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Chimpanzee face recognition from videos in the wild
using deep learning
Daniel Schofield1*†, Arsha Nagrani2*†, Andrew Zisserman2, Misato Hayashi3, Tetsuro Matsuzawa3,
Dora Biro4, Susana Carvalho1,5,6,7

Video recording is now ubiquitous in the study of animal behavior, but its analysis on a large scale is prohibited
by the time and resources needed to manually process large volumes of data. We present a deep convolutional
neural network (CNN) approach that provides a fully automated pipeline for face detection, tracking, and recog-
nition of wild chimpanzees from long-term video records. In a 14-year dataset yielding 10 million face images
from 23 individuals over 50 hours of footage, we obtained an overall accuracy of 92.5% for identity recognition and
96.2% for sex recognition. Using the identified faces, we generated co-occurrence matrices to trace changes in the
social network structure of an aging population. The tools we developed enable easy processing and annotation of
video datasets, including those from other species. Such automated analysis unveils the future potential of large-
scale longitudinal video archives to address fundamental questions in behavior and conservation.

INTRODUCTION
Video data have become indispensable in the retrospective analysis
and monitoring of wild animal species’ presence, abundance, distri-
bution, and behavior (1, 2). The accumulation of decades’ worth of
large video databases and archives has immense potential for answer-
ing biological questions that require longitudinal data (3). However,
exploiting video data is currently severely limited by the amount of
human effort required to manually process it, as well as the training
and expertise necessary to accurately code such information. Citizen
science platforms have allowed large-scale processing of databases
such as camera trap images (4); however, ad hoc volunteer coders
working independently typically only tag at the species level and can-
not solve tasks such as recognizing individual identities. Here, we
provide a fully automated computational approach to data collection
from animals using the latest advances in artificial intelligence to de-
tect, track, and recognize individual chimpanzees (Pan troglodytes
verus) from a longitudinal archive. Automating the process of indi-
vidual identification could represent a step change in our use of large
image databases from the wild to open up vast amounts of data avail-
able for ethologists to analyze behavior for research and conservation
in the wildlife sciences.

Deep learning
The field of machine learning uses algorithms that enable computer
systems to solve tasks without being hand programmed, relying instead
on learning from examples. With increasing computational power and
the availability of large datasets, “deep learning” techniques have been
developed that have brought breakthroughs in a number of different
fields, including speech recognition, natural language processing, and
computer vision (5, 6). Deep learning involves training computational

models composed of multiple processing layers that learn representa-
tions of data with many levels of abstraction, enabling the performance
of complex tasks. A particularly effective technique in computer vision
is the training of deep convolutional neural network (henceforth CNN)
architectures (6) to perform fine-grained recognition of different
categories of objects and animals (7), including automated image and
video processing techniques for facial recognition in humans (8, 9), out-
performing humans in both speed and accuracy.

