
Citation: Cabral, A.M.T.D.P.V.;

Fernandes, A.C.G.; Joaquim, N.A.M.;

Veiga, F.; Sofio, S.P.C.; Paiva, I.;

Esteso, M.A.; Rodrigo, M.M.; Valente,

A.J.M.; Ribeiro, A.C.F. Complexation

of 5-Fluorouracil with β-Cyclodextrin

and Sodium Dodecyl Sulfate: A

Useful Tool for Encapsulating and

Removing This Polluting Drug.

Toxics 2022, 10, 300. https://doi.org/

10.3390/toxics10060300

Academic Editor: Andrey Toropov

Received: 5 May 2022

Accepted: 27 May 2022

Published: 1 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

toxics

Article

Complexation of 5-Fluorouracil with β-Cyclodextrin and
Sodium Dodecyl Sulfate: A Useful Tool for Encapsulating and
Removing This Polluting Drug
Ana M. T. D. P. V. Cabral 1,2 , Ana C. G. Fernandes 2, Neuza A. M. Joaquim 1, Francisco Veiga 1, Sara P. C. Sofio 2 ,
Isabel Paiva 3, Miguel A. Esteso 4,5,* , M. Melia Rodrigo 5 , Artur J. M. Valente 2 and Ana C. F. Ribeiro 2,*

1 Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; acabral@ff.uc.pt (A.M.T.D.P.V.C.);
alexandrareix@gmail.com (N.A.M.J.); fveiga@ci.uc.pt (F.V.)

2 Department of Chemistry, CQC, Institute of Molecular Sciences, University of Coimbra,
3004-535 Coimbra, Portugal; anacatarina2813@gmail.com (A.C.G.F.); sarapcsofio@gmail.com (S.P.C.S.);
avalente@ci.uc.pt (A.J.M.V.)

3 Centre of Geography and Spatial Planning, Department of Geography and Tourism, University of Coimbra,
3004-530 Coimbra, Portugal; isabelrp@fl.uc.pt

4 Universidad Católica de Ávila, Calle los Canteros s/n, 05005 Ávila, Spain
5 U.D. Química Física, Universidad de Alcalá, 28805 Alcalá de Henares, Spain; mmelia.rodrigo@uah.es
* Correspondence: mangel.esteso@ucavila.es (M.A.E.); anacfrib@ci.uc.pt (A.C.F.R.)

Abstract: The formation of complexes of the drug 5-fluorouracil (5-FU) with β-cyclodextrin (β-CD)
and sodium dodecyl sulphate (SDS) was studied through experimental measurements of the ternary
mutual diffusion coefficients (D11, D22, D12, and D21) for the systems {5-FU (component 1) + β-CD
(component 2) + water} and {5-FU (component 1) + SDS (component 2) + water} at 298.15 K and at
concentrations up to 0.05 mol dm−3 by using the Taylor dispersion method, with the objective of
removing this polluting drug from the residual systems in which it was present. The results found
showed that a coupled diffusion of 5-FU occurred with both β-CD and SDS, as indicated by the
nonzero values of the cross-diffusion coefficients, D12 and D21, as a consequence of the complex
formation between 5-FU and the β-CD or SDS species. That is, 5-FU was solubilized (encapsulated)
by both carriers, although to a greater extent with SDS (K = 20.0 (±0.5) mol−1 dm3) than with β-CD
(K = 10.0 (±0.5) mol−1 dm3). Values of 0.107 and 0.190 were determined for the maximum fraction of
5-FU solubilized with β-CD and SDS (at concentrations above its CMC), respectively. This meant that
SDS was more efficient at encapsulating and thus removing the 5-FU drug.

Keywords: 5-fluorouracil; β-cyclodextrin; sodium dodecyl sulphate; complexation; diffusion coefficients

1. Introduction

5-fluorouracil, or 5-FU (5-fluoro-1H-pyrimidine-2,4-dione, C4H3FN2O2; M = 130.077 g/mol;
CAS: 51-21-8), is one of the most relevant anticancer agents that belongs to the family of antimetabo-
lites, and one of the most widely used [1] in the treatment of a wide variety of cancers (its systemic
use is indicated in the treatment of adenocarcinomas of the gastrointestinal tract [2,3], lungs, breast,
pancreas, ovaries, and prostate [3–5]). Moreover, it is also used topically, in emulsion and cream
forms, for various dermatological affections (warts, psoriasis, vitiligo [6–8], keratoacanthoma, and
melanoma [9]).

