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Abstract: Chemical pollution of water has raised great concerns among citizens, lawmakers, and
nearly all manufacturing industries. As the legislation addressing liquid effluents becomes more
stringent, water companies are increasingly scrutinized for their environmental performance. In
this context, emergent contaminants represent a major challenge, and the remediation of water
bodies and wastewater demands alternative sorbent materials. One of the most promising ad-
sorbing materials for micropolluted water environments involves cyclodextrin (CD) polymers and
cyclodextrin-containing polysaccharides. Although cyclodextrins are water-soluble and, thus, unus-
able as adsorbents in aqueous media, they can be feasibly polymerized by using different crosslinkers
such as epichlorohydrin, polycarboxylic acids, and glutaraldehyde. Likewise, with those coupling
agents or after substituting hydroxyl groups with more reactive moieties, cyclodextrin units can
be covalently attached to a pre-existing polysaccharide. In this direction, the functionalization of
chitosan, cellulose, carboxymethyl cellulose, and other carbohydrate polymers with CDs is vastly
found in the literature. For the system containing CDs to be used for remediation purposes, there are
benefits from a synergy that arises from (i) the ability of CD units to interact selectively with a broad
spectrum of molecules, forming inclusion complexes and higher-order supramolecular assemblies,
(ii) the functional groups of the crosslinker comonomers, (iii) the three-dimensional structure of the
crosslinked network, and/or (iv) the intrinsic characteristics of the polysaccharide backbone. In view
of the most recent contributions regarding CD-based copolymers and CD-containing polysaccharides,
this review discusses their performance as adsorbents in micropolluted water environments, as
well as their interaction patterns, addressing the influence of their structural and physicochemical
properties and their functionalization.
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1. Introduction

The exponential degradation of water quality is a major challenge facing both devel-
oping and developed countries, recently addressed in The Zero Pollution Ambition plan
launched by the European Commission. This plan is a key pillar of the European Green
Deal, which is committed to promoting initiatives in strategic fields of energy, industry,
mobility, agriculture, biodiversity, and climate towards a zero-pollution strategy by better
preventing, remedying, monitoring, and reporting on pollution [1]. These actions have
been strongly reiterated by experts in environmental agencies: “Something has really
changed in the past year. Everyone is talking about water quality. Local interest groups are
attracting not just local media interest but national media interest. Rivers and beaches are
all our shop windows. People notice and people care.” [2].

Currently, researchers working in different areas of chemistry, materials science, and
engineering are focusing on developing greener, safer, and more cost-effective materials
for water remediation. Moreover, an assessment of energy efficiency and the respective
environmental benefits and risks are being considered.
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Extensive research has been performed to develop new nanotechnologies for remedi-
ating water pollution by inorganic and organic contaminants [3]. These include advanced
materials, such as those of a polymeric nature, which have been explored with great success
for remediation purposes at different functional scales [4–10]. The most recent contribu-
tions have emphasized the use of nanobiomaterials to improve the detection, capture, and
degradation of emergent and persistent contaminants [11–13].

Specifically, the adsorption of toxic compounds by modified polysaccharides and
cyclodextrins (CDs) has evidenced an increasing interest in the synthesis of new low-
cost adsorbents for removing contaminants from natural water and wastewater [8,14].
Lately, the number of contributions addressing CD-based polymers and CD-containing
polysaccharides, in particular, and CD-grafted and/or CD-coated materials to deal with
the remediation of micropolluted water environments has grown exponentially. However,
the formulation and understanding of a complete, integrated picture of the major targeted
environmental needs and research objectives and the spotting of cutting-edge synthetic
routes, analytical techniques, and scaling-up trends in the design of multifunctional CD
materials are still critical tasks [4,15–20].

By assessing the multiple facets of CDs and CD-based polymers in environmental
remediation, considering specific target contaminants (e.g., dyes, pesticides, pharmaceutical
compounds, heavy metals) and target matrices (e.g., water and wastewater), it is possible to
identify the most relevant types of pollutants, the removal of which has benefited from the
application of CD-based adsorbents. This is particularly important to (i) understanding the
dynamics of persistent and emerging contaminants, (ii) developing effective remediation
strategies based on CD polymers and CD-containing polysaccharides, and (iii) giving rise
to promising research directions. Some reviews have already been published on this matter,
targeting a specific kind of CD polymer, such as those crosslinked with epichlorohydrin [4].
However, the present review seeks to provide a comprehensive view, addressing the
potential and limitations of CDs, both as backbone constituents and as pendant groups,
and the role of different crosslinkers, anchoring groups, and polysaccharides attached to
these cyclic oligosaccharides.

2. Cyclodextrin-Based Polymers in Pollutant Removal

Bibliometric indicators have shown an increasing interest in polymers of natural
origin as an alternative to conventional adsorbents such as activated carbon, silica gels,
and zeolites [14,19,21]. More specifically, oligo-and polysaccharides have been effectively
used for pollution remediation on the basis of their high availability, biodegradability,
biocompatibility, nontoxicity, and high chemical functionality, allowing researchers to
synthesize sustainable, green, and, if desired, selective adsorbents [14,19,21].

In general, polysaccharides are highly hydrophilic polymers whose structure (funda-
mentally containing hydroxyl groups and, in some cases, acetamido and primary amino
groups) confers not only preferential adsorption sites but also reactive sites for the de-
velopment of new materials. On the other hand, certain oligosaccharides, in particular
cyclodextrins, offer more sites for pollutant molecule adsorption. Due to the hydrophobic
cavity of cyclodextrins, host–guest assemblies, mainly based on hydrophobic interactions,
may occur [14,21–23]. It should, however, be stressed that not only amphiphilic or hy-
drophobic compounds interact with cyclodextrins. As will be discussed below, metal ions
also interact with the protonated or deprotonated hydroxyl groups of CDs, located at both
rims of the CD structure, thus allowing their removal from the environment. Therefore, the
synergy obtained by the use of CD-containing polysaccharides enlarges their effectiveness
in water remediation. It should be expected that the sorption of pollutants on CD-based
materials benefits from the formation of the CD–pollutant complex and from other interac-
tions external to the cavity, which are influenced by the contact time, the type of sorbent,
and the chemical structure of the pollutant.

