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A global response function (GRF) of an elastic network is
introduced as a generalization of the response function (RF) of
a rigid network, relating the average flow along the network
with the pressure difference at its extremes. The GRF can be
used to explore the frequency behaviour of a fluid confined in
a tree-like symmetric elastic network in which vessels
bifurcate into identical vessels. We study such dynamic
response for elastic vessel networks containing viscous fluids.
We find that the bifurcation structure, inherent to tree-like
networks, qualitatively changes the dynamic response of a
single elastic vessel, and gives resonances at certain
frequencies. This implies that the average flow throughout the
network could be enhanced if the pulsatile forcing at
the network’s inlet were imposed at the resonant frequencies.
The resonant behaviour comes from the cooperation between
the bifurcation structure and the elasticity of the network,
since the GRF has no resonances either for a single elastic
vessel or for a rigid network. We have found that resonances
shift to high frequencies as the system becomes more rigid.
We have studied two different symmetric tree-like network
morphologies and found that, while many features are
independent of network morphology, particular details of
the response are morphology dependent. Our results could
have applications to some biophysical networks, for which the
morphology could be approximated to a tree-like symmetric
structure and a constant pressure at the outlet. The GRF for
these networks is a characteristic of the system fluid-network,
being independent of the dynamic flow (or pressure) at the
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network’s inlet. It might therefore represent a good quantity to differentiate healthy vasculatures from
those with a medical condition. Our results could also be experimentally relevant in the design of
networks engraved in microdevices, since the limit of the rigid case is almost impossible to attain
with the materials used in microfluidics and the condition of constant pressure at the outlet is
often given by the atmospheric pressure.
lishing.org/journal/rsos
R.Soc.open

sci.6:190661
1. Introduction
The presence of branched fluidic networks in nature is ubiquitous [1]. In plants, conducts called xylem
transport the required water and nutrients from the roots to stems and leaves. These vessels present a
space-filling branched structure capable of reaching all cells in the organism [2]. In mammals, blood
flow carries oxygen from lungs and nutrients from the digestive system to all cells in the organism
through vessel networks. Not surprisingly, several pathological scenarios associated with high
mortality in humans are related to alterations in vascular networks that lead to changes in blood flow.
When infarctions occur for example, vessel blockage stops blood irrigation to a tissue, leading to cell
death. In the case of myocardial infarction, or heart attack, the lack of irrigation might lead to the
impossibility of the heart to continue functioning [3]. In the case of cerebral infarction, if the brain
cells lack oxygen for more than a few minutes they will die [4]. In aneurysm formation, deformation
of vessel walls alter the flow profile and the stresses exerted by blood on the vessels, leading to vessel
rupture [5,6]. Hypertension is mostly associated with vessel network rigidity [7–9]. Due to the
importance of blood flow to human health, understanding how the characteristics of vessel networks
lead to changes of the overall network flow is of the utmost importance. In particular, blood flow in
the cardiovascular system has been modelled in great detail and from different perspectives [10–21].
Blood flow models can have different levels of detail depending on the phenomena they aim at
probing. Complex three-dimensional Navier–Stokes calculations coupled with a detailed elastic
treatment of vessel dynamics are able to model the flow in a blood cycle at every point within a
vessel; however, their level of complexity make them prohibitive when studying blood flow in a large
vascular network. In these situations zero- or one-dimensional models are convenient [13,17–20].

Several microfluidic devices are also constructed as branched networks of vessels, often with the aim
of delivering fluid to a large number of sub-devices [22,23]. A characterization of how material
properties, like elasticity, influence the global response function (GRF) in these branched microfluidic
networks, permit better tailoring of the network morphologies and materials according to the need [24].

The response function (RF) of tree-like symmetric rigid networks, in which each vessel bifurcates into
two equal vessels (not necessarily identical to the parent vessel), relates the flow that goes through the
network with the pressure difference between the network extremes [25]. It is a concept extrapolated
from the dynamic permeability of fluids confined in circular or rectangular channels [26–33], and it is
essentially an effective permeability times an effective area [25]. Knowledge of the dynamic
permeability in rigid channels, or of the RF in rigid networks, is important, since it allows one to
know a priori the frequencies of the pressure signal that enhance the flow [30,31,33–36].