5-FU is a nonspecific cytostatic agent that, depending on the type of carcinoma to be
treated, is administered orally (with an undetermined low efficiency [2,3]), intravenously,
and intraperitoneally [3]. In all these cases, due to its low bioavailability [10], the doses
used are very high and its utilization is small, so that a significant part of the administered
drug (approximately 35% [11]) is excreted by the patient through urine [12] and subse-
quently passed into wastewater. In fact, there is an abundance of this 5-FU drug in hospital
wastewater. When the drug is administered topically to treat skin lesions, it is also applied
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in high doses due to its low penetrating power [13–15]; the unused surplus then ends
up in the wastewater. That is, this drug is one of the polluting agents in environmental
contamination by hospital effluents. Various studies have been performed to determine
the amounts of several drugs (including 5-FU) in wastewater, as well as their biodegrad-
ability, which have yielded quite different results among them. Despite the contradictory
results, practically all of them agreed that their presence was abundant. For example, the
expected range of contamination in wastewater from the oncology departments of the
Vienna University Hospital was 5–500 µg 5-FU L−1 [16]. Likewise, a 2009 publication
by Corporate Safety, Health & Environmental Protection, Switzerland, reported a figure
of 1545 kg of 5-FU per year excreted into wastewater in Europe [17]. The use of carriers
(nanoparticles and vesicles) that facilitate an efficient delivery system for this drug helps to
improve this situation [18–20], although the definitive solution to the problem is still far
from being obtained.

Due to its hydrophilic nature, 5-FU is not easily removable in wastewater treatment
plants (WWTPs), as it is not adsorbed in the sludge that is moved away in the secondary [21].
This fact, together with the long half-life that 5-FU has in aqueous media (approximately
360 h in water), means that this drug accumulates in aquatic media, and therefore, due
to its potential toxicity, even at low concentrations [22,23], it may eventually be capable
of causing long-term effects in the environment and wildlife [24], as well as in human
health [23]. Based on these facts, it is very important to find effective processes to remove
this 5-FU drug from wastewater.

One possible way is to encapsulate it is by using a complexing agent and then re-
moving it. Numerous studies have been devoted to complexes of cyclodextrins [25–27]
and micelles [28] with different drugs in aqueous solutions, as well as to the possible
modification of the molecular structure of these complexing agents to improve the ability
to encapsulate different drugs [29].

Likewise, the use of liposomes as carriers/encapsulating agents of 5-FU has been ex-
tensively studied [30–32] to both improve its bioavailability and reduce side effects, as com-
pared to traditional formulations used under the form of creams and/or emulsions [33–35],
for topical use in the treatment of different skin diseases [19,36]. Lakkakula et al. [20] found
that 5-FU could be encapsulated in the cavity of 2HP-β-cyclodextrin, forming a stable
inclusion complex, although they did not report the extent of such complex formation.

The present work focused on the study of the possible complexation of the drug 5-FU
with β-cyclodextrin (β-CD) and with sodium dodecyl sulphate (SDS) as a procedure for
the extraction/removal of said drug from wastewater. These compounds were chosen
while keeping in mind that β-CD is a proven complexing agent for several drugs, and
therefore is widely used as a carrier in drug delivery systems [27,37]; and that SDS is an
anionic surfactant widely used in the biochemical, pharmaceutical, and food industries
that possesses striking abilities as a complexing agent [38,39].

The possible formation of such complexes was followed by measuring the diffusion
coefficient of 5-FU in aqueous solutions containing either the carrier β-cyclodextrin or
the carrier sodium dodecyl sulphate. This simple measurement of the diffusion of the
species present in the medium allowed us to directly determine the molecular behavior and
organization in the solution while also quantitatively evaluating the formation of molecular
associations that may originate between 5-FU and the carrier.

2. Materials and Methods
2.1. Materials

Table 1 presents the reagents used in this work; they were used as received, except after
drying, they were stored in a desiccator over silica gel. Solutions were prepared in calibrated
volumetric glass flasks using ultrapure water as a solvent (specific resistance = 18.2 MΩ·cm
at 298.15 K). Weighing was performed with a Radwag AS 220C2 balance with an accuracy
of ±0.0001 g. The water content of the CD (water mass fraction 0.131) was checked by
drying to constant mass for 24 h at T = 420 K in a nitrogen atmosphere [40], and this value
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was taken into account to determine the solution concentration. All solutions were freshly
prepared at 298.15 K just before each experiment.