Another strategy that takes advantage of the versatile properties of CDs is based on
the polymerization or copolymerization of the CDs by using crosslinkers and other grafting
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agents [9,24–35]. Furthermore, the alkylation, hydroxyalkylation, and carboxymethylation
of natural CDs help broaden the spectrum of guest molecules that can be effectively bound
and, thus, the variety of pollutants to be removed [36,37].

Recently, Valente and coworkers [14] provided a summary of the key progress in
developing CD-based materials, which include polymers, hydrogels, and nanocomposites,
used as sorbents for removing toxic compounds from wastewater. CDs have been modified
in different ways to produce derivatives with high affinity towards targeted contaminants
in aqueous solutions. Modification relies, e.g., on the direct linkage of β-CD by crosslinking
with a coupling agent or on the covalent binding of β-CD molecules to a pre-existing
insoluble matrix, including polysaccharides such as chitosan and alginates, nanofibers,
textiles, silica beads, and zeolites [14].

One of the most popular crosslinkers is epichlorohydrin (EPI). The existence of two
reactive groups in EPI allows its bivalent binding to cyclodextrins, generating hydrophilic
polymeric networks (hydrogels) with multiple CD molecules linked by repeating glyceryl
moieties [24,25,28,35,38–45]. These materials display high adsorption capability, are effi-
cient in the removal of water contaminants present at trace levels, and show relatively fast
kinetics [9,25,26,29,30,33,46–52].

2.1. Synthesis and Properties of CD-Based Materials

CDs can be considered polyfunctional monomers since they possess several reactive
hydroxyl groups at the 2, 3, and 6 positions of each anhydroglucose unit, susceptible to
substitution and elimination. The primary hydroxyl groups at the C6 position are usually
more reactive than the secondary ones (C2 and C3 positions), although this reactivity order
can be reversed by manipulating reaction conditions such as temperature and alkalin-
ity [53]. Due to these intrinsic characteristics, CDs can be directly copolymerized with
other monomers or attached to a myriad of materials. Different types of architecture can
thus be obtained, including linear, branched, and crosslinked networks. Moreover, CDs
can be modified in order to obtain derivatives with other functionalities, from amino to
carboxyl groups.

Two main types of CD-based polymers can be prepared: the first involves the use of
CDs or CD derivatives such as monomers and their reaction with a coupling agent in order
to obtain linear polymers or crosslinked structures; in the second type, CDs are attached to
a matrix (organic or inorganic) via chemical or physical interaction [54,55]. It should be
noted that in this work, only polysaccharides are surveyed. Consequently, in this work,
CD-based materials will be divided into two main groups, depending on whether CDs
constitute or coconstitute the backbone of the polymer (polycyclodextrins) or are bound to
polymeric matrices.

2.1.1. Polycyclodextrins

As it was discussed before, the reactivity of CDs is mainly based on their hydroxyl
groups. They can behave as nucleophiles or electrophiles and react with a variety of other
functional groups, resulting in, e.g., ethers, esters, and halides. CD hydroxyl groups can
be deprotonated using strong bases, thus originating alkoxide ions, strong nucleophiles
that can readily undergo SN2 reaction. On the other hand, CD ethers can be prepared
by protonation of the hydroxyl groups using acids, converting the poor leaving group
OH- to H2O, a better leaving group, and thus acting as electrophiles in the reaction with
other alcohols.

CD crosslinked polymers are particularly important in the context of water reme-
diation due to the cooperative effect between the CD cavity and the polymeric network.
Depending on the type of CD, the crosslinking agent, and the reaction conditions, materials
with different characteristics can be prepared [15]. Among the diverse choices of crosslinker,
epichlorohydrin (EPI) clearly stands out. In fact, CD–EPI polymers were one of the first to
be used for pollutant removal [56–58]. These polymers are easily prepared by reacting CDs
with EPI under heating, catalyzed by NaOH in a one-pot reaction (Scheme 1).
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Scheme 1. Polymerization of cyclodextrin (CD) by crosslinking with epichlorohydrin (EPI).

The mechanism of this reaction is well-known, and, depending on the conditions,
polymers with different degrees of crosslinking can be obtained. Thus, soluble or insoluble
polymers can be prepared, and, in the latter case, it is possible to obtain the polymer as
gels, fine particles, or nanoparticles [56,58].

Since the first papers reporting the use of CD–EPI in the removal of dyes and aromatic
pollutants, several other publications have appeared in the literature, using these poly-
mers for the removal of contaminants, namely, metals, pesticides, surfactants, aromatic
pollutants (including PHAs and PCBs), and pharmaceuticals, among others [44,59–65]. The
sorption mechanism is, in general, of chemisorption, essentially based on host–guest inter-
actions, but physisorption interaction also occurs once the swelling degree/crosslinking
degree has an influence on the sorption removal [4]. The success of EPI–CD materials
as adsorbents is embodied in the number of cyclodextrin derivatives, such as hydrox-
ypropyl, carboxymethyl, aminoethyl, methyl, and sulfonyl, used to polymerize with EPI
and evaluated for pollutant removal [65–68].

However, EPI is not the only crosslinker used to polymerize cyclodextrins. Diiso-
cyanates can react with CDs to form polyurethanes (Scheme 2). Depending on the structure
and the relative molar ratio of the diisocyanate, materials with different surface areas, pore
size distribution, mechanical properties, and sorption ability can be obtained. Various diiso-
cyanates can be used as crosslinking agents, namely, 1,6-hexamethylene diisocyanate (HDI),
2,4-toluene diisocyanate (TDI), 1,4-phenylene diisocyanate (PDI), 4,4′-dicyclohexylmethane
diisocyanate (CDI), 4,4′-diphenylmethane diisocyanate (MDI), and 1,5-naphtalene diiso-
cyanate (NDI), as shown in Scheme 2 [69,70].
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Scheme 2. Diisocyanates for the synthesis of CD–polyurethane copolymers.

If an excess of diisocyanate is used, highly crosslinked polymers can be obtained.
Nanosponge CD polyurethanes have proven to be effective in the removal of several pollu-
tants. Dyes and aromatic amines [71,72], organic matter, p-nitrophenol, pentachlorophenol
and 2-methylisoborneol [73,74], perfluorinated compounds (PFCs) and pesticides [75,76]
are among the pollutants tested.

