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Abstract

Wild edible mycorrhizal mushrooms are among the most appreciated and prized mush-

rooms in the world. Despite the cultivation of ectomycorrhizal (ECM) mushrooms has been

a growing subject of study worldwide, it has been hampered by the mutualistic lifestyle of

the fungi. Although not being obligate symbionts, most of the species of ECM mushrooms

only produce fruit bodies in association with trees or shrubs. In the present study, we aimed

at understanding certain aspects of the ecology of four different edible ECM fungi: Lactarius

deliciosus, Tricholoma equestre, T. portentosum and Boletus fragrans. Despite having a

broad distribution worldwide, these fungi inhabit also Mediterranean habitats with understo-

ries typically dominated by rockroses (Cistaceae). Studying the ecology of these mutualistic

fungi as well as the interaction with these species of shrubs is not only scientifically relevant

but also pivotal for the discovery of profitable cultivation protocols. We evaluated the com-

patibility of these ECM species with five species within Cistaceae family - Cistus ladanifer,

C. psilosepalus, C. salviifolius, Halimium halimifolium and Tuberaria lignosa. Each species

of fungi proved to be able to establish mycorrhizas with at least 2 different plants species but

varied in their host range of the tested Cistaceae. The dissimilarity in terms of host specificity

between some fungal species seemed to be connected with the phylogenetic distances of

the fungi. A correlation between the colonization percentage of the root systems and the

mycelial growth rates in pure culture was found. The connection of these traits might be an

important key to understanding the ecological competitor-colonizer tradeoffs of these ECM

fungal species. Altogether, our study reports unknown plant-fungi combinations with eco-

nomical relevance and also adds new insights about the ecology of these species of ECM

fungi.
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Introduction

Edible ectomycorrhizal (ECM) mushrooms are widely appreciated for their gastronomic,

nutritional and medicinal proprieties [1]. There is thereby a major interest in their cultivation

worldwide.

Ectomycorrhizal symbiosis is described to be a mutualistic plant–fungus association formed

between fine roots of plants and a fungus, mainly ascomycetes and basidiomycetes. This asso-

ciation plays a fundamental role in the ecosystems, affecting the biology, ecology, and growth

of forest trees and shrubs. In this association with mutual benefits for both partners, the fungus

confers protection from root diseases and helps the plant with water and nutrient absorption,

while the plant provides shelter and carbohydrates to its fungal partner (reviewed in [2]).

Although many studies have been conducted trying to understand ectomycorrhizal associa-

tions at several levels in the last years, not much is still known about mycorrhizal compatibility.

Some fungi are known to interact with several species of plants and having a broad host range

while other species are relatively host-specific [3]. However, plants and fungi that are not

reported to be associated in nature can establish mycorrhizas in laboratory conditions [4].

This phenomenon is not yet properly understood. However, it is known that the absence of

exogenous glucose in mycorrhization media/substrate is fundamental to test real affinity/com-

patibility between two possible partners [5]. Moreover, the reduction of glucose concentration

is frequently used in mycorrhizal synthesis experiments, stimulating the association (reviewed

in [2]).

The position of fungi in ecological ectomycorrhizal successions in ecosystems has been

studied and classified according to different features. A former classification proposed was the

division of ECM fungi in two groups according to the temporal appearance of their sporocarps

following tree establishment. Species in which the sporocarp appear within the first four years

after planting were considered early-stage while the ones that appear in later years were con-

sidered as late-stage [6,7]. Other classifications followed considering other features such as the

ability to produce mycelial strands or the colonization on root systems by secondary infection

[8]. Nowadays is generally accepted that an early-stage species is adapted to rapidly colonize

their host being replaced by other species–late-stage species—with competitor strategies that

would be dominant over the first ones [9].

The competition between ECM fungi in the soil can be direct, so-called interference compe-

tition, or can be indirect through the depletion of resources also known as exploitation compe-

tition [10]. Higher growth rates can give a competitive advantage to fungi namely fungi with

exploitation strategies. In fact, ECM fungi with higher growth rates have shown to have higher

root colonization percentages [11].