Table 1. Sample descriptions.

Chemical Name Source CAS Number Mass Fraction Purity 1

5-Fluorouracil Sigma-Aldrich 54-21-7 >0.99
Sodium dodecyl sulfate Merck 7732-18-5 >0.99

β-cyclodextrin Sigma, Kawasaki, Japan
(water mass fraction 0.131) 7585-39-9 ≥0.97

Water Millipore-Q water
(18.2 MΩ·cm at 298.15 K) 7732-18-5

1 As stated by the supplier.

2.2. Diffusion Measurements: Short Description of the Taylor Dispersion Method

Mutual diffusion coefficients for ternary {5-FU (1) + β-CD (2) + water} and {5-FU (1) +
SDS (2) + water} solutions are described by Fick’s Equations (1) and (2) [41,42]:

J1 = −D11∇C1 − D12∇C2 (1)

J2 = −D22∇C2 − D21∇C1 (2)

J1 and J2 are, respectively, the molar fluxes of component (1) (5-FU) and component (2)
(β-CD or SDS) driven by the concentration gradients of component (1), ∇C1, and of
component (2), ∇C2. The main diffusion coefficients, D11 and D22, give the flux of each
component, (1) and (2), respectively, driven by its own concentration gradient. The cross-
diffusion coefficients, D12 and D21, give the coupled flux of each component, (1) and (2),
driven by a concentration gradient in the other component, (2) and (1), respectively. A
positive value of the Dik cross-coefficient (i 6= k) indicates a co-current coupled transport of
component (i) from regions of higher to lower concentrations of component (k). On the other
hand, a negative value of Dik cross-coefficient (i 6= k) indicates a counter-current coupled
transport of component (i) from regions of lower to higher concentration of component (k).

These transport coefficients (D11, D12, D21, and D22) were determined using the Taylor
dispersion technique. Considering that said technique is well described in the litera-
ture [41–44], we will only indicate some relevant characteristics regarding the experimental
procedure and the equipment used in this work. At the start of each run, a 0.063 cm3 sample
of solution was injected into a laminar carrier solution, of slightly different composition,
at the entrance of a Teflon capillary dispersion tube (length 3048.0 (±0.1) cm and internal
radius 0.03220 (±0.00003) cm). This tube and the injection valve were kept at 298.15 (±0.01)
K in an air thermostat. The broadened distribution of the disperse samples was monitored
at the tube outlet using a differential refractometer (Waters model 2410). The refractometer
output voltages, V(t), were measured at 5 s intervals using a digital voltmeter (Agilent
34401 A).

Dispersion profiles for ternary mixed solutions {5-FU (1) + β-CD (2) (or SDS)} were
analyzed by fitting the following equation (Equation (3)):

V(t) = V0 + V1t + Vmax

(
tR
t

) 1
2
[

W1exp

(
−12D1(t− tR)

2

r2t

)
+ (1−W1)exp

(
−12D2(t− tR)

2

r2t

)]
, (3)

where V0, V1, and Vmax represent the baseline voltage, the baseline slope, and the peak
height relative to the linear baseline voltage V0 + V1t, respectively; tR is the mean sample re-
tention time; and D1 and D2, are the eigenvalues of the ternary diffusion coefficient matrix.
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3. Results and Discussion
3.1. Ternary Mutual Diffusion Coefficients of Aqueous 5-FU (C1) + β-CD (C2) Solutions

Table 2 shows the ternary aqueous diffusion for the systems {5-fluorouracil +
β-cyclodextrin (β-CD)} at 298.15 K. The main diffusion coefficients (D11 and D22) were
generally reproducible within (±0.02 × 10−9 m2 s−1), and the cross-diffusion coefficients
(D12 and D21) were reproducible within about (±0.05 × 10−9 m2 s−1).

Table 2. Experimental ternary diffusion coefficients (D11, D12, D21, D22) of 5-FU (C1) + β-CD (C2)
aqueous solutions at T = 298.15 K and P = 101.3 kPa.