Advances in the field of computer vision have led to the realiza-
tion among wildlife scientists of the potential of automated compu-
tational methods to monitor wildlife. In particular, the emerging
field of animal biometrics has adopted computer vision models for
pattern recognition to identify numerous species through phenotypic
appearance (10–12). Similar methods, developed for individual rec-
ognition of human faces, have been applied to nonhuman primates,
including lemurs (13), macaques (14), gorillas (15), and chimpanzees
(16–19). A substantial hurdle is developing models that are robust
enough to perform on highly challenging datasets, such as those with
low resolution and poor visibility. Since most of these previous face
recognition methods applied to primates are limited by the size of
training datasets, they aremostly shallowmethods (small in the num-
ber of trainable parameters, hence not using deep learning), using
cropped images of frontal faces or datasets from the controlled con-
ditions of animals in captivity. While these methods have made val-
uable contributions, they are not robust to the inevitable variation in
lighting conditions, image quality, pose, occlusions, and motion blur
that characterize “wild” footage. Generating datasets to train robust
recognition models has, so far, been restricting progress, as manually
cropping and labeling faces from images are time consuming and
limit the applicability of thesemethods to scale.While obtaining such
datasets is possible for human faces (9) (for example, from multi-
media sources or crowdsourcing services such as AmazonMechanical
Turk), obtaining large, labeled datasets of, for example, nonhuman
primate faces is an extremely labor-intensive task and can typically
only be done by expert researchers who are experienced in recogniz-
ing the individuals in question. Here, we attempt to solve this prob-
lem by providing a set of tools and an automated framework to help
researchers more efficiently annotate large datasets, using wild chim-
panzees as a case study to illustrate its potential and suggest new ave-
nues of research.
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RESULTS
We developed an automated pipeline that can individually identify
and track wild apes in raw video footage and demonstrate its use on a
dataset spanning 14 years of a longitudinal video archive of chim-
panzees (P. troglodytes verus) from Bossou, Guinea (20). Data used
were collected in the Bossou forest, southeastern Guinea,West Africa,
a long-term chimpanzee field site established by Kyoto University in
1976 (21). Bossou is home to an “outdoor” laboratory: a natural forest
clearing (7m by 20m) located in the core of the Bossou chimpanzees’
home range (07°39′N; 008°30′W) where raw materials for tool use—
stones and nuts—are provisioned, and the same group has been re-
corded since 1988. The use of standardized video recording overmany
field seasons has led to the accumulation of over 30 years of video data,
providing unique opportunities to analyze chimpanzee behavior over
multiple generations (22). Our framework consists of detection and
tracking of individuals through the video (localization in space and
time) as well as sex and identity recognition (Fig. 1 and movie S1).
Both the detection and tracking stage and the sex and identity recog-
nition stage use a deep CNN model.

We applied this pipeline to ca. 50 hours of footage featuring
23 individuals, resulting in a total of 10 million face detections (Figs. 2
and 3) and more than 20,000 face tracks (see Fig. 1A and Materials
and Methods). The training set for the face recognition model con-
sisted of 15,274 face tracks taken from four different years (2000,
2004, 2008, and 2012) within the full dataset, belonging to 23 differ-
ent chimpanzees of the Bossou community, ranging in estimated age
from newborn to 57 years (table S1). A proportion of face tracks were
held out to test the model’s performance in each year, as well as to
provide an all-years overall accuracy (table S2). Our chimpanzee face
detector achieved an average precision of 81% (fig. S1), and our rec-
ognition model performed well on extreme poses and profile faces

typical of videos recorded in the wild (Fig. 2B, table S3, and movie
S1), achieving an overall recognition accuracy of 92.47% for identity
and 96.16% for sex. We tested both frame-level accuracy, wherein
our model is applied to detections in every frame to obtain predic-
tions, and track-level accuracy, which averages the predictions for
each face track. Using track-level labels compared with frame-level
labels provided a large accuracy boost (table S3), demonstrating the
superiority of our video-based method to frame-level approaches.
We note that these results include faces from all viewpoints (frontal,
profile, and extreme profile); if only frontal faces were used, then the
identity recognition accuracy improves to 95.07% and the sex recog-
nition accuracy to 97.36% (table S3).

Generalizability across years
To further investigate the generalizability of the model, we next tested
it on footage from two additional years not used in our training: an
interpolated year that fell within the period used in training (2006)
and an extrapolated year (2013) that fell outside it. For the interpolated
year, identity recognition accuracy was 91.81% and sex recognition
accuracy was 95.35%; for the extrapolated year, 91.37 and 99.83%,
respectively. These accuracies were obtained despite some individ-
uals in our dataset undergoing significant changes in appearance
with age, such as the maturation of infants to adults (Fig. 2C). This
suggests that our system may exhibit some degree of robustness to
age-related changes in our population. However, as our system has
not been specifically designed for age invariance, future work should
test how performance is affected by the duration of the gap between
the training and test sets on a dataset featuring more individuals and
spanning a greater number of years. As is often the case with multi-
class classification, classification error is only very rarely uniformly
distributed for all classes. To understand where the recognition

