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Textural properties of microglial activation in 
Alzheimer’s disease as measured by (R)-[11C] 
PK11195 PET
Marta Lapo Pais,1 Lília Jorge,1 Ricardo Martins,1 Nádia Canário,1,2 Ana Carolina Xavier,1 

Rui Bernardes,1,2 Antero Abrunhosa,1 Isabel Santana2,3 and Miguel Castelo-Branco1,2

Alzheimer’s disease is the most common form of dementia worldwide, accounting for 60–70% of diagnosed cases. According to the 
current understanding of molecular pathogenesis, the main hallmarks of this disease are the abnormal accumulation of amyloid pla-
ques and neurofibrillary tangles. Therefore, biomarkers reflecting these underlying biological mechanisms are recognized as valid tools 
for an early diagnosis of Alzheimer’s disease. Inflammatory mechanisms, such as microglial activation, are known to be involved in 
Alzheimer’s disease onset and progression. This activated state of the microglia is associated with increased expression of the trans-
locator protein 18 kDa. On that account, PET tracers capable of measuring this signature, such as (R)-[11C]PK11195, might be in-
strumental in assessing the state and evolution of Alzheimer’s disease. This study aims to investigate the potential of Gray Level 
Co-occurrence Matrix-based textural parameters as an alternative to conventional quantification using kinetic models in (R)-[11C] 
PK11195 PET images. To achieve this goal, kinetic and textural parameters were computed on (R)-[11C]PK11195 PET images of 
19 patients with an early diagnosis of Alzheimer’s disease and 21 healthy controls and submitted separately to classification using 
a linear support vector machine. The classifier built using the textural parameters showed no inferior performance compared to 
the classical kinetic approach, yielding a slightly larger classification accuracy (accuracy of 0.7000, sensitivity of 0.6957, specificity 
of 0.7059 and balanced accuracy of 0.6967). In conclusion, our results support the notion that textural parameters may be an alter-
native to conventional quantification using kinetic models in (R)-[11C]PK11195 PET images. The proposed quantification method 
makes it possible to use simpler scanning procedures, which increase patient comfort and convenience. We further speculate that tex-
tural parameters may also provide an alternative to kinetic analysis in (R)-[11C]PK11195 PET neuroimaging studies involving other 
neurodegenerative disorders. Finally, we recognize that the potential role of this tracer is not in diagnosis but rather in the assessment 
and progression of the diffuse and dynamic distribution of inflammatory cell density in this disorder as a promising therapeutic target.
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Graphical Abstract

Introduction
Alzheimer’s disease represents the most common form of de-
mentia worldwide,1-3 accounting for an estimated 60–70% of 
diagnosed cases.4 A sizable proportion of the risk of develop-
ing Alzheimer’s disease can be attributed to genetic factors.5

Increasing age, cerebrovascular diseases, female sex, diabetes, 
hypertension, obesity and dyslipidemia are other known risk 
factors for Alzheimer’s disease.1,5,6 This condition is consid-
ered a slowly progressive disorder1,7 as it presents a long 
asymptomatic phase before the first symptoms appear.7,8

The early and most prominent symptoms include progressive 
memory loss, difficulty with communication, perceptual 
changes, impaired daily life activities and changes in personal-
ity such as increased irritability and anxiety.1,9

According to the current understanding of molecular 
pathogenesis, the main hallmarks of Alzheimer’s disease 
are the abnormal deposition of amyloid plaques in the brain, 
composed of β-amyloid peptide (Aβ), and neurofibrillary 
tangles, containing hyperphosphorylated tau proteins.2,10,11

The amyloid cascade theory proposes that Aβ formation is 
directly responsible for triggering tau phosphorylation and 
formation of neurofibrillary tangles, leading to neuronal 
loss and cognitive deficits.12-14

For decades, clinical, neurological and neuropsychologic-
al examinations were used as the main criteria for diagnosing 
Alzheimer’s disease.3,8 This diagnostic approach changed 
when technological advances in neuroimaging (MRI and 
PET) and CSF analysis allowed the development of biomar-
kers for Alzheimer’s disease.15 Because increased amyloid 
plaque deposition and neurofibrillary tangles can be detected 
decades before the onset of symptoms, biomarkers reflecting 
these underlying biological mechanisms are recognized as va-
lid tools for an early diagnosis.16 The most relevant ones are 