C1
1 C2

1 X1
2 D11 ± SD

3 D12 ± SD
3 D21 ± SD

3 D22 ± SD
3

0.000 0.007 0.000 1.011 ± 0.020 0.013 ± 0.085 −0.030 ± 0.019 0.399 ± 0.012
0.0035 0.0035 0.500 1.008 ± 0.010 0.030 ± 0.085 −0.020 ± 0.029 0.405 ± 0.010
0.007 0.000 1.000 1.010 ± 0.020 −0.090 ± 0.015 −0.008 ± 0.019 0.427 ± 0.012
0.000 0.010 0.000 1.023 ± 0.002 0.040 ± 0.030 −0.020 ± 0.010 0.398 ± 0.010
0.012 0.008 0.375 1.015 ± 0.010 0.007 ± 0.001 −0.025 ± 0.009 0.431 ± 0.001
0.018 0.002 0.900 1.055 ± 0.020 −0.003 ± 0.001 −0.020 ± 0.046 0.462 ± 0.001
0.020 0.000 1.000 1.050 ± 0.029 −0.045 ± 0.007 −0.012 ± 0.010 0.465 ± 0.007

1 Concentrations in units of (mol dm−3). 2 X1 represents the 5-FU solute mole fraction. 3 Diffusion coefficients
and standard deviation, SD, in units of (10−9 m2 s−1).

The negative D12 and D21 values observed for different 5-FU solute mole fractions,
defined as X1 = C1/(C1+C2), generally indicated that there were counter-current coupled
flows; that is, a flux of 5-FU in the opposite direction to the spontaneous flux of β-CD, and
vice versa.

Furthermore, in the limit X1 → 0, D12 was zero since, due to the fact that the solution
does not contain 5-FU, there could be no β-CD coupled flows caused by the 5-FU concen-
tration gradient. In those circumstances, D11 represented the tracer diffusion coefficient of
5-FU in β-CD aqueous solutions, and D22 was the binary mutual diffusion coefficient of
β-CD. At this concentration, D21 reached the maximum value.

In the opposite limit (X1 → 1), D12 was different from zero, reaching the maximum
value, and D21 was zero because there was no β-CD in the solution and, consequently, no
concentration gradient of β-CD either, so there could be no 5-FU coupled flows. In this case,
D11 was the binary mutual diffusion coefficient of 5-FU, and D22 was the tracer diffusion
coefficient of β-CD in 5-FU aqueous solutions.

Considering that D12/D22 gives the number of moles of 5-FU counter-transported
per mole of β-CD, we can say that, at the concentrations used, a mole of diffusing β-CD
counter-transported at most 0.2 mol of 5-FU, with the counter-transport increasing with the
increase in its concentration. Using D21/D11 values at the same concentrations, we could
expect that a mole of diffusing 5-FU counter-transported, at most, 0.03 mol of β-CD. This
observed coupled diffusion in the {5-FU + β-CD} solutions could be a consequence of the
effects of complex formation of type 1:1 between 5-FU and β-CD species (Equation (4)), as
supported by NMR data [45]. Considering the model developed by Paduano et al. [46],
this equilibrium constant could be estimated. Since this theory is well described in the
literature, only the main details are indicated here.

That is, considering the following equilibrium:

5-FU (1) + β-CD (2) 
 5-FU-β-CD (3) (4)

the association constant, K, that describes the stability of these complexes, is given by
Equation (5):

K =
C(5-FU-βCD)

C5-FU CβCD
(5)
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where C5-FU and Cβ-CD represent the concentrations of free 5-FU and β-CD, respectively,
and C(5-FU-β-CD) is the concentration of the (5-FU-β-CD) complex, which are correlated by
the following mass balance equations:

C1 = C5-FU + C(5-FU-β-CD) (6)

C2 = Cβ-CD + C(5-FU-β-CD) (7)

After labeling these solute species as 5-FU = 1, β-CD = 2, and 5-FU-β-CD complexes = 3,
respectively, Equations (1) and (2) can be rewritten as

J1 = −D11∇C1 − D12∇C2 − D13∇C3 (8)

J2 = −D21∇C1 − D22∇C2 − D23∇C3 (9)

Considering that we had diluted solutions, and thus, assuming, as an approach, that
the cross-diffusion terms D13 and D23 were negligible (i.e., D13 = D23 = 0), by inserting
this information in the Equations (8) and (9), and after some mathematical rearrangement,
it is possible to obtain Equations (10)–(13). These equations provide the relationships
between the mutual diffusion coefficients D11, D12, D21, and D22 measured for the total
5-FU (1) + β-CD (2) solute components, and the diffusion coefficients D5-FU, Dβ-CD, and
D(5-FU-β-CD), which represent the diffusion coefficients of the free 5-FU, the free β-CD, and
the corresponding complex, respectively.