Fig. 1. Fully unified pipeline for wild chimpanzee face tracking and recognition from raw video footage. The pipeline consists of the following stages: (A) Frames
are extracted from raw video. (B) Detection of faces is performed using a deep CNN single-shot detector (SSD) model. (C) Face tracking, which is implemented using a
Kanade-Lucas-Tomasi (KLT) tracker (25) to group detections into face tracks. (D) Facial identity and sex recognition, which are achieved through the training of deep
CNN models. (E) The system only requires the raw video as input and produces labeled face tracks and metadata as temporal and spatial information. (F) This output
from the pipeline can then be used to support, for example, social network analysis. (Photo credit: Kyoto University, Primate Research Institute)
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model was erring, we created a confusion matrix of the individuals in
the test set (table S4). We used frame-level predictions to assess the raw
recognition power of the model (since track level labels are also affected
by the relative length of tracks for different individuals). Themodel was
more accurate at identifying certain individuals, and the lowest per class
accuracies were for two infants in the dataset (Jy and FE).

Sex recognition in unknown individuals
Although the small number of individuals in our dataset is a limita-
tion, we performed a preliminary study to test howwell our sex recog-
nition model generalizes to individuals outside of the training set.
We randomly divided the corpus into 19 individuals (7 males and
12 females) for training and 4 individuals (2 males and 2 females)
for testing. With this test split, we obtained a sex recognition accu-
racy of 87.4% (above chance performance, which is 50%) showing
promise of themodel’s ability to generalize sex recognition to unseen
individuals when using larger datasets. This is particularly relevant
for longitudinal studies where, over time, new individuals are added

to populations via birth or immigration. Successful recognition of the
sex of these previously unseen/unlabeled individuals would allow the
automated tracking of natural demographic processes in wild popula-
tions. We further discuss how to extend our model to classify and add
new individual identities in Materials and Methods.

Comparison to human performance
To test ourmodel’s performance against that of human observers, we
conducted an experiment using expert and novice annotators. We
selected 100 random face images from the test set and provided them
to researchers and students with coding experience of Bossou chim-
panzees to annotate using the VIAweb browser interface (fig. S2) (17).
Annotators only had access to cropped face images, the same input as
the computer algorithm for this task. To assist annotators, each had
access to a gallery of 50 images per individual from the training set, as
well as a table with three examples of each individual for easy side-by-
side comparisons (we show a screenshot of the interface in fig. S3).
There were no time limits on the task.We classified human annotators

Fig. 2. Face recognition results demonstrating the CNN model’s robustness to variations in pose, lighting, scale, and age over time. (A) Example of a correctly
labeled face track. The first two faces (nonfrontal) were initially labeled incorrectly by the model but were corrected automatically by recognition of the other faces in
the track, demonstrating the benefit of our face track aggregation approach. (B) Examples of chimpanzee face detections and recognition results in frames extracted
from raw video. Note how the system has achieved invariance to scale and is able to perform identification despite extreme poses and occlusions from vegetation and
other individuals. (C) Examples of correctly identified faces for two individuals. The individuals age 12 years from left to right (top row: from 41 to 53 years; bottom row:
from 2 to 14 years). Note how the model can recognize extreme profiles, as well as faces with motion blur and lighting variations. (Photo credit: Kyoto University,
Primate Research Institute)
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into expert (prior experience with identifying 50% or more of the in-
dividuals in the dataset and over 50 hours of coding experience) and
novice annotators with limited coding experience and familiarity with
individual identities. On this frame-level identity classification task,
expert human annotators (n = 3) scored an average of 42% (42.00 ±
24.33%), while novice annotators (n = 3) performed significantly
worse (20.67 ± 11.24%), demonstrating the importance of familiarity
with individuals for this task. It took experts an estimated 55 min and
novices 130 min to complete the experiment. Our model achieved
84% [in 60 ms using a Titan X graphics processing unit (GPU) and
30 s on a standard central processing unit], outperforming even the
expert human annotators not only in speed but also in accuracy. Fur-
ther work should test a larger sample of human annotators and exam-
ine how additional cues and contextual information (e.g., full-video
sequences or full-body images) affect performance.

