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ABSTRACT

The performance of a traffic system tends to improve 
as the percentage of connected vehicles (CV) in total flow 
increases. However, due to low CV penetration in the cur-
rent vehicle market, improving the traffic signal operation 
remains a challenging task. In an effort to improve the per-
formance of CV applications at low penetration rates, the 
authors develop a new method to estimate the speeds and 
positions of non-connected vehicles (NCV) along a signalized 
intersection. The algorithm uses CV information and initial 
speeds and positions of the NCVs from loop detectors and 
estimates the forward movements of the NCVs using the 
Gipps’ car-following model. Calibration parameters of the 
Gipps’ model were determined using a solver optimization 
tool. The estimation algorithm was applied to a previously 
developed connected vehicle signal control (CVSC) strat-
egy on two different isolated intersections. Simulations in 
VISSIM showed the estimation accuracy higher for the in-
tersection with less lanes. Estimation error increased with 
the decrease in CV penetration and decreased with the de-
crease in traffic demand. The CVSC strategy with 40% and 
higher CV penetration (for Intersection 1) and with 20% and 
higher CV penetration (for Intersection 2) showed better per-
formance in reducing travel time delay and number of stops 
than the EPICS adaptive control.
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1.  INTRODUCTION
In recent years, the connected vehicle (CV) technol-

ogy has been getting attention as a step towards the 
next generation transportation system. Traffic signal 
systems under the CV environment can use real-time 
communication between vehicles (V2V), vehicles and 
infrastructure (V2I and I2V) and vehicles and hand-
held devices (V2D), thus enabling the access to de-
tailed and instantaneous vehicle information such as 
its speed and location [1, 2].

Such real-time information can be used to design 
signal control strategies that can efficiently respond 
to the variations in traffic conditions. In fact, if the CV 
information is used in real-time traffic signal systems, 
the performance of the traffic system should improve. 
Chandan et al. [3] proposed a connected vehicle sig-
nal control (CVSC) algorithm for an isolated intersec-
tion, which utilized the speeds and positions of the 
CVs. Various traffic scenarios were tested assuming 
100% CV penetration (CVP).

However, the current main drawback of this tech-
nology is that its low market penetration makes it less 
beneficial to exchange CV information. According to 
Statista [4], the CVP rates in the year 2017 in various 
regions of the world were: USA (12.0%), Europe (5.3%), 
Africa and Middle East (2.7%), Asia (2.7%), and the 
forecasted CVP rates for the year 2021 in the same 
regions are 34.3%, 24.3%, 20.9% and 13.3%, respec-
tively.

Furthermore, most traffic signals in the USA are 
still fixed-time signals [5]. About 18% of them adopt 
adaptive traffic control and about 88% use inductive 
loop detectors (ILD) [6]. CV-based traffic applications 
have been only deployed at pilot level [7]. As CV’s mar-
ket penetration will continue to increase over time, 
the current paper further explores the potential ben-
efits of the CV technology by extending the research 
of Chandan et al. [3] to evaluate its potential under 
lower CVPs.

For an effective traffic signal control under low 
CVPs, it is important to develop methods to acquire 
vehicle-related information, both spatially and tem-
porally, by using the data provided by the existing  
infrastructure-based sensors (ILDs or video detectors) 
and the low penetrated CVs. The ILDs can provide 
instantaneous information such as vehicles’ count, 
speed and position at any fixed point, for all the vehicles, 
particularly those not equipped with V2I or V2V com-
munication devices (non-connected vehicles (NCV)). 
However, they cannot provide vehicle information in a  
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However, the NCV’s information was estimated only 
when the CVs or AVs come to a stop, and not during 
their motion.

Zheng et al. [5] estimated traffic volumes, particu-
larly for low CVPs (below 10%), by using the trajectories 
of the real-world CV data. The estimation problem was 
formulated as a maximum likelihood problem that in-
corporates multiple CV trajectories and was solved by 
using an expectation maximization procedure. The re-
sults showed that for volumes estimated at 30-minute 
and 1-hour intervals, the mean absolute percentage 
error was within 9–12%, and 19% at a 10-minute inter-
val. However, their method did not consider estimating 
the volumes at a 1-second interval, which can have 
more potential in utilizing the estimated information to 
design the signal timings.

The aforementioned studies focused on utilizing 
low CVP data, to estimate the NCV’s information and to 
improve the performance of signal control algorithms, 
without relying on infrastructure-based detector infor-
mation. However, it is believed that, during the period 
of the progressive increase of the CVP in the market, 
utilizing the vehicle information from both CVs and the 
existing ILDs, can be an asset in improving the accu-
racy of the NCV’s information estimation. Hence, the 
current paper builds on the work done by Chandan et 
al. [3] and tackles the lower CVPs situations by also 
considering traditional upstream ILD information. The 
contributions of this paper are twofold. Firstly, a meth-
od to estimate the individual NCV’s information by us-
ing the data from the ILDs and the CVs is proposed. 
Secondly, the estimated NCV’s information is fed into 
the basic CVSC algorithm for its upgrade. Then, the 
estimation accuracy and the performance of the up-
graded CVSC algorithm are evaluated on two different 
isolated intersections.

