(3S,4S)- N -substituted-3,4-dihydroxypyrrolidines as ligands for the enantioselective Henry reaction

Márcia R.R. Rénio © \| Francisco J.P.M. Sousa © \| Nélia C.T. Tavares ©
Artur J.M. Valente © \| M. Elisa da Silva Serra © ${ }^{(0)}$ Dina Murtinho ©

CQC and Department of Chemistry, University of Coimbra, Coimbra, 3004-535, Portugal

Correspondence

Dina Murtinho, Department of Chemistry, University of Coimbra, Rua Larga, Coimbra 3004-535, Portugal.
Email: dmurtinho@ci.uc.pt

Funding information

Fundação para a Ciência e a Tecnologia, Grant/Award Numbers: PhD grant PD/BD/128496/2017, PhD grant PD/BD/135494/2018, Project UID/QUI/00313/2020; Portuguese Agency for Scientific Research, Fundação para a Ciência e a Tecnologia (FCT), Grant/ Award Numbers: PD/BD/135494/2018, PD/BD/128496/2017, UID/ QUI/00313/2020

Abstract

The enantioselective Henry reaction is a very important and useful carboncarbon bond forming reaction. The execution of this reaction requires the use of efficient chiral catalysts. In this work, in situ formed complexes of N-substituted dihydroxypyrrolidines, chiral ligands derived from L-tartaric acid and amines, were evaluated as catalysts in the enantioselective Henry reaction. The results showed that the nature of the N-substituent on the ligand significantly influences the outcome of the reaction. Best results were obtained using a Cu (II) complex of $(3 S, 4 S)$ - N-benzyl-3,4-dihydroxypyrrolidine, in the presence of DIPEA, for the reaction of aromatic aldehydes with nitromethane, at room temperature, originating products with er up to $92: 8(R: S)$ and conversions up to 96%. The interaction between the pyrrolidine ligand and the copper ion, in isopropanol, was followed by UV-vis spectrophotometry, showing a 1:1 stoichiometry and a binding constant of 4.4. The results obtained will contribute to the design and development of more efficient chiral catalysts for this type of reaction.

KEYWORDS

asymmetric catalysis, complex stoichiometry, Henry reaction, pyrrolidines

1 | INTRODUCTION

The Henry reaction allows the synthesis of β-nitro alcohols, precursors of several types of important compounds such as α-hydroxy ketones, carboxylic acids, amino alcohols and amino acids, among others. ${ }^{[1,2]}$

Although the Henry reaction is a classic $\mathrm{C}-\mathrm{C}$ bondforming reaction, the asymmetric version was only reported by Shibasaki et al. ${ }^{[3]}$ Since then, various metal complexes of chiral ligands and chiral organocatalysts have been used in this reaction. ${ }^{[4,5]}$ A variety of chiral ligands with different types of functionalities (amino alcohols, diols, diamines, salen, salan, amino phosphines, among others) have been reported in the literature. ${ }^{[1,6-12]}$ The use of metals such as $\mathrm{La}, \mathrm{Mo}, \mathrm{Zn}, \mathrm{Co}, \mathrm{Cr}, \mathrm{Rh}$ and with special emphasis $\mathrm{Cu}^{[13]}$ has also been
described. ${ }^{[5,14-18]}$ Ligands containing a pyrrolidine moiety have been used in various catalytic reactions, with good results. Many of these ligands are based on L-proline, and this chiral precursor has been extensively explored in asymmetric catalysis, presenting high induction of chirality. ${ }^{[19-23]}$ In the asymmetric Henry reaction, the use of proline derivatives and other pyrrolidine type chiral ligands, either as organocatalysts or as ligands in organometallic complexes, has also been reported, with promising results. ${ }^{[1,5,24-28]}$

Pyrrolidines derived from tartaric acid, which can be easily prepared by reaction with amines, have been less explored in the Henry reaction. Some mention has been made in literature to the use of tartaric acid derived catalysts for this reaction, although mostly regarding the use of TADDOL and its derivatives. ${ }^{[29-33]}$

In the continuation of our studies on the use of chiral pyrrolidines derived from tartaric acid for enantioselective transformations, ${ }^{[34-36]}$ we decided to screen the potential of several dihydroxypyrrolidines in the Henry reaction. Most of the synthesized ligands have the advantage of being easily prepared in a synthetic sequence of only two steps, starting from inexpensive tartaric acid and amines.

2 | EXPERIMENTAL SECTION

2.1 | General

Commercially available compounds were used without further purification. All solvents were dried prior to use following standard procedures. Benzaldehyde was distilled prior to use and stored over $4 \AA$ molecular sieves. Melting points were determined using a FALC melting point apparatus (open capillary method). Optical rotations were measured with an Optical Activity AA-5 polarimeter. NMR spectra were recorded at room temperature on a Bruker Avance III $400 \mathrm{MHz}\left(100 \mathrm{MHz}\right.$ for ${ }^{13} \mathrm{C}$). TMS was used as the internal standard and chemical shifts are given in ppm. Infrared spectra were recorded on an Agilent Technologies Cary 630 FTIR in the ATR mode. High-resolution mass spectra (HRMS) were obtained on a TOF VG Autospect M spectrometer with electrospray ionization (ESI). Conversions for the Henry reactions were determined by NMR. Enantiomeric ratios were determined by HPLC using an Agilent 1100 series instrument with a Chiralpack® IB column.

2.2 | General procedure for the synthesis of ligands 2 d and 2 e

2.2.1 | (3R,4R)-N-(2-tosylaminoethyl)-3,4-dihydroxy-2,5-dioxopyrrolidine 1d

To a suspension of tartaric acid ($15 \mathrm{mmol}, 2.25 \mathrm{~g}$) in 25 ml of xylene, N-tosylethylenediamine (15 mmol , 3.21 g) was added, and the mixture was refluxed with stirring in a round bottom flask equipped with a Dean-Stark apparatus. The reaction was complete when the appropriate amount of water was collected ($30 \mathrm{mmol}, 0.54 \mathrm{ml}$). After cooling the reaction mixture, the precipitated product was filtered and recrystallized in acetone/hexane to give a beige solid.