CSF biomarkers that directly measure the presence of Aβ and 
aggregated tau, MRI for visualizing brain atrophy, [18F]FDG 
PET for measurement of brain metabolism and amyloid and 
tau PET for evaluating the accumulation of amyloid plaque 
and pathogenic tau, respectively.7,16,17 However, imaging 
biomarkers are limited due to the high cost and access con-
straints.17 For these reasons, neurological exams, cognitive 
assessments and CSF biomarkers are still the most widely 
used diagnostic tools for diagnosing Alzheimer’s disease. 
Recently, a blood test was developed to detect Aβ protein ac-
cumulation in the brain.18 It promises to predict Aβ levels with 
>90% sensitivity and specificity compared to PET scanning.18

Due to the cost and scalability advantages over current techni-
ques, in the future, these plasma biomarkers may enable 
broader clinical access and efficient population screening.9,18

Inflammatory mechanisms, like microglial activation, are 
known to be involved in Alzheimer’s disease onset and progres-
sion.2,4,19 Actually, an amyloid cascade/neuroinflammation 
theory suggests that Aβ formation activates microglial cells, 
which release potentially neurotoxic substances, resulting in 
tau phosphorylation and neurodegenerative changes.12 The 
microglial activated state is associated with increased expres-
sion of peripheral benzodiazepine receptors,20,21 also known 
as the translocator protein 18 kDa (TSPO).22 On that account, 
tracers capable of measuring this signature might be instrumen-
tal in assessing the state and evolution of Alzheimer’s disease.

Here, we used (R)-[11C]PK11195, a radiolabelled specific 
antagonist of the TSPO that has been established for >30 years 
in the clinical context of several pathologies.22 These include 
Alzheimer’s disease,10,13,19-21,23-32 Parkinson’s disease,24,33-37

Lewy body dementia,38 Huntington’s disease39,40 and amyo-
trophic lateral sclerosis.41 In Alzheimer’s disease, various stud-
ies found increased (R)-[11C]PK11195 binding in several 
cortical regions.13,20,21,24-32 Two studies found an increased 
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binding in brain regions, such as the parahippocampal, cingu-
late, middle temporal, superior parietal and superior frontal 
cortex,10 and small clusters in the occipital lobe.19 Others 
were not able to replicate differences in regional (R)-[11C] 
PK11195 binding between controls and Alzheimer’s dis-
ease.31,32 A longitudinal study found dynamic changes in acti-
vated microglial hotspots in six of eight Alzheimer’s patients 
over 16 months.27 Another longitudinal study of the same 
group supported a similar type of evidence by reporting dis-
tinct microglial patterns in different stages of Alzheimer’s dis-
ease.30 In the mild cognitive impairment group, Fan et al.30

found decreased levels of (R)-[11C]PK11195 uptake over 
time, whereas in Alzheimer’s disease, a longitudinal increase 
was observed over 10–18 months. In contrast, Ismail et al.13

reported that overall levels of inflammation declined over 2 
years. These longitudinal results suggested that activated 
microglia might present distinct dynamic patterns in the evolu-
tion of Alzheimer’s disease. A protective anti-inflammatory 
role may dominate during the acute early phase response fol-
lowed by a chronic pro-inflammatory response that becomes 
detrimental,30,42 leading to the failure in clearing Aβ plaques.13

The methods used to quantify PET neuroimaging data are 
often based on kinetic modelling of tracers using regions of 
interest (ROIs).43-46 Besides the need for dynamic scanning, 
since no brain region is devoid of TSPO, an arterial input 
function is also ideally required to quantify TSPO PET 
images using kinetic models.46,47 Because it involves blood 
sampling from an arterial catheter, this approach is more in-
vasive and experimentally demanding, especially in frail pa-
tients.47,48 Therefore, there is a need to have PET 
quantification methods and metrics based on simpler scan-
ning procedures that provide additional information rele-
vant to the disease and increase patient comfort and 
convenience.46 Apart from these benefits, the diffuse distri-
bution of (R)-[11C]PK11195 raises the question of whether 
alternatives to the traditional ROI-based kinetic approaches 
should be attempted, which concerns (R)-[11C]PK11195.

