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Abstract: This review presents the most recent developments on the synthesis of dipyrromethanes,
covering classical synthetic strategies, using acid catalyzed condensation of pyrroles and aldehydes
or ketones, and recent breakthroughs which allow the synthesis of these type of heterocycles with
new substitution patterns.
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1. Introduction

Dipyrromethanes are well known synthetic scaffolds for the synthesis of macrocycles and
dipyrromethene metal complexes. Dipyrromethanes occupy a central place in porphyrin chemistry.
The dipyrromethane structures employed in the synthesis of naturally occurring porphyrins typically
bear substituents at the β-positions and lack any substituent at the meso-position. However,
the dipyrromethanes with substituents at the meso-position have come to play a valuable role in the
preparation of synthetic porphyrins [1,2], calixpyrroles [3], chlorins [4], corroles [5], and expanded
porphyrins, namely saphyrins and smaragdyrins [6,7] (Figure 1).

The most representative example of dipyrromethene metal complexes are 4,4-difluoro-4-bora-
3a,4a-diaza-s-indacenes also known as BODIPYs, which have been successfully used as fluorescent
probes in diverse applications [8–10]. Other metal complexes have also attracted researchers’
attention, for example, recently, aluminium complexes have been used as catalysts for polymerization
reactions [11,12], iron complexes [13] have been used as catalysts for C-H bond amination [14,15],
and ruthenium complexes of dipyrromethenes [16,17] were synthetized as precursors of bis(2,2′-
bipyridyl)(dipyrrinato)ruthenium(II) complexes.

Beyond its use as synthetic scaffolds, the dipyrromethane framework used as ligand for the
synthesis of organometallic complexes has attracted the interest of several research groups, mostly
due to the ease of synthetic accessibility and versatility of substitution of this moiety. The electronic
properties of this ligand can be modified by substitution at the beta-carbons and at the meso positions,
while the steric properties can be tuned by substitution at the alpha-carbons. Zirconium complexes
have been applied in olefin hydroamination [18] and ruthenium, rhodium and iridium complexes
used as hydrogen transfer catalysts under aqueous and aerobic conditions [19]. The synthesis of
dipyrromethene complexes has also been achieved with Mn, Co, Zn, Ni [20–22] or Sn [23]. Recently,
a dipyrromethane-based diphosphane–germylene was synthetized and used as precursor of tetrahedral
Cu(I) and T-shaped Ag(I) and Au(I) flexible pyrrole-derived Phosphorous-Germanium-Phosphorous
(PGeP) germylene pincer complexes [24].
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Anion recognition is an area of growing interest due to its important role in a wide range of
environmental, clinical, chemical and biological applications. Interestingly, the acidic NH protons
of dipyrromethanes can be used as anion sensors with good binding activity and selectivity [25–28].
Furthermore, polymers based on dipyrromethanes were developed for the molecular recognition of
two homoserine lactone derivatives involved in bacterial quorum sensing [29].

Herein, bibliographic coverage of the developments on the synthesis of dipyrromethanes since the
last reviews in this area [9,30–32] is provided (2014–2019). The synthetic strategies have been organized
in two main approaches: classical synthetic strategies based on the first report on the synthesis of
meso-substituted dipyrromethanes, disclosed in 1974 [33], using acid catalyzed condensation of pyrrole
and aldehydes; and recent breakthroughs in dipyrromethane chemistry which allow the synthesis of
dipyrromethanes with new substitution patterns.

2. Classic Synthetic Strategies

2.1. Hydrochloric Acid-Catalyzed Dipyrromethane Synthesis

Receptor molecules grounded on guanidinium- and pyrrole-containing binding sites 3 were
developed by Kataev and colleagues with the objective of selective recognizing orthophosphate anions
in aqueous media (Scheme 1) [27].

Studies demonstrated that the pyrrole-containing binding site was of pronounced influence on
the selectivity and that dipyrromethane core structure 2, prepared from the HCl-catalyzed reaction of
4-heptanone 1 and pyrrole in boiling water in 13% isolated yield, demonstrated the highest selectivity for
orthophosphate over other inorganic anions. A novel and readily available dipyrromethane-based dual
receptor 6 serving as colorimetric sensor for both F- and Cu2+ ions was recently designed and prepared
by Pandey and co-workers (Scheme 1) [28]. Treatment of pyrrole and acetophenone 4 in the presence
of catalytic HCl in water was key in the formation of meso-methyl-meso-phenyl-dipyrromethane 5 in
75% yield.
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derivatives [34]. This firstly involved the classic room temperature HCl-promoted synthesis of 
dipyrromethanes 7 (starting from excess pyrrole and suitable aldehydes), followed by reaction of 
propargyl bromide 8 in the presence of sodium hydride to append an alkyne functionality to the 
nitrogen atom at one of the pyrrole units. A final seven-exo-dig cyclization, between the alkyne group 
and the N-deprotonated pyrrole moiety, followed by prototropy produced the target compounds 10 
in generally good overall yields (Scheme 2). 
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Interesting work carried out by the research group of Swavey allowed the preparation of two 
new dipyrromethane bridging ligands [17], as well as their corresponding dimetallic ruthenium(II) 
[17] and osmium(II) [35] coordination complexes. Reaction of phenanthrolinepyrrole 11 (php) with 
the selected aryl aldehyde in acetic acid (AcOH) produced dipyrromethanes 12, comprising two php 
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3,4,5-trimethoxybenzaldehyde and pentafluorobenzaldehyde, was completely unsuccessful. 
Coordination with Ru(II) or Os(II) bis(bipyridyl) chloride in refluxing ethanol, followed by saturation 
with aqueous ammonium hexafluorophosphate, created the novel dimetallic complexes 13 and 14 in 
good isolated yields (Scheme 3). 
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Scheme 1. Synthesis of meso-disubstituted dipyrromethanes 2 and 5 featured in ion receptor
dipyrromethanes 3 and 6, respectively.