Social network analysis
We used the output face detections from our pipeline to automatically
generate adjacency matrices by recording co-occurrences of identified
individuals in each video frame in our training dataset. Figure 4 shows
the social networks sampled from four field seasons over 12 years for
the Bossou community, from approximately 4 million co-occurrence
events (see Materials and Methods). Subclusters of the community are
visualized as defined using the Louvain community detection algorithm
(23), using the density of connections within and between groups of
nodes. These subclusters correctly identify mothers and young infants
as thosewith the strongest co-occurrences, and kin cluster into the same
subgroups. At the end of 2003, the size of the Bossou chimpanzee com-
munity declined drastically because of an epidemic, causing significant
demographic changes and an increasingly aging population over sub-
sequent years (24). By 2012, the isolation of some individuals from the

rest of the community becomes striking, with two of the oldest females
(Yo andVelu, both over 50 years old) detected together inmany of the
videos but very rarely with the rest of the group.

DISCUSSION
Our model demonstrates the efficacy of using deep neural network
architectures for a direct biological application: the detection, tracking,
and recognition of individual animals in longitudinal video archives
from the wild. Unlike previous automation attempts (17, 18), we op-
erate on a very large scale, processing millions of faces. In turn, the
scale of the dataset allows us to use state-of-the-art deep learning,
avoiding the use of the older, less powerful classifiers. Our approach
is also enriched by the use of a video-based, rather than frame-based,
method, which improves accuracy by pooling multiple detections of
the same individual before coming to a decision. We demonstrate
that face recognition is possible on data at least 1 year beyond that
supplied during the training phase, opening up the possibility of ana-
lyzing years that human coders may not have even seen themselves.

We do not constrain the video data in any way, as is done for other
primate face recognition works [e.g., (13, 18)], by aligning face poses
or selecting for age, resolution, or lighting. We do this to perform the
task “in the wild” and ensure an end-to-end pipeline that will work on
raw video with minimum preprocessing. Hence, the performance of
our model is highly dependent on numerous factors, such as variation
in image quality and pose. For example, model accuracy increases
monotonically with image resolution (fig. S4), and testing only on
frontals increases performance. On unconstrained faces, our model
outperformed humans, highlighting the difficulty of the task. Humans’
poor performance is likely due to the specificity of the task: Normally,
researchers who observe behavior in situ can rely onmultiple additional

Fig. 3. Face detection and recognition results. (A) Histograms of detection numbers for individuals in the training and test years of the dataset (2000, 2004, 2006,
2008, 2012, and 2013). (B) Output of model for number of individuals detected in each year and proportion of individuals in different age categories based on existing
estimates of individual ages.
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cues, e.g., behavioral context, full body posture and movement, hand-
edness, and proximity to other individuals, while those coding video
footage have the possibility to replay scenes.

While our model was developed using a chimpanzee dataset, the
extent of its generalizability to other species is an important question
for its immediate value for research. We show some preliminary
examples of our face detector (with no further modification) applied
to other primate species in Fig. 5. Our detector, trained solely on chim-
panzee faces, generalized well, and the tracking part of our pipeline is
completely agnostic to the species to be tracked (25). Individual recog-
nition will require a corpus annotated with identity labels; however,
we release all software open source such that researchers can produce
their own training sets using our automated framework. Such corpus
may not have to be as large as the corpus that we use in this study; in
supervised machine learning, features learned on large datasets are
often directly useful in similar tasks, even those that are data poor. For
instance, in the visual domain, features learnt on ImageNet (26) are
routinely used as input representations in other computer vision tasks

with smaller datasets (27). Hence, the features learnt by our deep
model will likely also be useful for other primate-related tasks, even
if the datasets are smaller.

The ultimate goal for using computational frameworks in wildlife
science is to move beyond the use of visual images for the monitoring
and censusing of populations to automated analyses of behaviors, quan-
tifying social interactions and group dynamics. For example, sampling
the sheer quantity of wild animals’ complex social interactions for so-
cial network analysis typically represents a daunting methodological
challenge (28). The use of animal-borne biologgers and passive tran-
sponders has automated data collection at high resolution for numer-
ous species (29), but these technologies require capturing subjects, are
expensive and labor intensive to install andmaintain, their application
may be location specific (e.g., depends on animals approaching a re-
ceiver in a fixed location), and the data recorded typically lack contex-
tual visual information.