Several previous works of our group have shown that the RF depends strongly on the morphological
properties of the network, on the rheological properties of the fluid and on the frequencies involved in
the pressure pulse [34–36]. These works have been carried out on rigid vessel networks.

Recently, it has been found that the RF of a Newtonian fluid flowing in a single elastic vessel, that is
able to deform along the flow direction, might have striking effects as a function of frequency in
elastomeric materials at microscales [37]. A GRF for a tree-like symmetric elastic network, introduced
as a generalization of the RF of a rigid network, relating the average flow along the network with the
pressure difference at its extremes, has been introduced in the literature [38,39], but its behaviour as a
function of frequency is yet to be studied.

In this paper, we study the GFR of tree-like symmetric elastic vessel networks, and explore the effect
that the degree of elasticity and network morphology have on this frequency-dependent RF. Our study is
relevant in microfluidic devices, where for a given pressure drop, flow rate in a deforming channel is
found to be several times higher than the one expected in a non-deforming channel [40]. It could also
be relevant for physiological vessel networks, since they are formed by elastic structures.

In §§2 and 3, for thoroughness of the presentation, we briefly describe a model for flow in elastic
networks that has been published and validated for the arterial network [41]. In §2, we present the
basic considerations to study flow in a single elastic vessel. In §3, we state the necessary
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considerations to apply the model to elastic vessel networks. In §4, we introduce the global RF for tree-
like symmetric elastic networks. In §5, we describe the two tree-like network morphologies that are used
in this work. In §6, we find that the GRF is independent of the dynamics of the inflow, for networks that
have constant pressure at the outlets, making the GRF a good quantity to study the network’s dynamics.
In §7, we show that the bifurcation structure of tree-like elastic networks causes the GRF to have
resonances, which do not exist for rigid networks, nor for single elastic vessels. This implies that the
flow magnitude across the network could be enhanced at certain frequencies due to the cooperation
between the bifurcation structure and the elasticity of the network, via pulsatile forcing. We do a
systematic study varying the networks’ elasticity, and find features that are common to different
network morphologies, and features that are morphology dependent. In §8, we present an analytical
study of a single elastic bifurcation that demonstrates the emergence of the resonant behaviour.
We present our conclusion in §9.
 os

R.Soc.open
sci.6:190661
2. Flow through a single elastic vessel
To study the dynamics of each elastic vessel forming the network, we use the generalized Darcy’s elastic
model (GDEM) [41], which assumes the following:

First, a generalized Darcy’s model for rigid cylindrical vessels, which gives a linear relation between
flow, q̂, and pressure gradient, @p̂=@x, in frequency domain, is valid locally, that is, at any point x along
the flow direction,

q̂ ¼ �AK(v)
h

@p̂
@x

, (2:1)

where K(ω) =−(η/iωρ)[1− 2 J1(βr)/βrJ0(βr)] stands for the dynamic permeability of a Newtonian fluid,
which is a measurement of the resistance to flow; J0 and J1 are Bessel functions of the first kind of
orders 0 and 1, respectively; β2 = iρω/η, r is the average radius of the elastic vessel; η is the fluid
viscosity; and i ¼ ffiffiffiffiffiffiffi�1

p
. Hats over quantities denote their Fourier transforms. Flow has been

approximated as a velocity averaged over the average cross-sectional area, A, times this area.
Second, a linear relationship between pressure and flow gradient, coming from mass conservation

and a Hooke-like linear model for vessel elasticity, is valid locally, namely

p̂ ¼ 1
ivC

@q̂
@x

, (2:2)

where C = 3πr3/2Eh is called the vessel compliance, h is the vessel wall thickness, E is the Young’s
modulus of the vessel given by

E ¼ 3rc2r
2h

, (2:3)

where c is the pulse wave velocity. The limit of a rigid vessel is obtained when the vessel compliance
vanishes, that is, when C→ 0.