Balci et al. established a regioselective method for the preparation of dipyrrolo-diazepine
derivatives [34]. This firstly involved the classic room temperature HCl-promoted synthesis of
dipyrromethanes 7 (starting from excess pyrrole and suitable aldehydes), followed by reaction of
propargyl bromide 8 in the presence of sodium hydride to append an alkyne functionality to the
nitrogen atom at one of the pyrrole units. A final seven-exo-dig cyclization, between the alkyne group
and the N-deprotonated pyrrole moiety, followed by prototropy produced the target compounds 10 in
generally good overall yields (Scheme 2).
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Scheme 2. Synthesis of dipyrromethanes 7, alkyne-substituted dipyrromethanes 9 and
dipyrrolo-diazepine derivatives 10.

2.2. Acetic/propionic Acid-Catalyzed Dipyromethane Synthesis

Interesting work carried out by the research group of Swavey allowed the preparation of two new
dipyrromethane bridging ligands [17], as well as their corresponding dimetallic ruthenium(II) [17]
and osmium(II) [35] coordination complexes. Reaction of phenanthrolinepyrrole 11 (php) with
the selected aryl aldehyde in acetic acid (AcOH) produced dipyrromethanes 12, comprising two
php moieties linked by a meso-aryl group (Scheme 3). The use of benzaldehydes substituted
with electron donating (vanillin) and electron withdrawing (cyano) groups did not greatly affect
the efficiency of the reaction with php. However, the use of sterically hindered aldehydes, e.g.,
mesitylbenzaldehyde, 3,4,5-trimethoxybenzaldehyde and pentafluorobenzaldehyde, was completely
unsuccessful. Coordination with Ru(II) or Os(II) bis(bipyridyl) chloride in refluxing ethanol, followed
by saturation with aqueous ammonium hexafluorophosphate, created the novel dimetallic complexes
13 and 14 in good isolated yields (Scheme 3).
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Scheme 3. Synthesis of diphenanthrolinepyrromethanes 12 and their corresponding dimetallic Ru(II)
13 and Os(II) 14 coordination complexes.

Access to C2v symmetric β-substituted porphyrins, e.g., protoporphyrin III 21, using the promptly
accessible Knorr’s pyrrole 15, which is crucial in the preparation of the required dipyrromethane
building blocks [36], was envisaged by Neya and colleagues in 2016 [37]. Two Knorr’s pyrrole units
were coupled into symmetric dipyrromethane 16 in propionic acid (PrOH). Its 3,3′-dibenzyl groups
were removed via hydrogenolysis affording the corresponding carboxilic acid substituents, which were
removed by iodination giving dipyrromethane 17. This was further reduced to dipyrromethane 18 under
a Pd/C-catalyzed hydrogen atmosphere. Reaction of 18 with acetyl chloride in the presence of aluminum
chloride led to the formation of 3,3′-diacetyldipyrromethane dimethylester 19, which was then
hydrolyzed using aqueous sodium hydroxide into the corresponding dipyrromethene-5,5′-dicarboxylic
acid. Its terminal carboxylic residues were subsequently eliminated through iodinative decarboxylation,
rendering 5,5′-diiododipyrromethane 20 in 10.2% overall yield after eight reaction steps (Scheme 4).

The multistep synthesis of 1,4,5,8-tetraethyl-2,3,6,7-tetravinylporphyrin 26 was reported by
the same research team one year later, this time using closely related Knorr’s pyrrole analogue
22 as starting material [38]. The same experimental protocol was selected in order to produce
5,5′-diiododipyrromethane 23, which was then subjected to reduction to afford dipyrromethane 24,
followed by formylation to dipyrromethane 25 (Scheme 5). These two new dipyrromethane derivatives,
24 and 25, were key in the subsequent preparation of the target symmetric porphyrin 26.
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2.3. p-Toluenesulphonic Acid-Catalyzed Dipyrromethane Synthesis

A solution of furan-2-carboxaldehyde 27 and ethyl 2-cyano-3-(1H-pyrrol-2-yl)-acrylate 28 in
dichloromethane was refluxed for 8 h in the presence of a catalytic amount of p-toluenesulphonic acid
(p-TSA) to afford 1,9-bis(2-cyano-2-ethoxycarbonylvinyl)-5-(2-furanyl)-dipyrromethane 30 in 32% yield
(Scheme 6). This new dipyrromethane was extensively characterized through experimental spectroscopic
measurements and theoretical quantum chemical calculations by Singh and co-workers [39]. The same
authors later described the preparation of some novel dipyrromethane-hydrazone derivatives 31,
by condensing previously synthesized 2-[(4-isonicotinoyl)-hydrazonomethyl]-1H-pyrrole 29 with
suitable aldehydes, also under classic p-TSA catalyzed reactional conditions, high yields being
attained [40]. These were screened for antitubercular activity against Mycobacterium tuberculosis H37Rv
strains, interesting minimum inhibitory concentration (MIC) values being found (Scheme 6).
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Scheme 6. Meso-Dipyrromethanes 30 and 31 synthesized under standard p-TSA-catalyzed conditions.