Cyclodextrin polyesters constitute another important class of CD polymers. They
can be obtained by reaction of the oligosaccharides with diacids, diacid chlorides, or
dianhydrides. Some of the first examples of these polymers were developed by reacting
CDs with succinyl chloride, glutaryl chloride, and adipoyl chloride (Scheme 3) [77,78].
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Another approach for the synthesis of cyclodextrin copolymers consists of using
polycarboxylic acids (e.g., citric acid, succinic acid, 1,2,3,4-butanetetracarboxylic acid,
and poly(acrylic acid)) as crosslinking agents [79–81]. Scheme 4 shows the synthesis
of CD–polycarboxylic polymers using ethylenediamine tetraacetic acid (EDTA) [46,82].
The obtained polymer shows a significant number of sites available to interact with a
multitude of pollutants, from metal ions to dyes and herbicides, regardless of their hy-
drophilic/hydrophobic character.
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Due to the success of this strategy for the synthesis of amphiphilic polymers, other
crosslinkers like 4,4-difluorodiphenylsulfone, tetrafluoroterephthalonitrile, 4,4′-bipyridine,
decafluorobiphenyl, bis(4-hydroxyphenyl)sulfone, and 4,4′-bis(chloromethyl)biphenyl
have been tested [49,83,84].

2.1.2. Polysaccharides Having CDs as Pendant Groups

The immobilization of CDs onto natural polymers has been equally described for
remediation purposes. Usually, low-cost natural polymers like cellulose, starch, or chitosan
are chosen. Several synthetic procedures can be used with this objective, including the
previous functionalization of CDs with appropriate reactive groups and the use of linkers.
The former is achieved by substituting at least one hydroxyl group of CD with groups such
as amino, tosyl, carboxyl, and carbonyl. The latter involves using coupling agents like the
ones described above for CD–CD binding, including polyacids, diisocyanates, and, once
again, epichlorohydrin [85].
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Chitosan, a cationic biopolymer, can be easily obtained through the deacetylation
of chitin, a natural polymer found in crustaceans. The presence in this compound of
primary amine groups, which exhibit extensive reactivity, is a determining factor for its
wide range of applications, including remediation. Owing to this, chitosan is probably
the polysaccharide most commonly functionalized with CDs for water remediation. For
example, Tojima et al. prepared water-insoluble chitosan beads using 1,6-hexamethylene
diisocyanate as a crosslinker (Scheme 5). To this polymer, α-CD was anchored through
reaction with 2-O-formylmethyl-α-CD in the presence of sodium cyanoborohydride [86,87].
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A more complex strategy involves the use of magnetic nanoparticles to improve the
reuse of adsorbent materials and the recycling of pollutants. Based on these advantages,
chitosan functionalized with β-CD can be prepared by reaction of maleoyl-β-CD with
chitosan via activation with 3-(ethyliminomethyleneamino)-N,N′-dimethylpropan-1-amine
(EDC) and 4-dimethylaminopyridine. Then, β-CD–chitosan is linked to magnetic nanopar-
ticles, namely, Fe3O4, using glutaraldehyde (Scheme 6). The obtained polymer provides an
enhanced surface area, leading to higher removal efficiency of pollutants [88]. Graphene ox-
ide (GO) has also been commonly used for the synthesis of new materials, taking advantage
of its properties, which include high surface area, a negatively charged surface, and water
solubility [89]. Having that in mind, based on the previous description, new GO adsorbents
containing CD–chitosan have also been synthesized using the route described in Scheme 7.
In brief, maleoyl-β–CD reacts initially with chitosan and subsequently with magnetic
particles (pH 8.0–9.0, 55 ◦C, 1.5 h) in the presence of glutaraldehyde. The carboxylic groups
of GO are then reacted with EDC/N-hydroxysuccinimide, and the generated amide groups
are crosslinked once again by using glutaraldehyde with β-CD–chitosan–Fe3O4 [90].
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Other strategies have been used for similar objectives. For instance, β-CD can be
functionalized with monochlorotriazinyl groups and then reacted with chitosan via a
substitution reaction [91]. In another study, Aoki et al. prepared crosslinked chitosan
modified with β-CD by amidation of the former with succinic anhydride, followed by
reaction with mono-6-amino-mono-6-deoxy-β-CD and a carbodiimide [92].

The availability of cellulose is much higher than that of chitin, but the lack of functional
groups other than hydroxyl limits its usefulness. Crosslinked networks of carboxymethyl
cellulose (CMC), one of the most common and easily synthesized cellulose derivatives,
have been widely used as an absorbent in remediation. The grafting of CDs on CMC,
achieved with epichlorohydrin in a basic medium, offers even greater versatility, reaching
adsorption capacities of 8.55 mg g−1 for copper(II) ions [93].

Although chitosan and CMC are among the most cited polysaccharides, reference is
also made in the literature to the use of other natural materials such as starch, wood flour,
sawdust, and cotton for the removal of various pollutants [94]. Recently, we published
a review on the ways to combine CDs and cellulose, with emphasis on pharmaceutical
technology, textiles, and sensors, and, consequently, this topic will not be mentioned
here [14,19,21].

3. Removal of Pollutants from Water and Wastewaters

In this section, we summarize the most important information related to the applica-
tion of CD polymers (or copolymers) and CD-containing polysaccharides to the removal of
four classes of water and wastewater pollutants: metal ions, dyes, pharmaceutical com-
pounds, and pesticides. The appearance or persistence of such contaminants in natural
water and wastewater, along with the respective adverse environmental effects, has boosted
the number of studies focused on the adsorption of water pollutants by modified CDs [14].

Water and wastewater comprise a plethora of chemical species and organisms, includ-
ing emergent and priority pollutants, antibiotic-resistance genes, and emerging pathogens.
These entities are, in general, rarely monitored and controlled, toxic or carcinogenic, and
nonbiodegradable [14].

The major classical concern about the effect of contaminants on the environment
and human health has been associated with heavy metal ions, active ingredients in pes-
ticides, and other persistent organic pollutants. Those detected in water and wastewater
comprise (i) inorganic pollutants, including metal and arsenic ions [95], and (ii) organic
pollutants composed of polycyclic aromatic compounds, benzene and dibenzofuran deriva-
tives, phenol derivatives (encompassing naphthol derivatives), polychlorobiphenyls, sur-
factants, pharmaceutical residues, endocrine disruptors, and household and industrial
chemicals [40]. Within the latter, organic dyes have been discharged into the environment
by paper, textile, and cosmetics manufacturers.