Gray Level Co-occurrence Matrix (GLCM) textural para-
meters applied to (R)-[11C]PK11195 PET images can provide 
a statistical description of the spatial characteristics of 
TSPO.49 Accordingly, the present study hypothesizes that 
whole-brain (grey and white matter) GLCM-based textural 
parameters may be an alternative to ROI-based kinetic mod-
elling in (R)-[11C]PK11195 PET images in Alzheimer’s dis-
ease. To achieve this goal, kinetic and GLCM-based textural 
parameters were computed from (R)-[11C]PK11195 PET 
images of 19 patients with an early diagnosis of Alzheimer’s 
disease and 21 healthy controls and submitted separately to 
classification using a linear support vector machine.

Materials and methods
Dataset
The dataset used in this cross-sectional study consists of 40 
subjects, 19 Alzheimer’s patients and 21 healthy controls 

matched for age, sex and education. Using the Clinical 
Dementia Rating (CDR) instrument, we included patients 
in the same disease stage, with an early diagnosis (<2 years) 
of probable Alzheimer’s disease at a mild stage of dementia 
(CDR = 1). All participants performed the acquisitions of 
the structural MRI and functional (R)-[11C]PK11195 PET 
at the Institute of Nuclear Sciences Applied to Health. The 
demographic characteristics of the dataset are summarized 
in Table 1. Alzheimer’s disease participants were assessed ac-
cording to standard clinical examination procedures from 
the Memory Clinic of the Centro Hospitalar e 
Universitário de Coimbra. A multidisciplinary team per-
formed all the evaluations and the diagnosis using a consen-
sus approach based on the Diagnostic and Statistical Manual 
of Mental Disorders fourth edition50 and the criteria for 
probable Alzheimer’s disease dementia of the National 
Institute of Neurological and Communicative Disorders 
and Stroke and the Alzheimer’s Disease and Related 
Disorders Association.8 The control group was composed 
of 21 healthy volunteers from the community without neuro-
logic or psychiatric disorders, with no severe visual or audi-
tory impairment, and eligible for an MRI and PET exam. The 
inclusion criteria were general cognition within normal 
ranges and independence in basic and instrumental daily 
life activities. When required, all participants and their care-
givers gave written informed consent for the study conducted 
according to the Declaration of Helsinki and subsequent re-
visions. Further, ethical approval was obtained from the eth-
ics committee of the Faculty of Medicine of the University of 
Coimbra.

Imaging data
(R)-[11C]PK11195 PET
(R)-[11C]PK11195 PET was produced in-house according to 
published methods.51 A Philips Gemini GXL PET/CT scan-
ner (Philips Medical Systems, Best, the Netherlands) was 
used to perform dynamic 3D PET scans of the entire brain 
(90 slices, 2 mm slice sampling) and a low-dose brain CT 
scan for attenuation correction. PET acquisition started im-
mediately after the intravenous bolus injection of a max-
imum of 370 MBq of (R)-[11C]PK11195. Scans were 

Table 1 Demographic and clinical characteristics of the 
study population

Alzheimer’s disease  
(n = 19) (mean ± SD)

Healthy controls  
(n = 21) (mean ± SD)

Age, years 66.316 ± 7.048 65.857 ± 6.836
Sex, M/F 9/10 (0.900) 10/11 (0.909)
Education 8.895 ± 5.801 11.095 ± 5.513
MMSE 14.611 ± 4.313 —
MoCA 14.368 ± 4.323 24.158 ± 4.413
CDR 1 —

CDR, Clinical Dementia Rating; F, female; M, male; MMSE, Mini-Mental State 
Examination; MoCA, Montreal Cognitive Assessment; SD, standard deviation. Data are 
expressed as mean ± SD, except for the M/F ratio (sex).
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acquired over 60 min (22 frames: 4 × 30 s + 4 × 60 s + 4 ×  
120 s + 4 × 240 s + 6 × 300 s). PET data were reconstructed 
using a LOR-RAMLA algorithm, with attenuation and scat-
ter corrections.