2.4. Trifluoroacetic Acid-Catalyzed Dipyrromethane Synthesis

Aiming to synthesize a 5,10-diacyltripyrrane, an essential intermediary synthon for the preparation
of a 5,10-diacylcalix[4]pyrrole, Mahanta and Panda were able to unexpectedly isolate acyldipyrromethane
32 with a yield up to 31% (Figure 2), following the trifluoroacetic acid (TFA)-catalyzed reaction of
2,3-butanedione and excess pyrrole [41]. Yildiz et al. have described the synthesis, characterization,
crystal structure and theoretical calculations of two new meso-borondipyrromethene (BODIPY)
incorporating a phthalonitrile moiety [42,43]. Crucial for their detailed report was the preparation
of meso-phenoxyphthalonitrile dipyrromethanes 33 and 34 (Figure 2), which were attained in 53%
and 61% yields, respectively, after typical room temperature condensation of suitable and previously
obtained aldehydes with excess pyrrole in the presence of TFA. A very similar experimental setup
was applied to the synthesis of unsubstituted dipyrromethane [44], meso-2-pyrrolyldipyrromethane
7f (see Scheme 2) in 90% yield [45], as well as to the preparation of dipyrromethane 35, in 43%
yield [46]. Three meso-(trimethylsilyl)phenyl-dipyrromethane structures 36 were obtained in good
yields, ranging from 60% to 66% (Figure 2), after solventless condensation catalyzed by TFA of
the corresponding silylated aldehydes with pyrrole [47]. Extensive work on the synthesis of novel
pentafluorosulfanyl-substituted A4-type porphyrins (and their respective Zn(II) and Pd(II) complexes),
A3-, AB2- and A2B-type corroles, trans-A2B2-type porphyrins and BODIPYs has been reported [48].
Regarding the three latter molecular targets, meta-SF5-phenyl-substituted dipyrromethanes 37a–c,
prepared in high yields (62%–80%) under standard TFA-catalyzed reaction conditions using appropriate
pentafluorosulfanyl-bearing aryl aldehydes and surplus pyrrole, were the strategic intermediates
(Figure 2). More recently, the same authors reported the efficient preparation, under similar standard
conditions, of useful meso-aryldipyrromethane scaffolds 37d [49] and 37e [50] (in 92% and 87% yields,
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correspondingly), which were further functionalized and/or used as building blocks for the formation
of other interesting BODIPY or porphyrinoid molecular species.
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Figure 2. Dipyrromethanes 32–37 synthesized under standard TFA-catalyzed conditions.

Bis-dipyrromethanes 38a–d and 39a–d, as well as tris-dipyrromethane 38e and 39e, were prepared
from commercially accessible starting materials by Sessler’s research team [51,52], following the
strategy summarized in Scheme 7. Their anion binding properties were then evaluated in both organic
media and in the solid state, compounds 39 displaying a good affinity for dihydrogenphosphate
and pyrophosphate anions (as tetrabutylammonium salts) in chloroform solutions, acting as
conformationally switchable receptors.
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Scheme 7. Dipyrromethane derivatives 38 synthesized under typical TFA-catalyzed conditions and
subsequent formylation to dipyrromethane products 39.

Acyclic and macrocyclic dipyrromethanes were synthesized by Love et al. by applying
common Schiff-base condensation chemistry to meso-pentafluorophenyldipyrromethane dialdehyde
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40, diiminodipyrromethane derivative 41 being obtained in 74% yield (Scheme 8) [53]. Bridged
macrocyclic dipyrromethanes 43 were prepared by condensation of 40 with either ortho-phenylene 42a
or 1,5-anthracene-diamine 42b, again using TFA as catalyst. After neutralization with triethylamine,
the target molecules precipitated neatly from the reaction medium (Scheme 8).
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Scheme 8. Acyclic and macrocyclic dipyrromethane derivatives 41 and 43 synthesized under standard
TFA-catalyzed Schiff-base conditions.

Novel bis-dipyrromethane derivatives 45 were synthesized in moderate yields by reacting
previously prepared dialdehydes 44 with surplus pyrrole in the presence of TFA as catalyst (Scheme 9).
These bis-dipyrromethanes 45, as well as 38c (see Scheme 7) and dipyrromethane 35 (see Figure 2),
undergo electropolymerization on the electrode surface occurring upon multiple oxidation cycles [46].
The authors uncovered that quicker electropolymerization rates arise when the monomeric species
contains more than one dipyrromethane component, and that the resulting polymers exhibit greater
stability, while also showing low roughness and a very uniform and homogenous morphology.