Yield: $54 \% .[\alpha]_{D}^{20}=+65(c 1, \quad \mathrm{EtOH}) ; \mathrm{m}$. p. $=133-134^{\circ} \mathrm{C} . \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 3274(\mathrm{OH}), 1713(\mathrm{C}=\mathrm{O}), 1688$ $(\mathrm{C}=\mathrm{O}), 1331 \quad\left(\mathrm{SO}_{2}\right), 1159 \quad\left(\mathrm{~N}-\mathrm{SO}_{2}\right), 1065 \quad(\mathrm{C}-\mathrm{O})$, 816 (p-Ar). ${ }^{1} \mathrm{H}$ NMR (DMSO-d6), $\delta(\mathrm{ppm}): 2.39$ (s, 3H,
$\left.\mathrm{CH}_{3}\right) ; 2.87\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=6.4 \mathrm{~Hz}\right) ; 3.41\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$, $J=6.4 \mathrm{~Hz}) ; 4.32(\mathrm{~d}, 2 H, \mathrm{CH}, J=4.0 \mathrm{~Hz}) ; 6.27$ (approx. d, $2 H, \mathrm{OH}, J=4.0 \mathrm{~Hz}) ; 7.40(\mathrm{~d}, 2 H, \mathrm{H}-\mathrm{Ar}, J=8.2 \mathrm{~Hz}) ; 7.65$ $(\mathrm{d}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}, J=8.2 \mathrm{~Hz}) ; 7.75(\mathrm{t}, 1 \mathrm{H}, \mathrm{NH}, J=6.4 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR (DMSO-d6), $\delta(\mathrm{ppm}): 20.9\left(\mathrm{CH}_{3}\right), 37.8\left(\mathrm{CH}_{2}\right)$, $39.4\left(\mathrm{CH}_{2}\right), 74.2(\mathrm{CH}), 126.4$ (C-Ar), 129.7 (C-Ar), 137.4 (C-Ar), 142.7 (C-Ar), 174.6 (CO). HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$329.0802, found 329.0805 .

2.2.2 | (3S,4S)-N-(2-tosylaminoethyl)-3,4-dihydroxypyrrolidine 2d

In a round bottom flask, cooled in an ice bath, lithium aluminum hydride ($11.5 \mathrm{mmol}, 0.44 \mathrm{~g}$) was slowly added to ($3 R, 4 R$)- N -(2-tosylaminoethyl)-3,4-dihydroxy-2,5-dioxopyrrolidine ($5 \mathrm{mmol}, 1.64 \mathrm{~g}$) in diethyl ether $(25 \mathrm{ml})$. The mixture was then refluxed for 48 h . After cooling, in an ice bath, ethyl acetate was slowly added to the reaction mixture, followed sequentially by water $(0.5 \mathrm{ml}), \mathrm{NaOH}, 15 \%(0.5 \mathrm{ml})$ and water again (1.5 ml). The resulting mixture was stirred for 1 h , filtered with celite and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent under reduced pressure, the resulting oil was purified by column chromatography using silica gel and $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (90:10) as eluent.

Yield: $18 \% .[\alpha]_{D}^{20}=+11.5$ (c1.3, EtOH); m.p: $88^{\circ} \mathrm{C}$ (degradation). IR $\left(\mathrm{cm}^{-1}\right): 3156(\mathrm{OH}), 1324\left(\mathrm{SO}_{2}\right), 1152$ ($\mathrm{N}-\mathrm{SO}_{2}$), 1080 (C-O), 814 ($p-\mathrm{Ar}$). ${ }^{1} \mathrm{H}$ NMR (DMSO-d6), $\delta(\mathrm{ppm}): 2.22$ (dd, $2 H, \mathrm{CH}_{2}, J=3.6 \mathrm{~Hz}, 9.6 \mathrm{~Hz}$); 2.32-2.41 (m, 2H, CH2); 2.39 (s, $3 H, \mathrm{CH}_{3}$); 2.68 (dd, $2 H, \mathrm{CH}_{2}, J=5.6 \mathrm{~Hz}, 9.6 \mathrm{~Hz}$); $2.76\left(\mathrm{t}, 2 H, \mathrm{CH}_{2}\right.$, $J=6.8 \mathrm{~Hz}$); 3.76 (approx. d, $2 H, \mathrm{CH}, J=4.4 \mathrm{~Hz}$); 4.79 (d, $2 H, \mathrm{OH}, J=4.8 \mathrm{~Hz}$); $7.40(\mathrm{~d}, 2 H, \mathrm{H}-\mathrm{Ar}$, $J=8.0 \mathrm{~Hz}) ; 7.69(\mathrm{~d}, 2 H, \mathrm{H}-\mathrm{Ar}, J=8.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (DMSO-d6), $\delta(\mathrm{ppm}): 21.5\left(\mathrm{CH}_{3}\right), 40.7\left(\mathrm{CH}_{2}\right), 54.6$ $\left(\mathrm{CH}_{2}\right), 59.8\left(\mathrm{CH}_{2}\right), 77.7(\mathrm{CH}), 127.1(\mathrm{C}-\mathrm{Ar}), 129.8$ (C-Ar), 136.6 (C-Ar), 143.5 (C-Ar). HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$301.1217, found 301.1222 .

2.2.3 | (3S,4S)-N-benzyl-3,4-diacetoxypyrrolidine 2 f

To acetic anhydride ($25 \mathrm{mmol}, 2.36 \mathrm{ml}$), compound 2a ($10 \mathrm{mmol}, 1.93 \mathrm{~g}$) and sodium acetate trihydrate ($10 \mathrm{~mol} \%, 1 \mathrm{mmol}, 0.14 \mathrm{~g}$) were added. The mixture was reacted at room temperature for 1 h and then diluted with ethyl acetate $(10 \mathrm{ml})$ and washed twice with a saturated solution of NaHCO_{3}. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under
reduced pressure. The product, an oil, was purified by column chromatography using silica gel and EtOAc/hexane ($1: 1$) as eluent.