Combining equations (2.1) and (2.2), one obtains a harmonic oscillator equation for the pressure in
frequency domain, namely,

@2p̂
@x2

¼ �k2p̂, (2:4)

where κ2 = iωCη/AK(ω).
Solving equation (2.4) for a single vessel of length l, with known p̂in and p̂out for the inlet and outlet

pressures on the vessel extremes, respectively, yields an analytical expression for the pressure along the
vessel in frequency domain given by

p̂(x) ¼ p̂in cos (kx)þ
p̂out � p̂in cos (kl)

sin (kl)
sin (kx), (2:5)

which, when substituted in equation (2.1), provides the flow along the vessel in frequency domain

q̂(x) ¼ M p̂in sin (kx)�
p̂out � p̂in cos (kl)

sin (kl)
cos (kx)

� �
, (2:6)

where M2 = iωC AK(ω)/η, and x∈ [0, l ].



level 1 level 2 level 3 level 4

Figure 1. Illustration of a 4-level bifurcating tree-like network.
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Solving equation (2.4) for a single vessel with known q̂in and p̂out for the inlet flow and outlet pressure
on the vessel extremes, respectively, yields an analytic expression for the pressure along the vessel in
frequency domain given by

p̂(x) ¼ q̂in sin (kl)þMp̂out
M cos (kl)

cos (kx)� q̂in
M

sin (kx), (2:7)

which, when substituted in equation (2.1), provides the flow along the vessel in frequency domain

q̂(x) ¼ q̂in sin (kl)þMp̂out
cos (kl)

sin (kx)þ q̂in cos (kx): (2:8)
3. Flow through an elastic vessel network
GDEM [41] considers elastic networks of tubes in which a viscous fluid flows subject to a time-dependent
inlet flow (or pressure). In this paper, we focus on tree-like symmetric networks, in which cylindrical
vessels bifurcate into two identical vessels, as illustrated in figure 1 for a 4-level network. The model
deliberately excludes trifurcations or higher order branching, since bifurcations are the most probable
and common forms of branching structures in nature. Articles in the literature that classify normal
vascular networks consider only bifurcations [42–44]. More complex branching morphologies, such as
trifurcations, are present in non-hierarchical pathological vasculatures, such as the ones irrigating
tumours [45].

Tree-like networks will have two types of vessels: the ones in which boundary conditions are
imposed, namely vessels that take inlet flows or pressures as boundary condition, or vessels in which
outlet pressures are imposed; and vessels that are internal to the network. For these ones, the
pressures at the vessels’ extremes have to be determined as part of the solution.

Flow conservation is imposed at the nodes (points of bifurcation) as well as equal pressures on the
extremes of the vessels connected to a node. For instance, for a vessel at level j, with length lj, that
bifurcates into vessels at level j + 1, with lengths lj+1, flow conservation at the node joining these three
vessels, requires the output flow at level j, q̂ j(x ¼ l j) to be equal to twice the input flow at level j + 1,
q̂ jþ1(x ¼ 0), that is, q̂ j(x ¼ l j) ¼ 2q̂ jþ1(x ¼ 0). This allows one to write an equation, by means of
equation (2.6) (or equation (2.8)), that involves: pressure (or flow) at the entrance of vessel at level j,
pressure at the node, and pressures at the outlet (x = lj+1) of vessels at level j + 1. For each node in the
network, there will be an equation coming from flow conservation at that node. The result is a system
of equations for the pressure at the nodes, that can be solved, analytically or numerically, using the
methodology described in the literature [41].

Once the pressure at the nodes is known, pressure and flow as a function of the position, x, along any
vessel of the network, can be obtained by making use of equations (2.5)–(2.8).
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4. Global response for a tree-like symmetric elastic network
For a rigid network, the fact that flow is constant along the network allows one to describe the network
behaviour in terms of a dynamic RF, χ(ω), which is a measure of how much flow, q1(t), goes through the
network, given a pressure difference, Δp(t) = pout− pin, between the network inlet and the network outlet
[25]. In frequency domain, this can be written as

q̂1¼� x(v)Dp̂(v)
hL

, (4:1)

where L ¼ P
i li, is the sum of the vessels’ length, li, at each level i. χ has been computed for a tree-like

symmetric rigid network by means of an electrical analogy, adding resistances li/AiKi in series or parallel,
according to the network morphology [25], giving the following result:

1
x
¼ 1

L

XN
i¼1

li
2i�1AiKi

: (4:2)

In equation (4.1), q̂1 is the flow at the inlet of the network, but given that flow is constant along a rigid
network, it is also the total flow at any network level, i, containing 2i−1 vessels, that is, q̂1¼2i�1q̂i, where q̂i
is the flow in each of the vessels at level i.