Molecules 2019, 24, x 9 of 28 

 

Novel bis-dipyrromethane derivatives 45 were synthesized in moderate yields by reacting 
previously prepared dialdehydes 44 with surplus pyrrole in the presence of TFA as catalyst (Scheme 
9). These bis-dipyrromethanes 45, as well as 38c (see Scheme 7) and dipyrromethane 35 (see Figure 
2), undergo electropolymerization on the electrode surface occurring upon multiple oxidation cycles 
[46]. The authors uncovered that quicker electropolymerization rates arise when the monomeric 
species contains more than one dipyrromethane component, and that the resulting polymers exhibit 
greater stability, while also showing low roughness and a very uniform and homogenous 
morphology. 

 

Scheme 9. Bis-dipyrromethanes 45 synthesized under normal TFA-catalyzed conditions. 

β-Formyl-tetrapyrrolic macrocycles have been used for the synthesis of dipyrromethene 
derivatives through condensation with pyrroles (Scheme 10). Temelli and Kalkan recently described 
the synthesis of meso-porphyrinyldipyrromethane 47 in high yield, by reacting 2-formyl-meso-
tetraphenylporphyrin 46 prepared beforehand and excess pyrrole under classic TFA catalysis 
conditions. The unforeseen construction of β/meso-directly connected diporphyrinic molecules in 
reactions of β-formylated porphyrins with pyrrole under ordinary Adler-Longo conditions was also 
established, early mechanistic studies showing that dipyrromethane 47-type intermediates are 
fundamental in the process [54]. On the other hand, Galium(III) corrole-BODIPY hybrid 49 was 
obtained from the TFA-catalyzed reaction of formyl-corrole 48 with 2,4-dimethylpyrrole followed by 
oxidation and complexation with boron trifluoride [55]. 

 

HN

HN

Pyrrole, TFA

rt, 2 h
OHC CHO

=

a                             b

N
S

NH

NH
44 45a 47%

45b 44%

NH

N HN

N

Ph

Ph

Pyrrole, TFA
sat. N2

rt, 3 h

NH

N HN

N
Ph

Ph

Ph

PhPh

Ph

H
N

NH

CHO

46                                                                  47  72%

N

N N

N
C6F5 2. DDQ/CH2Cl2 30 min; 

DIPEA/BF3.OEt2, rt, 2 h

C6F5

C6F5

48  L = pyridine
CHO

CHO

Ga
L

N

N N

N

C6F5

C6F5 Ga
L

49 9.2%

N N
B

N

N
B

C6F5

F
F

F F

LL
N
H

 TFA, CH2Cl2, rt, 4 h

1.

Scheme 9. Bis-dipyrromethanes 45 synthesized under normal TFA-catalyzed conditions.



Molecules 2019, 24, 4348 9 of 27

β-Formyl-tetrapyrrolic macrocycles have been used for the synthesis of dipyrromethene derivatives
through condensation with pyrroles (Scheme 10). Temelli and Kalkan recently described the synthesis of
meso-porphyrinyldipyrromethane 47 in high yield, by reacting 2-formyl-meso-tetraphenylporphyrin 46
prepared beforehand and excess pyrrole under classic TFA catalysis conditions. The unforeseen
construction of β/meso-directly connected diporphyrinic molecules in reactions of β-formylated
porphyrins with pyrrole under ordinary Adler-Longo conditions was also established, early mechanistic
studies showing that dipyrromethane 47-type intermediates are fundamental in the process [54]. On the
other hand, Galium(III) corrole-BODIPY hybrid 49 was obtained from the TFA-catalyzed reaction
of formyl-corrole 48 with 2,4-dimethylpyrrole followed by oxidation and complexation with boron
trifluoride [55].
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Scheme 10. Synthesis of dipyrromethane derivatives with tetrapyrrolic macrocycle substituents.

New meso/meso-straightly linked Ni(II) porphyrin hybrids were designed and prepared
by Kong and co-workers, the metalloporphyrinic units being connected with dipyrromethene,
bis-dipyrromethene or thiacorrole units [56]. Instrumental in the synthetic strategy of the authors was
meso-dipyrromethane-susbtituted Ni(II) porphyrin 51, which was effortlessly obtained in good yield
via TFA-catalyzed room temperature condensation of Ni(II) 10,20-di(3,5-di-t-butylphenyl)-5-formyl
porphyrin 50 and pyrrole (Scheme 11).

The synthesis and characterization (structural, spectral and electrochemical) of Pd(II), Re(I) and
Ru(II) 3-pyrrolyl-BODIPY/dipyrromethenes complexes 55a–c was reported by Ravikanth’s research
team in 2014 [57]. The pertinent and necessary dipyrromethane-substituted 3-pyrrolyl BODIPY
intermediate 53a was prepared in 85% yield by mixing a dichloromethane solution of formylated
3-pyrrolyl BODIPY 52a, produced and isolated beforehand, and excess pyrrole under TFA-catalyzed
and inert atmosphere conditions (Scheme 12). Related α-dipyrromethanyl 3-pyrrolyl BODIPY 53b was
synthesized in a similar fashion by the same research group a few years later (Scheme 12) [58]. This was
further transformed into 3-pyrrolyl BODIPY/BODIPY dimer 54, comprising an ethynyl functionality at
the meso-aryl location, which was then coupled to selected monomeric BODIPYs in order to create the
authors’ target near-infrared emitting BODIPY oligomers.
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3-pyrrolyl BODIPY/BODIPY 54.