3. MODELING APPROACH TO ESTIMATE 
NON-CONNECTED VEHICLE INFORMATION
The real-time CV information such as speeds and 

positions of individual vehicles is a valuable resource 
to develop better signal control strategies. However, 
the current real-life CVP rate will take a number of 
years to reach 100%. Under such situations of low 
CVPs, the ability to estimate speeds and positions of 
the individual NCVs, spatially and temporally, is im-
portant. In this paper, we propose a method to utilize 
the information from both CVs and ILDs that are typi-
cally already installed in the pavement. When a vehicle 
passes through an ILD, its time of detection (t), order of 
detection, speed and position information is taken as 
input to the algorithm. For every time-step after time t 
until the vehicle crosses the stop-line, the speeds and 
positions of all the CVs are updated directly, and the 

geographically continuous way. Hence, the current 
work proposes a functional alternative that utilizes 
both the NCV (from the fixed point of the ILDs) and the 
CV information to estimate the speeds and the posi-
tions of the NCVs and then feed the estimated NCV 
data to the CVSC algorithm, to adjust the traffic signal 
timings dynamically and more efficiently.

2.  RELATED WORK
In recent years, the real-time traffic signal control 

has captured substantial attention by using the CV 
data. Many researchers have used the CV data in the 
processes of estimating vehicle speeds and locations 
under the different CVPs.

Guler et al. [8] tested the effect of the CVP on their 
traffic control algorithm, which significantly decreased 
the average delay as the penetration increased from 
0% to 60%. Benefits were less significant for the pene-
tration rate above 60%.

Goodall et al. [9] proposed a CV-based adaptive 
signal control algorithm that used a rolling-horizon 
strategy to choose a phase by optimizing an objective 
function over a 15-second horizon period. Under low 
CVPs, the algorithm analyzes deviations in CV’s accel-
erations from those predicted by the car-following mod-
el and inserts the NCVs into the simulation network. 
The simulation gave promising results for penetration 
rates greater than 50%. However, the algorithm could 
not estimate the NCVs in the free-flow region where 
there is almost no interaction between vehicles [10].

Feng et al. [10] proposed a real-time stage allo-
cation algorithm utilizing the CV data and optimized 
phase sequence and duration by solving a two-level 
optimization problem. Under low CVPs, the authors 
applied different traffic models to estimate the NCV’s 
location and speed. The algorithm reduced total delay 
significantly under high CVPs and was comparable to 
a standard actuated control under low CVPs. The main 
limitations in their work are that the estimated NCVs 
were inserted between a pair of CVs until the gap be-
tween the two CVs was full and that the inserted NCV’s 
speed and position were calculated by assuming the 
acceleration to be zero.

Yang et al. [11] integrated the data from CVs, NCVs 
and automated vehicles (AVs), and optimized the de-
parture sequence of all vehicles in their algorithm. 
The arrival sequence, the virtual departure time and 
the trajectories of the NCVs were estimated using the 
kinematic wave theory and the Newell’s car-following  
model, based on the information provided by the 
stopped CVs and AVs. For the CVPs higher than 45%, 
the queue length estimation error was within 3 cars. At 
50% and higher, CVP delays and stops were reduced 
when compared to a standard actuated signal control. 
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Step 2: At the time t+T, the speed and the position of 
all the CVs on each lane are updated from the GPS 
source. If the CV has changed its lane, the speed, the 
position and the lane-wise OD of all the vehicles on the 
corresponding approach are updated according to the 
CV’s new position. If the CV has crossed the stop-line, 
its information is removed from the vehicle database 
of the corresponding lane and the OD is updated.
Step 3: The estimation of the NCV’s information at the 
time t+T is done using Equations 1–4. However, the es-
timation equations of the Gipps’s model or any oth-
er car-following model do not function well in certain 
traffic situations, in which cases it is justified to adopt 
other approaches to minimize the estimation error. 
The traffic scenarios where the Gipps’ equations have 
limitations are described below.

Scenario 1: If the follower has a leader vehicle
When the signal turns green, the first vehicle in the 

queue will accelerate only after the reaction time, after 
perceiving the green light. At this initial time, the actual 
speed of the follower (NCV) should be zero, with the fol-
lower accelerating only after the reaction time, after its 
leader starts to move. However, the follower’s speed, 
as estimated by the Gipps’ model, does not result in 
zero. During the red interval, when both vehicles are 
in a stop position, where the actual speeds were zero, 
the Gipps’ equations estimate the follower’s speed to 
be greater than zero. Under such circumstances, to 
minimize the estimation error, a new equation is pro-
posed to estimate the follower’s speed heuristically, as 
below,
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where RTn(t+T) is the reaction time of the follower at 
the time t+T. In this paper, the reaction time was as-
sumed to be 1 second, as this is typically equal to the 
simulation time-step. This assumption was also based 
on previous research, which estimated that the reac-
tion time varies within a range of 1.0–1.55 seconds 
[14].

Scenario 2: If the follower has no leader and if the sig-
nal state is green or amber

If the first vehicle in the queue is an NCV when the 
signal turns green, meaning there is no leader, the 
driver accelerates the vehicle only after the reaction 
time, after observing the green signal. In that situa-
tion, the Gipps’ model does not estimate the speed 
correctly. Thus, the speed is estimated as:

speed and position of each NCV need to be estimated. 
To solve this problem, the Gipps’ car-following model 
is adopted.