For an elastic network, on the other hand, flow is not uniform along the network. Hence, we define a
global response function (GRF), that would give information of the flow, integrated throughout the
network, that is, the flow averaged along the flow direction, 〈Q〉x (t). A GRF for a tree-like symmetric
elastic network is defined, in frequency domain, as [38,39]

xglobal;�hLhQ̂ix
Dp̂

, (4:3)

where

hQ̂ix¼
1
L

XN
i¼1

ðli
0
2i�1q̂i(x) dx ¼ 1

L

XN
i¼1

2i�1lihq̂iix: (4:4)

Here q̂i(x) is the flow at position x in one of the vessels at level i; 2i�1q̂i(x) is the total flow at position x in
level i; and hq̂iix ¼ (1=li)

Ð li
0 q̂i(x) dx ¼ �(AiKi=hli)Dp̂i, is the average flow along a single vessel at level i.

The second equality in this expression is obtained using equation (2.1). Dp̂ ¼ PN
i¼1 Dp̂i. Note that for a

rigid network, hQ̂ix reduces to q̂1, which is the flow at point x, of the network’s cross-sectional area.
In the limit of a rigid network, equation (4.3) reduces to equation (4.1), with χglobal = χ, given by
equation (4.2).
5. Network morphologies
In order to consider the impact that network morphology has on the dynamics, we study two different
tree-like symmetric networks.

One of them, already used in previous works [25,34], approximates the morphological properties of
the vasculature of a dog. The vessel morphology of the dog’s circulatory system is described in detail in
the literature [46], and we have approximated the number of vessels, lengths and radii to the closest
numbers that satisfy branching into identical vessels (table 1). For convenience in the discussion, we
will refer to this network as the ‘dog’s network’.

We also analyse networks whose vessels follow Murray’s Law [49], since physiological studies have
validated the agreement of Murray’s Law in vascular systems of mammals [50] and even in networks that
transport water in plants [51]. According to Murray’s Law, when a vessel of radius rp bifurcates into two
identical vessels, the next level vessels are narrower, with radii rd, that obey r3p ¼ 2r3d. Therefore, the radii
of vessels at level i, are related to the inlet vessel radius, r1, by

ri ¼ 1
2

� �(i�1)=3

r1: (5:1)

For a Murray’s network starting with the dimensions of the dog’s aorta and containing the same number
of levels as the ‘dog’s network’, the radii of all levels is prescribed by equation (5.1). We have adjusted a



Table 1. Number and characteristics of vessels for the different levels of the dog’s network. Taken from [25], and based on the
anatomical measurements collected in [46]. Typical dimensions of vessel 1 are those of the aorta, typical dimensions of vessels
2–5 are those of large arteries; of vessels 6–9 are those of main arterial branches, of vessels 10–11 are those of terminal
branches, of vessels 12–25 are those of arterioles and of vessels 26–29 are those of capillaries. The vessel wall width, h, was
taken to be equal to h = 0.1r, where r is the radius. Values used for the fluid viscosity and density were η = 5.0 ×
10−3 kg m−1 s−1 and ρ = 1050 kg m−3, respectively [47]. The Young’s modulus E is given by equation (2.3). For an arterial tree,
the pulse wave velocity, c, is given by the empirical relationship c = 13.3/(2 r)0.3 (in m s−1), with r measured in millimetres [48].
This gives the values of E0 in the table.

levels no. of vessels radius (μm) length (cm) E0 (MPa)

1 1 5000 40.0 0.70

2–5 30 1500 20.0 1.4

6–9 480 500 10.0 2.8

10–11 1536 300 1.0 3.8

12–25 33 552 354 10 0.2 30

26–29 503 316 480 4 0.1 50

Table 2. Number and characteristics of vessels for the different levels of Murray’s network. In this network vessel, radii and
lengths are obtained as a function of level n. The vessel Young’s modulus is a function of its radius r (measured in micrometres).
The vessel wall width, h, was taken to be equal to h = 0.1r in all cases. Values for fluid viscosity and density are as in table 1.
The Young’s modulus E is given by equation (2.3). For an arterial tree, the pulse wave velocity, c, is given by the empirical
relationship c = 13.3/(2r)0.3 (in m s−1), with r measured in millimetres [48]. This gives the expression for E0 shown in the table,
with r measured in millimetres.

levels radius (μm) length (cm) E0 (MPa)