2.5. Boron Trifluoride Diethyl Etherate-Catalyzed Dipyrromethane Synthesis

New meso-phenothiazinyldipyrromethanes 56, having alkyl groups of growing bulkiness linked
to the heterocyclic nitrogen of the phenothiazine core were synthesized in high yields (81%–89%) by
condensing proper N-alkyl-phenothiazin-3-carbaldehydes with pyrrole at room temperature, in the
dark, and in the presence of boron trifluoride diethyl etherate (BF3.Et2O) as catalyst (Figure 3) [59].
A BODIPY dye [59], a trans-A2B2-type porphyrin [59], and some Sn(IV) coordination complexes [60]
bearing an N-methyl-phenothiazinyl motif were later prepared utilizing dipyrromethane 56a as
the building block. Thilagar and colleagues conveyed the simple preparation, under typical
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BF3.Et2O-catalyzed reaction conditions of four novel triarylborane-dipyrromethane derivatives 57a–d
(Figure 3) that encompassed dual receptor sites (Lewis acidic boron and hydrogen bond donor NH) and
displayed a discriminating fluorogenic response towards the fluoride anion in dichloromethane
solution [61]. Broadly acknowledged meso-substituted dipyrromethanes 7c (Scheme 2) and 58
were recently obtained by Bagherzadeh and co-workers via the dropwise addition of pyrrole to
a dilute aqueous solution of the aryl aldehydes, using boron trifluoride diethyl etherate as catalyst
(Figure 3) [62]. This methodology was adapted from an earlier report that used aqueous HCl at
90 ◦C [63], tripyrromethane and other oligomers being obtained as byproducts when large and sterically
hindered aryl aldehydes are employed. The reaction occurred smoothly in mild conditions, 30–70 min
at 70–80 ◦C under an argon atmosphere, moderate to high yields (60%–85%) being obtained, even when
employing bulky electron donating (mesityl) or electron withdrawing (2,6-dichlorophenyl) aldehydes,
and no decomposition or scrambling being noticed.Molecules 2019, 24, x 12 of 28 
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Figure 3. Dipyrromethanes 56-58 synthesized under standard BF3.Et2O-catalyzed conditions.

Sessler and co-workers synthesized pyrene-bridged bis-dipyrromethane 60 in 41% yield by
reacting previously prepared pyrene dialdehyde 59 with excess pyrrole in ethanol at room temperature
for three days and using BF3.Et2O as catalyst (Scheme 13) [64]. After formylation under standard
reaction conditions, pyrene-linked tetraformylated bis-dipyrromethane 61 was obtained in moderate
yield. Anion recognition studies revealed that the latter performs as a selective fluorescent probe in
chloroform solution for dihydrogen phosphate over other tested anions.

Ravikanth’s research group reported the preparation and characterization (structural,
photophysical and electrochemical) of β-meso covalently linked azaBODIPY/BODIPY dyad 64 [65]
and Pd(II) azaBODIPY/dipyrromethene complex 65 [66,67]. The unconditionally required
dipyrromethane-substituted azaBODIPY intermediary 63 was synthesized in reasonable yield by
stirring a dichloromethane solution of 2-formyl azaBODIPY 62, and surplus pyrrole, at room
temperature, under boron trifluoride diethyl etherate catalysis and inert atmosphere conditions
(Scheme 14). A similar synthetic strategy, condensation of 3-formyl-BODIPY with pyrrole catalyzed by
BF3-OEt2 was used for the synthesis of BODIPY/BODIPY dimers [68].
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2.6. Indium(III) Chloride-Catalyzed Dipyrromethane Synthesis

meso-Substituted dipyrromethanes 66a,b were prepared by simple solvent-free condensation of
the appropriate aryl aldehydes with excess pyrrole, under a saturated argon atmosphere and indium
chloride (InCl3)-catalyzed conditions, (Figure 4) moderate yields being attained [69]. Lindsey’s research
team designed and synthesized a series of interesting trans-AB-kind porphyrins and metalloporphyrins
comprising one water-solubilization moiety and one bioconjugatable functionality [70]. Key for their
strategy was the previous preparation of suitable dipyrromethane building blocks, including novel
compound 66c, which was obtained in 33% yield using the same catalytic conditions (Figure 4).
A related setting was also applied for the synthesis of meso-nonyldipyrromethane 67 in 78%
yield and meso-methoxycarbonyldipyrromethane 68 in 52% yield [71]. In addition to the latter,
the synthetic process also provided regioisomer 69 and cyclic derivative 70, a by-product resulting
from intramolecular aminolysis of ester 68, in 32% and 10% isolated yields, respectively (Figure 4).
Moreover, the same authors prepared dipyrromethane derivatives 71 and 72 in moderate to reasonable
yields, 47%–62% by simply mixing the adequate aldehydes or acetals with excess pyrrole in an inert
atmosphere using indium chloride as catalyst. Dipyrromethanes 67–69 and 71–72 were later crucial for
the preparation of several trans-AB-type porphyrins and metalloporphyrins (Figure 4) [71].
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Aiming to combine porphyrin, BODIPY and triptycene chemistry, Senge et al. recently presented
meso-triptycenyldipyrromethane synthon 74, synthesized in 60% yield from the condensation of
2-formyltriptycene 73 and surplus pyrrole under standard InCl3-catalyzed conditions (Scheme 15) [72].
The extreme utility of dipyrromethane 74 was noticeably demonstrated by its application in the
preparation of triptycene-substituted BODIPY 75a, triptycene-substituted 3-pyrrolyl-BODIPY 75b,
trans-A2B2 triptycenylporphyrins 76a,b and A3B-type triptycenylporphyrins 76c,d.