3.1 Overview of the Gipps’ car-following model

The Gipps’ model belongs to the category of “safety 
distance” or “collision avoidance” models, where the 
driver of the following vehicle is assumed to always 
keep a safe distance from the leading vehicle [12]. Ac-
cording to the Gipps’ model, two different speeds are 
calculated for each vehicle at each time-step. One for 
the free driving situation, un

acc (Equation 1) and the oth-
er for the car-following situation, un

dec (Equation 2). The 
actual speed of the vehicle (Equation 3) is chosen to be 
the minimum of the expressions in Equations 1 and 2. 
The position of the vehicle is given by Equation 4 [13].
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where un(t) and un-1(t) are, respectively, the speeds of 
vehicles n (follower) and n-1 (leader) at time t; xn(t)  and 
xn-1(t) are, respectively, the longitudinal positions of the 
follower and leader at time t; un

des and an are, respec-
tively, the desired speed and maximum acceleration 
of the follower; dn is the most severe deceleration that 
the follower wishes to undertake, and d'

n-1 is the most 
severe deceleration of the leader as estimated by the 
driver of the follower vehicle (dn>0 and d'

n-1>0). T is the 
reaction time, Sn-1 is the effective length of the leader, 
which includes the physical length of the leader and 
the inter-vehicle spacing at a stop (assumed 6.5 m).

3.2 Estimation of the NCV’s information using 
the Gipps’ model

The speed and the position of the NCVs at the time 
t is acquired from the ILDs, which are placed in each 
lane on all the approaches, at 150 m before the stop-
line. This position was chosen because it is within the 
DSRC range (100 m–1000 m) for the CV to share its 
information [11]. Below, the estimation strategy is ex-
plained step-wise.
Step 1: When a vehicle is detected at the time t, de-
pending on its type (NCV or CV), the speed and the 
position information is obtained from the ILDs or the 
GPS source. As per the time of detection, a lane-wise 
vehicle database and an order of detection (OD) are 
maintained for all the approaches of the intersection.
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region, the NCV is assumed to decelerate until its 
speed becomes zero at the stop-line, which is pro-
posed in Equation 7.
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where Rn(t) is the region of the follower at time t (1 
for free-flow region and 2 for slow-down region), dec 
is the deceleration of the leaderless follower, which 
is applied when the follower enters slow-down region 
during the red interval.

The values of acc, dec and the lengths of the free-
flow and the slow-down regions are discussed in Sec-
tion 5. For any traffic scenario other than the ones 
mentioned above, the Gipps’ model is applied to esti-
mate the NCV’s speed, using Equations 1–3.
Step 1: At the time t+T, the estimated position of the 
NCV for all the traffic scenarios is calculated using 
Equation 4. If the NCV’s estimated position overlaps with 
the position of its leader, the estimated position is ad-
justed without overlapping, including the inter-vehicle  
spacing at a stop.
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where ∆t is the simulation time-step and acc is the ac-
celeration of the leaderless NCV, which is applied after 
the reaction time, after observing the green signal.

Scenario 3: If the follower has no leader and if the sig-
nal state is red

When the signal turns red, the first vehicle on the 
lane will decelerate immediately or after a few sec-
onds depending on the vehicle’s speed and distance 
to stop-line. To analyze this traffic scenario, the road-
way is divided into two regions: free-flow region (where 
vehicles are assumed to always maintain their speed) 
and slow-down region (where vehicles are assumed to 
decelerate during the red interval).

If an NCV is the first vehicle in its lane with no 
leader, it is assumed that the NCV would maintain the 
same speed as in its previous time-step, if it is locat-
ed in the free-flow region and if it is in the slow-down  

For (time=1; time ≤ total time; time++)
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Obtain un,t, xn,t, and update LCV,t and OD,i

For (vehicle=1; vehicle ≤ total vehicles; vehicle++)

Obtain  un,t, xn,t

If (vehicle = CV)

If (xn,t>xstop-line)

If (LCV,t=LCV,t-1)

Obtain
Rn,t-1

Remove the CV
from VDi,t

Add the CV
to VDi,t

Update lane-wise OD,i

If (LVn,t=1)

If (un-1,t-1=0 & un-1,t=0 & un,t-1=0

If (un-1,t-1=0 & un-1,t>0 & un,t-1=0

RTn,t=RTn,t-1+1;
if (RTn,t≤1)

RTn,t=RTn,t-1+1;
if (RTn,t≤1)Estimate un,t

from Equation 3

un,t=un,t-1 un,t=un,t-1 un,t=un,t-1un,t=un-1,t

Estimate xn,t from Equation 4

if (xn,t>xstop-line)
Remove the NCV

from VDi,t

Update lane-wise OD,i

If (un,t-1=0) If (Rn,t-1=1)

un,t=un,t-1+acc. tS

un,t=un,t-1-dec.tS;
if (un,t≤0)

un,t=0

If (TSSt=GREEN or AMBER)

t= time;  un,t=follower’s speed at t; 
xn,t=follower’s position at t; un-1,t=leader’s 
speed at t; xn-1,t=leader’s position at t; 
xstop-line=stop-line position; LCV,t=lane number 
of CV; VDi,t=vehicle database of lane i; 
OD,i=order of detection of lane i;
Rn,t=follower’s region (1 for free-flow region, 
2 for slow-down region); LVn,t= leader 
vehicle of the follower (0 for leader’s 
absence, 1 for leader’s presence); 
TSSt=signal state at t; RTn,t=follower’s 
reaction-time count (initially set as 0); 
acc=assumed acceleration of NCV, 3.5 
m/s2; dec=calculated deceleration of NCV; 
tS=time-step (1 second)

Figure 1 – Flowchart of the estimation process of the NCV information
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arrival and departure flows by maintaining the  
flow-ratio (Equation 9) on all approaches as near as 
possible to 1.0.