1 5000 40.0 0.70

2–28 5000/2(n−1)/3 40 n−1.78 1.84 r−0.6

29 7.8 0.1 34
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power law for the lengths [35]. Parameters used in the calculations are reported in table 2. The caption of
table 1 includes the fluid parameters used in this work.
6. Independence on boundary conditions
For a network response like the one in equation (4.3) to be useful, it must prove to be independent on
boundary conditions. We limit the study to the case of networks whose pressure is constant at the
outlet, and consider three different inflows as incident boundary condition. Namely, an aortic
physiological flow measured in vivo [52], a simple time-dependent one-mode cosine function, and a
simple pulse consisting of a delta function at time zero. We have chosen a constant pressure at the
network outlet of 4.2 kPa for the three calculations, a value that is consistent with physiological
situations. Following the methodology sketched out in §3, and explained in detailed in reference [41],
we have computed flows and pressures all along the network. We have used them to compute the RF
defined in equation (4.3). We have verified that the RFs of the network, using these three different
inflows, and constant pressure at the network outlet, are identical. Since, by construction, the inflow
consisting of a simple pulse in time domain, is constant in frequency domain, it has less noise than
the other signals, and it is the one reported in all figures. We have also verified that halving or
doubling the inflows or the outlet pressures do not alter the RF.
7. Results
Figure 2 shows the absolute value of the RF for two different networks. The first thing to notice is that
both responses are non-monotonic functions of frequency and therefore present resonances (maxima at
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Figure 2. Magnitude of the RF as a function of frequency for the dog’s and Murray’s elastic networks for ‘physiological’ Young’s
moduli, E0. Parameters for the calculation are given in tables 1 and 2.
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certain frequencies). This implies that the flow magnitude would be enhanced at certain frequencies of
the pulsatile forcing. This enhancement comes from the cooperation between the bifurcation structure
and the elasticity of the network via pulsatile forcing. Elasticity by itself does not cause resonances in
the flow of Newtonian fluids subject to pulsatile forcing. That is, for a single vessel, the RF, χglobal,
given by equation (4.3), decreases monotonically with frequency (this will be explicitly shown in §8).
The structure of bifurcations is necessary to have resonances.

There is an interplay between network geometry and network elasticity to give the exact location
of resonances. In figure 2, we can observe that the main resonance (the one with the highest value of
the RF) for Murray’s network occurs around ω = 2 rad s−1, while for the dog’s network occurs around
ω = 4 rad s−1. Values of the RF at resonance are 4 × 10−11 m4 and 5 × 10−11 m4, respectively. These
values are surprisingly close to each other, given that the steady-state network responses (at low
frequencies, out of the range of figure 2) are five orders of magnitude different. This is because the
outer, wider vessels, which are of a similar calibre in both networks, determine the high-frequency
behaviour of the response. The elastic properties of wider vessels allow for better accumulation and
release of fluid during oscillatory flow, causing the non-monotonic high-frequency behaviour of the RF.

The presence of vessel elasticity changes qualitatively the dynamic response of rigid networks, for
which there are no resonances. Figure 3 shows how the RF changes as the Young’s moduli of the
networks, E, are varied as multiples of E0. For both networks, Murray’s in figure 3a and the dog’s one
in figure 3b, resonances shift to high frequencies as the system becomes more rigid. For both
networks, resonance frequencies are proportional to the square root of the network’s Young’s moduli,
that is, ωres∼ (E/E0)

1/2 (see §8). Resonance frequencies as a function of network’s elasticity are shown
in red in figure 4a for Murray’s network. The continuous line, shown for reference, has a slope of 1/2.
For the dog’s network, frequencies for the first two maxima are shown in figure 4b. In between the
points indicating the frequencies of the first and second maxima, there is a continuous line, shown for
reference, with a slope of 1/2. As the network becomes more rigid, the first maximum takes over and
becomes the main resonance of the system. The main resonance is plotted in red.