Yield: $85 \% .[\alpha]_{D}^{20}=+35.7\left(c 1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR $\left(\mathrm{cm}^{-1}\right)$: 2798 (CH), 1734 (C=O), 1073 (C-O), 745 (Ar). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 2.06\left(\mathrm{~s}, 6 H, \mathrm{CH}_{3}\right) ; 2.55\left(\mathrm{dd}, 2 H, \mathrm{CH}_{2}\right.$, $J=4.0 \mathrm{~Hz}, 10.8 \mathrm{~Hz}$); 3.08 (dd, $2 H, \mathrm{CH}_{2}, J=5.6 \mathrm{~Hz}$, $10.8 \mathrm{~Hz}) ; 3.62\left(\mathrm{~d}, 1 H, \mathrm{CH}_{2}, J=13.0 \mathrm{~Hz}\right) ; 3.69\left(\mathrm{~d}, 1 H, \mathrm{CH}_{2}\right.$, $J=13.0 \mathrm{~Hz}) ; 5.12(\mathrm{dd}, 2 H, \mathrm{CH}, J=4 \mathrm{~Hz}, 5.6 \mathrm{~Hz}) ;$ 7.25-7.35 (m, 5H, H-Ar). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm})$: $21.0\left(\mathrm{CH}_{3}\right), 58.1\left(\mathrm{CH}_{2}\right), 59.7\left(\mathrm{CH}_{2}\right), 77.7(\mathrm{CH}), 127.3$ (C-Ar), 128.4 (C-Ar), 128.9 (C-Ar), 137.5 (C-Ar), 170.4 (CO). HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 278.1387, found 278.1392 .

2.2.4 | (3S,4S)-diacetoxypyrrolidine 2 g

In a round-bottom flask compound $\mathbf{2 f}(10 \mathrm{mmol}, 2.77 \mathrm{~g})$, ammonium formate ($20 \mathrm{mmol}, 1.26 \mathrm{~g}$) and $\mathrm{Pd} / \mathrm{C} 10 \%$ $(0.3 \mathrm{~g})$ in methanol (100 ml) were added. The mixture was refluxed for 1 h , cooled to room temperature, filtered with celite and washed several times with methanol. After evaporation of the solvent under reduced pressure, the product was obtained as an oil and was used directly in the synthesis of $\mathbf{2 h}$.

Yield: 98%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 2.08$ (s, 6H, CH_{3}); $2.56\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=4.2 \mathrm{~Hz}, 10.4 \mathrm{~Hz}\right) ; 3.12$ (dd, $2 H, \mathrm{CH}_{2}, J=5.8 \mathrm{~Hz}, 10.4 \mathrm{~Hz}$); 5.12 (dd, $2 H, \mathrm{CH}$, $J=4.2 \mathrm{~Hz}, 5.8 \mathrm{~Hz}$).

2.2.5 | (3S,4S)-N-benzoyl-3,4-diacetoxypyrrolidine 2 h

In a two-necked round bottom flask, cooled in an ice bath, compound 2 g ($9 \mathrm{mmol}, 1.68 \mathrm{~g}$) and triethylamine ($10.8 \mathrm{mmol}, 1.5 \mathrm{ml}$) in dichloromethane (25 ml) were added. In inert atmosphere and via syringe, benzoyl chloride ($10.8 \mathrm{mmol}, 1.25 \mathrm{ml}$) was slowly added and then the reaction mixture was stirred for 4 h , at room temperature. The mixture was extracted twice with water, the organic phase was washed with a saturated solution of NaHCO_{3}, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated. The product, an oil, was purified by column chromatography using silica gel and EtOAc/hexane (1:1) as eluent.

Yield: $70 \% .[\alpha]_{D}^{20}=-4.10\left(c 4.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR $\left(\mathrm{cm}^{-1}\right)$: $1741(\mathrm{C}=\mathrm{O}), 1628(\mathrm{C}=\mathrm{O}), 1060(\mathrm{C}-\mathrm{O}), 731(\mathrm{Ar}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): \delta 2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; 3.51 (approx. d, $1 H, \mathrm{CH}_{2}, J=12.4 \mathrm{~Hz}$); 3.80 (approx. d, $1 H, \quad \mathrm{CH}_{2}, \quad J=14.0 \mathrm{~Hz}$); 3.91 (dd, $1 H, \mathrm{CH}_{2}$, $J=4.0 \mathrm{~Hz}, 12.4 \mathrm{~Hz}) ; 4.06\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2}, J=4.4 \mathrm{~Hz}\right.$,
14.0 Hz); 5.08-5.12 (m, 1H, CH); 5.23-5.32 (m, 1H, CH); 7.27-7.54 (m, 5H, H-Ar). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm})$: $20.8\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right), 50.4\left(\mathrm{CH}_{2}\right), 52.9\left(\mathrm{CH}_{2}\right), 73.7(\mathrm{CH})$, 75.0 (CH), 127.3(C-Ar), 128.5 (C-Ar), 130.5 (C-Ar), 135.8 (C-Ar), 169.6 (CO), 169.7 (CO), 170.1 (CO). HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$292.1179, found 292.1178.

2.2.6 | (3S,4S)-N-benzoyl-3,4-dihydroxypyrrolidine 2 e

Compound 2 h ($5 \mathrm{mmol}, 1.46 \mathrm{~g}$) and NaOH (10 mmol , $0.40 \mathrm{~g})$, dissolved in water (25 ml), were stirred at room temperature for 3 h . The reaction mixture was extracted several times with CHCl_{3}, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated.

Yield: 74\%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 3.25$ (approx. d, $1 \mathrm{H}, \mathrm{CH}_{2}, J=11.4 \mathrm{~Hz}$); 3.53 (approx. d, $1 \mathrm{H}, \mathrm{CH}_{2}$, $J=13.0 \mathrm{~Hz}) ; 3.67\left(\mathrm{dd}, 1 H, \mathrm{CH}_{2}, J=4.0 \mathrm{~Hz}, 11.4 \mathrm{~Hz}\right) ; 3.82$ (dd, $\left.1 H, \mathrm{CH}_{2}, J=4.0 \mathrm{~Hz}, 13.0 \mathrm{~Hz}\right) ; 4.02(\mathrm{sl}, 1 H, \mathrm{CH}) ; 4.14$ (sl, 1H, CH); 7.19-7.38 (m, 5H, H-Ar).

2.3 | General procedure for the addition of nitromethane to aldehydes

Chiral ligand (0.08 mmol) and solvent (8 ml) were stirred in a round bottom flask, until ligand dissolution was complete. Then the metal salt (0.08 mmol) was added and allowed to stir for 2 h , at room temperature (ultrasound was used for better solubilization when the solvent was toluene). The substrate (0.8 mmol) and nitromethane (44.8 mmol) were then added, and the mixture was allowed to stir for 10 min . The base (0.04 mmol) was then added, and the reaction mixture stirred for 48 h at room temperature.