The ECM edible species Tricholoma equestre (L.) P. Kumm., Tricholoma portentosum (Fr.)

Quél., Lactarius deliciosus (L.) Gray and Boletus fragrans (Lanmaoa fragrans) Vittad. are con-

sidered as a delicacy and used in local gastronomy of many cultures [12–14]. In spite of the

toxicity suspicions around T. equestre, this species was recently reported not to be toxic [15]. L.

deliciosus is known to be a species with broad host range as well as is considered an early-stage

fungi [16] being commonly associated with conifers. Not much is known about the range of

hosts and the position of T. equestre and T. portentosum in ecological successions although the

phylogenetically close species T.matsutake is reported to be a late-stage and dominant ECM

species [17] being found associated with conifers. The same lack of knowledge is noted about

the ecology of B. fragrans. However much more is known about the ecology of other species

from Boletus genus, such as Boletus edulis which is a late-stage species [16] with a broad host

range [18,19]. As other boletes, B. fragrans is known to be found in broadleaf forests generally

associated with Oaks.
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Cistaceae is a Mediterranean family comprising 8 different genera and almost 200 species

(reviewed in [20]). All Cistaceae are able to establish ectomycorrhizas with a wide range of fun-

gal taxa (reviewed in [21]). Additionally, all Cistaceae can establish arbuscular mycorrhizas in

initial life stages (reviewed in [2]). Cistus andHalimium are two of the most widespread Cista-

ceae genera and known to be commonly associated with some ectomycorrhizal mushrooms

[22], including some edible species [19,23–26]. Furthermore, there are some studies describing

the synthesis and cultivation of ECM edible mushrooms (Terfezia spp., Tuber spp., and Boletus
spp.) using several species of Cistus (Cistaceae) as plant partners [23,25,27–30]. In spite of

Tuberaria genus has been much less studied, it is known that some species establish ectomy-

corrhizas with edible Terfezia [31,32].

In the present work, we aimed to:

1. Evaluate the compatibility of four species of edible ECM fungi from three different phyloge-

netic families (Tricholomataceae, Russulaceae, and Boletaceae)—T. equestre, T. portento-
sum, L. deliciosus, and B. fragrans–with five species from Cistaceae,—C. ladanifer, C.

salviifolius, C. psilosepalus,H. halimifolium, and T. lignosa—a family known to have a broad

range of ECM symbionts;

2. Evaluate the colonization strategies of each one of these fungi;

3. Understand how wide/narrow is the range of the tested Cistaceae hosts for each fungus.

Materials and methods

Fungal material

Mycelial cultures were isolated from fresh sporocarps of the four edible ECM species, Tricho-
loma equestre, Tricholoma portentosum, Lactarius deliciosus and Boletus fragrans. All sporo-

carps were collected in Pinus pinaster or Quercus spp. woods, withHalimium halimifolium
and Cistus spp. understory in Coimbra district. The collection sites, dates and the habitat of

each species can be consulted in Table 1. All the work was carried out in public lands and per-

mits were not required, since mushroom collection is not protected under any national legisla-

tion in Portugal. Morphological identification was according to different mushroom field

guides (e.g. [33,34].

Sporocarps were superficially sterilized with a solution of 3% calcium hypochlorite and dis-

sected in aseptic conditions. Small fragments of tissue were removed from the inner part of the

stem and the cap and placed into Petri dishes (n = 8) with PDA medium (Difco™) with pH

5.8–6.3 in a growth chamber at 24ºC ± 1˚C in the dark. All mycelial cultures were subcultured

every three months and periodically checked for contaminations. After the establishment of

pure cultures (1 month), the morphological identification was confirmed for each species at

the molecular level by sequencing ITS region (rDNA). The DNA was extracted with REDEx-

tract-N-Amp™ (SIGMA-ALDRICH1 Company), using 1 mm2 of a pure mycelium culture in

10 μL of Extract solution and submitting it to 94˚C for 10 min, 60˚C for 13 min and 10˚C for

Table 1. NCBI accession number, geographic origin, collection date and habitat of the fungal species used in this study.