We show that by using our face detector, tracker, and recognition
pipeline, we are able to automate the sampling of social networks over

Fig. 4. Social networks of the Bossou community generated from co-occurrence matrices constructed using detections of the face recognition model. Each
node represents an individual chimpanzee. Node size corresponds to the individual’s degree centrality—the total number of “edges” (connections) they have (the
higher the degree centrality, the larger the node). Node colors correspond to subclusters of the community as identified independently in each year using the Louvain
community detection algorithm (23). Individuals whose ID codes begin with the same letter belong to the same matriline; IDs in capital letters correspond to males,
while IDs with only the first letter capitalized correspond to females (see table S1). Within these clusters, as predicted, mothers and young infants have the strongest
co-occurrences, and kin cluster into the same subgroups.
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multiple years, providing high-resolution output on the spatio-
temporal occurrence and co-occurrence of specific group members.
This automated pipeline can aid conservation and behavioral analy-
ses, allowing us to retrospectively analyze key events in the history of
a wild community, for example, by quantifying how the decrease in
population size and loss of key individuals in the community affect
the network structure, with a decrease in the connectivity and aver-
age degree of the network (Fig. 4 and table S5). Traditional ethology
has been reliant on human observation, but adopting a deep learning
approach for the automation of individual recognition and tracking
will improve the speed and amount of data processed and introduce
a set of quantifiable algorithms with the potential to standardize be-
havioral analysis and, thus, allow for reproducibility across different
studies (30, 31).

We have demonstrated that the current generation of deep archi-
tectures trained using annotations on the Bossou dataset can cope
with the relatively unconstrained conditions in videos of chimpan-
zees in the forest outdoor laboratory and should translate well to the
low-resolution and variable conditions that typify camera trap or ar-
chive footage from the wild. We use both a VGG-M architecture and
a ResNet-50 architecture and find that all else kept constant; the
performance is comparable (even though the ResNet architecture over-
fitsmore).A larger dataset could be required to take advantage of deeper
CNNs [see (32) for trade-offs between deep models and dataset size].

A key driver for the advancement of the use of artificial intelli-
gence systems for wildlife research and conservation will be the in-
creasing availability of open-source datasets for multiple species. As
more models in this domain are developed, future work should ex-
amine howmultiple variables such as features of the training dataset,
different neural network architectures, and benchmarks affect per-
formance [see (33) for review and benchmarks of existing animal deep
learning datasets]. Ultimately, this will help maximize the adoption
and application of these systems to solve a wide range of different
problems and allow researchers to gauge properties of the data for
which these models should perform well.

There are some limitations to our study, notably the size of our
dataset (in terms of individuals), which consisted of only 23 chim-
panzees. The small population size of Bossou chimpanzees and their

lack of genetic admixture with neighboring groups (34) could indi-
cate that our dataset is, likely, less phenotypically diverse than other
chimpanzee groups. We note that the model found some individuals
more distinctive than others, and errors in recognition (table S4)
were likely due to facial similarity between closely related individuals
within the population. We expect that as with human face recognition
models (9), performance will increase as more individuals are added,
and populations are combined frommultiple field sites. Another issue
is that with our tracking pipeline, individuals are not tracked if the
head is completely turned or obscured, which may bias social network
analysis based on co-occurrences. In relation to that, given that our
network performs the task in isolation, further performance improve-
ments could be achieved by incorporating contextual detail: For exam-
ple, the identities of individuals in proximity may provide important
information, as is the case withmother-infant pairs. Another direction
is to move beyond faces, as for some species the face may not be the
most discriminative part. Instead, whole-body detectors can be trained
to discriminate bodies inmuch the sameway as they are trained in this
paper to discriminate faces. With these potential future improvements
in mind, we hope that our automated pipeline and tools used for an-
notation will facilitate other research and generate larger datasets to
improve accuracy and generalizability and drive the development of
a multitude of new tools beyond recognizing faces, such as full-body
tracking and behavioral recognition.