The solvent was removed under reduced pressure and the residue was purified by column chromatography using silica gel and ethyl acetate/hexane mixtures as eluent.

The enantiomeric ratio of the products was determined by HPLC analysis (254 nm), using hexane/isopropanol mixtures as eluent. The absolute configurations of the products were assigned by comparison to literature values and by the sign of the optical rotation of the products. ${ }^{[37,38]}$

The HPLC conditions and retention times for the different products of the Henry reaction are 1-phenyl-2-nitroethanol, hexane: $\mathrm{iPrOH}(90: 10), 1 \mathrm{ml} / \mathrm{min}$, $\mathrm{t}_{\mathrm{R}}=5.8$ and 6.5 min ; 1-(2-nitrophenyl)-2-nitroethanol, hexane: $i \operatorname{PrOH}$ (90:10), $1 \mathrm{ml} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=8.1$ and 8.7 min ; 1-(3-nitrophenyl)-2-nitroethanol, hexane: iPrOH (90:10),
$1 \mathrm{ml} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=12.5$ and 14.1 min ; 1-(4-nitrophenyl)-2-nitroethanol, hexane: $i \operatorname{PrOH}(85: 15), 0.8 \mathrm{ml} / \mathrm{min}_{\mathrm{R}}=$ 10.4 and 12.0 min ; 1-(2-chlorophenyl)-2-nitroethanol, hexane: iPrOH (90:10), $1 \mathrm{ml} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=17.6$ and 18.9 min ; 1-(4-chlorophenyl)-2-nitroethanol, hexane: $i \mathrm{PrOH}$ (85:15), $0.8 \mathrm{ml} / \mathrm{min}_{\mathrm{R}}=9.3$ and 11.4 min ; 1-(2-methoxyphenyl)-2-nitroethanol, hexane: $i \operatorname{PrOH}(90: 10), 0.8 \mathrm{ml} / \mathrm{min}_{\mathrm{R}}=$ 6.7 and 7.2 min ; 1-(3-methoxyphenyl)-2-nitroethanol, hexane: $i \operatorname{PrOH}$ ($90: 10$), $1 \mathrm{ml} / \mathrm{min}_{\mathrm{R}}=8.1$ and 9.0 min ; 1-(2-methylphenyl)-2-nitroethanol, hexane:iPrOH (90:10), $1 \mathrm{ml} / \mathrm{min} \mathrm{t}_{\mathrm{R}}=4.7$ and 5.6 min ; 1-(3-methylphenyl)-2-nitroethanol, hexane: $i \operatorname{PrOH}(90: 10), 1 \mathrm{ml} / \mathrm{min}_{\mathrm{R}}=4.9$ and 5.4 min .

2.4 | UV-visible spectroscopy measurements

The UV-visible spectra of solutions of Cu (II), in the absence and presence of the pyrrolidine, were recorded on a Shimadzu 2450 UV-vis spectrophotometer. For Job's method of continuous variation, ${ }^{[39]}$ the total concentration of the two species is kept constant and equal to 4 mM . For the determination of the binding constant, a titration of a 4 mM Cu (II) solution was carried out by using a $2 \mathbf{a}$ solution. The concentration of the latter varied between 0.5 and 8 mM . All solutions were prepared by using isopropanol as solvent.

3 | RESULTS AND DISCUSSION

3.1 | Ligand synthesis

Ligands 2a-c were prepared according to previously described procedures. ${ }^{[34,40,41]}$ Dihydroxydioxopyrrolidines (1a-c) were synthesized in good yields (62\%-92\%), through the condensation of tartaric acid with several amines (benzylamine, cyclohexylamine and naphthymethylamine) in refluxing xylene, using a Dean-Stark apparatus (Scheme 1). Reduction of 1a-c with LiAlH_{4}, using diethyl ether as solvent, allowed the synthesis of the dihydroxypyrrolidines $\mathbf{2 a - c}$ in moderate yields ($45 \%-48 \%$), after a 48 h reflux. Dihydroxypyrrolidine 2d was synthesized using a similar procedure, starting from N-tosylethylenediamine and tartaric acid (1d 54\% yield, 2d 18\% yield).

Ligand 2e, already described by Siedlecka et al., ${ }^{[42]}$ was prepared using a slightly different strategy, starting from 2a, Scheme 2. Briefly, 2a was acetylated with acetic anhydride in the presence of sodium acetate, at room temperature, to give $\mathbf{2 f}$ in quantitative yield. $2 \mathbf{g}$ was prepared in 94% yield by hydrogenolysis of the benzyl group with ammonium formate and $\mathrm{Pd} / \mathrm{C} 10 \%$, in methanol reflux. Reaction of $\mathbf{2 g}$ with benzoyl chloride, in the presence of NEt_{3}, gave $\mathbf{2 h}$ in 70% yield. Finally, hydrolysis of the acetate group with aqueous NaOH allowed the synthesis of ligand 2e (74% yield).

SCHEME 1 Pyrrolidine synthesis

SCHEME 2 Synthesis of N-benzoylpyrrolidine

3.2 | Catalytic studies

In the initial experiments, ligand $\mathbf{2 a}$ was used to optimize several reaction parameters. The ligand was reacted in situ with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ to form the catalyst, and subsequently tested in the enantioselective Henry reaction between benzaldehyde and nitromethane, at room temperature for 48 h , using isopropanol as solvent, and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ as additive (no product was observed in the absence of a base). Lower temperatures $\left(0^{\circ} \mathrm{C}\right)$ resulted in lower conversions and er (84% and $81.5: 18.5$, respectively). For lower reaction times, less than 48 h , a significant amount of reagent was detected by TLC. Using $10 \mathrm{~mol} \%$ of the complex, in a 1:1 ligand:metal stoichiometry, 90% conversion of the substrate was obtained, with 86% of chiral nitroaldol product $3 \mathbf{a}$ and 14% of nitroalkene $\mathbf{3 b}$, resulting from the elimination of a water molecule (Scheme 3).

An enantiomeric ratio (er) of only 54.5:45.5 ($R: S$) was obtained using these conditions. With 15 or $20 \mathrm{~mol} \%$ of catalyst, conversions were higher (96 and 97%, respectively) but percentages of the chiral product were lower (72% and 46%, respectively). Using $5 \mathrm{~mol} \%$ of catalyst a lower er 51.5:48.5 ($R: S$) was obtained. Thus, it was decided to use $10 \mathrm{~mol} \%$ of catalyst to proceed the studies.