(
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where p = phase group, P = total number of phase 
groups.

The basic CVSC algorithm runs based on the  
real-time CV data collected at every time-step, except 
for the short duration of the reserve-time. During this 
period, the algorithm estimated future vehicles’ posi-
tions using the Wiedemann car-following model and 
applied the flow-ratio concept only once (to extend the 
green time), during the start of the reserve-time peri-
od. The following significant upgrades were made to 
this basic CVSC strategy, making this strategy appli-
cable to less than 100% of the CVP real life environ-
ments:

 –  The NCV information estimation algorithm using 
the Gipps’ model is integrated into the CVSC’s, to 
test the strategy for CVPs lower than 100%.

Step 2: If the CV’s position or the NCV’s estimated 
position crosses the stop-line coordinate, their infor-
mation is removed from the vehicle database of the 
corresponding lane and the OD is updated.

 It should be noted that the algorithm does not take 
the NCV’s lane changes into consideration. Thus, if 
in real life an NCV changes its lane, it is assumed to 
move in the same lane where it was initially detected, 
until it crosses the stop-line. The flowchart of the esti-
mation algorithm is presented in Figure 1.

4. BASIC CVSC STRATEGY AND LATEST 
UPGRADES
Chandan et al. [3] proposed a real-time traffic sig-

nal control algorithm using the CV information (CVSC). 
This algorithm assumed 100% of the CVP and used 
speeds and positions of all vehicles at every time-step. 
In a phase, green time was provided until the last ve-
hicle that was in the queue during the end of red in-
terval crossed the stop-line. Then, the green time was 
extended until the average space-mean speed of all 
vehicles in the current green interval reached 90% of 
its desired speed (defined as speed-ratio). During the 
reserve-time period (Equation 8), the strategy aimed 
at minimizing the difference between the cumulative  
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For (time=1; time ≤ Total time; time++)

Apply car-following algorithm from Figure 1
to estimate and update the vehicle information

If (Signal state = GREEN)

If (Flow-ratio was calculated for the 
current phase, in the previous time-step)

Minimum green = 5s
Maximum green = 1.30 ∙ (Average of

last 5 cycles’ actual green of current phase)

If (last vehicle in queue during the start
of green has crossed the stop-line)

If (Speed-ratio is ≥ 90%)

Calculated reserve-time

If (Signal state = AMBER)

If (AMBER time = 3s)

Find the last vehicle in
queue, which is waiting for

the next phase’s green

Switch to RED and assign
GREEN to the next phase

If (Maximum
green has ended)

Switch to
AMBER

If (time = Tf)

Calculate flow-ratio for each second till the end of reserve-time
and obtain the time (Tf) where the flow-ratio is nearest to 1.0

Figure 2 – Flowchart of the updated CVSC algorithm
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intersections is that, due to the geometrical differenc-
es in terms of number of lanes on each approach and 
the availability of free right-turns, the performance of 
the NCV estimation algorithm and the CVSC strategy 
could be assessed in a more robust manner.

Vehicle volumes were converted to approximate 
intersection saturation rates using the intersection 
capacity utilization (ICU) metric. The metric sums the 
amount of time required to serve all movements at 
saturation for a given cycle length and divides it by 
that reference. This method is similar to taking a sum 
of critical volume to saturation flow ratios (v/s), yet al-
lows minimum timings to be considered [17]. To calcu-
late the ICUs, the lost-time per phase, minimum green 
time and the reference cycle length were assumed as 
4, 5 and 120 seconds, respectively. The field-recorded 
 volumes produced 0.65 and 0.75 ICU across Inter-
sections 1 and 2, respectively. These original volumes 
were altered by uniform factors to generate volumes of 
0.35, 0.50, 0.80, 0.95 ICU, respectively, as shown in 
Table 1. The turning movements were allocated to four 
different phases, namely, phase 1 (NBT, NBR, SBT, 
SBR), phase 2 (NBL, SBL), phase 3 (EBT, EBR, WBT, 
WBR) and phase 4 (EBL, WBL). The movements EBR, 
WBR, NBR and SBR on Intersection 1 have dedicated 
right turns.

In both the CVSC and the EPICS solutions, a four-
phased timing plan was applied within a cycle and the 
simulation was run for 1 hour, in which the first 15 
minutes were used as a warm-up period. The results 
of various scenarios are based on the average of 10 
random speeds. Cars (95%), buses (3%) and heavy 
goods vehicles (HGVs) (2%) were used in the simula-
tion, whose minimum and maximum desired speeds 
were taken as 48–58 km/h, 40–45 km/h and 40–45 
km/h, respectively.