Species NCBI codes Coordinates Collection Date Habitat

Tricholoma equestre MG334287 40˚21’01.9"N 8˚41’39.7"W Oct-14 Coastal Pinewood

Lactarius deliciosus MG334288 40˚21’01.9"N 8˚41’39.7"W Oct-14 Coastal Pinewood

Tricholoma portentosum MG334289 40˚10’48.9"N 7˚39’40.1"W Oct-14 Coastal Pinewood

Boletus fragrans MN314115 40˚10’08.5"N 8˚32’45.3"W Nov-14 Oak forest

https://doi.org/10.1371/journal.pone.0226849.t001
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15 min. After that, an equal volume of Dilution solution was added. PCR was performed using

10 μL of REDExtract-N-Amp™ PCR ReadyMix™(SIGMA-ALDRICH1 Company) combined

with ITS1-F/ITS4 primers [35,36] at 0.4 μM and 1 μL of DNA template in the final volume of

20 μL. Cycling was performed with the following parameters: 1 step of 95ºC for 5 min, 35

cycles of 95ºC for 45s, 56ºC for 45s and 72ºC for 1min, and 1 step of 72ºC for 10 min. Se-

quences were acquired by the modified Sanger method performed by STAB VIDA ©, Portugal,

and edited using Geneious1 software. A Basic Local Alignment Search Tool (BLAST) was

performed in the National Centre for Biotechnology Information (NCBI) database to confirm

species taxonomic identification. The NCBI accession numbers are presented in Table 1.

Phylogenetic analysis

A phylogenetic analysis was performed to explore the phylogenetic relationships among the

fungal species. Firstly, the sequences were aligned together with other sequences retrieved

from GenBank using the MUSCLE algorithm in MEGA71 software. After using the Akaike

information criterion (AIC) in jModelTest the phylogenetic analysis was performed using

maximum likelihood methods with the GTR model of evolution [37,38] in Phylemon 2.0 [39]

using PhyML [37]. The bootstrap likelihood ratio test with 1000 repetitions was used to assess

the Branch support. The resulting tree was represented using FigTree software [40].

Ectomycorrhizal synthesis and assessment

Seeds from C. ladanifer, C. salviifolius, C. psilosepalus,H. halimifolium and T. lignosa were col-

lected in different locations with high ECM mushroom diversity. The geographic location,

habitat and collection date of Cistaceae seeds can be found in S1 Table. Seed sterilization was

performed by placing seeds inside 1,5ml microcentrifuge tubes with sterile distilled water and

then exposed to 100 ºC for 10 minutes in a water bath. Afterwards, seeds were placed in Petri

dishes with MS agar medium [41]. The contaminated seeds were discarded every three days

for one week. Only seedlings with developed cotyledons and radicle (2mm) were used for

mycorrhizal establishment.

According to the work of Duddridge [5], an agar medium without any glucose addition

should be used to test the plant-fungus compatibility. Therefore, we used half-strength MS

agar medium [41] without glucose for the mycorrhization studies. To sustain the growth habit

of Cistaceae shrubs for extended periods we used large flasks (Ø 5.5cm) as containers. It was

added 35ml of ½ MS agar medium (Duchefa Biochemie™) to each flask. Patches of fungal inoc-

ulum previously grown in PDA medium were placed on a ditch opened at the agar medium.

Afterwards, a sterilized aluminium disk was placed upon the culture medium, to protect both

roots and fungus against photo-oxidation, and hollows were made for each of the three seed-

lings placed per flask immediately after the fungal inoculation. An aluminium cover was also

added outside the flask at the height of the agar, coating both fungus and roots. Three flasks

were used for each plant-fungus combination (n = 3). All flasks were aseptically closed and

placed in a growth chamber at 20 ºC ± 1 for 5–6 months under fluorescent light (110 μmol s-1

m-2 [400–700 nm], 16 h/day).