MATERIALS AND METHODS
Structure of the dataset
The dataset used to train our deep CNN features 23 wild chimpanzees
(14 females and 9 males) at the long-term field site of Bossou, Guinea,
recorded between 2000 and 2012. In the start year of our dataset
(2000), there were 20 individuals: 10 adults (13+ years), 3 subadults
(9 to 12 years), 3 juveniles (5 to 8 years), and 4 infants (0 to 4 years).
Eight of these individuals had been present in the community since
the Bossou field site was established in 1976, and hence, their ages are
estimates only (see table S1). In subsequent years, three infants were
born, and the overall population size decreased as individuals disap-
peared or died (see table S1 and Fig. 3B).

Fig. 5. Preliminary results from the face detector model tested on other primate species. Top row: P. troglodytes schweinfurthii, Pan paniscus, Gorilla beringei,
Pongo pygmaeus, Hylobates muelleri, and Cebus imitator. Bottom row: Papio ursinus (x2), Chlorocebus pygerythrus (x2), Eulemur macaco, and Nycticebus coucang. Image
sources: Chimpanzee: www.youtube.com/watch?v=c2u3NKXbGeo; Bonobo: www.youtube.com/watch?v=JF8v_HWvfLc&t=9s; Gorilla: www.youtube.com/watch?
v=wDECqJsiGqw&t=28s; Orangutan: www.youtube.com/watch?v=Gj2W5BHu-SI; Gibbon: www.youtube.com/watch?v=C6HucIWKsVc; Capuchin: Lynn Lewis-Bevan
(personal data); Baboon: Lucy Baehren (personal data); Vervet monkey: Lucy Baehren (personal data); Loris: www.youtube.com/watch?v=2Syd_BUbl5A&t=2s.
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A randomsample of videos totaling almost 50 hourswere extracted
from six field seasons (2000, 2004, 2006, 2008, 2012, and 2013) and
used to train and test our CNN model (note that 2006 and 2013 were
only used for testing; see below for details). All videos were taken at the
outdoor laboratory with no preprocessing (movie S1). The videoswere
recorded at different times of the day and span a range of lighting
conditions. Since the footagewas shot in a natural forest clearing, often
there was heavy occlusion of faces from vegetation. The individuals
moved around and interacted freely with one another, and the camera
panned and zoomed; hence, faces in the videos had large variations in
size, with small faces for chimpanzees in the background, motion blur,
and occlusion due to other individuals. Often faces appeared as ex-
treme profiles (in some cases, only a single ear was visible), and there
were visible changes to facial features as individuals age over time.

Model training
Our pipeline consists of two main components: (i) detection and
tracking and (ii) facial recognition (Fig. 1). First, we trained a deep
single-shot detector (SSD) model (35) with a VGG-16–based CNN
architecture (36) to automatically localize chimpanzee faces in the
raw footage (see fig. S1 for evaluation of the detector and a detailed
description of this in the section on Face detection). We then imple-
mented face tracking using a version of the Kanade-Lucas-Tomasi
(KLT) tracking method to group faces belonging to the same individ-
ual across frames into a “face track” as a single unit (Fig. 2A). For the
second stage, these face tracks were tagged with chimpanzee identities
by a human coder using a custom-built, lightweight web-based anno-
tation tool (37), thus creating a training dataset for a deep CNN recog-
nition model (fig. S2). For both identity and sex recognition, the base
network architecture used was a variant of the VGG-M architecture
introduced by Chatfield et al. (38). The network was trained for the
task of classification byminimizing the softmax log loss (cross-entropy)
over 25 classes for identity recognition (23 individual identity classes
corresponding to the number of individuals in the dataset, 1 class for
negatives, and 1 class for false-positive tracks; defined in the section on
Face recognition) and over 2 classes for the task of sex recognition
(male and female). We provide a detailed description for each stage
of the pipeline in the following sections.
Face detection
Our detection pipeline consisted of the following steps, allowing us to
obtain chimpanzee face detections in every frame of raw video:

1) To train the detector, 3707 video frames were annotated with
detection boxes. These frames were extracted every 10 s from a 2008
video. Annotation involved drawing a tight bounding box around
each head using our web-based VIA annotation interface (29). This
resulted in 5570 detection boxes. The statistics of the dataset can be
seen in table S2.

2) These annotations were then used to train a chimpanzee face
detector with two classes: background and chimpanzee face.

