = .0023). [PO4-P] ranged from 0.240 to 0.489 mg/L for small-sized 
individuals, from 0.253 to 0.681 mg/L for medium-sized individuals, 
and from 0.128 to 0.310 mg/L for large-sized individuals of C. fluminea. 

Temperature tended to have a positive effect on [PO4-P], particu-
larly when medium-sized individuals were present (mean ± SE, mg/L: 
0.313 ± 0.021 at 24°C and 0.481 ± 0.067 at 30°C, Figure 7a). [PO4-P] 
was similar at both temperatures when small-sized individuals were pres-
ent (t-value = −0.296, df = 36, p = .77; mean ± SE, mg/L: 0.358 ± 0.026 
at 24°C and 0.351 ± 0.038 at 30°C, Figure 7a), and also similar be-
tween temperatures when large-sized individuals were present (t-
value = 0.413, df = 36, p = .683; mean ± SE, mg/L: 0.195 ± 0.016 at 24°C 
and 0.225 ± 0.027 at 30°C, Figure 7a). For salinity, there was a tendency 
for [PO4-P] to decrease in the presence of small- and large-sized indi-
viduals, whilst the reverse was true when medium-sized individuals were 
present (mean ± SE, mg/L: 0.416 ± 0.020 for small size, 0.344 ± 0.055 for 
medium size and 0.230 ± 0.020 for large size, Figure 7b).

4  | DISCUSSION

When the ecological impacts of invasive species have been character-
ized, there is a tendency to assume that previously observed effects 

F IGURE  4 The independent effect of Corbicula fluminea size class 
on maximum mixed depth of luminophores redistribution (f-SPILmax; 
cm, mean ± SE). For comparison, f-SPILmax in the absence of C. fluminea 
is presented (gray, control)
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F IGURE  5 The interactive effects of Corbicula fluminea 
size × salinity (a) and C. fluminea size × temperature (b) on [NH3-N] 
in the water (mg/L, mean ± SE). For clarity, jitter has been applied 
to the × = argument of the plot function to avoid overplotting. For 
comparison, [NH3-N] in the absence of C. fluminea is presented (gray, 
control)
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are uniformly expressed across novel circumstances (Powell, Chase, 
& Knight, 2013). Our findings suggest that this assertion is not neces-
sarily appropriate, however, as the mediation of important ecosystem 
functions vary with the size of the organism and with environmen-
tal context (here, temperature, and salinity). Interestingly, despite 
strong temperature forcing across a gradient of salinity, we found a 
consistently prominent effect of size class on ecosystem function-
ing throughout all of our response variables. Whilst size class is an 
important trait underpinning bioturbation processes (Norkko, Villnäs, 
Norkko, Valanko, & Pilditch, 2013; Solan, Cardinale, et al., 2004), it 
was not necessarily the most important predictor of associated nutri-
ent dynamics (Séguin, Harvey, Archambault, Nozais, & Gravel, 2014). 
Although we did not measure physiological condition directly, larger 
body size is known to minimize species vulnerability to the cyclic 
nature of physico-chemical conditions (Gardner, Peters, Kearney, 
Joseph, & Heinsohn, 2011), which is particularly important across the 
freshwater–estuarine transition (Crespo, Leston, et al., 2017).

The effects of body size we documented highlight the importance 
of species population structure for the ecosystem functioning, but our 

study also highlights the importance of species-environment interac-
tions and the role on abiotic and biotic context. Small-sized individuals 
contributed the most for bioturbation, presumably because smaller 
individuals may face less mechanical resistance (de la Huz, Lastra, & 
López, 2002) and are also more responsive to changes in environmen-
tal conditions (Gardner et al., 2011; Godbold, Bulling, & Solan, 2011; 
Werner & Gilliam, 1984). In addition, small individuals of C. fluminea 
have been reported to have higher metabolic requirements (Xiao et al., 
2014) and, as they invest more in tissue growth than larger-sized indi-
viduals, increased particle mixing may lead to increased feeding effort. 
Mattice and Dye (1976) determined the lower and upper lethal tem-
peratures of C. fluminea as 2 and 34.8°C, respectively, which spans our 
tested range. Larger individuals of C. fluminea seem to be less affected 
by temperature changes (as reported elsewhere for other bivalves, 
Mytilus edulis and M. leucophaeata, Rajagopal, van der Velde, van der 
Gaag, & Jenner, 2005), which may explain why large C. fluminea main-
tain similar levels of behavior across different temperature treatments. 
In contrast to the present study, however, Majdi, Bardon, and Gilbert 

F IGURE  6 The independent effect of Corbicula fluminea size 
(a) and the interactive effects of C. fluminea size × temperature (b) 
on [NO3-N] in the water (mg/L, mean ± SE). For clarity, jitter has 
been applied to the × = argument of the plot function to avoid 
overplotting. For comparison, [NO3-N] in the absence of C. fluminea 
is presented (gray, control)

(a)

(b)