3.1. Metal Ions

Heavy metal pollution is a concerning issue that humanity has struggled to deal
with. The term “heavy metal” is defined rather vaguely: elements with specific gravity
greater than four, regardless if they are considered metals or, as in the case of arsenic, metal-
loids [95]. Though naturally occurring, with some being biologically essential (e.g., copper
and chromium are micronutrients [96]), industrial and domestic emissions have raised
the concentration of these elements in natural environments to dangerous levels [97,98].
Recently, comprehensive reviews on the remediation of heavy-metal-containing residues
have highlighted the priority of this topic in terms of the sources of pollution and different
available technologies for their treatment [99–101].

Due to its relevance, the application of CDs to heavy metal treatment has challenged
many researchers. However, as we will note later, the effect of CDs on the retention and
treatment of heavy metals is not remarkable. This is due to the molecular structure of
CDs, i.e., the hydroxyl groups found at both rims of CDs, which have a low ability to
coordinate with predominant cations [102–104]. This process depends on the pH; for
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example, the interaction between Pb(II) and β-CD is characterized by a high association
constant (logKa = 15.5) at a pH around 10.5 [105]. Against all setbacks, CD-based materials
have been developed and assessed for metal ion removal from aqueous media [14].

The use of a polycarboxylic acid to polymerize CDs has been referred to as a promising
strategy for the treatment of not only organic but also inorganic pollutants. One common
choice of polyacid to perform this crosslinking is citric acid [106]. Poly(β-cyclodextrin-co-
citric acid) was evaluated in terms of its removal capabilities towards Cu(II), showing a
maximum removal efficiency (RE) of 58.6% at pH 6.1 and a maximum adsorption capacity,
qmax, of 31.4 mg g−1 [46]. However, by testing the effect of different aromatic compounds
(bisphenol A and methylene blue (MB)) on simultaneous removal with Cu(II), while the
maximum adsorption capacity of Cu(II) remained similar in the presence of bisphenol
A, it decreased to 24.8 mg g−1 in the presence of MB. This is justified by a competitive
interaction between MB and Cu(II) for the carboxylic groups of citric acid, highlighting the
weak role of CD cavities in the removal process of the metal ion.

These CD polymers show some drawbacks in the adsorption process as a consequence
of their low surface area and high swelling degree. A quick method to overcome that is the
preparation of magnetic materials. Taking that into consideration, Badruddoza et al. [107]
grafted a copolymer of carboxymethyl–β-CD and epichlorohydrin to the surface of Fe3O4
nanoparticles. The adsorption of metal ions (Pb(II), Cd(II), and Ni(II)) onto those nanocom-
posites led to the following qmax: 64.5, 27.7, and 13.2 mg g−1, respectively, at pH 5.5. These
examples clearly suggest that the metal ion adsorption mechanism of CD-based materials
is not based on host–guest interactions.

Another approach is the functionalization of polymers with CDs, chitosan being the
most common candidate among polysaccharides. This is a consequence of the presence of
amino and hydroxyl groups in its structure (Scheme 8), which can readily bind to some pol-
lutants or, alternatively, be modified in order to improve its versatility [108,109]. Heavy met-
als are among the pollutants well adsorbed by chitosan or chitosan blends/composites [110,111].
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Magnetic β-CD-chitosan nanoparticles were synthesized by Fan et al. [112]. Initially,
by using maleic acid in the presence of 4-dimethylaminopyridine, β-CD is functionalized
to form maleoyl-β-CD [113]. The latter compound is then grafted to the chitosan backbone.
Following that, Fe3O4 nanoparticles are coated by β-CD-chitosan. A peculiar contribution
was provided by Elanchezhiyan and Meenakshi [114], who synthesized chitosan–β-CD
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using glutaraldehyde as a crosslinker in the presence of lanthanum, zirconium, or cerium
ions. These metal ions were integrated into the adsorbent.

The use of chitosan also shows some drawbacks, including a low compressive strength
and the difficulty of producing monoliths. Such limitations can be overcome by the
incorporation of graphene oxide onto the polymer structure [115,116]. This hydrophilic
derivative of graphene (Scheme 8b,c) has a lower content of carbon in favor of a higher
amount of oxygen in the form of hydroxyl, carboxyl, and epoxy groups. This modification
of the graphene structure makes GO easily dispersible in aqueous media. Furthermore,
GO retains much of the properties of the highly valued pristine graphene, being easier
to prepare and process, cheaper [117], and a good candidate for an adsorbent of different
types of pollutants [115,118]. It should be stressed that the grafting of CD to GO sheets can
also result in a satisfactory adsorbent for metal ions [119,120].

In order to improve the stability of chitosan, as described above, β-CD–chitosan/GO
materials have been prepared by Li et al. [121]. The procedure consists of reacting the
amine group of chitosan with GO’s carboxyl group, forming an amide. The obtained
material shows good sorption ability towards Cr(VI). Clearly, the sorption process of this
metal ion is slightly different from others, given that Cr(VI) is present in the solution as
oxyanions, i.e., CrO4

2−, Cr2O7
2−

, or HCrO4
− [122]. The maximum adsorption capacity for

Cr(VI), taking into account all the three anionic species, is 67.66 mg g−1. The mechanism
of adsorption is not straightforward since it initially involves electrostatic interactions
between the protonated amine groups of chitosan and the chromium-containing anions,
followed by the reduction of Cr(VI) to Cr(III) and the consequent interaction with either
the carboxylic groups of GO or the β-CD [123].

Cellulose–CD materials have also been studied for the absorption of metal ions.
Li et al. [124] modified filter paper with β-CD, using citric acid as a crosslinker. This way,
the hydroxyl groups of cellulose and those of β-CD underwent simultaneous esterification
with the polyacid. The functionalized filter paper showed a significant adsorption capacity
for Cu(II) (39.1 mg g−1) when compared to unmodified filter paper (0.62 mg g−1). As was
previously discussed, citric acid, and not the CD cavity, had the main role in the sorption
process [124].

3.2. Dyes

More than 100 tons of organic dyes are produced annually [125,126]. This demand
is due to the need for colorants for a broad number of industries, including textile [127],
leather [128], food [129], and solar cells [130], with a significant part being wasted in
the dyeing process [131]. Organic dyes are, in general, nonbiodegradable, toxic, and
carcinogenic contaminants present in water, leading to a significant impact on biotic
systems and ecosystems [132,133].