The solvent is another parameter that can influence the outcome of the Henry reaction. The use of polar and apolar solvents is mentioned in the literature, although polar protic solvents such as alcohols usually give better conversions and er. ${ }^{[43-46]}$ Therefore, several alcohols were
tested as solvents for the reaction and conversions higher than 96% were obtained in all cases. However, low er resulted with all the alcohols tested. Polar aprotic solvents such as dichloromethane, diethyl ether and THF gave lower conversions, but higher er. Toluene, an apolar solvent, gave the best results, with almost complete conversion and an er of 87:13 ($R: S$), Table 1. This same trend, in which aromatic solvents lead to better induction of chirality, has been previously observed. ${ }^{[6,47-49]}$

The use of different metal salts for the Henry reaction is reported. Thus, copper, zinc, nickel and cobalt salts were complexed with ligand $\mathbf{2 a}$ and tested in the reaction of benzaldehyde with nitromethane. The results are summarized in Table 2.

Good conversions were obtained with all the metal salts but, in some cases, the main product was the nitroalkene, instead of the nitroaldol. Better results were obtained using $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ as the metal salt, as has been previously referred. ${ }^{[7,13,50,51]}$

Alkaline additives can be used in the Henry reaction to deprotonate nitromethane, forming the corresponding nitronate and thus improving the outcome of the reaction. Bases such as carbonates and amines are widely used. ${ }^{[10,11,49,52]}$ Accordingly, several bases ($5 \mathrm{~mol} \%$ with respect to the aldehyde) were screened as additives for the Henry reaction, as reported in Table 3. Except for NEt_{3}, very good conversions were obtained with all bases (greater than 92%). Although bases can also deprotonate the nitroaldol product and thus favor the formation of the nitroalkene, this did not occur with those studied. With regard to er, the best results were obtained using

SCHEME 3 Henry reaction products

TABLE 1 Solvent effect on the Henry reaction ${ }^{\text {a }}$

| Solvent | Conversion (\%) ${ }^{\mathbf{b}}$ | Chiral product (\%) $^{\mathbf{b}}$ | er (R:S) ${ }^{\mathbf{c}}$ |
| :--- | :--- | :--- | :--- | :--- |
| MeOH | 97 | 89 | $54: 46$ |
| EtOH | 96 | 95 | $51: 49$ |
| ${ }^{\mathrm{i}} \mathrm{PrOH}$ | 97 | 81 | $56: 44$ |
| BuOH | 97 | 81 | $59: 41$ |
| $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 47 | 93 | n.d. |
| $\mathrm{Et}_{2} \mathrm{O}$ | 78 | 90 | $86.5: 13.5$ |
| THF | 84 | 92 | $68: 32$ |
| Toluene | 99 | 91 | $87: 13$ |

[^0]| Metal | Conversion (\%) ${ }^{\text {b }}$ | Chiral product (\%) ${ }^{\text {b }}$ | er (R:S) ${ }^{\text {c }}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ | >99 | 91 | 87:13 |
| CuCl | >99 | >99 | 65:35 |
| $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ | 98 | 30 | n.d. |
| $\mathrm{Zn}(\mathrm{OTf})_{2}$ | 96 | 75 | 50:50 |
| $\mathrm{Zn}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ | 95 | 87 | 46.5:53.5 |
| $\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | >99 | 70 | 47.5:52.5 |
| $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 98 | 10 | n.d. |

TABLE 2 Metal salt effect on the Henry reaction ${ }^{\text {a }}$
${ }^{\text {a }}$ Benzaldehyde $(0.8 \mathrm{mmol})$, ligand 2.2a $(0.08 \mathrm{mmol})$, metal salt $(0.08 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{NO}_{2}(44.8 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ (0.04 mmol), toluene (8 mL), 48 h .
${ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR.
${ }^{\text {c }}$ Determined by chiral HPLC.

TABLE 3 Base effect on the Henry reaction ${ }^{\text {a }}$

Base	Conversion (\%)	b	Chiral product (\%) ${ }^{\mathbf{b}}$
DABCO $^{\text {d }}$	99	93	er (R:S)
DBU $^{\mathbf{c}}$	94	95	$85.5: 14.5$
NEt_{3}	78	96	$72.5: 27.5$
DIPEA f	92	91	$82: 18$
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	>99	91	$89.5: 10.5$
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	>99	95	$87: 13$

${ }^{\text {a }}$ Benzaldehyde $(0.8 \mathrm{mmol})$, ligand 2.2a $(0.08 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.08 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{NO}_{2}(44.8 \mathrm{mmol})$, base (0.04 mmol$)$, toluene $(8 \mathrm{~mL}), 48 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR.
${ }^{\mathrm{c}}$ Determined by chiral HPLC.
${ }^{\mathrm{d}}$ 1,4-diazabicyclo[2.2.2] octane.
${ }^{\mathrm{e}}$ 1,8-diazabicyclo[5.4.0]undec-7-ene.
${ }^{\mathrm{f}}$ Diisopropylethylamine.
diisopropylethylamine (DIPEA), albeit the conversion is less than that obtained with $\mathrm{Na}_{2} \mathrm{CO}_{3}$.

In an attempt to improve the er, using DIPEA as additive, the reaction temperature was lowered to $0^{\circ} \mathrm{C}$. Under these reaction conditions, a lower conversion was obtained (84\%) and the er decreased to 82.5:17.5 ($\mathrm{R}: \mathrm{S}$).

Using the optimized reaction conditions, the other ligands prepared were screened for their catalytic activity in the Henry reaction (Table 4). Comparing ligands $\mathbf{2 b - c}$ with 2 a , it can be concluded that the presence of a naphthylmethyl or a cyclohexyl group on the nitrogen of the hydroxypyrrolidine slightly decreases the er of the reaction.

Ligand $\mathbf{2 e}$ was prepared aiming to study the influence of the presence of a more sterically demanding and electron attracting benzoyl group on the nitrogen atom of the ligand. It was observed that the presence of this group decreases the conversion of the reaction but, most importantly, it has a drastic effect on the er. This may be due to the fact that the carbonyl group is more sterically demanding than the methylene group of ligand $2 \mathbf{2 a}$ and this may lead to high steric hindrance in the transition
state. Another feature that may explain this marked difference in the er is that the carbonyl group can remove electron density from the nitrogen atom, and this may affect the coordination to the metal. These two aspects can thus affect the relative energies of the transition states in the Henry reaction and lead to products with lower selectivity.