Plant roots were regularly checked for ECM establishment (in-situmacroscopic observa-

tion). After 5–6 months, the ectomycorrhizal root tips were removed, washed in distilled

water, examined and photographed under a stereomicroscope. The background of the ectomy-

corrhizal root tips’ photographs was removed using Adobe Photoshop CS5 program, Adobe

Systems, Inc. ©. Morphological characterization scoring colour, shape, ramification type, ram-

ification order and abundance was performed according to Agerer and Rambold [42]. To

check for the presence of the mantle and Hartig net, the putative ectomycorrhizal root tips

Edible ectomycorrhizal fungi and Cistaceae. A study on compatibility and fungal ecological strategies
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were cleared making some modifications in the protocol described by Phillips and Hayman

[43]. Root tips were cleared with a KOH solution (10%) at 20–25 ºC for 3–5 hours, rinsed in

tap water for 5 minutes and afterwards acidified with HCl solution (20%) for 1 hour for subse-

quent microscopic observation. The fungal taxonomic identity of the mycorrhizae was con-

firmed by PCR and sequencing using the protocol described above. The DNA extraction of the

ECM samples was performed using 1 mm3 of tissue, as described previously. However, 20 μL

of Extract and Dilution solutions was added instead of 10 μL.

Similarity analysis

To analyse the similarity of the hosts’ community, we used the Bray-Curtis index for all the

pairwise combinations of fungal species and obtained a cladogram. The index and cladogram

were obtained using the R [44] package vegan [45].

ECM fungal Colonization

The colonized and non-colonized root tips were scored in 3 different plants from each combi-

nation (n = 3). The ECM colonization percentage (CP) were calculated based on the following

formula CP = [((nº colonized root tips)/(total nº root tips))�100]. After testing the data homo-

scedasticity and normality, separate One-way ANOVA were used to test if the colonization

percentages were statistically different for each fungus with different plants and for each plant

with different fungi using the R package car [46]. The data was plotted using the R package

ggplot2 [47].

Fungal growth rates in pure culture

To understand the ecological colonization strategies of these species of ECM fungi and to vali-

date their growth in MS medium, the mycelial growth rates in pure culture were studied. The

mycelial growth was determined in ½ MS agar and also in biotin-aneurine-folic acid (BAF)

[48] medium. BAF medium was used as a control due to be a culture medium widely used for

mycorrhizal synthesis. For each treatment, squares with 0.25cm2 were transferred from pure

cultures (in PDA) and placed in the centre of 6 cm Ø Petri dishes (n = 5) of each culture

medium. Colonies growth was measured every 3 days for 36 days by delimiting the mycelium

´s area with a permanent marker at the bottom of the Petri dish. The area was calculated with

the aid of Adobe Photoshop CS5 program, Adobe Systems, Inc. ©. Growth rates (cm/day)

were determined for every 3 days using the following formula: GR = [((Final growth)-(Initial

growth))/3]. The final growth rate for each replicate was determined by the average of the

growth rates of each time point. After testing the data homoscedasticity and normality, a one-

way ANOVA was used to test the significant differences between the culture media for each

fungal species using the R car package [46]. The bar plots were created using the R package

ggplot2 [47].

Morphological descriptions of the mycelium were made scoring several features as “Myce-

lium texture”, “Mycelium colour”, “Border”, “Border colour”, “Reverse colour” and “Density”.

Correlation analysis

To analyse if the fungal growth rates correlate with the colonization percentages, we calculated

the Pearson correlation coefficient using the fungal growth rates of each fungus in MS medium

against the mean of the colonization percentages of the same fungus in all plant species alto-

gether. It was not possible to perform this test per plant species due to some plants only

established mycorrhizal association with 2 species of fungi (n<3). After testing the data
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homoscedasticity and normality, an ANOVA was used to test the statistical significance of the

correlation. This analysis was done using the Analysis ToolPak from Microsoft Excel.