For the traffic Scenario 2 (in Section 3.2), when 
the traffic signal turns green, the first vehicle in the 
queue accelerates (acc) starting from the rest. Previ-
ous research suggests acceleration values for starting 

 –  The CV and the NCV information are collected at 
150 m before the stop-line (instead of 300 m as 
in [3]) to minimize the estimation error due to lane 
changes.

 –  During the reserve-time period, instead of applying 
the flow-ratio concept only once, it is applied as a 
rolling-horizon, using the updated CV information 
at every time-step, until the flow-ratio values stop 
increasing in comparison to the previous one.

 –  To investigate the accuracy of the car-following 
model in estimating the NCV trajectories against 
the actual vehicle trajectories of VISSIM, the Wie-
demann car-following model was replaced by the 
Gipps’ model, but simulations were still performed 
in VISSIM. It was considered that testing a different 
car-following behavior against the VISSIM’s model 
would represent real-field testing conditions better 
and the performance of the CVSC strategy could 
be assessed in a more robust manner. The flow-
chart of the updated CVSC strategy is presented in 
Figure 2.

5.  SIMULATION TESTS AND RESULTS

5.1 Simulation framework

The testing and evaluation of the new CVSC strate-
gy are done by comparison with the EPICS’s adaptive 
control, in VISSIM 8 software [15], which has PTV EP-
ICS [16] signal control module embedded in it. Thus, 
VISSIM 8 provides a platform for the comparison of the 
CVSC and the EPICS solution. The CVSC algorithm was 
coded in C++ language and integrated with VISSIM 
COM API, which enables users to access the vehicles’ 
speed and position information at every time-step.

Simulations were carried out on two different iso-
lated intersections (Figure 3), one along Castle Downs 
Road and 97 Street, Edmonton and the other along 
Sumneytown Pike and DeKalb Pike, Ambler, Penn-
sylvania. The main reason to choose two different  

1 2

NB
NB

EB

EB

SB
SB

WB

WB

Figure 3 – Snapshot of test Intersections 1 and 2 [Source: Bing maps]
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calibrate the Gipps’ model parameters. The second 
evaluates the prediction accuracy of the NCV informa-
tion estimation algorithm and the third evaluates the 
signal control performance of both the CVSC and the 
EPICS solutions.

5.2 Calibration procedure for the Gipps’ model 
parameters

To estimate the speed and position of the NCVs, 
the Gipps’ car-following model was applied (Equations 
1-4), in which an, dn, d'n-1 are the calibration parame-
ters. As in Soria et al. [14], the calibration analysis in 
this paper was performed in EXCEL using the solver 
optimization tool. The range of calibration parameters 
for the optimization was taken as an=[0, 3.3] m/s2 and 
dn≈d'n-1=[1.5, 5] m/s2. The parameters were calibrated 
by minimizing the root mean square error (RMSE) for 
the speed difference between the actual value (from 
VISSIM) and the estimated value (from Gipps’), with 
the constraints on the considered ranges of an and dn.

Calibrations were performed on 10 randomly se-
lected leader-follower pairs, on both intersections. 
The Gipps’ model estimated the speed and the posi-
tion information with lower RMSE for lower ICUs. The 
average values of an and dn for Intersection 1 were  
3.3 m/s2 and 3.6 m/s2 for 0.95 ICU, respectively, and 
1.3 m/s2 and 3.6 m/s2 for 0.35 ICU, respectively. For 
Intersection 2, the average values were 2.9 m/s2 and  

a vehicle at an intersection are within the interval of 
1.16–1.25 m/s2 [20] and 1.8–2.0 m/s2 [21]. In this 
paper, acc was assumed as 3.5 m/s2, as it is the de-
fault value in VISSIM [15].

For the traffic Scenario 3 (when the traffic signal 
turns red), Rittger et al. [22] concluded that drivers, af-
ter perceiving the traffic light, even at a distance great-
er than 180 m, only started decelerating approximate-
ly 130 m before the stop-line. Viti et al. [23] observed 
that vehicles in VISSIM tend to decelerate gradually 
while approaching the intersection over 100 m from 
the stop-line. In this paper, the slow-down region (Re-
gion 2) was assumed to be 0–80 m before the stop-line 
and the free-flow region (Region 1) was assumed to be 
above 80 m from the stop-line (Figure 4), which is ad-
equate for the geometric and speed environments of 
both intersections. Once a leaderless NCV enters the 
slow-down region during the red-interval, the vehicle is 
assumed to decelerate at the rate of dec (Equation 10) 
[15], until it gradually slows down and comes to rest at 
the stop-line.

,mindec dx
v dec2 max

2

$= b l  (10)

where v is the current vehicle speed, dx is the distance 
to stop-line and decmax is the maximum deceleration.