3) The detector was then run over all the frames of the video
(extracted at 25 fps), giving us face detections in every frame.
Evaluation protocol for face detector. Evaluation was performed
on a held-out test set using the standard protocol outlined by
Everingham et al. (39). The precision/recall curve was computed
from amethod’s ranked output. Recall was defined as the proportion
of all positive examples ranked above a given rank, while precision is
the proportion of all examples above that rank which are from the
positive class. For the purpose of our task, high recall was more im-
portant than high precision (i.e., false positives are less dangerous

than false negatives) to ensure no chimpanzee face detections were
missed. Some false positives, such as the recognition of chimpanzee
behinds as faces (e.g., fig. S1C), were automatically discarded by the
tracking procedure (see the Face tracking section).
Programming implementation details. The detector was imple-
mented using the machine learning library MatConvNet (40). The
SSD detector was trained on two Titan X GPUs for 50 epochs (where
1 epoch consists of an entire pass through the training set) using a
batch size of 32 and 2 sub-batches. Flip, zoom, path, and distort aug-
mentation was used during preprocessing with a zoom factor of 4.
The ratio of negatives to positives while training was 3, and the
overlap threshold was 0.5. The detector was trained without batch
normalization.
Face tracking
Our tracking pipeline consisted of the following steps, allowing us to
obtain face tracks from raw video:

1) Shot detection: Each video was divided into shots, which are
continuous segments of footage. A single face track does not exist over
multiple shots.

2) Tracking: Face detections within each shot were then grouped
into face tracks. The KLT tracker was implemented inMATLAB and
optimized for speed and complexity constraints. This specific track-
ing model achieved temporally smooth tracking of animal faces.

3) Post processing: False positives are rarely tracked overmultiple
frames, so tracks shorter than 10 frames were discarded as false pos-
itives, and detections within a track were smoothed.
Face recognition
Our recognition pipeline consisted of the following steps:

1) In the training stage, face tracks were labeled with the identity of
the chimpanzee. This involved selecting the label from a menu for
each face track in the training video. We then created a simple web-
based annotation interface enabling a single human annotator to label
face tracks with their identity; this enabled millions of chimpanzee
faces to be labeled with only a few hours of manual effort. The first,
middle, and last frames in a track are displayed, and a single label was
applied to each track. A screenshot is provided in fig. S2.

2) This annotationwas then used to train a chimpanzee face recog-
nizer. Recognition involved automatically assigning every face track to
an identity and sex label. This stage was performed first at a frame
level, and results were then aggregated to obtain a single label per track.
This aggregation was implemented by averaging the pre-softmax logit
predictions for every frame in a single track. For identity recognition,
the goal was to classify the faces into 23 individual identity classes, as
well as 1 additional class for false-positive tracks, which are “nonface”
tracks mistakenly detected and tracked. This ensured an end-to-end
system with no manual interference, i.e., false positives did not need
to be discardedmanually. Since the number of individuals in our data-
set was small compared with human face datasets (typically in the
thousands), we also added an additional class of “negatives,” which
consisted of individuals outside of our dataset. Since it was not impor-
tant to label these individuals, we obtained these faces from other
sources such as films. The only purpose that these negatives served
was tomake the identity classifier more discriminative for the individ-
uals of interest: 1.9 hours of videos of an estimated ~100 unrelated
chimpanzees (including all chimpanzee subspecies) were used as neg-
atives, from the DVDs Chimpanzee (Disney, 2012) and The New
Chimpanzees (National Geographic, 1995), and 6759 faces were
extracted using our detector and tracking model and labeled “face”
or “nonface.”
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For identity recognition, we trained the network by minimizing
the softmax log loss (cross-entropy) over 25 classes

L ¼ � ∑
N

n¼1
ycðxnÞ � log∑

Ct

j¼1
eyjðxnÞ

 !

where xn is a single face input to the network, yj is the pre-softmax
activation for class j of size Ct, and c is the true class of xn. Since the
classes were heavily unbalanced (the number of training examples
for each individual varies greatly; see Fig. 3A), the loss was weighted
according to the frequency distribution of the classes. These weights
for each class c are specified as

ac ¼ ntotal � nc
nc

where ntotal is the total number of training examples, and nc is the
number of training examples for class c. The weighted loss can then
be expressed as

Lw ¼ ∑
c
aclðcÞ

where l(c) is the component of the loss for class c.
For sex classification, the network was trained using a binary cross

entropy loss over the two classes: male and female. By using the entire
training set, the sex classification model was trained to achieve in-
variance to identity and age.

