
ACM SIGSOFT Software Engineering Notes vol 23 no 1 January 1998 Page 42

Why do Some (weird) People
Inject Faults ?

Jo~o Carreira, Jo~o Gabriel Silva
Dependable Systems Group, Dept.of Computer

Engineering
University of Coimbra, Portugal

{jcar,jgabriel} @dei.ue.pt

There are some research corners in computer
engineering whose usefulness is sometimes hard to
understand even for experienced engineers. Fault Injection
is one of those areas. Since the day we built our very first
Fault Injection tool we hear the same jokes: "'Why the heck
are you injecting faults ? don't you think there are already
enough ?". Fortunately work in fault injection has
progressed and nowadays this is a technique used by many
of the biggest computer manufacturers. We'll try to show
briefly why is Fault Injection important and what's its
practical use.

It is common nowadays to hear about computer systems
faults in the media. The reasons can be very diverse: from
the blackout of America Online (AOL) affecting 6-million
users to a software fault in Ariane 5 that cost $500 billions
to the European Space Agency (ESA). But what exactly are
we talking about when we talk about faults ? Simplifying
things a little bit, a fault is a phenomenon that can cause a
deviation in an hardware or a software component from its
intended functions [2].

Hardware faults that occur during system operation are
categorized mainly by their duration. Permanent faults are
caused by irreversible component damages due to
exhaustion, improper manufacturing or misusage. These
faults can only be recovered by replacing or repairing the
faulty component. A simple example is a chip that bums in
your network card causing it to stop working. Transient
faults, on the other hand, are triggered by environmental
conditions such as voltage fluctuation, electromagnetic
interferences or radiation. These faults usually do not cause
any lasting damage in the affected component, although
they can cause the system to change to an erroneous state.
According to several studies, transient faults occur much
more frequently than permanent ones and they are also
much more difficult to detect. In fact these faults are the
real headache of engineers working on fault tolerance. The
last class of Hardware faults are Intermittent faults. They
occur due to unstable hardware or varying hardware states
and can be repaired by replacement or redesign.

Finally, Software faults are caused by incorrect
specification, design or coding of a program. Every
software engineer knows that a software product is bug-free
just until the next bug is found. Many of these faults can be
latent in the code and show up only during operation,
specially under heavy or unusual workloads and timing

contexts or due to a phefiomenon known as process aging [3]. The bugs
of non-deterministic nature which are also called Heisenbugs (as
opposite to Bohrbugs that predictably lead to failures) are the most
difficult ones to eliminate by verification, validation or testing and
therefore they are something the system has to live with. Curiously,
most of the computer system faults are attributed either to Software
faults or Permanent faults. This doesn't mean that Transient and
Intermittent faults occur less frequently than software ones but simply
that they are much more difficult to track.

So, faults can have diverse origins, but after all what's the role of
Fault Injection in this story ? The keywords are Dependability
Validation and Software Testing. Fault injection is mostly used to
validate fault tolerance mechanisms in computer systems. Imagine a
computer system for the space shuttle, railway control, nuclear power
plants, fly-by-wire, or medical life-keeping. What these systems have in
common is that they require high-levels of dependability. The
consequences of a fault can be disastrous in terms of human lives or
economic losses. It is clear that such dependability requirements cannot
be met solely by careful design, quality assurance, shielding or other
Fault Avoidance techniques. The assumption that faults could be
completely avoided is unrealistic and therefore the computer system
must be able to provide the expected service in the face of faults - this is
the purpose of Fault Tolerance (FT).

Fault Tolerance can range from very complex to reasonably simple
mechanisms. For example, the space shuttle uses a Module Redundancy
a scheme where computer systems designed by different unrelated teams
from the same specification run in parallel using the same input data. A
device known as a voter monitors the output of the three systems
looking for any discrepancy. If one is detected the result which got the
majority is used while the deviating result is considered as anomalous.
An example of a simple fault tolerance mechanism is a watchdog
process [5] that monitors applications for execution problems and
performs automatic restarts in case of application crashes or hungs.

Whatever the complexity of the fault tolerance mechanisms, its first
requirement is to have the ability to detect faults, or more precisely the
errors caused by the faults. Parity checking is a simple example of an
error detection mechanism. Once an error has been detected, the
affected component has to be identified (diagnostic) and possibly
isolated through system reconfiguration and/or other recovery actions
preferably in an automatic and totally transparent way- not an easy task.