The sensitivity of the CVSC strategy for each ICU 
was tested at 100, 80, 60, 40 and 20% penetra-
tion rates. The simulation results are divided into 
three parts. The first part presents the procedure to  

Table 1 – Tested volumes along Intersections 1 and 2 [18, 19]

ICU
Turning movements at Intersection 1

EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR
0.35 35 296 99 159 225 103 244 514 239 108 452 268
0.50 50 423 141 228 322 148 348 735 341 154 645 383
0.65 65 550 183 296 418 192 453 955 443 200 839 498
0.80 80 677 225 364 514 236 558 1,175 509 246 1,033 613
0.95 95 804 267 433 611 281 662 1,396 605 292 1,226 728

ICU
Turning movements at Intersection 2

EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR
0.35 6 109 10 38 100 17 15 148 77 34 293 28
0.50 12 230 21 80 210 36 32 310 161 71 616 58
0.65 17 336 30 116 306 53 46 453 235 103 899 85
0.80 22 429 39 148 391 68 59 579 300 132 1,149 108
0.95 26 517 47 179 471 82 71 698 362 159 1,385 131

Region 2 Region 1
Region 2 Region 1

Intersection 1 Intersection 2

Figure 4 – Slow-down and free-flow regions on Intersections 1 and 2
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where, t = time, I = interval time (900 seconds), i = NCV 
count, Nk = total number of the NCVs in region k, uk

i,act, 
uk

i,est, xk
i,act and xk

i,est are the actual speed, estimated 
speed, actual position and estimated position of the 
NCV i in region k, LCi

k = actual number of lane changes 
made by the NCV i in region k.

5.3.2  Results from Intersection 1

At 0.95 ICU and 80% CVP, the average speed and 
position RMSEs in Regions 1 and 2 were 4.7 km/h and 
6.0 km/h, and 4.3 m and 8.9 m, respectively, with an 
average percent of the NCV’s lane change of 11.3% 
and 12.0%, respectively. As the NCV’s lane change at 

2.9 m/s2 for 0.95 ICU, respectively, and 0.5 m/s2 and 
3.7 m/s2 for 0.35 ICU, respectively. These calibrated 
values were considered in the NCV’s information esti-
mation algorithm.

5.3 Analysis of the estimation accuracy of the 
Gipps’ car-following model

5.3.1  Evaluation methodology
To analyze the NCV’s estimation accuracy spatially, 

the approach that is critical in both intersections was 
selected and divided into 2 regions before the stop-line: 
Region 1 (150 m–80 m) and Region 2 (80 m–0 m), 
as shown in Figure 4.

Considering the vehicle arrival pattern (Poisson 
distribution) in VISSIM, the estimation accuracy was 
analyzed temporally, by dividing the simulation time 
of 900–3600 seconds into three 15-minute intervals. 
Three performance indicators, namely, average speed 
RMSE, average position RMSE and average percent-
age lane change of NCVs were used in each region. 
For all the NCVs at time t, in region k, the average dif-
ference between the actual value (from VISSIM) and 
the estimated value (from the Gipps’ model) was cal-
culated and it was averaged over each 15-minute time 
interval. The governing equations are:
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Figure 5 – Estimation accuracy for Intersection 1
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(NBT), the vehicles in Region 2 tend to choose the 
lane (or fill the gap of the lane) which has a smaller 
queue.

4)  For all the ICUs and all the CVPs, the average posi-
tion RMSE in Region 1 was lower than in Region 2 
(which was also observed for Intersection 2). As the 
NCVs move forward from the detection point, the 
position RMSE gets accumulated with time.

5.3.3  Results from Intersection 2

At 0.95 ICU and 80% CVP, the average speed and 
position RMSEs in Regions 1 and 2 were 5.4 km/h 
and 4.4 km/h, and 5.4 m and 8.5 m, respectively, with 
an average percent of the NCV’s lane change of 2.2% 
and 0.9%, respectively. At higher ICUs, Intersection 2 
showed higher estimation RMSE, compared to Inter-
section 1. The following can be concluded from the 
results presented in Figure 6:
1)  For a given CVP, at higher ICUs, the average percent 

lane change of the NCVs in Region 1 was higher 
than in Region 2, and vice versa at lower ICUs. This 

any time-step is not estimated, it affects the estima-
tion of its speed and position throughout the simula-
tion period. The following can be said from the estima-
tion accuracy results presented in Figure 5:
1)  For a given ICU, with the decrease in the CVP, as 

the proportion of the NCVs increases, the average 
speed and position RMSEs and the percent lane 
change of the NCVs also increase in both Regions 1 
and 2 (which was also observed for Intersection 2).

2)  For a given CVP, with the decrease in the ICU, the 
proportion of the NCVs in total flow decreases, and 
the average percent lane change of the NCVs and 
the average speed RMSE in Regions 1 and 2 de-
creases.

3)  For a given CVP, at any ICU, the average percent 
lane change of the NCVs and the average speed 
RMSE in Region 1 was lower than in Region 2. This 
is because during the red interval when vehicles 
were arriving to the stop-position, due to the avail-
ability of 3 lane choices for through-movement 

1   2   3

Interval
Region 1

1   2   3

Interval
Region 2

1   2   3

Interval
Region 1

1   2   3

Interval
Region 2

1   2   3

Interval
Region 1

1   2   3

Interval
Region 2

1   2   3

Interval
Region 1

1   2   3

Interval
Region 2

1   2   3

Interval
Region 1

1   2   3

Interval
Region 2

0.95 ICU 0.8 ICU 0.65 ICU 0.5 ICU 0.35 ICU

CV 80% CV 60% CV 40% CV 20%

14.0

12.0

10.0

8.0

6.0

4.0

2.0

0.0

16.0

12.0

8.0

4.0

0.0

18.0

15.0

12.0

9.0

6.0

3.0

0.0

Sp
ee

d 
RM

SE
 [k

m
/h

]
Po

si
tio

n 
RM

SE
 [m

]
N

CV
’s

 la
ne

 c
ha

ng
e 

[%
]

Figure 6 – Estimation accuracy for Intersection 2
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effectiveness (MOEs), which are shown in Figure 7 for 
both intersections. Table 2 presents the percentage 
difference in the performance of the CVSC strategy 
against the EPICS solution.