Ligand 2d, unlike the other ligands, can coordinate with copper in a tridentate manner. Because references are made in the literature to the use of tridentate ligands with good results, we thought that it would be interesting to synthesize and test this ligand. As can be seen from the results in Table 4, ligand 2d gave low conversion and a racemic product.

Using our most efficient ligand 2a, the scope of the reaction was then extended to other aromatic substrates and the results are summarized in Table 5. In general, aromatic substrates with electron-withdrawing groups presented better conversions than those containing electron-donating groups. On the contrary, better er were obtained with aromatic substrates containing electrondonating groups.

TABLE 4 Henry reaction using L-tartaric acid derived ligands ${ }^{\text {a }}$

er $(\boldsymbol{R}: \mathbf{S})^{\mathbf{c}}$
$89.5: 10.5$

TABLE 5 Substrate effect on the Henry reaction ${ }^{\text {a }}$

Aldehyde	Conversion (\%)	$\boldsymbol{e r}(\boldsymbol{R}: \mathbf{S})^{\mathbf{c}}$
Benzaldehyde	92	$89.5: 10.5$
2-Nitrobenzaldehyde	82	$57: 43$
3-Nitrobenzaldehyde	69	$58: 42$
4-Nitrobenzaldehyde	87	$63.5: 36.5$
2-Chlorobenzaldehyde	96	$76.5: 23.5$
4-Chlorobenzaldehyde	55	$75.5: 24.5$
2-Methoxybenzaldehyde	53	$92: 8$
3-Methoxybenzaldehyde	27	$86: 14$
4-Methoxybenzaldehyde	10	n.d.
2-Methylbenzaldehyde	49	$89.5: 10.5$
3-Methylbenzaldehyde	42	$82.5: 17.5$

${ }^{\text {a }}$ Benzaldehyde (0.8 mmol), ligand 2.2a (0.08 mmol), $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (0.08 mmol), $\mathrm{CH}_{3} \mathrm{NO}_{2}$ (44.8 mmol), DIPEA (0.04 mmol), Toluene (8 mL), 48 h .
${ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR.
${ }^{\text {c }}$ Determined by chiral HPLC.

Our best result was obtained using 2-methoxybenzaldehyde as substrate, giving the product with an er of 92:8 ($R: S$).

3.3 | Determination of the pyrrolidinecopper complex stoichiometry

In order to get insight on how our best ligand, pyrrolidine $\mathbf{2 a}$, coordinates with copper to form the catalytically
active species, a different set of experiments were carried out. Since the Cu (II) solution shows a well-defined UVvisible spectrum, with a maximum at 702 nm , the method of continuous variation was applied to evaluate the stoichiometry of the interaction. It can be seen from the analysis of Figure $1 b$ that this method shows a maximum at 0.46, suggesting a $1: 1$ stoichiometry between 2 a and $\mathrm{Cu}(\mathrm{OAc})_{2}$. A possible structure for this complex is presented in Figure 2. It can also be seen that Job's plot does not show a reverse V-shape, but instead a Gaussianlike trend. Such a behavior has been discussed elsewhere ${ }^{[53]}$ and suggests a lower binding constant between the Cu (II) and 2a. Based on this stoichiometry, and taking into account the suggested catalytic cycle of similar compounds, ${ }^{[46]}$ the following equation is suggested:

$$
\begin{equation*}
\mathrm{Cu}(\mathrm{OAc})_{2}+\mathbf{2 a}-\mathbf{H} \rightleftarrows \mathrm{Cu}(\mathrm{OAc})(\mathbf{2 a})+\mathrm{HOAc} \tag{1}
\end{equation*}
$$

For the sake of simplicity, we have highlighted the hydrogen atom of the pyrrolidine, in the equation, which is deprotonated in the presence of copper acetate to form the complex $\mathrm{Cu}(\mathrm{OAc})(\mathbf{2 a})$ (Figure 2).

Based on equation (1), and considering the [Cu (OAc) $(\mathbf{2 a})]=[\mathrm{HOAc}]$, the corresponding binding constant, K, can be written as

$$
\begin{equation*}
K=[C u(O A c)(2 a)]^{2} /\left([2 a]\left[\mathrm{Cu}(O A c)_{2}\right]\right) \tag{2}
\end{equation*}
$$

The variation of the experimental absorbance, ΔA, defined as a difference of the absorbance of the Cu (II) solution in the presence and absence of pyrrolidine

FIGURE 1 (a) UV-visible spectra of 4 mM Cu (II) solutions in the presence of increasing concentrations of $\mathbf{2 a}$; (b) Job's plot for $\mathbf{2 a}$ and Cu (II) mixtures at different 2a molar fractions; and (c) effect of $\mathbf{2 a}$ concentration on the absorbance of a $\mathbf{C u}$ (II) solution, at 702 nm (Figure 1a). Solid lines in b and c were obtained by fitting the experimental data to a Gram-Charlier peak function ${ }^{[55]}$ and to Equations 3 and 4 , respectively

FIGURE 2 Possible structure of the 2a: copper 1:1 complex
$\mathbf{2 a}$, is dependent on the concentration of the complex, as described in Equation 3:

$$
\begin{equation*}
\Delta A=\frac{\Delta A_{C u(O A c)(2 \mathrm{a})}}{\left[\mathrm{Cu}(O A c)_{2}\right]_{T}}[\mathrm{Cu}(O A c)(2 \mathrm{a})] \tag{3}
\end{equation*}
$$

where $\left[\mathrm{Cu}(\mathrm{OAc})_{2}\right]_{\mathrm{T}}$ is the total concentration of Cu (II) in solution and $\Delta A_{\mathrm{Cu}(\mathrm{OAc})(2 \mathrm{a})}$ corresponds to the change of absorbance due to the complex; it should be noted that the absorbance has a contribution of free and complexed Cu (II) species.