D11 =
1
2
{(

D5-FU +
(

D5-FU-βCD
))

+
(

D5-FU −
(

D5-FU-βCD
))
[1− K(c2 − c1)]R

}
(10)

D12 =
1
2
{((

D5-FU-βCD
)
− D5-FU

)
+
(

D5-FU −
(

D5-FU-βCD
))
[1− K(c2 − c1)]R

}
(11)

D21 =
1
2
{((

D5-FU-βCD
)
− DβCD

)
+
(

DβCD −
(

D5-FU-βCD
))
[1− K(c2 − c1)]R

}
(12)

D22 =
1
2
{(

DβCD +
(

D5-FU-βCD
))

+
(

DβCD −
(

D5-FU-βCD
))
[1− K(c2 − c1)]R

}
(13)

where
R = {[1 + K(c2 − c1)]

2 + 4Kc1}
−1/2

(14)

The calculated values for the limiting diffusion coefficients of these species (5-FU,
β-CD, and 5-FU-β-CD) are indicated in Table 3.

Table 3. Limiting diffusion coefficients, Ds, of species present in the system 5-FU + β-CD at
T = 298.15 K.

Species DS/(10−9 m2 s−1)

5-FU 1.050 1

β-CD 0.399 1

5-FU-β-CD 0.390 2

1 Estimated from D11 at X1 = 1 and from D22 at X1 = 0, respectively. 2 Estimated using Equation (15).

The diffusion coefficients of free 5-FU (D5-FU = 1.050× 10−9 m2 s−1) and free llinebreak
β-cyclodextrin (Dβ-CD = 0.399 × 10−9 m2 s−1) were obtained from D11 at X1 = 1 and from
D22 at X1 = 0, respectively. The diffusion coefficient of the complex formed by these
components (D(5-FU-β-CD) = 0.390 × 10−9 m2 s−1) was estimated using Equation (15).

R = {[1 + K(c2 − c1)]
2 + 4Kc1}

−1/2
(15)
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This equation was derived from the Stokes–Einstein approximation [42], which relates
the diffusion coefficient of a given species to its effective radius, Rh, and, consequently, to
its molecular volume.

When applying the theoretical Equations (10)–(13), the best agreement obtained be-
tween these predicted values and our experimental data (Table 2) was found when the
binding constant K equal to (10.0 (±0.5) mol−1 dm3) was used. As a low value of K, it
led us to conclude that the interaction between β-CD and 5-FU was weak. An identical
situation was found for similar substances such as L-dopa [25] and paracetamol [47].

Supporting this fact was the low fraction of 5-FU species solubilized (or encapsulated)
by the β-CD, s, estimated using Equation (16), and using the value of the diffusion coefficient
of 5-FU at infinitesimal concentration, (D0

5-FU = 1.168 × 10−9 m2 s−1 [48]), and the values
of the tracer diffusion coefficient of 5-FU in 0.007 and 0.010 of (mol dm−3) β-CD solutions;
that is, (D11 = 1.011 × 10−9 m2 s−1) and (D11 = 1.023 × 10−9 m2 s−1), respectively.

D11 = (1− s) D5-FU + sD(5-FU-βCD) ≈ (1− s) D0
5−FU + sD(5-FU-βCD) (16)

It was noted that the difference between the average of the tracer diffusion coefficient
was approximately 13% of the limiting value (D0

5-FU = 1.168 × 10−9 m2 s−1 [48]). These
deviations suggested that there was a solubilization of 5-FU in the more slowly diffusing
complex of approximately 10% of 5-FU species solubilized by the β-CD (Table 4).

Table 4. Fraction of 5-FU species solubilized by the β-CD, s, in aqueous 5-FU (C1) + β-CD (C2)
solutions at T = 298.15 K and P = 101.3 kPa.