Results

ECM fungi identification

The taxonomic identity of the ECM fungi was confirmed using ITS barcoding region

(Table 1). A Phylogenetic tree was made using several voucher sequences of representative spe-

cies from each taxonomic group (S1 Fig). A sequence of Tuber melanosporum, an Ascomycota,

was used as outgroup. We could observe a major division in two phylogenetic clades separat-

ing the Boletus from Tricholoma and Lactarius or mushrooms with pores from mushrooms

with gills, respectively. Moreover, a subclade dividing Tricholoma from Lactarius was also

observed.

Fungal ECM compatibility with Cistaceae

During the experiment, both plants and fungi had suitable growth, never becoming senescent.

The first putative ectomycorrhizal root tips were observed 2 months after inoculation (Fig 1A).

Those were solitary and scattered, becoming much more abundant, dense and spread along

the entire root system after 5–6 months (Fig 1B) in almost all the combinations.

All fungi were compatible with at least two species of Cistaceae. A summary of the success

of each combination plant-fungus can be seen in Table 2.

Successful mycorrhization was observed in several plant-fungus combinations with the

exceptions of Tricholoma equestre with C. psilosepalus, C. salviifolius and T. lignosa; Boletus fra-
grans with C. ladanifer,H. halimifolium and T. lignosa and T. portentosum with C. salviifolius.
The ectomycorrhizal root tips, of each combination, are presented in (Fig 2A–2M). The num-

ber of Cistaceae hosts were higher for Lactarius deliciosus (five species) followed by Tricholoma
portentosum (four species). The species with a lower range of hosts were B. fragrans and T.

equestre being only associated with 2 species each.

Morphologically, the colour, shape, ramification type, ramification order and abundance

varied even within the combinations with the same fungal species (Table 3). The morphology

of T. equestre and B. fragransmorphotypes almost did not vary with different plant partners,

unlike the other fungal species.

Fig 1. Example of ectomycorrhizal colonization (C. psilosepalus + L. deliciosus) of the root system after (A) two

months (observed through the agar); and (B) 5–6 months (after removal from the agar medium) (Bar = 1cm).

https://doi.org/10.1371/journal.pone.0226849.g001
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Anatomically, it was observed an uncommon winding mantle structure in the majority of

the ECM root tips, clearly visible in Fig 2B, 2J and 2L. In all the successful combinations, the pres-

ence of the mantle and the Hartig net was confirmed in cleared roots, indicating the establishment

of a functional association (as example, see S2 Fig). However, it was not possible to classify the

type of mantle organization of the mycorrhizas formed by each fungal species due to this atypical

thin and winding mantle structure. Neither rhizomorphs nor emanating hyphae were observed.

Similarity analysis

The highest similarity values were found between L. deliciosus and T. portentosum, which was ex-

pected since they associate with almost the same species of Cistaceae being C. salviifolius the only

Table 2. Ectomycorrhizal establishment between the four species of fungi and five species of Cistaceae. “+”/“-” successful/unsuccessful establishment of

ectomycorrhizas.

Species C. psilosepalus C. salviifolius C. ladanifer H. halimifolium T. lignosa
L. deliciosus + + + + +

T. equestre - - + + -

T. portentosum + - + + +

B. fragrans + + - - -

https://doi.org/10.1371/journal.pone.0226849.t002

Fig 2. Ectomycorrhizal root tips of: T. portentosum with C. psilosepalus (A), C. ladanifer (B),H. halimifolium (C) and T. lignosa (E); T. equestre with C.

ladanifer (F) andH. halimifolium (G); L. deliciosus with C. ladanifer (H), C. salviifolius (I), C. psilosepalus (J),H. halimifolium (L) and T. lignosa (M); and B.

fragrans with C. psilosepalus (D) and C. salviifolius (K). (Bar = 1mm).

https://doi.org/10.1371/journal.pone.0226849.g002
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exception. The lowest value (0) was found for T. equestre and B. fragrans since they do not colonize

any common host among the studied Cistaceae. When plotted, it can be observed an expected

cluster between T. portentosum and L. deliciosus. A secondary one can also be found between T.

equestre and these two species, with B. fragrans as the most dissimilar species. (Table 4, Fig 3).