Following a similar synthetic approach, the same authors also devised the synthesis of
a more complex tris-dipyrromethane-substituted triptycene 78 in 37% yield [72], starting from
2,6,14-tri(4-formylphenyl)triptycene derivative 77, which was prepared and isolated beforehand
(Scheme 16). Tris-dipyrromethane 78 was later successfully utilized as a valuable intermediate in the
synthesis of tris-BODIPY-substituted triptycene 79.
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2.7. Other Strategies

The synthetic route that Trofimov’s research group developed in order to obtain new meso-
trifluoromethyldipyrromethanes 85 and 86 using 2-aminophenyl-1H-pyrroles 80 as starting material
is depicted in Scheme 17 [73]. Briefly, the protection of the amino functionality of pyrroles 80
with acetic anhydride, followed by a reaction with trifluoroacetic anhydride (TFAA), rendered
2-trifluoroacetylpyrroles 82 in high yields. Sodium borohydride-promoted reduction of pyrroles 82
and ensuing reaction of pyrrole carbinols 83 with 2-phenylpyrrole 84, in the presence of dehydration
agent phosphorous pentoxide (P2O5), gave dipyrromethanes 85 in good yields. Finally, conversion of
the acetamide substituents into amino groups in refluxing acidic media originated dipyrromethanes 86
(Scheme 17). Both dipyrromethane derivatives 85 and 86 were later used in the preparation of their
corresponding meso-CF3-BODIPY dyes, a big influence of the coexistence of the strong electron donor
NH2 and electron acceptor CF3 groups, along with the location of the amine at the aryl ring, being
determined on the optical properties of chromophores 86 [73].Molecules 2019, 24, x 17 of 28 
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Scheme 17. Synthesis of meso-trifluoromethyldipyrromethanes 85 and 86 from 2-aminophenyl-
1H-pyrroles.

The preparation of novel meso-trifluoromethyldipyrromethanes 92 and 93, comprising isoxazole
substituents in their molecular structure, starting from ethynylpyrrole 87 was also recently described
by the same authors (Scheme 18) [74]. Initial cyclization of 87 with hydroxylamine hydrochloride and
subsequent condensation of the obtained isoxazoles 89 or 90 with previously prepared pyrrole carbinols
91 in the presence of dehydration agent P2O5 leads to the desired and unreported dipyrromethane
derivatives 92 and 93 (Scheme 18). The latter were again further explored in the synthesis of their
respective meso-CF3-BODIPY dyes, some photophysical studies and quantum chemical calculations
having been carried out [74].

Aiming to synthesize the illusive and highly sought 2,3,7,8,12,13,17,18-octafluoroporphyrin
with a reasonable yield, Chang and colleagues choose the approach summarized in Scheme 19 [75],
ensuing an older account by Clezy and Smythe [76]. In brief, tetrafluorinated dipyrromethane 97 was
obtained in three steps starting from 3,4-difluoropyrrole 94. Reaction with thiophosgene under an inert
atmosphere rendered dipyrrothioketone 95 in high yield. Subsequent hydrogen peroxide-promoted
oxidation to dipyrroketone 96, followed by sodium borohydride-mediated reduction, originated
dipyrromethane derivative 97. Having this valuable scaffold in hands, the authors were thus able to
prepare trans-A2B2-type porphyrins 98, as well as β-octafluoroporphyrins 99.
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3. Novel Synthetic Strategies

3.1. Dipyrromethane Synthesis from Aldehydes and Pyrroles

Despite the wide variety of standard available methods, there is still an open door for the
development of new synthetic approaches for dipyrromethanes. For instance, there is a growing
interest in the use of catalysts that can be easily removed from the reaction medium and reused,
while also having an economically and ecologically friendly access. Konar and co-workers described
the synthesis of a wide range of meso-thienyldipyrromethanes 101 using an amine functionalized
MOF (Metal-Organic Framework) for the controlled release of the catalyst, iodine (Scheme 20) [77].
Dipyrromethanes 101 were obtained in high yields (50%–69%) with the ratio aldehyde/pyrrole (1:5)
in the presence of 20 mol% of NH2-MOF(I2), without organic solvents and under mild conditions.
The catalyst was reused for three cycles, although with a slight yield decrease. After immersion in an
iodine solution, the catalytic performance was comparable with the freshly prepared NH2-MOF(I2).
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The authors tested other catalysts, such as unfunctionalized MOFs (H-MOF(I2)), conventional TFA and
molecular iodine; however, dipyrromethanes 101 were obtained with lower yields.
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Scheme 20. Synthesis of meso-thienyldipyrromethanes.