C1
1 C2

1 X1 s 2

0.000 0.007 0.000 0.107
0.000 0.010 0.000 0.092

1 Concentrations in units of (mol dm−3). 2 s represents the fraction of 5-FU solubilized by the β-CD and
that could be estimated from diffusion data using Equation (16), using (D11= 1.011 × 10−9 m2 s−1) and
(D11 = 1.023 × 10−9 m2 s−1) for the tracer diffusion coefficient of 5-FU in 0.007 and 0.010 of (mol dm−3) β-CD
solutions (D0

5-FU = 1.168 × 10−9 m2 s−1 [48] and D(5-FU-β-CD) = 0.390 × 10−9 m2 s−1).

3.2. Ternary Mutual Diffusion Coefficients of Aqueous 5-FU (C1) + SDS (C2) Solutions

Table 5 shows the experimental ternary diffusion coefficients (D11, D12, D21, D22) of
aqueous 5-FU (Component 1) plus SDS solutions (Component 2). Knowing that the critical
micelle concentration for binary aqueous sodium dodecyl sulfate solutions (CMC) is 0.0083
(mol dm−3) [49], this study was carried out while considering the compositions of SDS
before and after the micelle (CMC).

Table 5. Experimental ternary diffusion coefficients (D11, D12, D21, D22) of 5-FU (C1) + SDS (C2)
aqueous solutions at T = 298.15 K and P = 101.3 kPa.

C1
1 C2

1 X1
2 D11 ± SD

3 D12 ± SD
3 D21 ± SD

3 D22 ± SD
3

C2 < CMC 4

0.000 0.004 0.000 1.160 ± 0.020 0.050 ± 0.015 −0.030 ± 0.069 0.789 ± 0.012
0.004 0.000 1.000 1.085 ± 0.020 0.010 ± 0.015 −0.008 ± 0.019 0.830 ± 0.012
0.018 0.002 0.375 1.090 ± 0.020 −0.016 ± 0.015 −0.040 ± 0.019 0.693 ± 0.012
0.010 0.000 1.000 1.051 ± 0.004 −0.012 ± 0.015 −0.002 ± 0.019 0.870 ± 0.012

C2 > CMC 4

0.000 0.020 0.000 1.001 ± 0.010 0.010 ± 0.014 −0.050 ± 0.009 0.378 ± 0.003
0.011 0.009 0.550 1.005 ± 0.010 −0.078 ± 0.014 −0.028 ± 0.009 0.367 ± 0.003
0.000 0.050 0.000 0.965 ± 0.012 0.025 ± 0.018 −0.101 ± 0.010 0.504 ± 0.001

1 Concentrations in units of (mol dm−3). 2 X1 represents the 5-FU solute mole fraction. 3 Diffusion coefficients
and standard deviation, SD, in units of (10−9 m2 s−1). 4 CMC = 0.0083 (mol dm−3) [49].

Based on the data in Table 5, it was verified that while for solutions at C2 < CMC,
the D11 values were very close to the binary diffusion coefficients for 5-FU at the same
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compositions [48], for C2 > CMC, the D11 values found were lower, with deviations up to
17%. In relation to D22 values, it was observed that those obtained below the CMC (where
the ionic dissociation of SDS was complete) were similar to the binary diffusion coefficients
of aqueous SDS [49], and higher than those obtained above the CMC, where the micelles
were formed and, consequently, their diffusion had to be hindered [50].

On the other hand, similar to what was observed in the 5-FU + β-CD system, the cross-
diffusion coefficients D12 and D21 generally showed negative values, which meant that a
coupled counter-current flow of 5-FU took place in this system in the opposite direction
to the spontaneous flow of SDS and, consequently, that complexes were formed between
5-FU and SDS.

Support for the coupled diffusion was also given by the values of the D21/D11 ratio,
which showed that one mole of diffusing 5-FU counter-transported up to 0.11 mol of SDS,
whereas the D12/D22 values showed that one mole of diffusing SDS could counter-transport
up to 0.21 mol of 5-FU; in both cases, in the range of concentrations above the CMC.

In the limit (X1 → 0), since the solution did not contain 5-FU, there could not be a
gradient of this component that drove the SDS coupled flows. Under these circumstances,
D11 represented the tracer diffusion coefficient of 5-FU in SDS aqueous solutions, and D22
the binary mutual diffusion coefficient of SDS. At the other limit, when X1 → 1, there was
no concentration gradient of SDS, and therefore, it could not drive 5-FU coupled flows. In
this case, D11 was the binary mutual diffusion coefficient of 5-FU, and D22 was the tracer
diffusion coefficient of SDS in 5-FU aqueous solutions.