Structural MRI
Structural MRI data were collected using a Siemens 
Magnetom TIM Trio 3 Tesla scanner (Siemens, Munich, 
Germany) with a phased array 12-channel birdcage head 
coil. We acquired T1-weighted structural MRI data at 1 ×  
1 × 1 mm3 spatial resolution, repetition time 2530 ms, echo 
time 3.42 ms and flip angle 7°.

PET image quantification
After image acquisition, 3D Slicer, an open-source software 
program (https://www.slicer.org/), was used to perform the 
co-registration between PET and structural MRI images. 
These images were then transformed into the Montreal 
Neurological Institute space using SPM12, another open- 
source software program (https://www.fil.ion.ucl.ac.uk/ 
spm/). At last, all images were visually assessed to fine-tune 
registration when necessary.

Kinetic parameters: ROI-based approach
The distribution volume ratio (DVR) was computed at the 
voxel level for all (R)-[11C]PK11195 PET images by applying 
the Logan52 plot method using an in-house made software 
program implemented in previous works of our insti-
tute.10,53 The reference region was determined by the super-
vised cluster analysis algorithm based on four kinetic classes: 

grey matter without specific binding, white matter, blood 
and grey matter with specific binding.54 A representative ex-
ample of a quantitative DVR (R)-[11C]PK11195 PET image 
of an Alzheimer’s patient compared to a healthy control is 
displayed in Fig. 1.

Kinetic parameters were then computed from DVR 
(R)-[11C]PK11195 PET images in Mango free and open- 
source software (https://ric.uthscsa.edu/mango/) using an 
ROI-based approach. For each ROI, the mean values were 
calculated from DVR (R)-[11C]PK11195 PET images in the 
Montreal Neurological Institute space using masks of the 
anatomical brain region atlas.

Texture parameters: whole-brain-based approach
Firstly, (R)-[11C]PK11195 PET images were summed at the 
voxel level from 40 to 60 min post-injection. After this 
step, the whole brain (grey and white matter) was segmented 
from all structural MRI images in the Montreal Neurological 
Institute space using the Extract Brain (BET) Plugin of the 
Mango free and open-source software (https://ric.uthscsa. 
edu/mango/). GLCM-based textural parameters were then 
calculated in MATLAB (MATLAB and Statistics Toolbox 
Release 2019b, The MathWorks, Inc., Natick, MA, USA) 
from the summed (R)-[11C]PK11195 PET images using these 
whole-brain masks.

Feature selection
To minimize overfitting and due to the relatively small 
sample size (n = 40) of the dataset, a 10:1 per-class 
sample-to-feature ratio was used as a criterion to create 

Figure 1 DVR (R)-[11C]PK11195 PET images. Representative example of a quantitative DVR (R)-[11C]PK11195 PET images of an 
Alzheimer’s disease patient (A) and a healthy control (B), showing the density of inflammatory cells. This figure was constructed using PMOD 
software (PMOD, version 4.105; PMOD Technologies, Zurich, Switzerland).
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robust classifiers.55,56 Thus, a subset of four features was 
selected using the R free software environment (https:// 
www.r-project.org/) from kinetic and GLCM-based textural 
parameter datasets. Firstly, we computed the correlation 
between features to avoid cases where correlation between 
two features was >0.9. After that, we rank the resulting 
features according to their importance based on a logistic 
regression model. The four features of major importance 
for the logistic regression model were selected.