When the fault tolerant mechanisms are in place and their different
modules tested the problem of overall system testing and validation
shows up. How to efficiently test and validate the fault tolerant system
as a whole ? This is important both for the manufacturers and clients of
fault tolerant systems. Manufacturers want to be able to advertise the
level of fault tolerance of their systems and clients want critical
equipment to be certified. But how to certify the level of dependability of
such systems? Certification agencies such as the German TUV are
currently facing this problem and trying to devise the most appropriate
methodology to do so. The use of analytical modeling is very difficult as
the mechanisms involved in the fault activation and propagation process
are highly complex and are not completely understood in most of the
cases. Furthermore, the simplifying assumptions usually made to make
the analysis tractable reduces the usability of the results achieved by this
method.

One practical and efficient way of performing this kind of validation
is experimentally, you guessed it, using Fault Injection [1]. The
principle is to insert faults in the system as close as possible to the faults

ACM SIGSOFT Software Engineering Notes vol 23 no 1 January 1998 Page 43

that can occur in the field and check how the system reacts.
This is useful in one hand to test if the fault tolerance
mechanisms are behaving as specified (validation) and on
the other hand to assess the coverage of the mechanisms,
i.e. what percentage and what kind of faults they can
handle (evaluation). It is relatively easy to induce
Permanent faults and check how the system behaves; it's
just a matter of disabling a component, e.g. disconnecting
the network card. With Transient, Intermittent and
Software faults it is not that easy. The real problem is in
devising the kind of faults that should be injected and
whether they correspond to faults that can really occur. The
hard approach to Fault Injection is to disturb the hardware
directly. This can be done by momentaneously flipping bits
at the chip pins, varying the power supply or even bombing
the system/chips with heavy ions. These methods are
believed to cause real hardware Transient faults but
unfortunately don't give much help for Software faults.
Furthermore, the high complexity and the very high speed
of the processors available today makes the design of the
special hardware required by the above approach very
difficult, or even impossible. Another approach is to build a
simulator of the ~stem and inject faults by bit flipping
directly in the simulation model. This allows a fine control
over the timing, the type of fault, and the affected
component in the ~stem. However, it involves an enormous
development efforl to build the simulator which is not
compatible with time-to-market requirements of most
companies.

A recent approach that is being increasingly used as an
alternative to the others is to insert the faults in the system
using a software tool - a Software Implemented Fault
Injector or SWIFI for short [4]. This tool is basically used to
interrupt the execution of the critical system software and
flip bits in different parts of the system such as the
processor registers, the memory, or the application code.
The advantages of this approach is its low complexity, low
development effort, low cost (no specific hardware is
needed) and increased portability. An additional advantage
is that built-in mechanisms for debugging and performance
monitoring that are current in most modern
microprocessors can be used to emulate hardware faults
with a great prectsion. A SWlFI tool is usually a very
bizarre piece of software which makes use of all possible
processor and system hooks to create an incorrect behavior
in a controlled manner.

Another thing that makes SWlFI different from the
other techniques is its ability to emulate software
(application level) faults, and this takes us to another area -
Software Testing. Mission critical applications require
extensive testing, specially to catch the so-called
Heisenbugs which occur during unusual and limit
situations. There's nothing like executing those
applications under the adverse conditions created by a fault
injector to force software faults to show-up [6].

After all Fault Injection seems to have some important
applications. In fact, a fault injector is a tool of invaluable
help for dependability engineers. The route can look

tortuous, but effectively we can say that some people artificially inject
faults in order to understand and tolerate real faults. Confused ?

[11 Jean Arlat et al., "Fault Injection for Dependability Validation: A
Methodology and Some Applications", IEEE Trans. on Software
Engineering., Vol 16, No 2, Feb. 1990, pp. 166-182.

[2] J.C.Laprie (editor), "Dependability: Basic Concepts and
Terminology", vol.5 of Dependable Computing and fault
Tolerance, Springer-Verlag, 1992.

[3] Yennun Huang, C.Kintala, Nick Kolettis and N.Fulton, AT&T
Bell Laboratories, "Software Rejuvenation: Analysis, Module and
Applications", 25 th Fault Tolerant Computing Symposium, 1995.

[4] Jo[[o Carreira, Henrique Madeira, Jo~io Gabriel Silva. "Xception:
Software Fault Injection and Monitoring in Processor Functional
Units" Proc.of DCCA'95, Working Conference on Dependable
Computing for Critical Applications, Urbana-Champaign, USA,
September 27-29,1995.

[51 Jo~o Carreira, Dino Costa, Jo[lo Gabriel Silva, "Fault Tolerance
for Windows Applications", BYTE Magazine, Core Technology -
Operating Systems column, February 1997.

[61 Jeffrey Voas, "Software Fault-injection: Growing 'Safer'
Systems", In Prec. of IEEE Aerospace Conference, Snowmass,
February, 1997.