Root colonization percentages

The fungi had different percentages of root system colonization in different hosts as can be

observed in Fig 4 (the significance values can be consulted in S2 Table). However, some pat-

terns were observed, namely the high colonization of C. ladanifer roots by all the studied fungi.

It was also observed that L. deliciosus had the highest colonization percentages in all the hosts.

The lowest root colonization percentages of C. psilosepalus,H. halimifolium, and T. lignosa
were observed with T. portentosum. Moreover, the lowest root colonization percentage of C.

salviifolius was observed with B. fragrans.

Correlation of mycelial growth with root colonization

All the fungal species grew in both tested culture media, evidencing the suitability for fungal

growth of MS, a plant-specific medium, as shown in Fig 5 (The significance values can be

Table 3. Morphological description of ECM root tips from different plant-fungi combinations.

Morphotype Colour Shape Ramification type Ramification order Abundance

T. portentosum + C. psilosepalus brown straight absent 1 solitary or in small

numbers

T. portentosum + C. ladanifer brownish beaded dichotomous 2 abundant, dense

T. portentosum + H.

halimifolium
yellowish straight absent 1 abundant, dense

T. portentosum + T. lignosa greyish constricted between older and younger

parts

absent 1 solitary or in small

numbers

T. equestre + C. ladanifer yellowish

brown

straight absent 1 abundant, dense

T. equestre + H. halimifolium yellowish

brown

constricted between older and younger

parts

absent 1 abundant, dense

L. deliciosus + C. ladanifer yellow straight absent 1 abundant, dense

L. deliciosus + C. salviifolius yellowish constricted between older and younger

parts

absent 1 abundant, dense

L. deliciosus + C. psilosepalus brownish beaded monopodial-

pinnate

3 abundant, dense

L. deliciosus + H. halimifolium brown beaded absent 1 abundant, dense

L. deliciosus + T. lignosa brown straight absent 1 solitary or in small

numbers

B. fragrans + C. psilosepalus brown straight absent 1 solitary or in small

numbers

B. fragrans + C. salviifolius brown straight absent 1 solitary or in small

numbers

https://doi.org/10.1371/journal.pone.0226849.t003

Table 4. Similarity matrix calculated using the Bryan-Curtis index of dissimilarity between the different fungal species according to the ability of establishing ecto-

mycorrhizae with the different tested Cistaceae species.

Boletus fragrans Lactarius deliciosus Tricholoma equestre
Lactarius deliciosus 0.5714286

Tricholoma equestre 0,00 0,5714286

Tricholoma portentosum 0,33 0,8888889 0.3333333

https://doi.org/10.1371/journal.pone.0226849.t004
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consulted in S3 Table). However, the fungal growth in MS medium without glucose was quite

diffuse and with low hyphae density. All the mycelial morphological features of these fungi in

pure culture are presented in S4 Table. The growth rates in BAF medium were generally much

lower than in MS medium although the mycelium density was higher in BAF. Boletus fragrans
had the lowest mycelial growth rates of all the fungi. Tricholoma portentosum had the highest

growth in BAF medium whilst L. deliciosus had the highest growth in MS.

Having noticed that the pattern of mycelial growth rates did somehow match with the over-

all root colonization percentages, we hypothesized that these two features could be correlated.

The Person correlation test gave us a strong correlation value: R = 0.985 with statistical signifi-

cance (F = 0.01451313 < 0.05), indicating that these features did correlate in our experiment.