For Intersection 1, for 100% CVP rate at various 
ICUs, CVSC strategy has reduced travel time delay by 
8.4%–24.3% and average number of stops by 3.8%–
10.3%, compared to the EPICS solutions. As expected, 
benefits decrease with the decrease in CVP. At 40% 
and higher CVP rates, for all ICUs, CVSC strategy has 
performed better than EPICS, reducing the MOEs. At 
ICUs lower than 0.5, even the CVSC strategy with 20% 
CVP has shown better results.

For Intersection 2, for 100% CVP rate at various 
ICUs, CVSC strategy has reduced travel time delay by 
5.2%–24.3% and average number of stops by 3.9%–
20.4%, compared to EPICS, with higher benefits at 
higher ICUs. At 20% and higher CVPs, for all the ICUs, 
CVSC strategy has outperformed the EPICS solution. 
The benefits were higher with higher CVPs at higher 
ICUs. For a given ICU, at all CVPs, travel time delay and 
average number of stops were higher for Intersection 
2 due to the lower number of lanes and bigger queues 
on Intersection 2. But, generally, the results for both 
intersections are consistent.

6. CONCLUSIONS AND FUTURE WORK
This paper improves the algorithm from Chandan 

et al. [3] by (1) developing a new method to estimate 
speeds and positions of the NCVs for real-life situa-
tions where the CV penetration is lower than 100%; 
(2) upgrading the basic CVSC strategy by including an 
NCV’s estimation algorithm. Furthermore, the accura-
cy of the estimation algorithm and the performance of 

is because, due to the availability of only two-lane 
choices for both through and right-turning move-
ments (SBT, SBR), vehicles tend to choose their 
lanes earlier at higher ICUs. At lower ICUs, during 
the red-interval, the through-movement vehicles 
have more freedom to choose to stop in the lane 
where there is a smaller queue.

2)  For a given CVP, with the decrease in the ICU the 
average percent lane change of the NCVs decrease 
in Region 1 and increase in Region 2 (justification 
as in 1).

3)  For a given CVP, at higher ICUs, the NCV’s average 
speed RMSE in Region 1 was higher than in Region 
2, and vice versa at lower ICUs (justification as in 
1).
Results from both intersections were consistent, 

although, due to higher number of lanes on the critical 
approach of Intersection 1 and the free right-turning 
lane, the average percent lane changes of the NCVs 
are higher on Intersection 1. Hence, as expected, the 
average speed and position RMSEs were also higher 
in Intersection 1. It was also observed that, as expect-
ed, the difference in percent lane changes of the NCVs 
between Regions 1 and 2 is higher in Intersection 1. In 
general, the performance of the estimation algorithm 
was better at lower ICUs, due to lower proportion of 
the NCVs and lower percent lane change of the NCVs. 
Finally, for the traffic situations where the Gipps’ equa-
tions have limitations, it was observed that the newly 
proposed equations were able to reduce the speed 
and position estimation RMSEs.

5.4 Analysis of the CVSC strategy results

To compare the results of both the CVSC and the 
EPICS solutions, travel time delay and average num-
ber of stops per vehicle were used as measures of  
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Figure 7 – CVSC performance for a range of CVPs and ICUs on Intersections 1 and 2
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enters the road network. Hence, currently the algorithm 
is applicable in isolated intersections with upstream 
ILDs or any sensors that can detect all vehicles, lane-
wise. Detectors can be placed within 150–250 m from 
the stop-line, but, the closer to it they are placed, the 
less the occurring lane changes, and, thus, the better 
the estimation accuracy.

Nonetheless, there is room for improvement of the 
NCV’s information estimation algorithm, justifying fu-
ture research. First, only one second was used for driv-
ers’ reaction time and simulation time-step, meaning 
it should be evaluated if there is a need for calibration 
if the road environment is different, namely by apply-
ing smaller time-steps. Second, it is also worth investi-
gating drivers’ deceleration decision-making behavior, 
particularly when the vehicle is far from the stop-line 
during the end of the amber period, to improve the ac-
curacy of the method used to determine the location of 
free-flow and slow-down regions. Finally, work should 
focus on a method to identify the NCVs’ lane-changing 
behavior and integrating it to the CVSC strategy.
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the upgraded CVSC algorithm was evaluated on two 
different intersections, thus producing a more robust 
evaluation.

The estimation algorithm obtains speed and posi-
tion information of the NCVs from the ILDs, placed in 
each lane at 150 m before the stop-line and that of the 
CVs at all times, between 150 m and 0 m before the 
stop-line. At every time-step the algorithm estimates 
the speed and the position of the NCVs using the 
Gipps’ model, assuming that the NCVs do not change 
their lanes. For certain traffic situations where the 
Gipps’ equations do not function well, heuristic equa-
tions were applied to reduce the estimation error.