From the mass balances for Equation 1 and after some algebraic manipulation, ${ }^{[53]}$ the concentration of the complex can be computed from the following equation:

Figure 1c shows the fitting of Equations 3 and 4 to the experimental ΔA, using a non-linear least-squares algorithm. The computed fitting parameters are: $K=4.4$ $(\pm 1.9), \Delta A_{\mathrm{Cu}(\mathrm{OAc})(2 \mathrm{a})}=0.20(\pm 0.01)$, for a determination coefficient of 0.9967 and a $\chi^{2}=1.2 \times 10^{-5}$. These results show that, under the experimental conditions used (i.e., in a 4 mM equimolar mixture of $\mathrm{Cu}(\mathrm{OAc})_{2}$ and 2a) 39% of the ligand remains uncomplexed. This is in close agreement with the shape of Job's plot as well as with the absence of a clear plateau of DA as a function of [2a] in Figure 1c. It should be noticed that stability for Cu (II)ligand interaction was measured in a low dielectric constant solvent, which justified the magnitude of the binding constant. ${ }^{[54]}$

4 | CONCLUSIONS

Several metal complexes of chiral N-substituted dihydroxypyrrolidines derived from L-tartaric acid and amines were prepared, in short and simple synthetic sequences, and evaluated in the enantioselective Henry reaction. It was observed that the nature of the substituent on the pyrrolidine nitrogen significantly influences the outcome of the reaction. Under optimized reaction

$$
\begin{equation*}
[\mathrm{Cu}(\mathrm{OAc})(2 \mathrm{a})]=\frac{\left(\left[\mathrm{Cu}(\mathrm{OAc})_{2}\right]_{T}+[2 a]_{T}\right)-\left(\left(\left[\mathrm{Cu}(\mathrm{OAc})_{2}\right]_{T}+[2 a]_{T}\right)^{2}-4 \frac{\mathrm{K-1}}{K}\left[\mathrm{Cu}(\mathrm{OAc})_{2}\right]_{T}[2 a]_{T}\right)^{1 / 2}}{2 \frac{\frac{K-1}{K}}{K}} \tag{4}
\end{equation*}
$$

conditions and using a Cu (II) complex of ($3 S, 4 \mathrm{~S}$)- N -ben-zyl-3,4-dihydroxypyrrolidine, conversions up to 96% and er up to 92:8 ($R: S$) were obtained for the reaction of aromatic aldehydes with nitromethane, in the presence of DIPEA, at room temperature. The stability constant for Cu (II)($3 S, 4 S$)- N-benzyl-3,4-dihydroxypyrrolidine was additionally evaluated by UV-vis spectroscopy and has been computed as equal to 4.4 , considering a $1: 1$ stoichiometry.

DATA AVAILABILITY STATEMENT

Data available on request from the authors.

ACKNOWLEDGEMENTS

Thanks are due to Coimbra Chemistry Centre (CQC), supported by the Portuguese Agency for Scientific Research, Fundação para a Ciência e a Tecnologia (FCT) through Project UID/QUI/00313/2020. Nélia C. T. Tavares (PhD grant PD/BD/128496/2017) and Márcia Rénio (PhD grant PD/BD/135494/2018) also thank FCT for funding. We also acknowledge the UC-NMR facility for obtaining the NMR data (www.nmrccc.uc.pt).

AUTHOR CONTRIBUTIONS

Márcia Rénio: Investigation. Francisco Sousa: Investigation. Nélia Tavares: Investigation. Artur Valente: Conceptualization; supervision. M. Elisa da Silva Serra: Conceptualization; supervision. Dina Murtinho: Conceptualization; supervision.

CONFLICT OF INTEREST

There are no competing interests to declare.

ORCID

Márcia R.R. Rénio © https://orcid.org/0000-0002-88507660
Francisco J.P.M. Sousa © https://orcid.org/0000-0002-5246-4232
Nélia C.T. Tavares © https://orcid.org/0000-0001-60347733
Artur J.M. Valente © https://orcid.org/0000-0002-46127686
M. Elisa da Silva Serra © https://orcid.org/0000-0002-4562-7072
Dina Murtinho © https://orcid.org/0000-0002-1391-9855