Classification
The four features selected from kinetic and GLCM-based 
textural parameter datasets were used separately to build 
the individual classifiers. These individual classifiers were 
computed using a linear support vector machine in 
MATLAB (MATLAB and Statistics Toolbox Release 
2019b, The MathWorks, Inc., Natick, MA, USA). We choose 
to use a linear support vector machine due to its simplicity, 
wide acceptance and proven good ability for many common 
classification problems using multivariate medical data.53

The label was defined by the clinical Alzheimer’s diagnosis 
described in the Materials and Methods section, Dataset 
section. Finally, we use the leave-one-out cross-validation 
technique to estimate the performance of the individual clas-
sifiers. Leave-one-out cross-validation is a particular case of 
cross-validation that uses the data of a subject to be classified 
as a single-item test set while the remaining subjects’ data 
are used to train the classifier.53,57 This procedure is repeated 
until all subjects’ data have been classified once. Then, based 
on the results of the successive classification tests, the object-
ive measures of test performance and balanced accuracy are 
calculated.

Statistical analysis
After assessing for data normality using the Shapiro–Wilk 
test, the t-test or its non-parametric version, the Mann– 
Whitney test, were used for between-group comparisons of 

kinetic and textural parameters. These tests were performed 
using IBM SPSS Statistics for Windows, version 25 (IBM 
Corp., Armonk, NY, USA).

To assess whether the proportion of Alzheimer’s disease 
classification is the same between classifiers, the non- 
parametric Cochran Q test was computed in MATLAB 
(MATLAB and Statistics Toolbox Release 2019b, The 
MathWorks, Inc., Natick, MA, USA). This test is considered 
a particular case of the non-parametric Friedman test, used 
to detect differences in two or more matched sets where 
the response is binary.58

Results
Tables 2 and 3 show mean ± SD regional and whole-brain 
values of DVR (R)-[11C]PK11195 PET images and 
GLCM-based summed (R)-[11C]PK11195 PET images, re-
spectively. These tables also detail the between-group com-
parison results of kinetic and textural parameters.

Kinetic parameters
t-tests identified significant between-group differences only 
regarding the superior frontal gyrus [t-value (degrees of 
freedom = 38) = 2294, P-value = 0.027]. Overall regional 
differences of DVR (R)-[11C]PK11195 PET images were 
similar across groups. See Table 2 for details. This result is 
also illustrated in the scatter plot presented in Fig. 2, showing 
the variance in the binding signal of DVR (R)-[11C]PK11195 
PET images in the different subject groups.

Textural parameters
Significant differences were found between groups regarding 
the energy, correlation, sum entropy, entropy, information 
measure of Correlations I and II and maximal correlation co-
efficient. See Table 3 for details.

Table 2 Mean ± SD regional values of DVR (R)-[11C]PK11195 PET images

ROI Healthy controls (mean ± SD) Alzheimer’s disease (mean ± SD) Sig. (two-tailed) (P-valuea)

Frontal lobe 0.895 ± 0.038 0.914 ± 0.041 0.127
Temporal lobe 0.938 ± 0.045 0.933 ± 0.042 0.765
Frontal–temporal space 0.930 ± 0.075 0.924 ± 0.060 0.762
Superior frontal gyrus 0.904 ± 0.038 0.935 ± 0.046 0.027a

Middle frontal gyrus 0.915 ± 0.048 0.932 ± 0.047 0.251
Precentral gyrus 0.910 ± 0.038 0.932 ± 0.047 0.251
Inferior frontal gyrus 0.938 ± 0.050 0.944 ± 0.039 0.720
Superior temporal gyrus 0.935 ± 0.047 0.914 ± 0.046 0.149
Middle temporal gyrus 0.977 ± 0.046 0.977 ± 0.045 0.994
Inferior temporal gyrus 0.981 ± 0.056 1.005 ± 0.048 0.155
Amygdala 1.087 ± 0.078 1.084 ± 0.072 0.899
Hippocampus 0.995 ± 0.071 1.017 ± 0.070 0.326
Inferior parietal lobule 0.912 ± 0.044 0.924 ± 0.040 0.360
Superior parietal lobule 0.920 ± 0.055 0.942 ± 0.064 0.249
Precuneus 0.948 ± 0.048 0.969 ± 0.049 0.172