Due to its relevance in wastewater, there are several methods that may be used for the
removal of dyes from industrial wastewater. They include advanced oxidation [134,135],
electrochemical processes [136], and adsorption [137]. The latter method has been exten-
sively used for the discoloration and removal of dyes from wastewater due to its low price,
easy availability, and efficiency [138].

Cyclodextrins are among the most used compounds for the removal of dyes and other
contaminants from different waste sources [139,140].

3.2.1. CD Polymers

One material successfully proven to act as a sorbent of some dyes is the polymer-
ized β-CD derivative 2,3-di-O-methacrylated-6-tert-butyldimethylsilyl)-β-CD, using 1-
vinylimidazole as a crosslinker [52]. This polymer presents high adsorption removal
efficiencies for congo red (CR) and rhodamine B (RB), above 80%, with qmax equal to 712
and 175 mg g−1, respectively. Here, in contrast to the metal ion adsorption mechanism,
the dyes interact with the CD cavities by forming stable host–guest supramolecular com-
plexes, characterized by stability constants of 1667 and 4266 M−1 [141,142], respectively.
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However, whilst hydrophobic and π-π interactions are the predominant mechanism for
RB adsorption, for CR, electrostatic interactions between the sulfonate groups of the dye
also occur [52].

Based on the high ability of CDs to interact with dyes via hydrophobic interactions, the
polymerization of CDs is a logical way to synthesize highly efficient adsorbents. Among the
different possibilities, the use of epichlorohydrin (EPI) or 4,4′-bis(chloromethyl)biphenyl
as a crosslinker is the most common route [9,18].

Recently, β-CD and hydroxypropyl–β-CD (HP–β-CD) were polymerized with EPI.
The adsorption of Direct Red 83:1 and Direct Blue 78 onto those polymers was ana-
lyzed [16,17]. For an initial concentration of dye equal to 300 ppm, the maximum ad-
sorption capacity for β- and HP–β-CD polymers were, respectively, 13.4 and 3.3 mg g−1.
The mechanism of interaction between the dye and different CDs is still unclear. However,
a similar trend of adsorption capacity was found for the adsorption of the same dye onto
polymeric adsorbents based on α-CD and HP–α-CD [68]. The adsorption of Direct Blue 78
onto a poly(β-cyclodextrin-co-EPI) copolymer also showed high efficiency, with a qmax of
23.47 mg g−1. However, the study was complemented by the use of advanced oxidation
processes (AOPs) to remove the remaining dyes. By using the techniques in a sequential
way, the removal efficiency of Direct Blue 78 was higher than 99%.

The development of adsorbents for the simultaneous adsorption of dyes (or other pol-
lutants) is always challenging since it depends, in general, on different types of interactions.
Following that, the development of poly(β-CD) with the ability of simultaneous sorption
of dyes with an opposite charge was carried out by Zhou et al. [143]. The adsorbent was
synthesized in a two-step sequence: initially, the β-CD is polymerized via esterification
with citric acid; in a second step, the grafting of 2-dimethylamino ethyl methacrylate takes
place. The obtained material contains, besides the hydrophobic cavity of the CD, carboxylic
groups and tertiary amino groups, providing, in this way, a multitude of sites for the inter-
action of both cationic and anionic dyes, respectively. The adsorption studies of methylene
blue (MB, a cationic dye) and methyl orange (MO, an anionic dye) onto the PCD grafted
with 2-dimethylamino ethyl methacrylate showed high qm values: 335.5 and 165.8 mg g−1,
respectively. However, these values were obtained at different pH conditions: 11, 4, and
6.5, respectively. This dependence on environmental conditions hinders the broad use of
this pH-responsive material.

3.2.2. Chitosan-Based Sorbents

In a similar way to what was observed for the adsorption of metal ions, chitosan
was tested as a polymeric matrix for the adsorption of a large number of different dyes.
Zhao et al. measured the removal efficiency of blends of chitosan with poly(β-CD-co-citric
acid) for the following set of dyes: C.I. Reactive Blue 49, Reactive Yellow 176, Reactive
Blue 14, Reactive Black 5, and Reactive Red 141 [144]. It was found that this blend is highly
effective for dye removal, with an RE higher than 90%, besides attaining higher qmax values
(e.g., for Reactive Blue 49, qmax = 498 mg g−1). Such performance is due to the occurrence
of electrostatic interactions between the sulfonate groups of all dyes and the protonated
ammonium groups of chitosan (pKa ca. 6.5) [145], along with hydrogen bonding between
the amine groups of dyes and the hydroxyl groups of chitosan.

Another blend composed of chitosan and poly(β-CD)/vinyltriethoxysilane copolymer
was prepared as a membrane. This membrane was shown to possess high porosity as
a consequence of electrostatic repulsion (or steric hindrance) between the CD units and
chitosan [146]. Maximum adsorption capacity (13.4 mg g−1) was reached for Acid Red 299.
That lower value, associated with an endothermic adsorption process, which might be
related to the need to overtake a polymer interface to reach the binding sites, makes the
use of membranes rather limited.

The use of γ-CD is not very common because it is expensive and the size of the inner
cavity is too large, leading to weak host–guest interactions [147]. Even so, some works
report combinations of the largest natural CD with polysaccharides. For example, γ-CD can
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be grafted onto starch (from corn) by using epichlorohydrin as an anchor. The adsorption
capacity of the material was tested towards Methylene Blue (MB), Methyl Purple, and
Congo Red (CR); the former two dyes are cationic and the latter (CR) is anionic. Despite
the association constants for the formation of complexes between γ-CD and CR and MB
being 3800 M−1 [148] and 2.95 × 107 M−2 [149], respectively, REs for all three dyes were
around 60% [150].

A different method was followed to prepare a graphene-oxide-containing chitosan/β-
CD hydrogel [151] that consists of mixing β-CD, chitosan, and GO in the presence of genipin
and sodium ascorbate as reducing agents [50]. Genipin is a well-known crosslinking agent,
widely used for the crosslinking of chitosan; it exhibits reduced toxicity when compared
to, for example, glutaraldehyde. Therefore, genipin can promote the linkage between
the hydroxyl groups of GO and CD and the amino groups of chitosan. By using MB as
a dye model, it has been found that with an initial MB concentration equal to 50 ppm,
the adsorption capacity of the CD-containing gel is ca. 225 mg g−1, 50% higher than
the hydrogel without CD [151]. However, the maximum adsorption capacity found for
chitosan is ca. 5 times higher (1134 mg g−1). This significant adsorption capacity is due
to the occurrence of a mesoporous structure associated with the electrostatic interactions
between the dye and the adsorbent. In fact, a relevant dependence of the adsorption
capacity of MB on pH and ionic strength has been found. This may indicate the occurrence
of a screening effect on electrostatic interactions [152].