Discussion

The establishment of ectomycorrhizas in most of the plant-fungus combinations proved that

all the studied fungi are compatible with at least two species of Cistaceae. On the other hand,

the failure of ectomycorrhizal establishment in several plant-fungus combinations (T. porten-
tosum with C. salviifolius; T. equestre with C. salviifolius, C. psilosepalus and T. lignosa; and also

B. fragrans withH. halimifolium, C. ladanifer and T. lignosa) should not be conclusively inter-

preted, despite of both plant and fungus adequate growth and development. New experiments

with different strains and ecotypes are needed to better clarify this subject, even though the

Fig 3. Cluster dendrogram using “single” agglomeration method, obtained based on Bryan-Curtis dissimilarity

index matrix. The y-axis demonstrates a rescaled distance cluster combinations. (BF–Boletus fragrans, TE–Tricholoma
equestre, TP–Tricholoma portentosum and LD–Lactarius deliciosus).

https://doi.org/10.1371/journal.pone.0226849.g003
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sporocarps we used to obtain mycelial cultures were collected in the same habitat and, in some

cases, the same area than the Cistaceae (Table 1, S1 Table). Putative mycorrhizal associations—

based in aboveground sporocarps’ community—have been described between Tricholoma spp.,

Lactarius spp. and Boletus spp. with Cistus spp. (reviewed in [21,49–51]), but there are no

reports inferring mycorrhizal establishment between these genera andHalimium halimifolium.

In addition, several studies conducted in Spain [19,24,30] reported the ectomycorrhizal associa-

tion of the edible fungi Boletus edulis with C. ladanifer as well as data of sporocarp productivity.

The formation of ectomycorrhizas of T. portentosum and L deliciosus on Tuberaria lignosa com-

binations is the most surprising result, since the only known association in natural conditions is

with Terfezia spp. [32]. Thus, the present work is the first report of T. lignosamycorrhizas with

Basidiomycetes. The successful associations here reported for the first time strengthens the

described plasticity of the tested Cistaceae shrubs in establishing ectomycorrhizal associations

with a wide range of fungal taxa as reviewed by Comandini et al. [21] for Cistus spp. and by Tau-

diere et al. [26] forHalimium halimifolium.

The tested fungal species seem to have a different range of Cistaceae hosts. L. deliciosus was

the species with the broadest range of hosts (5 out of 5 tested species). This result is corrobo-

rated by the literature that states this species to be a broad host range fungus [16] known to be

mainly associated with several species of Pines [52,53]. It is also known that Tricholoma eques-
tre and Tricholoma portentosum preferentially associate with Pinus spp. and, therefore, their

Fig 4. Root colonization percentages of different species of Cistaceae by T. equestre, T. portentosum, L. deliciosus, and B. fragrans. Lower case letters state

for statistical differences in the colonization of the same fungi in different plants. Upper case letters state for statistical differences in the colonization of

different fungi in the same plant (P<0,05). (n = 3).

https://doi.org/10.1371/journal.pone.0226849.g004
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sporocarps are frequent in pinewoods. Moreover, the ectomycorrhizal associations of T. eques-
tre and T. portentosum with Pinus densiflora have been reported by Yamada et al. [54,55]. We

found that the range of Cistaceae hosts of T. portentosum seemed to be broader (4 different

species) than those of T. equestre (2 different species), although not much is known about the

range of hosts of these two species. B. fragrans was one of the species with the narrowest range

of Cistaceae hosts (2 different species). In spite of the sparsity of information about the range

of hosts of this species, it is known to associate with Castanea sativa [56] and to be naturally

associated with Quercus spp. Moreover, the congeneric species Boletus edulis is known to be a

broad host range fungus that associates with Cistus ladanifer [19,30]. Similarly to our results

with B. fragrans, Águeda et al. [30] reported that Boletus pinophilus did not establish mycorrhi-

zas with C. ladanifer, evidencing that congeneric species may have distinct hosts.