ROI, region of interest; SD, standard deviation. aSignificant parametric statistical tests performed between Alzheimer’s and healthy control groups.
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Alzheimer’s disease classifiers
The results of the objective measures of test performance and 
balanced accuracy for the kinetic and textural-based classi-
fiers and of Cochran’s Q test are presented in Table 4. The 
textural-based classifier showed no inferior performance 
compared to the classical kinetic approach, yielding a slight-
ly larger classification accuracy (accuracy of 0.7000, sensitiv-
ity of 0.6957, specificity of 0.7059 and balanced accuracy of 
0.6967) (bold values of Table 4). Using Cochran’s Q test, we 

found no difference between kinetic and textural-based clas-
sifiers in Alzheimer’s disease classification [χ2 statistic Q (de-
grees of freedom = 1) = 0.6923, P-value = 0.4054].

Discussion
This study aimed to investigate the potential of 
GLCM-based textural parameters as an alternative to kinetic 
modelling in quantifying (R)-[11C]PK11195 PET images of 

Table 3 Mean ± SD whole-brain GLCM-based textural parameters of summed (R)-[11C]PK11195 PET images

GLCM-based textural parameters Healthy controls (mean ± SD) Alzheimer’s disease (mean ± SD) Sig. (two-tailed) (P-valuea)

Energy 0.621 ± 0.007 0.615 ± 0.007 0.006a

Contrast 0.451 ± 0.008 0.459 ± 0.014 0.101
Correlation 0.923 ± 0.024 0.940 ± 0.016 0.021a

Variance 24.478 ± 0.933 24.732 ± 1.004 0.208
Homogeneity 0.991 ± 0.002 0.991 ± 2.79E-04 0.180
Sum average 7.243 ± 0.207 7.299 ± 0.224 0.208
Sum variance 88.655 ± 3.507 89.575 ± 3.694 0.239
Sum entropy 0.582 ± 0.009 0.590 ± 0.011 0.025b

Entropy 0.850 ± 0.016 0.860 ± 0.017 0.044a

Difference variance 0.450 ± 0.008 0.458 ± 0.013 0.081
Difference entropy 0.054 ± 0.012 0.052 ± 0.001 0.133
Information measure of Correlation I −0.853 ± 0.030 −0.870 ± 0.015 0.021a

Information measure of Correlation II 0.803 ± 0.019 0.818 ± 0.016 0.013a

Maximal correlation coefficient 0.923 ± 0.024 0.940 ± 0.016 0.021a

GLCM, Gray Level Co-occurrence Matrix; SD, standard deviation. Significant anon-parametric and bparametric statistical tests performed between Alzheimer’s and healthy controls 
groups.

Figure 2 Scatter plot showing the variance in the binding signal of DVR (R)-[11C]PK11195 PET images in the different subject 
groups. DVR (R)-[11C]PK11195 PET images in healthy control subjects (blue dots) and Alzheimer’s disease (red dots). AD, Alzheimer’s disease; 
DVR, distribution volume ratio; HC, healthy controls; ROI, region of interest. This figure was constructed using Prism 8 (GraphPad Software, San 
Diego, CA, USA).
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individuals with Alzheimer’s disease. The focus was to study 
the role of (R)-[11C]PK11195 PET textural parameters as indir-
ect measures of neuroinflammation and disease burden in 
Alzheimer’s disease. Regarding (R)-[11C]PK11195 PET quanti-
fication, previous studies have focused on comparing different 
kinetic modelling techniques using arterial plasma and refer-
ence tissue as input functions.20,47,54,59 Although the arterial 
input function is the gold standard methodology, it involves 
blood sampling from an arterial catheter, which makes this 
quantification challenging, invasive and an obstacle to a wide 
application.47,48,60 Because no brain region is devoid of 
TSPO,47,48 there is no true reference region for (R)-[11C] 
PK11195,47 which also makes the quantification using refer-
ence tissue as input function challenging in PET neuroimaging 
studies using this tracer. Studies have used cluster analysis to 
extract a reference tissue devoid of TSPO.19,47,48,54,59,61 The 
cluster analysis segments reference tissue voxels based on dif-
ferences in time–activity curves that are assumed to be without 
specific binding.48,54 Nevertheless, no voxel is actually entirely 
devoid of TSPO, as this protein is heterogeneously distributed 
in the brain.48 As such, we decided to investigate a different 
(R)-[11C]PK11195 quantification approach that does not re-
quire the use of blood sampling or a reference region.