F IGURE  7 The interactive effects of Corbicula fluminea 
size × temperature (a) and C. fluminea size × salinity (b) on [PO4-P] 
in the water (mg/L, mean ± SE). For clarity, jitter has been applied 
to the × = argument of the plot function to avoid overplotting. For 
comparison, [PO4-P] in the absence of C. fluminea is presented (gray, 
control)
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(2014) tested the effects of body size on bioturbation behavior in 
C. fluminea with a similar approach and found that medium and large 
sizes contributed more to bioturbation at temperatures closer to the 
mid-tolerance range of the species. We are unable to rule out an ef-
fect of body size in the present study, but acknowledge that density-
related differences in body size could be responsible for a synergistic 
effect on particle remobilization and resuspension. As size-class pro-
portions used in our study are closely related to those occurring in the 
original stock (Crespo, Leston, et al., 2017; Franco et al., 2012), our 
findings are, nevertheless, relevant to the natural system. Similarly, the 
effects of salinity also increased the medium mixing depth of small-
sized individuals, perhaps a response to increasing water salinity whilst 
maintaining pedal feeding on the surface. Nevertheless, salinity seems 
to play a less important role in moderating the mediation of ecosystem 
properties by C. fluminea. Xiao et al. (2014) found that narrow salinity 
ranges had small effect on metabolism of C. fluminea. However, other 
mechanisms, such as reducing valve opening time and/or physiological 
responses to salinity (Dietz, Wilcox, Byrne, Lynn, & Silverman, 1996; 
McCorkle & Dietz, 1980; Ruiz & Souza, 2008), are likely to be more 
effective that mechanical displacement over extended periods of time. 
An increase in salinity associated with a period of drought, or in re-
lation to the natural dispersion of C. fluminea, is unlikely to radically 
shift species behavior. As an osmoconformer, C. fluminea individuals 
increase extracellular ionic concentrations and reduce intracellular vol-
ume to cope with hyperosmotic stress (McCorkle & Dietz, 1980; Ruiz 
& Souza, 2008). Evans, Murphy, Britton, and Newland (1977) found 
that C. fluminea shows different responses (and tolerance) to salinity, 
depending on the geographic origin of the population stock or histori-
cal acclimation status. As older individuals are larger and will have been 
pre-exposed to salinity changes, this explanation is consistent with the 
effects of body size and may explain the smaller impact of salinity on 
bioturbation/particle reworking mediated by larger individuals.

Irrespective of the mechanisms involved, the most important find-
ing of our study is that some species that are capable of invading mul-
tiple habitats (such as C. fluminea), once established, modify ecosystem 
properties in ways that reflect the environmental conditions of the 
locality. However, the relationship between bioturbation intensity and 
nutrient generation is difficult to predict based on trait values alone, 
especially as the organism–sediment interactions alter with context 
(Hale et al., 2014; Murray et al., 2014; Teal, Parker, & Solan, 2010). 
We cannot discount the role of salinity and temperature in influenc-
ing meiofaunal and microbial communities. For instance, we observed 
a reduction in NO3 and an increase in NH3 with increasing tempera-
ture. Changes in temperature and salinity are known to influence dis-
similatory nitrate reduction to ammonium (DNRA) (Giblin, Weston, 
Banta, Tucker, & Hopkinson, 2010; Giblin et al., 2013), which implies 
that the reduction in nitrate to ammonium either by fermentative or 
autotrophic DNRA is enhanced under estuarine conditions (Bonaglia, 
Nascimento, Bartoli, Klawonn, & Brüchert, 2014; Koop-Jakobsen & 
Giblin, 2010; Sousa et al., 2012). Simultaneously, anaerobic oxidation 
of ammonium will occur, but the importance of this pathway, at least in 
coastal and estuarine sediments, is reduced when compared to DNRA 
(Bonaglia et al., 2014; Giblin et al., 2013; Gilbertson, Solan, & Prosser, 

2012). In addition, individuals will also contribute to nutrient release 
via excretion, which may be of greater relative importance than bio-
turbation activity at a certain threshold of body size. Certainly, larger 
individuals have a larger siphon and exhibit lower rates of particle mix-
ing as they do not need to relocate to exploit food resources (Zwarts, 
Blomert, Spaak, & de Vries, 1994). For large-sized C. fluminea, grazing 
on primary producers and removing particulates and sorbed phos-
phates might, at least in part, explain the observations for PO4 (Phelps, 
1994). Small- and medium-sized individuals of C. fluminea were respon-
sible for greater particle reworking, which could stimulate meiofauna 
(via increasing aeration and solute availability) and the release of PO4 
at the sediment–water interface (Piot, Nozais, & Archambault, 2014). 
Whilst all of these explanations are feasible, however, there is still a lot 
of uncertainty regarding the mechanistic basis by which species alter 
the functioning of an ecosystem, despite the well-known effects of NIS 
on the structure of communities and biodiversity (e.g., Ilarri et al., 2014; 
Phelps, 1994). This is particularly concerning, given that biological inva-
sions are expected to rise and ecological niches may become favorable 
for invasive species under climate change (Crespo, Leston, et al., 2017; 
Gama, Crespo, Dolbeth, & Anastácio, 2016; Montoya & Raffaelli, 2010).

The results we present here may represent a realistic outcome 
for a natural system under a full invasion, with a monotonous com-
munity consisting of only C. fluminea. Our findings confirm the pos-
sibility that non-native species that can access and thrive in multiple 
environmental conditions along the freshwater–marine transition can 
have dramatic effects on ecosystem properties. Whilst these effects 
can vary with environmental context, they are likely to manifest at 
larger scales and across perceived environmental boundaries. A chal-
lenge for the management of such transitional habitats will be in 
determining whether residual populations, perhaps occupying subop-
timal conditions, can re-establish more widely. Source–sink dynamics 
must be accounted in management efforts, particularly in highly vari-
able environments, such as estuaries. Within the freshwater–marine 
transition, demographic surplus from population sources may pro-
vide new colonization opportunities in sink habitats (Heinrichs et al., 
2016), where local reproduction is low or not possible, as evidenced 
in, for example, Crespo, Leston, et al, (2017). If so, control measures 
will need to recognize that perceived environmental constraints may 
be an insufficient means of prioritizing the application of control 
measures and that distinguishing species as freshwater versus marine 
may be inadequate.
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