Simulations were performed on two real-field isolat-
ed intersections using the VISSIM 8 software. Calibra-
tion parameters of the Gipps’ model were determined 
for each intersection, at different ICUs, by minimizing 
the RMSE, using the solver optimization tool in EXCEL. 
The estimation results showed that the average speed 
and position RMSEs increased with the decrease in 
the CVP and decreased with the decrease in the ICU.

Both real-time CV and estimated NCV information 
are now taken in consideration by the CVSC strategy, 
which sets the green time by serving the queue that 
was identified during the red interval and maintaining 
the flow-ratio as near as possible to 1.0. Simulations 
showed higher benefits with higher CVPs at higher 
ICUs.

In general, the estimation algorithm performed 
well. However, as lane-changing behavior of the NCVs 
was not considered, benefits were higher for the in-
tersection with less lanes. The estimation algorithm 
requires the NCV information at least once when it  

Table 2 – Performance of CVSC strategy against EPICS solution 

Percent change of travel time delay compared to EPICS [%]
Intersection 1 Intersection 2

ICU 0.35 0.50 0.65 0.80 0.95 0.35 0.50 0.65 0.80 0.95
EPICS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CVSC (100%) 8.4 12.0 13.0 14.4 24.3 5.2 10.5 11.9 17.4 24.3
CVSC (80%) 6.1 10.7 3.0 9.5 10.6 4.2 9.9 9.6 15.5 21.9
CVSC (60%) 2.6 6.1 2.4 7.6 8.0 3.3 9.0 7.1 13.5 16.7
CVSC (40%) 1.9 1.4 0.8 5.6 2.0 2.5 7.2 5.5 11.8 13.1
CVSC (20%) 0.7 1.0 -5.8 -5.6 -6.0 1.2 4.4 3.0 6.9 7.3

Percent change of average number of stops per vehicle compared to EPICS [%]
Intersection 1 Intersection 2

ICU 0.35 0.50 0.65 0.80 0.95 0.35 0.50 0.65 0.80 0.95
EPICS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CVSC (100%) 3.8 6.0 10.3 6.3 8.0 3.9 6.2 7.6 6.0 20.4
CVSC (80%) 2.1 4.5 7.3 5.1 4.5 2.7 3.3 5.6 3.8 13.9
CVSC (60%) 1.8 4.1 3.2 3.8 3.2 1.7 2.3 3.1 2.7 10.7
CVSC (40%) 0.6 1.7 1.0 2.3 0.3 1.0 2.0 2.3 2.1 7.4
CVSC (20%) 0.4 0.9 -4.0 -6.1 -2.9 0.4 0.9 1.3 1.8 4.2
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ESTRATÉGIA DE CONTROLO DE SINAIS LUMINOSOS 
EM TEMPO REAL APLICADA A AMBIENTES COM 
NÍVEIS PARCIAIS DE COBERTURA DE VEÍCULOS 
CONECTADOS

ABSTRATO

O desempenho do sistema de tráfego tende a melhorar 
à medida que aumenta a percentagem de veículos conect-
ados (CV) em circulação. No entanto, e pelo facto do nível 
de penetração de CV no atual sistema de transportes per-
manecer reduzido, a otimização do sistema de regulação 
do trânsito, por esta via. releva-se uma tarefa desafiadora. 
Procurando melhorar o seu nível de desempenho global 
mesmo em ambientes com baixos níveis de presença de 
CV, os autores desenvolveram um novo método para esti-
mar as velocidades e posições de Veículos Não-Conectados 
(NCV) aplicável em interseções semaforizadas. O algoritmo 
usa informação continua dos CV presentes nas correntes 
de tráfego, e de velocidades e posições iniciais de NCVs a 
partir de detetores fixos locais, para estimar os movimentos 
sucessivos dos NCVs recorrendo ao modelo de seguimento 
de Gipps. Os parâmetros de calibração do modelo de Gipps 
foram estimados recorrendo à ferramenta de otimização 
Solver. O novo algoritmo de estimação de NCVs foi incor-
porado numa estratégia pré-existente de controlo em tem-
po real de sistemas semaforizados baseada em veículos 
conectados (CVSC), e foi testado em duas diferentes in-
terseções isoladas. Simulações desenvolvidas no software 
de microssimulação VISSIM mostraram melhores resulta-
dos na aplicação à interseção com menos vias de aproxi-
mação. O erro de estimativa aumentou com a diminuição 
do nível de penetração CV e diminuiu com a diminuição dos 
fluxos de tráfego. A estratégia CVSC resultou num melhor 
desempenho, comparativamente ao sistema de controlo 
adaptativo EPICS, para níveis de penetração CV superior a 
40% na interseção 1, e para um nível de penetração CV su-
perior a 20% na interseção 2, reduzindo quer o tempo de 
viagem quer o número de paragens.

PALAVRAS-CHAVE

Veículos conectados; Sistemas inteligentes de transporte; 
Controlo semafórico em tempo real; Modelo de seguimento; 
Calibração de modelos; Microssimulação;
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