Textural parameters have scarcely been investigated in 
neurological PET.47,49 Mahler et al.62 found that the shape 
and texture of the TSPO signal differentiated >96% of mul-
tiple sclerosis lesions. Regarding Alzheimer’s disease, texture 
analysis applied to amyloid PET imaging found that texture 
or shape features classify Alzheimer’s patients with at least 
as good accuracy as the classical kinetic modelling ap-
proach.49,63 These promising sparse findings leave a window 
of opportunity to implement textural parameters in this field, 
particularly in TSPO PET.

Using the conventional kinetic ROI-based analysis, we 
found significant between-group differences just in the super-
ior frontal gyrus (see Table 2 for details), which supports the 
reported restricted (R)-[11C]PK11195 differential binding in 
fewer anatomical brain regions in Alzheimer’s disease.10,19

On the other hand, when using textural whole-brain-based 
analysis, significant differences were found between groups 
regarding the energy, correlation, sum entropy, entropy, in-
formation measure of Correlations I and II and maximal cor-
relation coefficient (see Table 3 for details). Corroborating 
these results, the classifier built using the GLCM-based 
textural parameters yields a slightly larger classification 

accuracy than the classical kinetic approach (see Table 4
for details). The overall identical performance of both classi-
fiers and Cochran’s Q test result (see Table 4 for details) sup-
port the stated hypothesis that GLCM-based textural 
parameters may be an alternative to kinetic modelling in 
the quantification of (R)-[11C]PK11195 PET images of 
Alzheimer’s disease patients. From these results, we can con-
clude that (R)-[11C]PK11195 PET textural analysis yields 
similar quantitative markers of inflammatory cell density 
to kinetic analysis. This textural approach eliminates the 
need for dynamic acquisition and blood sampling, which in-
creases patient comfort and convenience.

Regarding other neurodegenerative disorders, (R)-[11C] 
PK11195 binding was found elevated in cortical regions of 
Huntington’s disease patients,39,40 in Lewy body participants 
with mild disease when compared to those with moderate/se-
vere impairment,38 in cortical and subcortical structures of 
amyotrophic lateral sclerosis participants, with variable pat-
terns at the individual level,41 and in Parkinson’s disease in cor-
tical regions,24,35-37 in the pons and basal ganglia35 and in the 
midbrain at early stages of this disease.34 Interestingly, one 
study found that Parkinson’s disease individuals had compar-
able or lower regional (R)-[11C]PK11195 binding relative to 
controls.33 These results suggest that in other neurodegenerative 
disorders, inflammatory cell density measured by (R)-[11C] 
PK11195 PET presents a diffuse and dynamic distribution pat-
tern as it seems to happen in Alzheimer’s disease. Thus, we 
speculate that GLCM-based textural parameters may also be 
an alternative or complement to kinetic analysis in (R)-[11C] 
PK11195 PET images of other neurodegenerative disorders.

Our study presents a few limitations such as the lack of lon-
gitudinal assessment. To overcome this caveat, we used the 
CDR instrument to ensure a dataset of patients in the same 
disease stage. CDR can discern very mild impairments, but 
its weaknesses include the amount of time it takes to imple-
ment, subjectivity and relative inability to capture changes 
over time. Therefore, this work only addresses a relatively 
early diagnosis (<2 years) of probable Alzheimer’s disease. 
Due to the progression of chronic inflammation, if we had in-
cluded patients in advanced stages of Alzheimer’s disease, 
we would expect to obtain even more detectable changes 
based on textural analysis. Another limitation of our study 
is the use of a first-generation TSPO PET tracer, (R)-[11C] 
PK11195, which has been reported to suffer from high non- 
specific binding and a low signal-to-noise ratio.59,64,65

Table 4 Measures of test performance (accuracy, sensitivity and specificity) and balanced accuracy for the kinetic and 
textural-based classifiers and Cochran’s Q test results