Boletus fragrans was the most dissimilar species in terms of species of hosts. As shown in S1

Fig, this species is phylogenetically separated in a different clade from the others. This separa-

tion has a morphological background since this species has sporocarps with pores whilst the

other 3 species are gilled mushrooms. Another clear difference is while L deliciosus, T. porten-
tosum and T. equestre are known to be preferentially associated with Pinus spp., boletes in

Fig 5. Growth rates of T. equestre, T. portentosum, L. deliciosus and B. fragrans mycelium in BAF and MS media. Lower case letters state for statistical differences in

the mycelial growth rates of the same fungus in different media. Upper case letters state for statistical differences in the mycelial growth rates of different fungi in the

same medium (P<0,05). (n = 5).

https://doi.org/10.1371/journal.pone.0226849.g005
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general, including B. fragrans, are known to associate with Quercus spp. However, we cannot

ignore the possibility that plant phylogenetic distances influence the ability to associate with

different species/clades of fungi. Considering the phylogenetic distances between the species of

Cistaceae, described by the work of Guzmán et al. [57], there seems to be no connection what-

soever, in our study, between the plants phylogeny and the species of fungi.

We found that the root colonization percentages were correlated with mycelial growth rates

in pure culture. This might indicate that fungi with high growth rates can be faster colonizers

of root systems giving them a clear ecological advantage. The colonization-competition trade-

offs are important in the ecological successions including in mycorrhizal communities [58].

Our findings are corroborated by the work of Kennedy et al. [11] that also found that fungi

with higher mycelial growth rates were faster colonizers of the root systems. In our study, L.

deliciosus was the fungus with overall higher growth/colonization indicating that this species

might be a colonizer in ECM ecological successions. Our results are in accordance with the

work of Ortega-Martı́nez et al. [16] that reported this species as an early stage fungus. If we

exclude the colonization of C. ladanifer, the other three fungal species had overall lower coloni-

zation/growth rates than L. deliciosus, indicating that these species could be competitors in

mycorrhizal successions. Some previous works with congeneric species support our findings,

reporting T.matsutake [17] and B. edulis [16] as late-stage fungi.

However, a certain host might be compatible with a fungus but not preferable. The lower

colonization percentages could be due to this preference, therefore explaining the difference of

colonization of the same fungus in different plant species.

Our results brought new insights about the ecology of these ECM species, although future

research is needed to unveil the role of the tested fungal species in ECM communities. New

plant-fungus combinations with great economical potential were also reported in this study.

However, the present plant-fungus combinations were obtained in controlled and axenic con-

ditions, which might influence further ectomycorrhizal persistence. In spite of some studies

reporting the persistence of ectomycorrhizas on outplanted inoculated plants (e.g.[59,60]),

most of these works are with plants inoculated in soil. Furthermore, the lack of emanating ele-

ments, the thin mantles, as well as low root colonization percentages (<50%) in some of the

obtained combinations might also compromise the maintenance of the mycorrhizas in out-

door plantations. Therefore, future studies determining the ectomycorrhizal persistence on

outplanted inoculated plants and the factors that induce the production of fruit bodies are also

needed.

Supporting information

S1 Fig. Maximum likelihood tree based on fungal ITS sequences. Maximum likelihood tree

based on ITS sequences obtained from mycelial cultures isolated from sporocarps and voucher

sequences obtained from GenBank (with accession numbers included). Numbers at the nodes

are values for branch support that were estimated using bootstrap likelihood ration test. The

evolutionary distances are indicated by the scale bar.

(PDF)

S2 Fig. Example of the ECM root tips’ mantle obtained in the present study. Microscopic

observation of the anatomical structures of some ectomycorrhizal root tips cleared with a 10%

KOH solution (20–25 ºC for 3–5 hours) with a subsequent acidification with 20% HCl solution

(for 1 hour). A Mantle of T. portentosum with C. psilosepalus. B Laticiferous hyphae (arrow)

present in the mantle of L. deliciosus with C. psilosepalus. (Bar = 10μm)

(PDF)
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S1 Table. Geographic location, habitat and collection date of Cistaceae seeds.
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S2 Table. Tukey multiple comparisons of the means of different fungal colonization per-

centages of different studied fungi and plants.
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S3 Table. Statistical analysis results of the fungal growth rates in the different culture

media.
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S4 Table. Morphology of T. equestre, T. portentosum, B. fragrans and L. deliciosus myce-

lium in MS and BAF media.
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