We have also found that the magnitude of the responses at resonance decreases for increasing
network rigidity. This can be appreciated in figure 3a. Resonances disappear, for large network
rigidities, when the values of the response function, at all frequencies, are below the value of the
response at zero frequency (not shown). These are features of the RF that are independent of the
network morphologies studied. Particular details of the RF are morphology-dependent. For Murray’s
network (figure 3a), there is a frequency region around the first resonance where the value of the
response is larger than for a rigid network, while the high-frequency behaviour presents responses
below the one of the rigid network and the low-frequency behaviour is quite similar to the one of the
rigid network. By contrast, for the dog’s network (figure 3b), vessel elasticity changes dramatically the
low-frequency behaviour of the response, causing the network response to increase as a function of
frequency. This is because inner, thinner vessels (with high resistance and small permeability), which
are much smaller for the dog’s network than for the Murray’s network, determine the low-frequency
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(b) Magnitude of the RF as a function of frequency for the dog’s elastic network with various degrees of elasticity. In both
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maxima of the dog’s network as a function of network’s elasticity. As the network becomes more rigid, the first maximum takes over
and becomes the dominant resonance of the system. The dominant resonance is plotted in red. Continuous black lines in both
figures have a slope of 1/2 and are shown for reference.
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behaviour of the RF. To accommodate the low-frequency behaviour of the response (given by the small
vessels, with large resistance and low permeability) and the high-frequency behaviour of the response
(given by the outer wider vessels, with low resistance and high permeability), the network’s response
increases as a function of frequency. This behaviour is qualitatively different from the monotonic
decrease of the RF for rigid networks. Also, for the dog’s network, the value of the response increases
by several orders of magnitude, for most of the frequency spectrum, relative to the one of a rigid
network. This implies that the maximum amplitudes of the overall flow, regardless of the frequencies
involved in the pressure drop across the network, would increase significantly with respect to the rigid case.
8. Origin of resonances and scaling behaviour
As stated in §7, we have found resonance frequencies for the GRF of a Newtonian fluid in an elastic
network, using a model that for a Newtonian fluid in a single elastic vessel does not exhibit resonances.
This implies that the resonant behaviour is due to the structure of bifurcations, inherent to tree-like
networks. In order to better see this, we compute analytically the GRF for a network consisting of a
single bifurcation, and show the emergence of the non-monotonic behaviour as a function of frequency.

The response for a Newtonian fluid in a single elastic vessel, with average cross-sectional area, A, can
be obtained analytically from the equation for flow along the vessel (equation (2.6)) that, when integrated
along the flow direction, gives

hq̂ix¼�AK(v)
hl

(p̂out � p̂in), (8:1)
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which gives an RF, χglobal, defined in equation (4.3), that is equal to the area, A, times the dynamic
permeability, K(ω), i.e. χglobal =A K(ω), with K(ω) given by the analytical expression after equation (2.1)
and, for a Newtonian fluid, has a monotonic decay as a function of frequency [26,31].

We now consider a network with a single bifurcation and compute its RF. We consider a vessel at
level 1, that bifurcates into two identical vessels at level 2. Flow conservation at the bifurcation
implies that outflow in vessel at level 1, is equal to the sum of inflows of vessels after the bifurcation,
namely q̂1(x ¼ l1) ¼ 2 q̂2(x ¼ 0). For vessel at level 1, the pressure at the vessel’s entrance, is the
pressure at the entrance to the system, p̂in, and the pressure at the exit is an unknown pressure at
the node, p̂N . For vessels at level 2, the pressure at the entrance is the pressure at the node, p̂N ,
and the pressure at the vessels’ exit is the output pressure of the system, p̂out. Using equation (2.6),
in the equation for flow conservation at the node, we can write an equation for the pressure at the
node, p̂N . This one is given by

p̂N¼ 2A2K2k2 sin (k1l1)p̂out þ A1K1k1 sin (k2l2)p̂in
A1K1k1 sin (k2l2) cos (k1l1)þ 2A2K2k2 sin (k1l1)cos (k2l2)

: (8:2)

On the other hand (using equation (4.4)), the average flow along the network with a single bifurcation is

hQ̂ix¼
1

l1 þ l2
(l1hq̂1ix þ 2l2hq̂2ix), (8:3)

which, using equation (8.1), can be written as

hQ̂ix¼� (2A2K2p̂out � A1K1p̂in)
h(l1 þ l2)

� (A1K1 � 2A2K2)
h(l1 þ l2)

p̂N , (8:4)

with p̂N given by equation (8.2). Accordingly, the RF, defined in equation (4.3), is given by

xglobal ¼
(2A2K2p̂out � A1K1p̂in)þ (A1K1 � 2A2K2)p̂N

p̂out � p̂in
, (8:5)

From this expression, it becomes clear why there is a non-monotonic behaviour as a function of
frequency coming from the bifurcation. That is, the pressure at the node, p̂N , needed to compute
χglobal, and given by equation (8.2), contains non-monotonic sinusoidal terms in κ1l1 and κ2l2, that are
functions of frequency and of the mechanical properties of the vessels (see expression for κ after
equation (2.4)). These terms were not averaged out when the integration along the flow was
performed, as happened for a single vessel.