3.2.3. Cellulose-Based Sorbents

Cellulose chains, although insoluble in water [153], have many active hydroxyl groups.
Hence, this linear homopolymer can be chemically modified so as to be capable of forming
supramolecular interactions with organic dyes [154].

In the previous section, the use of modified filter paper for adsorption of Cu(II) was
described [124]. The success of that type of material is of utmost importance, given that the
paper companies are incessantly looking for new innovative products and markets. Addi-
tional to Cu(II), the adsorption of MB, Brilliant Green, and Rhodamine-B onto modified
filter paper has also been evaluated [154]. The modified filter paper was able to adsorb
124.5, 130.4, and 99.7 mg g−1 of MB, RB, and BG, respectively. These values drastically de-
creased to 41.4 and 29.6 mg g−1 (for MB and RB, respectively) when the adsorbent material
contained 70% of pristine (nonmodified) filter paper, clearly indicating the importance of
CD in the adsorption process.

Cotton fiber, a natural fiber consisting almost entirely of cellulose, is a renewable,
degradable, cheap, and nonpolluting material. Furthermore, cotton fiber presents a large
specific surface area and a hollow, flat-banded structure, which is beneficial for adsorption.
Based on that, Yue et al. [155] grafted an amino-terminated hyperbranched polymer,
obtained by melt polycondensation of methyl acrylate, diethylene triamine [156], and
β-CD onto cotton.

In summary, the chemical modification of cotton occurs after initial oxidation with
sodium metaperiodate to obtain dialdehyde–cotton. Subsequently, the modified cotton
reacts with β-CD in the presence of EPI. At the end of the process, the hyper-branched
polymer is added, and the reaction with the modified cotton occurs between amino groups
of the former and the aldehyde groups of cotton. The resulting polymer shows high RE
and high qmax for Congo Red (94% and 300.8 mg g−1, respectively); however, for MB, the
performance is more modest, leading to 42% and 98.7 mg g−1, respectively. Such behavior
is explained by the possibility of MB aggregation [155], which hampers adsorption.

As described before, citric acid is commonly used as a crosslinker for the binding of
CDs to cellulose-based materials by forming an ester linkage. Zhou et al. [106] have studied
the functionalization of pine sawdust (PS) with β-CD by esterification with citric acid (CA)
for aniline remediation (Scheme 9). Aniline and derivatives (Scheme 10) are frequently
used as organic intermediates in the process of producing dyes, rubber, medicine, and paint.
Due to its toxicity and recalcitrant properties, it is highly necessary to develop strategies
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for removing aniline from aquatic media [157]. The qmax of PS–citric acid–CD towards
aniline is 12.3 mg g−1, more than twice the adsorption capacity of PS functionalized
with citric acid (5.8 mg g−1). Such improvement is due to the structure of the sawdust;
i.e., cell walls of sawdust mainly consist of cellulose and lignin, and many hydroxyl
groups are present in tannins or other phenolic compounds. Moreover, the presence of CD
improves the sorption capacity through host–guest hydrophobic interactions and hydrogen-
bonding via carboxylic groups, whereas PS–citric acid only contains carboxyl groups. In
addition, aniline can be protonated, and its pKa strongly depends on the substituents [158],
promoting a further sorption process: the ion-exchange mechanism.

Polysaccharides 2021, 2, FOR PEER REVIEW 14 

 

Cotton fiber, a natural fiber consisting almost entirely of cellulose, is a renewable, 

degradable, cheap, and nonpolluting material. Furthermore, cotton fiber presents a large 

specific surface area and a hollow, flat-banded structure, which is beneficial for adsorp-

tion. Based on that, Yue et al. [155] grafted an amino-terminated hyperbranched polymer, 

obtained by melt polycondensation of methyl acrylate, diethylene triamine [156], and β-

CD onto cotton. 

In summary, the chemical modification of cotton occurs after initial oxidation with 

sodium metaperiodate to obtain dialdehyde–cotton. Subsequently, the modified cotton 

reacts with β-CD in the presence of EPI. At the end of the process, the hyper-branched 

polymer is added, and the reaction with the modified cotton occurs between amino 

groups of the former and the aldehyde groups of cotton. The resulting polymer shows 

high RE and high qmax for Congo Red (94% and 300.8 mg g−1, respectively); however, for 

MB, the performance is more modest, leading to 42% and 98.7 mg g−1, respectively. Such 

behavior is explained by the possibility of MB aggregation [155], which hampers adsorp-

tion. 

As described before, citric acid is commonly used as a crosslinker for the binding of 

CDs to cellulose-based materials by forming an ester linkage. Zhou et al. [106] have stud-

ied the functionalization of pine sawdust (PS) with β-CD by esterification with citric acid 

(CA) for aniline remediation (Scheme 9). Aniline and derivatives (Scheme 10) are fre-

quently used as organic intermediates in the process of producing dyes, rubber, medicine, 

and paint. Due to its toxicity and recalcitrant properties, it is highly necessary to develop 

strategies for removing aniline from aquatic media [157]. The qmax of PS–citric acid–CD 

towards aniline is 12.3 mg g−1, more than twice the adsorption capacity of PS functional-

ized with citric acid (5.8 mg g−1). Such improvement is due to the structure of the sawdust; 

i.e., cell walls of sawdust mainly consist of cellulose and lignin, and many hydroxyl 

groups are present in tannins or other phenolic compounds. Moreover, the presence of 

CD improves the sorption capacity through host–guest hydrophobic interactions and hy-

drogen-bonding via carboxylic groups, whereas PS–citric acid only contains carboxyl 

groups. In addition, aniline can be protonated, and its pKa strongly depends on the sub-

stituents [158], promoting a further sorption process: the ion-exchange mechanism. 

 

Scheme 9. Pine sawdust modified with β-CD. Adapted with permission from [106]. Copyright (2020) American Chemical 

Society. 
Scheme 9. Pine sawdust modified with β-CD. Adapted with permission from [106]. Copyright (2020) American Chemical Society.