REFERENCES

[1] A. Dixit, P. Kumar, G. D. Yadav, S. Singh, Inorganica Chim. Acta 2018, 479, 240.
[2] A. V. Gurbanov, S. Hazra, A. M. Maharramov, F. I. Zubkov, F. I. Guseinov, A. J. L. Pombeiro, J. Organomet. Chem. 2018, 869, 48.
[3] H. Sasai, T. Suzuki, S. Arai, T. Arai, M. Shibasaki, J. Am. Chem. Soc. 1992, 114, 4418.
[4] J. Boruwa, N. Gogoi, P. P. Saikia, N. C. Barua, Tetrahedron: Asymmetry 2006, 17, 3315.
[5] N. Ananthi, S. Velmathi, Chem. - Sect. B Org. Med. Chem. 2013, 52, 87.
[6] F. Xu, C. Lei, L. E. I. Yan, J. Tu, G. Li, Chirality 2015, 27, 761.
[7] X. Wang, W. Zhao, G. Li, J. Wang, G. Liu, L. Liu, R. Zhao, M. Wang, Appl. Organomet. Chem. 2014, 28, 892.
[8] L. Androvič, P. Drabina, I. Panov, B. Frumarová, A. Kalendová, M. Sedlák, Tetrahedron: Asymmetry 2014, 25, 775.
[9] S. J. Canipa, A. Stute, P. O'Brien, Tetrahedron 2014, 70, 7395.
[10] L. Filippova, Y. Stenstrøm, T. V. Hansen, Molecules 2015, 20, 6224.
[11] Y. Fan, Y. Ren, J. Li, C. Yue, H. Jiang, Inorg. Chem. 2018, 57, 11986.
[12] N. H. Khan, S. H. R. Abdi, R. Tak, T. Menapara, M. K. Choudhary, R. I. Kureshy, J. Mol. Catal. A: Chem. 2016, 421, 161.
[13] S. Zhang, Y. Li, Y. Xu, Z. Wang, Chinese Chem. Lett. 2018, 29, 873.
[14] S. Saranya, N. A. Harry, S. M. Ujwaldev, G. Anilkumar, Asian J. Org. Chem. 2017, 6, 1349.
[15] J. Dimroth, M. Weck, RSC Adv. 2015, 5, 29108.
[16] W. Li, J. Zhang, Chem. Soc. Rev. 2016, 45, 1657.
[17] P. Anitha, R. Manikandan, P. Vijayan, S. Anbuselvi, P. Viswanathamurthi, J. Organomet. Chem. 2015, 791, 244.
[18] O. Kammoun, W. Rekik, T. Bataille, K. T. Mahmudov, M. N. Kopylovich, H. Naïli, J. Organomet. Chem. 2013, 741-742, 136.
[19] S. K. Panday, Tetrahedron: Asymmetry 2011, 22, 1817.
[20] Q. Yang, Y. Li, Z. Wei, Y. Lin, Y. Song, H. Duan, R. Wang, E. Xu, Can. J. Chem. 2019, 97, 97.
[21] A. G. Doyle, E. N. Jacobsen, Chem. Rev. 2007, 107, 5713.
[22] D. Wang, M. Wang, X. Wang, Y. Chen, A. Gao, L. Sun, J. Catal. 2006, 237, 248.
[23] Y.-J. Cao, Y.-Y. Lai, X. Wang, Y.-J. Li, W.-J. Xiao, Tetrahedron Lett. 2007, 48, 21.
[24] A. Mondal, S. Bhowmick, A. Ghosh, T. Chanda, K. C. Bhowmick, Tetrahedron: Asymmetry 2017, 28, 849.
[25] P. Niedziejko, M. Szewczyk, P. Kalicki, Z. Kałuża, Tetrahedron: Asymmetry 2015, 26, 1083.
[26] H. Atoholi Sema, G. Bez, S. Karmakar, H. A. Sema, Appl. Organomet. Chem. 2014, 28, 290.
[27] P. Kumar, M. S. Chauhan, G. D. Yadav, S. Singh, Synlett 2016, 27, 267.
[28] D. Scharnagel, F. Prause, J. Kaldun, R. G. Haase, M. Breuning, Chem. Commun. 2014, 50, 6623.
[29] T. Akiyama, J. Itoh, K. Fuchibe, Adv. Synth. Catal. 2006, 348, 999.
[30] Y. Zhang, X. Y. Wu, J. Han, Chinese Chem. Lett. 2019, 30, 1519.
[31] C. Gan, Can. J. Chem. 2008, 86, 261.
[32] J. Kousalová, O. Pytela, F. Bureš, ARKIVOC 2012, 2012, 35.
[33] K. Balaraman, R. Vasanthan, V. Kesavan, Synthesis 2012, 44, 2455.
[34] A. M. D. A. Rocha Gonsalves, M. E. S. Serra, D. Murtinho, V. F. V. F. Silva, A. M. M. Beja, J. A. A. Paixão, M. R. R. Silva, L. A. Alte da Veiga, J. Mol. Catal. A: Chem. 2003, 195, 1.
[35] M. E. S. Serra, D. Murtinho, A. Goth, ARKIVOC 2010, 64.
[36] M. E. S. Serra, D. Murtinho, A. Goth, Tetrahedon: Asymmetry 2013, 24, 315.
[37] H. Maheswaran, K. L. Prasanth, G. G. Krishna, K. Ravikumar, B. Sridhar, M. L. Kantam, Chem. Commun. 2006, 4066.
[38] N. Sanjeevakumar, M. Periasamy, Tetrahedron: Asymmetry 2009, 20, 1842.
[39] J. S. Renny, L. L. Tomasevich, E. H. Tallmadge, D. B. Collum, Angew. Chemie - Int. Ed. 2013, 52, 11998.
[40] U. Nagel, E. Kinzel, J. Andrade, G. Prescher, Chem. Ber. 1986, 119, 3326.
[41] A. M. d'Albuquerque R. Gonsalves, M. E. da S. Serra, M. R. Silva, A. M. Beja, J. A. Paixão, L. A. da Veiga, J. Mol. Catal. A Chem. 2001, 168, 53.
[42] R. Siedlecka, E. Wojaczyńska, J. Skarżewski, Tetrahedon: Asymmetry 2004, 15, 1437.
[43] C. Ao, J. Men, Y. Wang, T. Shao, Y. Huang, J. Huo, G. Gao, Tetrahedron: Asymmetry 2016, 27, 589.
[44] R. Boobalan, G.-H. Lee, C. Chen, Adv. Synth. Catal. 2012, 354, 2511.
[45] J. Cho, M. K. Chun, S. Nayab, J. H. Jeong, Appl. Organomet. Chem. 2019, 33, 1.
[46] K. Y. Spangler, C. Wolf, Org. Lett. 2009, 11, 4724.
[47] T. Arai, Y. Yamamoto, Org. Lett. 2014, 16, 1700.
[48] M. K. Choudhary, R. Tak, R. I. Kureshy, A. Ansari, N. H. Khan, S. H. R. Abdi, H. C. Bajaj, J. Mol. Catal. A: Chem. 2015, 409, 85.
[49] M. Liu, N. Ji, L. Wang, P. Liu, W. He, Tetrahedron Lett. 2018, 59, 999.
[50] E. Wolińska, Tetrahedron: Asymmetry 2014, 25, 1122.
[51] L. Yao, Y. Wei, P. Wang, W. He, S. Zhang, Tetrahedron 2012, 68, 9119.
[52] J.-L. Li, L. Liu, Y.-N. Pei, H.-J. Zhu, Tetrahedron 2014, 70, 9077.
[53] A. J. M. Valente, O. Söderman, Adv. Colloid Interface Sci. 2014, 205, 156.
[54] H. M. Felmy, K. T. Bennett, S. B. Clark, J. Chem. Thermodyn. 2017, 114, 83.
[55] R. A. Carvalho, H. A. Correia, A. J. M. Valente, O. Söderman, M. Nilsson, J. Colloid Interface, Sci. 2011, 354, 725.

How to cite this article: Rénio MR, Sousa FJPM, Tavares NC, Valente AJM, da Silva Serra ME, Murtinho D. $(3 S, 4 S)$ - N-substituted-3,4dihydroxypyrrolidines as ligands for the enantioselective Henry reaction. Appl Organomet Chem. 2021;35:e6175. https://doi.org/10.1002/aoc. 6175

[^0]: ${ }^{\text {a }}$ Benzaldehyde $(0.8 \mathrm{mmol})$, ligand 2.2a (0.08 mmol), $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.08 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{NO}_{2}(44.8 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(0.04 \mathrm{mmol})$, solvent $(8 \mathrm{ml}), 48 \mathrm{~h}$.
 ${ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR.
 ${ }^{\text {c }}$ Determined by chiral HPLC.