Copper nanoparticles (CuNPs) [78] and celite-supported glycine (glycine@celite) [79] have been
explored as catalysts in the synthesis of dipyrromethanes because they are easily removed from
the reaction medium and can be reutilized (Scheme 21). The reaction of aromatic aldehydes with
pyrrole (10 equiv) under solvent-free conditions using CuNPs as catalyst gave dipyrromethanes
7c,e, 58d and 103 in high yields (65%–77%). In this catalytic system, the pyrrole nucleophilicity was
increased by the adsorption over CuNPs and reacted with the electrophilic carbon of the aldehyde to
give an intermediate, which reacted with another molecule of pyrrole adsorbed on CuNPs, giving
dipyrromethanes 7c,e, 58d, 103. The catalyst was recovered and reused in four cycles with a similar
catalytic activity without any deterioration. Dipyrromethane 104d was also synthesized using the
CuNPs as catalyst in 75% yield (Scheme 21) [78]. Glycine@celite was a milder acid catalyst system
whose efficacy was proven in the synthesis of dipyrromethanes 104. The reaction of aromatic aldehydes
with 2,4-dimethylpyrrole (3 equiv) in the presence of 10 mol% of the catalyst in dichloromethane for
30 min gave the corresponding dipyrromethanes 104 in very good yields (Scheme 21). The authors
described the reuse of the catalyst for 5 cycles without any deterioration and with similar catalytic
activity [79].
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Scheme 21. Synthesis of dipyrromethanes 7c,e, 58d, 103 and 104, catalyzed by CuNPs and
celite-supported glycine.

Dipyrromethane 104e underwent oxidation and chelation by copper producing a red
bis(dipyrrinato)copper(II) complex 105 (Scheme 22). This characteristic makes it an efficient naked eye
colorimetric chemosensor for copper ions, even in the presence of several other metal ions [79,80].

Dipyrromethanes 7c, 103b and 106 were synthesized in good yields by the iodine-catalyzed
double Friedel-Crafts reaction, using toluene or water as solvent (Scheme 23) [81]. The reaction of
pyrrole derivatives with aldehydes, (2:1) ratio, in presence of 10 mol% of molecular iodine in water
gave dipyrromethanes in better yields (60%–87%) than the reaction carried out in toluene (42%–62%).
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Scheme 23. Synthesis of dipyrromethanes 7c, 103b and 106 catalyzed by iodine.

Sirion and co-workers described the synthesis of dipyrromethanes through the reaction of
aldehydes with pyrrole catalyzed by SO3H-functionalized ionic liquids (SO3H-ILs) in aqueous
media [82]. The authors tested a few SO3H-ILs containing imidazolium or pyridinium cations and
different anions, and found that [bsmim][HSO4] (i.e., 1-butylsulfonic-3-methylimidazolium hydrogen
sulfate) was the ideal catalyst for the synthesis of dipyrromethanes (Scheme 24). Dipyrromethanes
107 were obtained in moderate to good yields from the reaction of pyrrole with aliphatic or aromatic
aldehydes, in the presence of 10 mol% of catalyst in water under mild conditions. The described method
comprised a large variety of aromatic aldehydes with both electron withdrawing and electron donating
substituents, heteroaromatic aldehydes as well as alkyl aldehydes. Moreover, the catalyst was easily
removed from the reaction media trough a simple extraction and recycling [82]. Later, the synthesis
of meso-aryldipyrromethanes using 1-propylsulfonic-3-methylimidazolium trifluoromethylacetate as
a catalyst was described, however, organic solvents were used [83].

The research group of Majee explored the use of imidazolium zwitterionic molten salt as
organocatalyst in the synthesis of meso-substituted dipyrromethanes under solvent-free conditions
(Scheme 25) [84]. This catalytic system acts as an electrophilic activator of the aldehyde by the
hydrogen bond with imidazolium C-2 hydrogen, emphasizing the importance of this cationic moiety.
The reaction of pyrrole or N-methylpyrrole with aromatic or aliphatic aldehydes (ratio 2:1), in the
presence of 10 mol% of the catalyst at room temperature and without solvent, gave access to a wide
range of dipyrromethanes in very high yields. Aromatic aldehydes containing electron withdrawing
or donating groups react with pyrrole or N-methylpyrrole to give dipyrromethanes 108a in yields
from 72% to 87%. Dipyrromethanes with a naphthyl 108b, pyrrole or indole 108c, and propyl 108d
substituents were also synthesized in high yields, using the same imidazolium zwitterionic molten salt
as catalyst. The methodology developed was seen by the authors as being a green synthetic protocol,
because it was metal- and solvent-free, and environmentally friendly with a good atom economy [84].

meso-Acetyldipyrromethane 110 was synthesized in 70% yield by the reaction of methylglyoxal
109 with pyrrole, in a 1:2.5 ratio, using boric acid as catalyst in aqueous media (Scheme 26) [85].
In addition to dipyrromethane 110, other dipyrromethanes were synthesized using aromatic aldehydes
and similar reaction conditions. Boric acid is weakly acidic and reacts with water decreasing the pH of
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the aqueous layer; given that the reaction of pyrrole with aldehydes occurs in the interface with the
organic layer, the formation of side products is thus prevented.
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3.2. Dipyrromethane Synthesis via Alternative Methods