Polysaccharides 2021, 2, FOR PEER REVIEW 15 

 

 

Scheme 10. Resonance structures for aniline derivatives. 

A possible approach was reported by Ghemati and Aliouche [159]. The authors mod-

ified β-CD through its reaction with N-methylol acrylamide to form acrylamidomethyl–

β-CD. After that, the modified CD was grafted onto cellulose. The obtained polymer pre-

sents a qmax for MO and MB ca. 11 and 14 mg g−1 at pH 3 and 11, respectively. 

3.3. Pesticides 

Pesticides are the main organic pollutants used worldwide; they are applied to pre-

vent plant diseases and to improve food quality. Although their initial impact is on soil 

pollution, by leaching and desorption mechanisms, they end up contaminating water bod-

ies. In general, pesticides are not soluble in water, which limits the choice of remediation. 

For this reason, removal strategies based on cyclodextrins have a great advantage in sol-

ubilizing and removing such contaminants [7,160]. However, few studies have involved 

the design and application of CD-based adsorbents for pesticides. 

In an attempt to develop highly efficient CD polymers for the separation and removal 

of ten different pesticides, polycyclodextrins involving only one type of CD or equimolar 

mixtures of two cyclodextrins, using EPI as a crosslinker, were synthesized as spherical 

porous particles [44]. The adsorption kinetics and isotherms of the pesticides on the poly-

cyclodextrins showed that adsorbents with a homogeneous open network structure were 

able to absorb pesticides through multiple adsorption interactions, including inclusion in 

the CDs, loading into swelling water, and even physical adsorption on the network. Fur-

thermore, the removal efficiency is dependent on the CD content, swelling degree, and 

surface area. Butenefipronil and fipronil, pesticides with a high octanol–water partition 

coefficient, showed higher REs, proving that hydrophobic interactions with the CD are of 

paramount importance in the adsorption mechanism. 

Another valuable contribution involves the use of poly(β-CD-co-EPI) for packing a 

bed for the removal (“trapping”) of pesticides [62]. Using 2-naphtol as a pesticide model, 

the authors found that the trapping efficiency was around 70%. This removal efficiency is 

dependent on the acid-base equilibria occurring in natural waters. It was also found that 

the best trapping efficiencies were obtained for beads with polymers containing a high 

percentage of EPI, i.e., polymers with a nominal CD/epichlorohydrin ratio of 1:29. 

CDs inside nanoporous carbon have also displayed great efficiency for removing the 

p,p’-substituted diphenyl class of pesticides (e.g., DDT, DDD, and DDE). These pesticides 

showed significant adsorption due to their suitable geometric fit within the cavity of the 

CD, leading to the formation of stable inclusion complexes (Zolfaghari 2016). 

The sorption of two halogenated monophenolic pesticides, 4-chlorophenoxyacetic 

acid and 2,3,4,6-tetrachlorophenol, by CD polymers in the form of nanosponges has also 

been assessed and its performance compared with other materials, namely, granulated 

activated carbon [12]. These designed nanosponges have displayed favorable sorption ca-

pacities for chlorinated aromatic guests. The sorption capacity and binding affinity of the 

sorbents were greater for nanosponges, despite granulated activated carbon possessing a 

greater surface area. It was suggested that nanosponges possess additional properties, 

such as serving as stabilization enhancers of nanoparticles. 

Among the various methods employed to remove paraquat (a toxic herbicide com-

monly used for weed and grass control) from aqueous systems, adsorption has demon-

strated higher efficiency, straightforward operation, and low cost. Junthip et al. [161] have 

proposed and tested the adsorption of paraquat in aqueous solutions using a textile coated 

Scheme 10. Resonance structures for aniline derivatives.

A possible approach was reported by Ghemati and Aliouche [159]. The authors
modified β-CD through its reaction with N-methylol acrylamide to form acrylamidomethyl–
β-CD. After that, the modified CD was grafted onto cellulose. The obtained polymer
presents a qmax for MO and MB ca. 11 and 14 mg g−1 at pH 3 and 11, respectively.

3.3. Pesticides

Pesticides are the main organic pollutants used worldwide; they are applied to prevent
plant diseases and to improve food quality. Although their initial impact is on soil pollution,
by leaching and desorption mechanisms, they end up contaminating water bodies. In
general, pesticides are not soluble in water, which limits the choice of remediation. For this
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reason, removal strategies based on cyclodextrins have a great advantage in solubilizing
and removing such contaminants [7,160]. However, few studies have involved the design
and application of CD-based adsorbents for pesticides.

In an attempt to develop highly efficient CD polymers for the separation and removal
of ten different pesticides, polycyclodextrins involving only one type of CD or equimolar
mixtures of two cyclodextrins, using EPI as a crosslinker, were synthesized as spherical
porous particles [44]. The adsorption kinetics and isotherms of the pesticides on the
polycyclodextrins showed that adsorbents with a homogeneous open network structure
were able to absorb pesticides through multiple adsorption interactions, including inclusion
in the CDs, loading into swelling water, and even physical adsorption on the network.
Furthermore, the removal efficiency is dependent on the CD content, swelling degree, and
surface area. Butenefipronil and fipronil, pesticides with a high octanol–water partition
coefficient, showed higher REs, proving that hydrophobic interactions with the CD are of
paramount importance in the adsorption mechanism.

Another valuable contribution involves the use of poly(β-CD-co-EPI) for packing a
bed for the removal (“trapping”) of pesticides [62]. Using 2-naphtol as a pesticide model,
the authors found that the trapping efficiency was around 70%. This removal efficiency is
dependent on the acid-base equilibria occurring in natural waters. It was also found that
the best trapping efficiencies were obtained for beads with polymers containing a high
percentage of EPI, i.e., polymers with a nominal CD/epichlorohydrin ratio of 1:29.

CDs inside nanoporous carbon have also displayed great efficiency for removing the
p,p’-substituted diphenyl class of pesticides (e.g., DDT, DDD, and DDE). These pesticides
showed significant adsorption due to their suitable geometric fit within the cavity of the
CD, leading to the formation of stable inclusion complexes (Zolfaghari 2016).