Taking into account that the tracer diffusion coefficients of 5-FU in 0.020 and 0.050 (mol dm−3)
SDS solutions (D11 = 1.001 × 10−9 m2 s−1 and D11 = 0.965 × 10−9 m2 s−1, respectively)
differed significantly from the diffusion coefficient of 5-FU at an infinitesimal concentration
(D0

5-FU = 1.168× 10−9 m2 s−1) value [48] (14% and 17%), it is possible to suggest that there
was solubilization (encapsulation) of 5-FU molecules in the more slowly-diffusing micelles
(Dmicelle = 0.10× 10−9 m2 s−1 [50]) and, consequently, to assume that these micelles included
5-FU molecules.

Considering the complexation equilibrium between 5-FU and SDS, and taking the
approach that the diffusion coefficient value of the complex (5FU-SDS) was equal to that of
the diffusion coefficient of the micelle (Dmicelle = 0.10 × 10−9 m2 s−1 [50]), values for the
limiting diffusion coefficients of the species present in this 5-FU + SDS system; i.e., for free
5-FU and free SDS and for the complex 5-FU-SDS, could be estimated. These values are
shown in Table 6.

Table 6. Limiting diffusion coefficients, Ds, of species present in the system 5-FU + SDS at T = 298.15 K
and P = 101.3 kPa.

Species DS/(10−9 m2 s−1)

5-FU 1.050 1

SDS 0.378 1

5-FU-SDS 0.100 2

1 Estimated from D11 at X1 = 1 and from D22 at X1 = 0, respectively. 2 By considering this diffusion coefficient of
the complex (5-FU-SDS) equal to the diffusion coefficient of the micelle [50].

The use of the theoretical Equations (10)–(13), adapted for this 5-FU + SDS system
under study, allowed us to find the relationship between the experimental mutual diffusion
coefficients (Table 5) and the estimated values given in Table 6. The best agreement was
obtained for a value of the association constant, K, equal to (20.0 (±0.5) mol−1 dm3) (a
value of this binding constant that was double that found for the 5-FU + β-CD system)

Using Equation (17), the fraction of 5-FU species solubilized by the SDS micelles, s, in
aqueous solutions of 5-FU plus SDS can be calculated:

D11 = (1− s) D5-FU + sD(5-FU-SDS) ≈ (1− s) D0
5-FU + sD(5-FU-SDS) (17)

These values are collected in Table 7.
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Table 7. Fraction of 5-FU species solubilized by the SDS micelles, s, in 5-FU (C1) + SDS (C2) aqueous
solutions at T = 298.15 K and P = 101.3 kPa.

C1
1 C2

1 X1 s 2

0.000 0.020 0.000 0.156
0.000 0.050 0.000 0.190

1 Concentrations in units of (mol dm−3). 2 s represents the fraction of 5-FU solubilized (or encapsulated) by the
SDS micelles, and can be estimated from diffusion data using Equation (17).

As could be ascertained, the s values were different from zero (s = 0.2), so we can
say that solubilization (encapsulation) of 5 FU in this potential carrier was not negligible
(between 16 and 19% of the 5-FU species was solubilized by the SDS), verifying that it was
even more significant than that obtained with the other carrier, β-CD (s = 0.1)

4. Conclusions

We measured ternary diffusion coefficients of aqueous systems for the systems
{5-fluorouracil + β-cyclodextrin (β-CD}) and {5-fluorouracil + sodium dodecyl sulphate
(SDS)} at tracer and finite concentrations and at 298.15 K, with the objective of removing
this polluting drug (5-fluorouracil) from the residual systems in which it is present. Relative
to the last system, we investigated the behavior of these transport coefficients below and
above the critical micelle concentration (CMC). Based on the negative cross-diffusion coeffi-
cients obtained for the two aqueous systems studied, we concluded that the interactions
between 5-FU and both the β-CD and SDS molecules were not negligible, indicating the
formation of complex species between 5-FU and both β-CD and SDC (that is, 5- FU was
encapsulated by both carriers). However, SDS concentration gradients produced more
significant counter-current coupled flows of 5-FU, promoting greater solubilization of the
drug or, equivalently, a more efficient encapsulation of this drug; consequently, its use in
removing the drug 5-FU will be more effective and lead to better results.
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