Kinetic GLCM-based textural Cochran’s Q test

Accuracy 0.6750 0.7000 H0: The proportions of (response = ‘AD’) in all groups are equal.
Sensitivity 0.7000 0.6957 H1: The proportion of (response = ‘AD’) in at least one group is 

different.
Specificity 0.6500 0.7059 χ2 statistic Q P-value DF Reject H0 at α = 0.05?
Balanced accuracy 0.6754 0.6967 0.6923 0.4054 1 No

AD, Alzheimer’s disease; DF, degrees of freedom; H0, null hypothesis; H1, alternative hypothesis; Q, the test statistic value. Cochran’s Q test was performed on the hypothesis that the 
number of classifiers has the same number of successes and failures.
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Additional considerations
Firstly, recent results indicate that TSPO PET more directly re-
flects the density of inflammatory cells.66 Therefore, we re-
ported our results according to (R)-[11C]PK11195 as being a 
measure of microglial activation via the density of its inflamma-
tory cells. Secondly, although the goal of this study was not to 
find an alternative to other imaging biomarkers in distinguish-
ing Alzheimer’s disease from healthy controls or the relation-
ship between (R)-[11C]PK11195 and amyloid deposition, it is 
still relevant to consider some aspects in this regard.

In a previous work of our group, Oliveira et al.53 reported 
that kinetic modelling of [11C]Pittsburgh Compound B PET 
images yielded an accuracy of 96% in Alzheimer’s disease 
discrimination (accuracy 96%, sensitivity 96% and specifi-
city 95%). Our classifier built using (R)-[11C]PK11195 
PET images and a similar approach—linear support vector 
machine and leave-one-out cross-validation technique— 
shows a lower ability to discriminate Alzheimer’s disease. 
We recognize that kinetic modelling approaches applied to 
[11C]Pittsburgh Compound B, a PET ligand for in vivo evalu-
ation of one of the main hallmarks of Alzheimer’s disease— 
abnormal deposition of amyloid plaques—are better for 
discriminating Alzheimer’s disease. Nonetheless, microglial 
activation is known to be involved in Alzheimer’s disease 
onset and progression2,4,19 and may reflect a dynamic patho-
logical process in this disorder with distinct phases of anti- 
and pro-inflammatory immune activation.30,42 Since 
(R)-[11C]PK11195 represents an indirect measure of this in-
flammatory mechanism, the main potential of this tracer may 
be in the assessment and progression of the diffuse and 
dynamic distribution of inflammatory cell density in this 
disorder as a promising therapeutic target. Understanding 
the chronic inflammation pattern mediated by microglia67,68

requires the use of other approaches to assess its spatial char-
acteristics. That further justifies our proposed alternative to 
quantify (R)-[11C]PK11195 PET images.

Regarding the correlation between (R)-[11C]PK11195 and 
amyloid deposition, Jorge et al.10 in a previous work of our 
group found no significant correlation between (R)-[11C] 
PK11195 and amyloid retention in Alzheimer’s disease, cor-
roborating the results of other studies.12,29,32 Conversely, 
Parbo et al.31 found clusters with a positive correlation. 
Others reported positive correlations at both baseline and 
follow-up.13,30 Interestingly, one study showed a significant 
negative correlation in the posterior cingulate cortex.28

These results may indicate that Aβ accumulation is not the pri-
mary cause of inflammatory cell density and that these physio-
logical phenomena should be investigated independently.

Conclusion
In conclusion, our results have shown that GLCM-based tex-
tural parameters may be an alternative to conventional 
ROI-based kinetic modelling in quantifying (R)-[11C] 
PK11195 PET images. The proposed quantification method 

makes it possible to use simpler scanning procedures, which 
increase patient comfort and convenience. We further specu-
late that GLCM-based textural parameters may also be an 
alternative or complement to kinetic analysis in PET neuroi-
maging studies involving other neurodegenerative disorders. 
Finally, we recognize that the role of this tracer is not in diag-
nosis but may be in the assessment and progression of the dif-
fuse and dynamic distribution of inflammatory cell density in 
this disorder as a promising therapeutic target.
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