The sorption of two halogenated monophenolic pesticides, 4-chlorophenoxyacetic
acid and 2,3,4,6-tetrachlorophenol, by CD polymers in the form of nanosponges has also
been assessed and its performance compared with other materials, namely, granulated
activated carbon [12]. These designed nanosponges have displayed favorable sorption
capacities for chlorinated aromatic guests. The sorption capacity and binding affinity of
the sorbents were greater for nanosponges, despite granulated activated carbon possessing
a greater surface area. It was suggested that nanosponges possess additional properties,
such as serving as stabilization enhancers of nanoparticles.

Among the various methods employed to remove paraquat (a toxic herbicide com-
monly used for weed and grass control) from aqueous systems, adsorption has demon-
strated higher efficiency, straightforward operation, and low cost. Junthip et al. [161] have
proposed and tested the adsorption of paraquat in aqueous solutions using a textile coated
with anionic polycyclodextrin, with citric acid as an anchor agent. The removal perfor-
mance was assessed considering different conditions, including an initial concentration
of pesticide, pH of the solution, and adsorption temperature. It was found that neutral
pH and lower temperatures favored the adsorption of the pesticide on the functionalized
textile. The reusability of the material was also relevant, reaching 78.6% of the maximum
adsorption capacity after 6 regeneration cycles [161].

3.4. Pharmaceutical Compounds

Pharmaceuticals, including analgesics, anti-inflammatory drugs, and antibiotics,
have been introduced into the environment via several routes, including farming, house-
holds, medical facilities, hospitals, and pharmaceutical industries. Specifically, these
include those compounds that are frequently used and found in wastewater, includ-
ing ibuprofen, acetaminophen, amoxicillin (β-lactams), streptomycin (amino-glycosides),
ciprofloxacin (fluoroquinolones), azithromycin and clarithromycin (macrolides), penicillin,
penicillin/streptomycin combinations, and tetracyclines, just to name a few examples [14].

Among the most consumed pharmaceuticals worldwide, ibuprofen is a nonsteroidal
anti-inflammatory drug, largely distributed without prescription. Its occurrence in environ-
mental matrices has been markedly observed in industrial and agricultural waste streams,
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municipal/hospital wastewater, and surface water. In another context, high concentrations
of veterinary drugs, such as ionophore antibiotics, have been detected in sediments and
in water (in lower concentrations). Ibuprofen, diclofenac, and gemfibrozil have also been
identified in sewage sludge.

Insoluble CD polymers have been employed as cost-effective adsorbents in these
scenarios due to their attractive removal performances and the higher number of cycles
when compared to conventional strategies [9].

Shahgaldian’s group [162] prepared three water-insoluble CD-based polymers aimed
at removing three selected pharmaceutically active ingredients—levofloxacin, aspirin, and
acetaminophen—in aqueous solutions. The highest sorption capacity was obtained with
β-CD polymer, which displayed a higher affinity for aspirin. In general, the interaction
kinetics were proved to be fast, reaching 70% of equilibrium sorption capacity within only
10 min.

Moulahcene et al. [163] have proposed insoluble CD-based polymers with high ad-
sorption capacities, containing different types of CD molecules crosslinked with citric acid,
towards the removal of ibuprofen in aqueous solutions. Ibuprofen retention in the CD
polymers decreased in the following order: α-γ-CD > α-CD > γ-CD > β-CD > α-γ-β-CD.
The effect of various operating variables, such as pH, ionic strength, contact time, drug
concentration, and mass of adsorbent was evaluated. Maximum adsorption capacity was
achieved in acidic pH, in which ibuprofen was in its molecular form, favoring electrostatic
interaction and the formation of an inclusion complex. Ionic strength also contributed to
increasing the removal performance of the CD polymers. In a similar study [164], the pro-
gesterone removal capacity in aqueous solutions of various polycyclodextrins crosslinked
with citric acid was investigated. Adsorption capacities up to 20 mg g−1 and removal
efficiencies over 80% were obtained. The authors concluded that (i) poly(β-cyclodextrin)
showed the best adsorption capacities, a larger number of reuse cycles than activated car-
bon, and fast adsorption kinetics; (ii) no significant effect of initial pH, initial concentration,
and adsorbent amount on the adsorption capacity was observed; (iii) adsorption increased
with ionic strength and temperature.

The detection and quantification of diclofenac, a highly efficient and widely consumed
anti-inflammatory drug, in water and wastewater samples (in the range 0.3–15.9 mg L−1)
have also been developed [165] by resorting to a polycyclodextrin containing a fluorescent
dye. The optimal concentration of the sorbent was found to be 50 g mL−1, and the limit of
quantification of diclofenac was 0.3 mg L−1.

The nucleophilic substitution of β-CD with tetrafluoroterephthalonitrile (TFP) has
been conducted by Zhou et al. [166], aiming at preparing a poly(β-CD) for removing
bisphenol A (BPA), chloroxylenol (PCMX), and carbamazepine (CBZ). The maximum
adsorption capacities of that poly(β-CD) were shown to be 164.4, 144.1, and 136.4 mg g−1

for BPA, PCMX, and CBZ, respectively. The polymer was able to be regenerated for 5 cycles
by methanol soaking, and the removal efficiency of BPA, PCMX, and CBZ was 98.1%,
90.8%, and 65.0%, respectively. The authors found no significant effect of pH, fulvic acid
concentration, or ionic strength on the adsorption of the drugs onto the CD polymer.

4. Conclusions

Several strategies have been explored to remediate water pollution by different con-
taminants, taking advantage of the versatile properties of CD polymers and CD-containing
polysaccharides. The most promising combination of CD materials for water remediation
must be scaled-up and tested in the field. The selection of the best CD adsorbing materials
should be based on the specificity of the target environmental matrix, the nature and con-
centration of the contaminants, the applicability in situ, removal efficiency, and economic
feasibility.

Contaminant removal with CD-based materials should be prioritized over ongoing
studies on a lab-scale by considering systematic procedures for assessing the performance of
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CD polymers, CD-containing polysaccharides, and other conventional materials, allowing
the achievement of effective environmental applications.

Theoretical and/or computational models of the involved interaction patterns/mechanisms
are still very scarce; however, they could provide comprehensive rationales for improving
the knowledge on the underlying mechanisms that govern the structural modification,
performance, and recycling of CD adsorbing materials and on the solubilization and
recognition of contaminants.
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EDTA ethylenediamine tetraacetic acid
EPI epichlorohydrin
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