Pinho e Melo and co-workers developed an on-water one-pot synthetic approach to meso-
substituted dipyrromethanes via hetero-Diels-Alder reaction (or conjugated addition) of nitrosoalkenes
and azoalkenes with pyrrole (Scheme 27) [86,87]. Dehydrohalogenation of α,α-dihalooximes or
α,α-dihalohydrazones, in the presence of base, produces transient nitrosoalkenes or azoalkenes I.
These reactive species react with pyrrole to give pyrroles II functionalized at C-2 with a side chain,
which undergo dehydrohalogenation to form the second transient nitrosoalkenes or azoalkenes III.
The reaction with another molecule of pyrrole gives the dipyrromethanes 112 or 113, in moderate
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to high yields (21%–82%). The formation of dipyrromethanes 112 and 113 are accelerated and more
efficient using water as solvents allowing easier purification procedures than the reaction performed in
dichloromethane or in the absence of solvent. Dipyrromethanes synthesized by this approach have
the unique feature of being meso-substituted with oxime and hydrazone moieties [86]. The same
research group described the functionalization of dipyrromethanes at positions 1 and/or 9 through
hetero-Diels-Alder reaction or conjugated addition of nitrosoalkenes and azoalkenes [88–90].Molecules 2019, 24, x 22 of 28 
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Scheme 27. Synthesis of dipyrromethanes 112 and 113 based on the chemistry of nitrosoalkenes
and azoalkenes.

The one-pot synthesis of ortho-hydroxymethyl 8-C-aryl BODIPY derivatives 117 was achieved
through the key intermediate dipyrromethanes 116 (Scheme 28) [91]. Ethyl phthalidinium salts 115,
obtained by O-ethylation of phathalides 114 using Meerweins reagent, reacted with pyrrole to form
intermediate ketal I. Elimination of the ethoxy group from intermediate I gave the oxonium ion II,
which reacted with a second pyrrole unit to produce dipyrromethane 116. Reaction of dipyrromethanes
116 with BF3.OEt2 gave the BODIPY derivatives 117 in moderate yields (26%–45%). The masked
5-alkoxy-5-phenyldipyrromethane 116 with R1 = H, was isolated and treated with BF3.OEt2 in order to
confirm that this is a key intermediate in the synthesis of the corresponding borondipyrromethenes 117.
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Borbas and Xiong developed a strategy to synthesize unsymmetrical dipyrromethanes 120 through
the Mannich reaction between pyrroles and Eschenmoser’s salt (Scheme 29) [92]. Initially, pyrroles 118
reacted with Eschenmoser’s salt to give the Mannich product 119, which undergo substitution of the
N,N-dimethylamino group under microwave irradiation using pyrrole as reactant and solvent. This
method encompasses acid-sensitive and formyl groups and does not require the use of acid to activate
the pyrrole unit.
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Scheme 29. Synthesis of unsymmetrical dipyrromethanes 120.

meso- and α-Unsubstituted dipyrromethanes 124 were formed by the decarboxylation of
1,9-diethoxycarbonyldiyrromethanes 123 with KOH in ethylene glycol (Scheme 30) [93]. Bromination of
the α-methyl group of pyrrole 121, followed by nucleophilic substitution generated α-acethoxymethyl
pyrroles 122, which underwent self-condensation in the presence of HCl to give meso-unsubstituted
dipyrromethanes 123 in good yields. Dipyrromethanes 124 are key intermediates in the synthesis of
porphyrins 125, that are meso-unsubstituted and β-substituted.
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Scheme 30. Synthesis and reactivity of meso- and α-unsubstituted dipyrromethanes.

Thompson and co-workers developed a methodology to generate dipyrromethanes through
the microwave-assisted reduction of F-BODIPYs and dipyrromethenes (Scheme 31) [94]. meso-Aryl
BODIPYs 126 or dipyrromethenes 127 are reduced to the corresponding dipyrromethanes 128 in
ethylene glycol and an excess of sodium methoxide under microwave irradiation at 215 ◦C for 10
minutes. This methodology is useful when BODIPYs or dipyrromethenes are formed in one-pot
procedures and it is necessary to regenerate the dipyrromethane.

Neo-confused porphyrins 133 have been synthesized from the reaction of neo-confused
dipyrromethanes 131 with dipyrromethane 132 (Scheme 32) [95]. The treatment of pyrrole-3-
carboxaldehyde 129 with NaH in DMF at room temperature, followed by addition of methyl
4-formylpyrrole-2-carboxylate (130) gave the corresponding neo-confused dipyrromethanes 131 in
good yields (45%–75%).
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4. Conclusions

Given the continual relevance of the dipyrromethane scaffold, either by its own merits and
applications or because of its extreme usefulness as a synthetic intermediate for other high value
molecules, e.g., calix[4]pyrroles, (hydro)porphyrins, expanded porphyrins, corroles, BODIPY dyes,
and metal coordination compounds, classical synthetic methods employing effective tried-and-tested
catalysts still find their place on laboratory benches across the world. Nonetheless, as can be
realized from this literature review covering the past six years, it is highly expected that organic
and medicinal chemists, as well as material scientists, will keep pursuing innovative technologies
and/or novel synthetic approaches with the aim of obtaining original, interesting, and much needed
dipyrromethane structures.
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