Figure 5 illustrates the RF for a network, that consists of a single bifurcation, with the characteristics of
the first three vessels for both the dog’s and Murray’s networks. We have chosen a zero pressure at the
outlet. The results clearly show the non-monotonic behaviour coming from the bifurcation. For this
particular example,

xglobal ¼ A1K1 � (A1K1 � 2A2K2)
p̂�N
p̂in

, (8:6)

where

p̂�N
p̂in

¼ A1K1k1 sin (k2l2)
A1K1k1 sin (k2l2) cos (k1l1)þ 2A2K2k2 sin (k1l1) cos (k2l2)

: (8:7)

For this example, the RF, χglobal, is explicitly independent from the pressure at the inlet. It is
straightforward to prove that, for constant pout(t), χglobal is independent of the pressure drop.

In order to understand the scaling behaviour observed in figure 4, we notice that the GRF has terms in
Kiκi, which represent slowly varying modes of frequency, and terms in cos(κi li) and sin(κi li), which are
rapid modes, that will determine the GRF extremes, and therefore the resonances. From the expressions
for K, C and κ (after equations (2.1), (2.2) and (2.4)), and since κl is a non-dimensional quantity, we can
obtain a characteristic frequency of each vessel in the system, given by ωi = (1/li)(Eihi/ρri)

1/2. As in many
elastic systems, for instance, a forced harmonic oscillator, resonances appear when the forcing is made at
the smallest characteristic frequency of the system. In this case, the frequency characteristic of the largest
vessel in the network. This also explains why resonances shift to high frequencies as the system becomes
more rigid (with higher values of Young’s moduli).
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9. Conclusion
A GRF of a tree-like symmetric elastic network is introduced as a generalization of the RF of a rigid
network [38,39]. The GRF relates the network’s flow, averaged along the flow direction, with the
pressure difference at the network’s extremes. It can be used to explore the frequency behaviour of a
fluid confined in an elastic network. The GRF indicates which frequencies, involved in the dynamic
pressure drop, maximize the magnitude of flow averaged along the flow direction. We have found
resonance frequencies of the GRF for Newtonian fluids in elastic networks using a model that for a
single elastic vessel, and for rigid networks, does not give resonances, and proved that this resonant
behaviour is due to the cooperation between elasticity and bifurcations.

Some of the features of the GRF are common to networks of different morphologies, for instance, for
all networks, resonance frequencies shift to high frequencies as the system becomes more rigid. For all of
them, responses at resonance decrease for increasing network rigidity. Particular details of the RF are
morphology-dependent. For example, in the dog’s network studied here, vessel elasticity changes
dramatically the low-frequency behaviour of the GRF, causing this one to increase as a function of
frequency. This behaviour could be experimentally important for certain networks engraved in
microdevices, since the limit of the rigid case is almost impossible to attain with the materials used
in microfluidics.

For networks in which pressure is constant at the outlets, the GRF is characteristic of the system fluid-
network, and independent of the dynamics of the inflow and of the value of pressure at the network’s
outlet. It might therefore represent a good quantity to differentiate healthy vasculatures from those with
a medical condition. Abnormalities in large vessels could possibly be observed in the high-frequency
behaviour of the GRF, while abnormalities in small vessels would in principle be observable in the low-
frequency behaviour of the GRF. Whether or not this quantity might be clinically relevant to
discriminate vasculatures with a medical condition, from those of a control group, is yet to be explored.

Our methodology could also be applicable to the domain of microfluidics, where branched
symmetric structures are often engraved in microchips whose materials range from elastomeric to
rigid. For a possible experimental verification of our results, it would be worth recalling that, for
given values of the elastic and fluid parameters of a microfluidic device, one can always attain the
linear flow regime by decreasing the amplitude of the dynamic pressure drop.
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