With the exception of (18), previous works on primate face recogni-
tion (13–16, 19) required face cropping and then pose normalization
using manually annotated landmarks. We applied no such pose nor-
malization. The input to the face subnetwork was an RGB image, au-
tomatically cropped from the source frame using the detector to include
only the face region. We extended the bounding boxes provided by the
detector by 20% to includemore context and resized the image to 224 ×
224. Standard aggressive on-the-fly augmentation strategies were used
during training (41), including random horizontal flipping, brightness,
and saturation jittering, but we did not extract random crops from
within the face region.

3) The recognizer is then applied to all face tracks, assigning a
label (identity or nonface) to each of them.

We can run this on as many videos as required. At this stage, we
have labeled face tracks for all the chimpanzees in the video. Note that
steps 1) and 2) only need to be done once (the training stage). For new
videos, only step 3) has to be run.
Extending to new individuals. Learning new IDs does not require
complex surgery of the network or a full retraining from scratch.
We demonstrated this by training on our identity disjoint train split
of only 19 individuals (see Results). We observed a drop in identity
recognition performance using only these individuals.We then added
in the remaining four individuals by simply modifying the final layer
to include hidden units for each of these four individuals and training
on them. Doing this, we achieved a similar performance as we re-
ported before (79.1% frame-level accuracy) but requiring less training
time (only 10 epochs, compared with 50 epochs when training from
scratch) and, hence, one-fifth the computational resources. The only
change required to the architecture was the number of units in the
final layer.

Programming implementation details. The networks for recogni-
tion were trained on three Titan X GPUs for 50 epochs using a batch
size of 256. We trained both models end to end via stochastic gradi-
ent descent with momentum (0.9) weight decay (5 × 10−4) and a log-
arithmically decaying learning rate (initialized to 10−2 and decaying
to 10−8). Both models were trained from scratch with no pretraining.
Social network analysis
We sampled networks at a high resolution using every frame to record
co-occurrences between intervals.We started by defining co-occurrence
ai,j (dt) of individuals i and j as the number of times they were recorded
to co-occur in a given time interval dt. This was then normalized by the
total number of times individual i is observed in this time period with
another individual

Ni ¼ ∑
j
ai;jðdtÞ

and the total number of times individual j is observed with another
individual

Nj ¼ ∑
i
ai;jðdtÞ

This gives us the final co-occurrence of individuals i and j in time
interval dt to be

anorm ði;jÞðdtÞ ¼
ai;jðdtÞ

ai;jðdtÞ þ ðNi � ai;jðdtÞ þ ðNj � ai;jðdtÞÞÞ

Since the camera pans and zooms, frames that contained only a
single individual (due to zooming) were ignored. Networks were visual-
ized, and network metrics (table S5) were extracted using the Python
library NetworkX.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/9/eaaw0736/DC1
Fig. S1. Face detector results.
Fig. S2. Screenshots of the web-based annotation interfaces.
Fig. S3. Screenshots from the web-based experiment testing human annotator performance at
identifying individual chimpanzees in cropped images.
Fig. S4. Frame-level accuracy of model with variation in chimpanzee face resolution.
Table S1. Name, ID code, sex, age, and years present for every chimpanzee at Bossou within
the dataset analyzed.
Table S2. Summary statistics of training and testing datasets for recognition model.
Table S3. Identity and sex recognition results for accuracy on all faces and frontal faces only in
the test set.
Table S4. Confusion matrix for the 13 individuals in the test set.
Table S5. Metrics of Bossou social networks derived from co-occurrences of detected
individuals in video frames.
Movie S1. Video demo of automated identity and sex recognition of wild chimpanzees at
Bossou, achieved through our deep learning pipeline.
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